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Abstract

A system consisting of two Josephson qubits coupled through a quantum monochromatic elec-

tromagnetic field mode is studied. It is shown that for certain values of the parameters, it can be

used as an entangling gate, which entangles the two qubits whilst the electromagnetic field remains

disentangled. The gate operates with decent fidelity to a
√

SWAP gate and could form the basis

for initial experimental investigations of coupled superconducting qubits.
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There is currently considerable interest in realisations of qubits for quantum information

processing. Numerous candidates have been proposed and are under investigation. (e.g.,

[1, 2].) Fundamental qubits (ions, spins in molecules) currently lead the experimental race in

terms of having demonstrated two qubit gates and simple algorithms, but in the long term

condensed matter realisations could well be the best route to scalability in qubit number,

provided that the problems of decoherence can be reduced. Josephson circuits exhibit many

interesting quantum phenomena and form one of the leading condensed matter candidates

for the implementation of quantum gates for quantum computing [3–6]. On paper these

systems compare well against the Di Vincenzo checklist of criteria for quantum computing

[7]. A number of recent experiments have indicated that single superconducting qubits can

be constructed [8–11]. Preparation, evolution with good coherence and measurement have

been shown to work well, but experimental demonstration of entanglement between two

such qubits remains a goal.

Our work here addresses this specific point. In this paper we consider a system comprising

two Josephson qubits interacting with a quantized monochromatic electromagnetic field.

Earlier work on the interaction of Josephson devices with quantized electromagnetic fields

has been presented in [12–15]. The two superconducting qubits (which we denote as A and

B) are approximately described as two level systems when biased at a suitable external

flux (magnetic or electric) value which separates the lowest two eigenstates from the rest of

the spectrum. Proposals have been made [3–5] to couple superconducting qubits directly

through a circuit element (capacitive or inductive), leading to direct interaction terms of

the form σA
x σB

x etc. in the Hamiltonian, using pseudospin notation for the approximate

superconducting qubits. Clearly such terms are capable of producing maximal entanglement

between the qubits. However, as practical circuits often have both inductive and capacitive

components whether by design or not, in this work we consider coupling each of the qubits

to an electromagnetic field mode which has its own dynamics. In practice this would be

a mode of a resonant superconducting microwave structure. The interaction between the

qubits is thus mediated through the electromagnetic field mode, and not through a direct

circuit interaction, which is assumed small by comparison.

The model Hamiltonian we employ is [16] (in units h̄ = c = kB = 1 )

H =
1

2
∆ σA

z +
1

2
∆ σB

z + ωF (a†a +
1

2
) + λA σA

x (a + a†) + λB σB
x (a + a†) (1)
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where σ are Pauli matrices; ∆ is the energy separation between the ground state and first

excited state (which is assumed to be the same for both qubits); ωF is the frequency of

the electromagnetic field; a and a† annihilation and creation operators correspondingly, of

the electromagnetic field; and λA, λB the coupling constants of the electromagnetic field

with the qubits A and B, correspondingly. This Hamiltonian can describe both forms of

superconducting qubit. In the case of charge qubits [3, 6] the σx eigenstates are the charge

eigenstates and the qubits are assumed to be biased with gate voltages such that the energy

(σz) eigenstates are the odd and even superpositions of adjacent charge states. In this case,

the qubits are arranged so the charges couple to the electric field of the mode. In the case of

flux or current qubits [4–6] the σx eigenstates represent current states of a superconducting

ring, biased so that the energy eigenstates are superpositions of these. In this case the qubits

are arranged so their currents couple to the magnetic field of the mode. Clearly, our analysis

and simulations apply to any other qubit-field-qubit system which can be described by (1).

Here we consider the resonant case where ωF = ∆. Such systems are generally operated

at very low temperatures so that the thermal noise is smaller than the quantum noise

(h̄ωF >> kBT ). Our calculations assume that the effect of dissipation is negligible. The

effects of dissipation, dephasing, finite temperatures and other couplings will be considered

in future work.

The purpose of this paper is to show that for suitable values of the parameters the system

generates entanglement between the qubits, and operates as an effective
√

SWAP gate. This

requires the demonstration that if at t = 0 the system is in one of the factorizable states

|0A; 0B; 0F 〉, |1A; 0B; 0F 〉, |0A; 1B; 0F 〉, |1A; 1B; 0F 〉 then, at a later time t, it evolves as follows:

|0A; 0B; 0F 〉 → |0A; 0B; 0F 〉 (2)

|1A; 1B; 0F 〉 → |1A; 1B; 0F 〉 (3)

|0A; 1B; 0F 〉 → 1

1 + i
(|0A; 1B〉+ i|1A; 0B〉)|0F 〉 (4)

|1A; 0B; 0F 〉 → 1

1 + i
(|1A; 0B〉+ i|0A; 1B〉)|0F 〉 (5)

We have used the parameters ωF = ∆ = 1.3·10−4 and λA = λB = 4.2·10−5 (corresponding

to ωF = 2 · 1011rad · s−1) and assuming that at t = 0 the system is in a state described
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by a density matrix ρ(0) we calculated the density matrix of the system at a time t which

is ρ(t) = exp(iHt)ρ(0) exp(−iHt). For the numerical work we have truncated the infinite

dimensional Hilbert space of the electromagnetic field to Nmax = 6 and we have checked that

greater values of Nmax = 6 do not significantly increase the accuracy (the average number of

photons in the system is less than 1 and Nmax = 6 is sufficient). The exp(iHt) is therefore

the exponential of a finite matrix which is calculated with MATLAB.

Partial tracing of the ρ(t) with respect to some of the subsystems produces the density

matrix of the remainder at time t. From these we can calculate various quantities. Assuming

that at t = 0 the system is in the state |0A; 1B; 0F 〉 we calculated the average number of

quanta < NA >, < NB > and < NF > in the three modes as a function of time. We

also calculated the entropic quantities Iij(t) = S(ρi) + S(ρj)− S(ρij) (where i, j = A,B, F )

which describe correlations between the modes ij (non-zero value indicates the existence of

classical correlations or entanglement). The results are shown in Fig.1 where it is seen that

at ωF t = 27.6 we have < NA >= 0.5, < NB >≈ 0.5 and < NF >≈ 0 IAB ≈ 1.2, IAF ≈ 0.1

IBF ≈ 0.1.
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FIG. 1: Top: Average number of excitations < NA > (solid line), < NB > (dashed line) and

< NF > (dashed-dot line) for the three subsystems with initial state |0A1B0F 〉. Bottom: The

entropies Iij in nats defined in the text.

This suggests that the field is close to a vacuum state and disentangled from the two

qubits; and also that the two qubits are correlated. To demonstrate that they are close to
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maximally entangled and that the evolution has effected an approximate
√

SWAP gate,

we examined the density matrix of the system at ωF t = 27.6. First we checked that the

electromagnetic field is disentangled from the qubits. The low values of the IAF ≈ 0.1 and

IBF ≈ 0.1 indicate already that this is the case. We also calculated the matrix ρ−(ρAB⊗ρF )

which in the case of exact factorization of the electromagnetic field with the two Josephson

qubits, is equal to zero. As a measure of the deviation of this matrix from zero we calculated

the sum of the absolute values of its elements and we normalized it by dividing over the total

number of elements. We call this the factorization coefficient F and its value for our case is

F = 0.005 which indicates that to a good approximation the matrix is of the form ρAB⊗ρF .

In table 1 we give the matrix elements of ρAB . It is seen that to a good approximation Eq.

(4) is obeyed. Due to the symmetry between the two modes, this also means that Eq. (5)

is obeyed.

|1A1B〉 |0A1B〉 |1A0B〉 |0A0B〉
〈1A1B| 0.0123 + 0.0000i 0 0 0.0053 - 0.0060i

〈0A1B| 0 0.4962 + 0.0000i -0.0102 - 0.4805i 0

〈1A0B| 0 -0.0102 +0.4805i 0.4834- 0.0000i 0

〈0A0B| 0.0053 + 0.0060i 0 0 0.0080 + 0.0000i

TABLE I: Matrix elements of ρAB at ωF t = 27.6 for a system in the state |0A; 1B; 0F 〉 at t = 0

We next repeat the same calculations for the initial states |0A; 0B; 0F 〉 and |1A; 1B; 0F 〉.
For the initial state |0A; 0B; 0F 〉 we get F = 0.004 which indicates that the electromagnetic

field is to a very good approximation disentangled; and the matrix ρAB is shown in table 2

where it is seen that Eq. (2) is obeyed.

|1A1B〉 |0A1B〉 |1A0B〉 |0A0B〉
〈1A1B| 0.0131 + 0.0000i 0 0 0.0636- 0.0773i

〈0A1B| 0 0.0407+ 0.0000i 0.0407 + 0.0000i 0

〈1A0B| 0 0.0407 -0.0000i 0.0407 + 0.0000i 0

〈0A0B| 0.0636+ 0.0773i 0 0 0.9055 - 0.0000i

TABLE II: Matrix elements of ρAB at ωF t = 27.6 for a system in the state |0A; 0B; 0F 〉 at t = 0
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For the initial state |1A; 1B; 0F 〉 we get F = 0.006 which again indicates that the electro-

magnetic field is to a very good approximation disentangled; and the matrix ρAB is shown

in table 3 where it is seen that Eq. (3) is obeyed (although the approximation is not as good

as before).

|1A1B〉 |0A1B〉 |1A0B〉 |0A0B〉
〈1A1B| 0.7225 - 0.0000i 0 0 0.1365 - 0.0252i

〈0A1B| 0 0.0602 - 0.0000i 0.0602 - 0.0000i 0

〈1A0B| 0 0.0602 + 0.0000i 0.0602 + 0.0000i 0

〈0A0B| 0.1365 + 0.0252i 0 0 0.1450 - 0.0000i

TABLE III: Matrix elements of ρAB at ωF t = 27.6 for a system in the state |1A; 1B; 0F 〉 at t = 0

We note that a system which at time t operates as a perfect
√

SWAP gate will at time 2t

operate as a SWAP gate. We have checked that this is indeed the case in our simulations,

and at twice the time entanglement is generated the results show a SWAP . For example, for

the case that the system is at t = 0 in the state |0A; 1B; 0F 〉 we present here the factorization

coefficient F = 0.005 and the density matrix ρAB in table 4. It is seen that the SWAP

operation is performed with good accuracy, a fidelity [17] of 0.99.

|1A1B〉 |0A1B〉 |1A0B〉 |0A0B〉
〈1A1B| 0.0033 - 0.0000i 0 0 -0.0054 + 0.0014i

〈0A1B| 0 0.0025 - 0.0000i -0.0082 - 0.0413i 0

〈1A0B| 0 -0.0082 + 0.0413i 0.9810 + 0.0000i 0

〈0A0B| -0.0054 - 0.0014i 0 0 0.0132 + 0.0000i

TABLE IV: Matrix elements of ρAB at ωF t = 55.9 for a system in the state |0A; 1B; 0F 〉 at t = 0

A better accuracy might be desirable in order to implement fault tolerant quantum com-

putation with many superconducting qubits. However, this is not about to happen, as

many experimental hurdles will have to be overcome to get to such quantum information

technology. Next on the experimental agenda is the demonstration of a decent degree of

entanglement between two condensed matter qubits. Our results are at the very least im-

portant for this stage. As we have shown, it is clear that two superconducting qubits can be
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entangled through their coupling to a microwave field mode. As well as being a next step

towards quantum information technology, the experimental demonstration of entanglement

between two superconducting qubits would be of great importance for the fundamentals of

quantum mechanics, for in the case of flux qubits this would represent entanglement be-

tween two macroscopic spatially separated systems. It is also worth noting that for the form

of evolution discussed here, the demonstration of entanglement would not require measure-

ments on the two qubits in different bases (which is not likely to be easy for superconducting

systems in the short term). Rather than through the violation of a Bell inequality, it is pos-

sible to infer entanglement through measurements at the
√

SWAP and SWAP points in

the evolution in just a single basis [18]. Thus the qubit-field-qubit system discussed here is

a very promising route for investigating the entanglement of superconducting circuits.
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