

Disk I/O in Linux

Carl Staelin
HP Laboratories Israel1
HPL-2002-352
December 19th , 2002*

E-mail: staelin@hpl.hp.com

disk
performance,
RAID, Linux,
I/O
performance

The paper contains preliminary results from an investigation comparing
Linux and WindowsXP disk I/O using kernel-based software RAID on
identical hardware. WindowsXP performance is shown to be substantially
superior to Linux performance, for reasons not currently understood.

One known problem with the Linux RAID driver is that in Linux 2.4 file
I/O is synchronous and file operations are serialized by a kernel file lock.
Since the RAID driver is exposed to user-level applications via a file
interface, this means that all accesses to the RAID are serialized.

There are a number of possibilities to improve disk I/O performance: [1]
Develop a user-level RAID layer built on aio and extend applications to
allow asynchronous I/O. [2] Attempt to debug the Linux software RAID
device so its synchronous performance is comparable to WindowsXP.

We developed a simple user-level RAID layer built on aio, and
demonstrate its improved performance over the Linux software RAID
implementation, but its performance is still lower than that of the
WindowsXP software RAID implementation.

The alternative is to investigate various options for extending or
improving the Linux kernel, which is likely to be a riskier and more
difficult task.

* Internal Accession Date Only Approved for External Publication
1 Technion City, Haifa, 32000, Israel
 Copyright Hewlett-Packard Company 2002

Disk I/O in Linux

Carl Staelin

Hewlett-Packard Laboratories Israel
Technion City
Haifa, Israel

staelin@hpl.hp.com
http://www.hpl.hp.com/personal/Carl_Staelin

ABSTRACT

The paper contains preliminary results from an investigation comparing Linux and
WindowsXP disk I/O using kernel-based software RAID on identical hardware. Win-
dowsXP performance is shown to be substantially superior to Linux performance, for rea-
sons not currently understood.

One known problem with the Linux RAID driver is that in Linux 2.4 file I/O is syn-
chronous and file operations are serialized by a kernel file lock. Since the RAID driver is
exposed to user-level applications via a file interface, this means that all accesses to the
RAID are serialized.

There are a number of possibilities to improve disk I/O performance:

[1] Develop a user-level RAID layer built on aio and extend applications to allow
asynchronous I/O.

[2] Attempt to debug the Linux software RAID device so its synchronous performance
is comparable to WindowsXP.

We dev eloped a simple user-level RAID layer built on aio, and demonstrate its
improved performance over the Linux software RAID implementation, but its perfor-
mance is still lower than that of the WindowsXP software RAID implementation.

The alternative is to inv estigate various options for extending or improving the Linux ker-
nel, which is likely to be a riskier and more difficult task.

1. Introduction

The goal of this research is to identify the param-
eters of Linux’s I/O performance, and to try to
find a software solution which provides sufficient
I/O bandwidth with minimal development over-
head and risk.

I/O patterns during real use will not be purely
streaming sequential I/O. Instead they will typi-
cally be chunked, with randomly dispersed
chunks of varying sized sequential I/O. A new
benchmark was developed to measure this type of
I/O activity in a controlled fashion.

1.1. Hardware

All the experiments were run on the same PC, an
HP x4000 PC workstation with a 2.4GHz P4
Xeon processor and 512MB of RDRAM. There

were two removable IDE boot disks, one contain-
ing WindowsXP and one containing Mandrake
8.2 Linux with kernel version 2.4.18-6mdk. In
addition, there were three Fujitsu MAN3367MP
33GB 10,000RPM disks [3] on a single
Ultra160MB/s SCSI string for testing. The SCSI
adapter is an Adaptec aic7895 UltraSCSI adapter
on a PCI 32/33 bus.

The Linux tests were run under Mandrake 8.2
with the stock Mandrake Linux 2.4.18-6mdk ker-
nel. The tests on the kernel-based RAID imple-
mentation used the md driver configured as a
RAID0 device.

The WindowsXP RAID implementation was the
kernel-based stripe set, which appears to
have a stripe size of 1MB.

1

-2-

2. Benchmark

We wrote a custom benchmark based on the
lmbench timing harness which measures read
and write bandwidth to both a single RAID device
containing a variable number of disks, and direct
access to a variable number of disks. The bench-
mark can measure both streaming, sequential I/O,
and random I/O in fixed chunk sizes. The results
reported here are for random I/O in various chunk
sizes in order to estimate the performance of the
I/O subsystem on various element sizes. When
measuring RAID performance, it varies the RAID
stripe size to evaluate its effect on performance.

The results reported here are for random, fixed
size I/O requests. The reason is that sequential
I/O has a significantly different character than
random I/O since the system can pre-fetch data to
improve performance. However, that same
prefetching that improves sequential performance
can reduce the performance of chunked or ran-
dom I/O since the system spends resources read-
ing data that is never accessed. The I/O request
sizes vary from 4KB to 64MB, to mimic a range
of element sizes. Before each I/O the system ran-
domly chooses a segment to access. For large
requests, the I/O behavior is largely sequential
and will more closely mimic that of sequential
I/O.

When measuring the performance of bundles of
independent disks, sometimes known as Just a
Bunch of Disks (JBOD), the system creates a pro-
cess for each disk.

When measuring the performance of the software
RAID disks, there is only a single thread which
accesses the disk. The default RAID stripe size is
512KB under Linux and apparently 1MB under
WindowsXP. On Linux, the RAID stripe size is
varied from 4KB to 1MB to explore the affect of
stripe size on performance.

3. Asynchronous I/O

I/O subsystems and devices generally perform
better when given multiple requests in parallel.
For example, a RAID device contains multiple
disks, and any giv en I/O request is generally sent
to a single disk, leaving the remaining devices
idle. Giving the RAID device multiple requests
can potentially allow the RAID device to send
independent requests to different devices, achiev-
ing much better overall utilization and perfor-
mance.

Since devices are represented by files in Linux,
this means that it is potentially important to be

able to send multiple outstanding requests to a
single file.

The Linux I/O interfaces, such as read and
write, are inherently synchronous. The calling
thread is blocked until the I/O is complete. There
is a standard POSIX interface, aio, which
defines a suite of routines that can be used for
asynchronous I/O. Currently, these routines are
provided by a user-level library, librt, which
uses threads to send multiple I/O requests to the
kernel. Unfortunately, this implementation
queues all I/O requests for a given file on a single
thread, so all I/O for a single file is serialized by
that thread.

In addition, the 2.4 Linux kernel currently serial-
izes all requests for a single file since each I/O
request locks the file datastructure for the duration
of the operation. This means that requests to a
given file will be serialized. In particular, applica-
tions which directly access devices will have all
their requests serialized.

The Linux kernel developers are aware of this
problem, and asynchronous block I/O is now the
default in the Linux 2.5 (development) kernel.
All intra-kernel file operations are now asyn-
chronous operations, with an externally visible
system call interface [1]. This would imply that
ev en using the existing synchronous interfaces,
independent I/O requests from various threads
and processes could potentially operate on the
same file in parallel. In addition, the POSIX aio
interface would also allow multiple requests to the
same file to proceed in parallel.

3.1. Intra-disk parallelism

Disk drives hav e two mechanisms to provide a
level of parallelism in their activity: request
queues and read-ahead buffering. Most SCSI
disks, and increasingly IDE disks, provide a
means for the host to queue up several I/O
requests called tagged-command-queueing
(TCQ), which allows the device to schedule them
optimally given its detailed knowledge of the state
of the device, such as its rotational position, head
position, and seek-time costs. The Linux SCSI
driver appears to support TCQ, but it is not clear
if it is fully utilized due to serialization of
requests via file locking.

When a disk head is sent to a region, or when a
read request completes, many disks will read sub-
sequent data from the disk and put it into a read-
ahead buffer if there are no queued requests, in
case the host asks for it in the near future. This

2

-3-

mechanism allows disks to stream data to the host
at platter speeds.

Unfortunately, giv en the limitations of the current
Linux kernel, it is not currently possible to explic-
itly send multiple requests to the same device
when directly accessing the raw device.

4. User-level software RAID driver (CSRAID)

Due to the various limitations on available paral-
lelism through the kernel software RAID driver, a
user-level software RAID driver called csraid
was written using aio. Since the user-level
driver accesses each disk’s device file directly, it
can send requests to each device independently.
This gives a maximal theoretic performance com-
parable to JBOD.

csraid has two sets of interfaces, one syn-
chronous and the other asynchronous. The asyn-
chronous interface returns as soon as the
request(s) have been submitted to aio, while the
synchronous interface waits for those requests to
complete. Note that large I/O requests will gener-
ally result in multiple I/O requests being sent to
the disks. In both cases these requests are han-
dled asynchronously via aio so even the syn-
chronous interface provides some level of parallel
disk activity.

5. Results

The investigation is a multi-stage process. The
first step is to identify the maximal attainable
bandwidth by directly accessing the disks, with-
out the software RAID layer, using chunk-wise
sequential I/O. The next step is to bundle the
disks into a software RAID device, and to mea-
sure strictly sequential I/O over various RAID
stripe sizes. The next step is to measure perfor-
mance using a chunked workload over a variety of
chunk sizes.

The performance results were taken using a cus-
tom benchmark built using the lmbench version
3[2] timing harness which can measure perfor-
mance under scalable load. At each point the sys-
tem took 101 samples per load element. All
RAID measurements were taken with a single
process issuing requests serially, which is a single
load element. The JBOD measurements used a
process per disk, so the number of load elements
is the number of disks. In this case the number of
measurements taken per point is 101 × ndisks.
The graphs show the Q1-Q3 confidence interval
for each point, as well as the median value.

5.1. Just-a-bunch-of-disks (JBOD)

Since the various software RAID devices’ perfor-
mance is limited by the underlying hardware per-
formance, we begin by analyzing the performance
available when accessing the various disks
directly.

0

20

40

60

80

100

120

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

3 disks
2 disks
1 disks

0

20

40

60

80

100

120

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

3 disks
2 disks
1 disks

Figure 1. JBOD bandwidth vs request size

Figure 1 shows how aggregate disk bandwidth
improves as the number of disks and the request
size increase. Note that the peak available band-
width per disk is roughly 40MB/s, and that this is
obtained with I/O requests as small as 4MB. This
verifies that under Linux, the maximal I/O band-
width with this hardware configuration is nearly
120MB/s.

5.2. WindowsXP software RAID device

We measured the Windows software RAID device
performance to obtain baseline comparison fig-
ures.

Figure 2 shows WindowsXP’s RAID performance
over a range of request sizes for one, two, and
three disks. Note that WindowsXP’s RAID per-
formance for large requests is actually superior to
the Linux JBOD performance, which is somewhat
surprising.

3

-4-

0

20

40

60

80

100

120

140

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

3 disks
2 disks
1 disks

0

20

40

60

80

100

120

140

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

3 disks
2 disks
1 disks

Figure 2. WindowsXP RAID bandwidth vs
request size

5.3. Linux software RAID device

The Linux software RAID device was evaluated
on both sequential streaming I/O and random
chunked I/O patterns. In addition, its perfor-
mance with various RAID stripe sizes was evalu-
ated.

To get a somewhat realistic assessment of
expected performance under real workloads, we
must use chunked I/O patterns, where each chunk
is read sequentially, but chunks are placed ran-
domly across the device. In this case, the imple-
mentation details of features such as read-ahead
can have a substantial impact on the resulting per-
formance. For example, if the read-ahead algo-
rithm is overly optimistic, it can recognize the
chunk read as sequential and schedule read-ahead
operations for a substantial amount of data
beyond the end of each chunk, resulting in gross
waste of bandwidth. Alternatively, if the RAID
does not send I/Os to other disks at the start of
each chunk, then each of the first N reads will be
strictly sequential, causing unnecessary serializa-
tion of the I/Os.

Figure 3 shows how aggregate disk bandwidth
improves as the number of disks and the request
size increase when the stripe size is 512KB.
Unfortunately, the peak bandwidth is 3/4 the peak

0

10

20

30

40

50

60

70

80

90

100

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

3 disks
2 disks
1 disks

0

10

20

30

40

50

60

70

80

90

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

3 disks
2 disks
1 disks

Figure 3. Linux RAID bandwidth vs request size
disk or sequential RAID bandwidths from Figures
1. This result is somewhat disturbing because it
implies that the I/O subsystem is not making full
use of the available parallelism when large I/Os
are sent as a single request.

Figure 4 shows how aggregate disk bandwidth
versus stripe size for three disks with two request
sizes, 1MB and 16MB. The relatively flat curves
indicate that between 64KB and 512KB there is
not much difference between stripe sizes,
although 128KB seems to be slightly preferable
for smaller chunk sizes.

5.4. CSRaid

Given the atrocious performance of the kernel-
based software RAID device, an alternative user-
level RAID ‘‘device’’, csraid, was developed
at HPL-Israel. The device was implemented
using the aio interface, which allows it to asyn-
chronously access multiple disks in parallel.
However, the current limitations of the Linux aio
system prevent the device from submitting multi-
ple I/O requests to a single disk in parallel.

The device allows both asynchronous and syn-
chronous I/O. The primary benefit of asyn-
chronous I/O with the current aio implementa-
tion would be that independent RAID requests
might access different disks, especially when the

4

-5-

0

10

20

30

40

50

60

70

80

90

64KB 256KB

B
an

dw
id

th
(M

B
/s

)

Stripe Size

Read

1M req
16M req

0

10

20

30

40

50

60

70

80

64KB 256KB

B
an

dw
id

th
(M

B
/s

)

Stripe Size

Write

1M req
16M req

Figure 4. Linux RAID bandwidth vs stripe
size (3 disk RAID)

request size is comparable to or smaller than the
RAID stripe size.

Figure 5 shows the performance for synchronous
I/O through the csraid interface.

Figure 6 also shows improved performance over
the kernel-based RAID driver with asynchronous
request handling.

Figure 7 shows that smaller stripe sizes can have
performance benefits, and that stripe sizes of
larger than the chunk size can harm performance.
So smaller stripe sizes are recommended for
csraid.

5.5. Direct comparison

Of crucial interest is the direct comparison
between WindowsXP, the kernel-based Linux
software RAID implementation, and the user-
level software RAID implementation.

From Figure 8 it can be seen that csraid gener-
ally outperforms the kernel-based RAID driver,
and its performance is far more stable, particu-
larly for large requests. Also, the WindowsXP
RAID driver is astonishingly good, even com-
pared to JBOD, with JBOD’s performing better
for request sizes smaller than 4MB and Win-
dowsXP performing better at the larger sizes.

0

20

40

60

80

100

120

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

3 disks
2 disks
1 disks

0

10

20

30

40

50

60

70

80

90

100

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

3 disks
2 disks
1 disks

Figure 5. CSRAID synchronous bandwidth vs
request size

0

10

20

30

40

50

60

70

80

90

100

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

3 disks
2 disks
1 disks

0

10

20

30

40

50

60

70

80

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

3 disks
2 disks
1 disks

Figure 6. CSRAID asynchronous bandwidth
vs request size

csraid’s performance is generally less than

5

-6-

0

10

20

30

40

50

60

70

80

90

64KB 256KB 1MB

B
an

dw
id

th
(M

B
/s

)

Stripe Size

Read

1M req
16M req

0

10

20

30

40

50

60

70

80

64KB 256KB 1MB

B
an

dw
id

th
(M

B
/s

)

Stripe Size

Write

1M req
16M req

Figure 7. CSRAID asynchronous bandwidth
vs stripe size (3 disk RAID)

0

20

40

60

80

100

120

140

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Read

jbod
winraid
csraid

md0

0

20

40

60

80

100

120

140

4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

dw
id

th
(M

B
/s

)

Request Size

Write

jbod
winraid
csraid

md0

Figure 8. WindowsXP, RAID, and CSRAID
bandwidth vs request size

WindowsXP, but overall the loss is not

catastrophic, and is likely sufficient for the most
purposes.

6. Conclusions and future work

Performance evaluation of the Linux kernel-based
software RAID device under somewhat realistic
conditions indicate substantially reduced perfor-
mance compared to the equivalent WindowsXP
software RAID implementation. This leaves two
options: find a way to use the existing kernel so
performance is acceptable, or fix the Linux kernel
so performance is comparable.

The exact reasons for relatively poor performance
of the kernel-based software RAID device, as
shown in Figure 3 are currently unknown. A
more detailed analysis of device utilization in the
chunked I/O case would be required, including
disk trace analysis, if possible. Depending on the
level and quality of analysis tools available under
Linux, this might be a relatively short project, or
it might entail modifying the kernel to dump a
trace of the necessary operations.

Tuning the software RAID implementation would
require some effort to understand the Linux mem-
ory management and buffer management system,
as well as the various read-ahead policies and
implementation. It would also involve kernel
hacking and could take as long as a few months to
complete. Until that kernel survey is complete, it
won’t be clear whether changes to the software
RAID driver are likely to result in performance
increases, because the elements causing the prob-
lems might reside in other parts of the kernel.

References

1. LWN.net, LWN: The Ottowa Kernel Sum-
mit, Day Two, Ottowa, Canada (June 25,
2002). http://lwn.net/Articles/3467.

2. Larry McVoy and Carl Staelin, lmbench:
Portable tools for performance analysis,
pp. 279-284, Proceedings USENIX Winter
Conference (January 1996).

3. Tom’s Hardware Guide, Fujitsu
MAN3367MP - A gentle SCSI-runner (Jan-
uary 2002). http://www.tomshard-
ware.com/storage/02q1/020117.

6

