

Parameter selection for
support vector machines

Carl Staelin
HP Laboratories Israel1
HPL-2002-354 (R.1)
November 10th , 2003*

Support Vector
Machines (SVM),
Design of
Experiments
(DOE),
meta-parameter
selection

We present an algorithm for selecting support vector machine
(SVM) meta-parameter values which is based on ideas from design
of experiments (DOE) and demonstrate that it is robust and works
effectively and efficiently on a variety of problems.

* Internal Accession Date Only Approved for External Publication
 1 Technion City, Haifa, 32000, Israel
 Copyright Hewlett-Packard Company 2002

1

Parameter selection for support vector machines
Carl Staelin, Senior Member IEEE

Abstract— We present an algorithm for selecting support
vector machine (SVM) meta-parameter values which is based
on ideas from design of experiments (DOE) and demonstrate
that it is robust and works effectively and efficiently on a variety
of problems.

Index Terms— Support Vector Machines (SVM), meta-
parameter selection, Design of Experiments (DOE)

I. INTRODUCTION

SUPPORT vector machines (SVM) are a powerful machine
learning method for both regression and classification

problems. However, the various SVM formulations each re-
quire the user to set two or more parameters which govern the
training process, and those parameter settings can have a pro-
found affect on the resulting engine’s performance. We present
an algorithm based on principles from design of experiments
(DOE) that can identify optimal or near optimal parameter
settings an order of magnitude faster than an exhaustive grid
search for SVMs using the radial basis function kernel, and
we evaluate its performance on a number of standard test
problems. This algorithm has been successfully applied to
several real-world applications within HP.

The first issue is deciding how to evaluate the parameter’s
effectiveness, which is just the standard problem of evaluating
machine learning method performance. The most common
method is some form of N-fold cross-validation, but other
approaches such as leave-one-out and Dietterich’s 5x2cv test
are also possible. All these methods require that the machine
learning engine be trained multiple times in order to obtain a
single performance number for a single parameter setting.

The most common and reliable approach to parameter
selection is to decide on parameter ranges, and to then do
an exhaustive grid search over the parameter space to find the
best setting. Unfortunately, even moderately high resolution
searches can result in a large number of evaluations and
unacceptably long run times.

Our approach is to start with a very coarse grid covering
the whole search space and iteratively refine both the grid
resolution and search boundaries, keeping the number of
samples at each iteration roughly constant. This is a variant on
a fairly standard search method from the design of experiments
field [1].

Figure 1 shows the sampling pattern for a two parameter
search, which is a combination of a standard N-parameter,
three-level

���������	��
���
, or ��� experiment design with another

standard N-parameter, two-level � ���� ������ , or ��� experiment
design, resulting in thirteen points per iteration in the two-
parameter case.

After each iteration the system evaluates all sampled points
and chooses the point with the best performance. The search
space is centered around the best point, unless this would cause

Fig. 1. DOE sampling pattern

−1

0

1

−1 0 1

3−level DOE 2−level DOE

the search to go outside the user-given bounds, in which case
the center is adjusted so the whole space is contained within
the user-given bounds. The grid resolution is then increased
(currently doubled, but it might be increased by a different
factor, such as � �) and the bounds shrunk, and a new set of
sample points is calculated. This process is repeated as many
times as desired.

II. PRIOR WORK

Support vector machines are a relatively recent method of
machine learning based on structural risk minimization. Some
standard reference works on SVM include [2], [3], [4].

From Platt [5]the definition of the quadratic programming
problem that for support vector learning is:

������� �"!$#&%(')* + , � #
+ � ��)* + , �)*- , � .

+
. -0/ !�1�

+ � 1� - %2# + # -
3�4 564 �87 # + 7:9;�=<�>?)

+ , � .
+ #A@B' �

where C is the number of D � � .FE samples, / !�1� + � 1� - % is the kernel
function of two sample input vectors 1� + and 1� - , .

+
and . - are

the corresponding sample values,
9

is a given parameter, and# + are being optimized by the training process.
The quadratic programming problem is solved if and only

if the Karush-Kuhn-Tucker (KTT) conditions are fulfilled andG + - ' .
+
. - / !�1�

+ � 1� - % is positive semi-definite. Such a point
may be a non-unique and non-isolated optimum. The KKT

2

conditions are particularly simple; the quadratic programming
problem is solved when, for all

>
:# + ' � H .
+JI ! 1� + %LK ��8M # + M:9 H .
+ I ! 1� + %(' �# + ' 9 H .
+ I ! 1� + % 7N�

where

I ! 1� + % is the evaluation of the support vector machine
at point 1� + , and is defined as:I !�1� + %B')*- , � # - / !�1�

+ � 1� - %
Those input samples with non-zero # + values at the end of
training are called support vectors, and the samples where# + ' 9

are called bound support vectors. In classification
problems, these support vectos define the boundary between
two classes, while the

9
parameter allows some “slack” in the

system that permits samples to be on the “wrong” side of the
decision boudnary, which helps prevent or reduce overfitting
to the input set. It also affects the size of the support vector
set.

LIBSVM [6] includes for kernel functions: linear, polyno-
mial, radial basis function (RBF), and sigmoid. To train an
SVM, the user must select the proper

9
value as well as any

required kernel parameters. The various kernel functions are
defined as:C >PORQ ��S / !T1U � 1VW%B'X1U�Y[ZF1V\] C . O]^� > � C / !T1U � 1VW%B'_!a`b1U�Y[ZF1V
dc] Q I � % �6ePf6gheiejlknm / !T1U � 1VW%B' Q�o pFqsrt oBru q v3 >Jw �[] >yx / !T1U � 1VW%B'{z�|~}W�A!a`b1U Y ZW1V
�c] Q I � %
which means that training a support vector machine for these
kernels requires setting 1, 4, 2, and 3 parameters respectively.

Keerthi [7] proposed a method for obtaining both the leave-
one-out (LOO) error and its gradient with respect to the SVM
control parameters

9
and ` for L2-SVM with RBF kernel.

Interestingly, this method is computationally faster than five-
fold cross-validation. Chung et. al. [8] extended this work to
also cover L1-SVMs. Both Keerthi and Chung et. al. used
these differentiable error bounds to develop a gradient-descent
based method for parameter selection using BFGS quasi-
Newton methods. They showed that the method can converge
very quickly, but it is sensitive to the initial conditions, and in
those cases where the initial point was “far” from the optimum
in a “flat” region, the search sometimes searched fruitlessly
and aimlessly for the minimum.

SVM parameter selection can be viewed as an optimization
process, and many of the standard techniques from both
optimization and DOE fields may be applied directly to this
problem. As Keerthi and Chung et. al. observed, obtaining a
differentiable error function allows one to use gradient-based
approaches, such as BFGS quasi-Newton gradient-descent
optimization.

It is possible that the best solution would be to use our
approach to identify a suitable initial condition, and then use
the gradient-based approach for the local search to identify the
optimal solution.

III. IMPLEMENTATION

The parameter selection algorithm was implemented in
less than 100 lines of Python on top of LIBSVM’s Python
interface. The core of the system is a Python class Search,
which is passed three parameters: minimums, maximums, and
a problem. Minimums and maximums are lists of the minimal
and maximal values for each parameter, and the problem is
a pointer to a class that encapsulates the SVM problem and
manages the evaluation of SVM performance for a given set
of parameter setting. Search maintains a list of all evaluated
parameter settings and their estimated error performance, and
does not repeat evaluations for a given parameter setting, but
rather uses the stored value.

The method explore creates the DOE sample pattern for the
current search iteration given the current min-max range for
each parameter using the template from Figure 1, and then
measures the performance over those samples.

The method search is an iterative process that starts with
the full range

M � >JO + � 4�4�4 � �[��� +L� for each parameter
>
. (For

RBF kernels, there are only two parameters,
9

and `). In
each iteration the system uses explore to sample the parameter
space, and it selects the sample with the best performance
(highest accuracy for classification problems, or lowest mean
squared error for regression problems). At this point the range
is halved, and the best point is used as the center point of
the new range, unless the new range would extend outside the
user-specified range. In this case the center point is the point
closest to the best point where the new range is contained in
the user-specified range. The system now repeats this process
as many times as desired, and at the end the best sample is
chosen.

By storing the search parameter bounds in a list, the search
algorithm itself is independent of the number of parameters in
the search space. This allows us to re-use the same algorithm
and code for all four kernels. In addition, since the experiment
designs are the union of a �=� and a ��� design, the per-iteration
search pattern also scales naturally to the different number of
parameters required for each of the kernels.

IV. RESULTS

We compare the performance of the proposed search method
with the standard grid search method using LIBSVM and the
RBF kernel, both in terms of the quality of the final result and
the work required to obtain that result. Chih-Jen Lin kindly
shared with us the LIBSVM datasets used in Chung et. al.
[8]: banana, image, splice, tree, waveform, and ijcnn. The
grid search was done with twenty samples per parameter with
uniform resolution in C] w � -space. For both search methods, the
parameter ranges were C] w � 9��������F� 4�4T4 ���^�= and C] w � ` ������^�F� 4T4�4 � � .

Table I shows the result of both our search method and
an exhaustive grid-based search for each dataset using RBF
kernels. Using a paired t-test on the final accuracy results,
we find that the two approaches have comparable accuracy
with 85% probability. However, the search method utilized
five iterations and no more than 50 samples to find the

9
and ` values that gave the best cross-validation error, whereas

3

TABLE I

RESULTS

dataset search grid���~�W� ���^�F�
#fun accuracy

���~�	� ���^�F�
#fun accuracy

banana 11.25 -1.5 49 93.0 12.89 -1.74 400 92.75
diabetes 5.62 -10.5 47 79.7 7.63 -13.10 400 79.49
ijcnn 3.44 1.59 50 98.91 3.42 2.05 400 98.89
image 8.44 -4.6 45 96.5 13.95 -7.42 400 96.69
ringnorm 7.19 -3.47 46 98.75 4.47 -3.63 400 98.75
splice 12.19 -7.97 46 87.80 2.37 -7.42 400 88.30
titanic -1.25 -1.5 49 80.67 -0.79 -2.68 400 80.67
tree 10.62 -6.56 47 89.00 15.00 -8.37 400 89.14
twonorm 1.87 -6.00 47 98.00 1.32 -5.53 400 97.75
waveform 1.56 -5.16 47 93.50 0.26 -3.63 400 93.25

the grid search required 20 samples per dimension, for 400
samples overall, an eight-fold difference in computational cost.
It is interesting to note that the actual parameter settings may
differ widely from that found in the grid search, such as the
image dataset.

Figure I contains contour and surface plots for some of the
datasets. The arrows on the projected contour plot show the
progression of the search method’s best parameter estimate.
The final, optimal parameter settings are shown with an
’x’. It is interesting to see that some of the surfaces have
local minima that can trap or deceive gradient-based search
algorithms. For example, the secondary ridge in banana that
appears to peak around C] w � 9 ' � � , C] w � `[' ���T�

with value
around 65, while the true peak is at

��� 4 � �F����� 4 � and value 93.
Also note the occassional isolated peaks in both diabetes and
waveform which could trap gradient-based search methods.
Finalit is interesting to note the extremely flat regions near
the periphery of the graphs, which appear to give the lower
bound on performance for the algorithms. These flat regions
could also tend to confuse gradient-based search algorithms
because the surface is so flat that the search is more vulnerable
to small errors or noise in the gradient estimation.

V. CONCLUSIONS

We have presented an algorithm based on techniques from
DOE that can reliably find very good parameter settings for
SVMs with RBF kernels with relatively little effort across a
wide range of machine learning problems. Additionally, this
algorithm might be used to obtain a good starting point for
Keerthi’s gradient-descent method for RBF kernels, which can
be sensitive to the initial conditions of its search.

Currently this work is being extended to work across each
of the SVM kernels supported by LIBSVM, but some care
must be taken to ensure that the search is robust in the face
of infeasible solutions which are more likely with some of the
other kernels. In addition, a kernel-search algorithm is being
added on top of the per-kernel parameter search so the system
can automatically identify the best kernel and its parameter
settings.

ACKNOWLEDGEMENTS

The author should like to thank Chih-Jen Lin for LIBSVM
and for his generous sharing of his expertise, code, and data
sets for this problem.

REFERENCES

[1] D. C. Montgomery, Design and analysis of experiments, 4th ed. New
York, New York: John Wiley and Sons, 1997.

[2] V. Vapnik, The nature of statistical learning theory, 2nd ed., ser. Statistics
for engineering and information science. New York, New York: Springer-
Verlag, 2000.

[3] N. Cristianini and J. Shawe-Taylor, An introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge, UK:
Cambridge University Press, 2000.

[4] C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167,
1998, http://svm.first.gmd.de/papers/Burges98.ps.gz.

[5] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods - Support Vector
Learning, B. Scholkopf, C. Burges, and A. Smola, Eds. MIT Press,
1998, http://research.microsoft.com/˜jplatt/smo-book.pdf.

[6] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” September 14 2002. [Online]. Available:
http://www.csie.ntu.edu.tw/˜cjlin/papers/libsvm.pdf

[7] S. Keerthi, “Efficient tuning of SVM hyperparameters using radius/margin
bound and iterative algorithms.”

[8] K.-M. Chung, W.-C. Kao, T. Sun, L.-L. Wang, and C.-J. Lin, “Radius
margin bounds for support vector machines with the RBF kernel,” Neural
Computation, vol. 15, no. 11, pp. 2643–2681, November 2003.

4

Fig. 2. Accuracy contour and surface plots

banana

X

 92
 90
 80
 70
 65
 60

-5 0 5 10 15

log2(C)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

log2(γ)

banana

X

"-"

-5
0

5
10

15
log2(C)

-16
-14

-12
-10

-8
-6

-4
-2

0
2

4

log2(γ)

50

55

60

65

70

75

80

85

90

95

diabetes

X

 79
 78
 76
 72
 70
 68

-5 0 5 10 15

log2(C)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

log2(γ)

diabetes

"-"

-5
0

5
10

15
log2(C)

-16
-14

-12
-10

-8
-6

-4
-2

0
2

4

log2(γ)

62

64

66

68

70

72

74

76

78

80

waveform

X

 93
 92
 90
 80
 70

-5 0 5 10 15

log2(C)

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

log2(γ)

waveform

"-"

-5
0

5
10

15
log2(C)

-16
-14

-12
-10

-8
-6

-4
-2

0
2

4

log2(γ)

65

70

75

80

85

90

95

