

CC/PP and UAProf: Issues, Improvements and
Future Directions

Mark H. Butler
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-35
March 13th , 2002*

E-mail: mark-h_butler@hp.com

DELI,
UAProf,
CC/PP,
delivery
context,
device
independence,
WAP

Different web-enabled devices have different input, output,
hardware, software, and network capabilities. In order for a
web server to provide optimized content to different clients it
requires a description of the capabilities of the client known as
the delivery context. Recently two new compatible standards
have been created for describing delivery context: Composite
Capabilities / Preferences Profile (CC/PP) created by the W3C
and User Agent Profile (UAProf) created by the WAP Forum.
This paper describes a number of issues, possible improvements
and future directions for CC/PP and UAProf that have been
identified in the course of work at HP Labs Bristol on device
independence, and the creation DELI, an experimental open-
source library that simplifies deploying these standards within
servlets.

* Internal Accession Date Only Approved for External Publication
W3C Workshop on Delivery Context, 4-5 March 2002, Sophia-Antipolis, France
 Copyright Hewlett-Packard Company 2002

 1

CC/PP and UAProf: Issues, Improvements and Future
Directions

Dr Mark H. Butler (mark-h_butler@hp.com)
Hewlett Packard Laboratories, Bristol UK

1 February 2002
Position Paper for the W3C Workshop on Delivery Context

Abstract
Different web-enabled devices have different input, output, hardware, software, and network
capabilities. In order for a web server to provide optimized content to different clients it
requires a description of the capabilities of the client known as the delivery context. Recently
two new compatible standards have been created for describing delivery context: Composite
Capabilities / Preferences Profile (CC/PP) created by the W3C and User Agent Profile
(UAProf) created by the WAP Forum. This paper describes a number of issues, possible
improvements and future directions for CC/PP and UAProf that have been identified in the
course of work at HP Labs Bristol on device independence1,2,3 and the creation DELI4, an
experimental open-source library that simplifies deploying these standards within servlets.

1. Introduction
Recently two new compatible standards have been created for describing device delivery
context: Composite Capabilities / Preferences Profile (CC/PP)5 created by the W3C, and User
Agent Profile (UAProf) created by the WAP Forum6. Both these standards are based on the
W3C foundation for processing metadata, the Resource Description Framework (RDF)7,8,9.
RDF aims to provide interoperability between applications that exchange machine-
understandable information on the Web. RDF represents metadata as models that consist of a
collection of statements about resources. Statements consist of a subject, a predicate, and an
object, where subjects are always resources and objects are resources or literals. RDF models
can be serialized using XML and most people first encounter CC/PP profiles in this form.
However, viewing RDF in XML serialized form is deceptive; it is important to appreciate that
the underlying RDF model is a graph where nodes represent resources or literals. The W3C
RDF Validation Service10 is a useful tool for investigating the relationship between the XML
serialisation of RDF and the underlying RDF model.

CC/PP is a particular application of RDF metadata and is based on a description of device
capabilities and user preferences known as a profile. Typically this profile is sent by the client
to the server to guide the creation, adaptation or selection of content presented to the client
device11,12,13. Essentially a CC/PP profile is constructed as a two level hierarchy: it has a
number of components each possessing a number of attributes. UAProf is a variant of CC/PP
created specifically for use with WAP phones that defines a specific vocabulary, plus a set of
resolution rules to merge profiles and a protocol to transmit UAProf information in HTTP
requests.

Recently HP Labs has released DELI14, an open-source library that allows Java servlets to
resolve HTTP requests containing delivery context information from CC/PP or UAProf
capable devices. This paper aims to highlight a number of issues with CC/PP and UAProf that
have arisen in the course of this work and to suggest possible improvements and future
directions for these standards.

2. Profile Resolution
During the implementation of DELI, a number of issues have arisen that result from the
decision to use RDF as the basis for CC/PP. Firstly we have found that the profile resolution
mechanism specified in UAProf is difficult to implement in RDF. Both CC/PP and UAProf
clients split up profile information in order to send it to the server in an efficient way. They do

 2

this by using a standard profile, known as a reference profile, and a list of overrides specific
to the requesting device known as a profile diff. Other devices in the communication path,
such as proxies, may also add profile diffs. The process of reassembling the final profile from
the reference profile(s) and profile diff(s) is known as profile resolution. CC/PP does not
specify the exact mechanism for profile resolution, apart from requiring that default attribute
values are always overridden by non-default attribute values. UAProf on the other hand
specifies a set of resolution rules that apply to non-default values. Each attribute in a
vocabulary is associated with a specific resolution rule that is applied when multiple attribute
values are encountered. In UAProf these resolution rules are order dependent; for example,
locked means take the first value encountered whereas override means take the last value
encountered. Unfortunately these rules are difficult to implement in RDF, as RDF models do
not have any implicit concept of ordering statements. Ordering must be done explicitly, e.g.
using an RDF Sequence. Unlike RDF, XML does implicitly order elements in documents. As
statements in an RDF model are unordered it is impossible to apply the UAProf resolution
rules to a single RDF model. Possible solutions include representing each profile or profile-
diff as a separate model and keeping track of the order of these models. This allows resolution
to be performed between models. An alternative approach taken in DELI is to convert profiles
to an intermediate data structure that stores attribute order before performing profile
resolution. The problem could also be avoided by processing the CC/PP profile with an XML
processor rather than an RDF processor. Unfortunately this causes other problems as
discussed in the next section.

3. XML versus RDF parsers
It seems from discussions on the UAProf mailing list15 that most people implementing server
support for UAProf are using XML parsers rather than RDF parsers. DELI on the other hand,
parses profiles using the Jena16 RDF framework. Parsing RDF is non-trivial when using an
XML parser17 because identical RDF models can be serialized in many different ways. In
UAProf this problem has been partly resolved by specifying a number of restrictions about
what RDF expressions are allowed. For example UAProf only allows the use of XML
elements to define properties whereas RDF allows the use of XML elements or XML
attributes. One reason for avoiding RDF is that RDF tools have only recently become
available. Several implementers have also cited efficiency as a concern, we have found that
typical RDF parsers such as RDFFilter 18 and ARP 19 are respectively 5 and 20 times slower
than standard XML parsers such as Xerces 20. This may reflect the maturity of XML parsers in
comparison with RDF parsers rather than any inherent inefficiency.

It is also common to see RDF being used incorrectly in profiles or even official schemas 21 or
specifications. Typical errors include not stating that ID or Resource is in the RDF
namespace, using non-standard namespace URIs for RDF or RDF schema, or syntactic errors
in URIs such as pre-pending or appending spaces. People working with RDF are strongly
urged to use the W3C validation service10 which will identify most of these errors.
Furthermore, greater priority needs to be given to updating public documents or schemas as
otherwise errors are often unwittingly replicated. Otherwise there is a danger that CC/PP or
UAProf will develop its own incompatible dialect of RDF.

4. Typing components
Another problem relating to the use of RDF in CC/PP is the way components are specified
e.g.:

<prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type
 rdf:resource =
"http://www.wapforum.org/profiles/UAPROF/ccppschema20010430#HardwarePlatform"/>
 <prf:BitsPerPixel>2</prf:BitsPerPixel>
 </rdf:Description>
</prf:component>

 3

Many people seem to find it counter-intuitive that you need to declare that the component is
called HardwarePlatform twice. It is important to note the first use of HardwarePlatform
defines the instance name whereas the second use is to define the type. This is just as if we
defined an object in Java e.g.

HardwarePlatform hardwarePlatform;

In Java we would not expect the complier to determine the object type from the instance
name, but some CC/PP implementers omit the type statements from components. This means
the CC/PP processor cannot recognise components as the ID is just a local name. Recent
versions of DELI resort to inferring component type from attribute name when they encounter
profiles that omit type statements. Hence it is not currently clear what purpose components
serve, which leads the author to question whether they are necessary? If components are
necessary, RDF already has a syntactic shortcut for such situations called the typedNode
which allows us to rewrite the RDF above in a much more compact form as shown below. In
the author's opinion this form is much more suitable for CC/PP and UAProf.

<prf:component>
 <prf:HardwarePlatform rdf:ID="HardwarePlatform">
 <prf:BitsPerPixel>2</prf:BitsPerPixel>
 </prf:HardwarePlatform>
</prf:component>

5. RDF Schemas and CC/PP Vocabularies
While implementing DELI it was found that RDF schema is not sufficiently expressive to
describe CC/PP vocabularies. For example in UAProf each attribute is associated with a
resolution rule and attribute type. This information is essential in order for the UAProf
processor to perform profile resolution. Currently the UAProf schema overcomes this
problem by storing this information in a comments field. It is possible to retrieve this
information by parsing the comments field, as done in the current version of DELI, but really
this information should be properly tagged so it can be retrieved directly by an XML or RDF
parser. One way to do this would be to create a CC/PP-specific extension to RDF schema that
allows additional vocabulary information to be included via a CC/PP schema namespace. This
extension does not need to be complex - it could just be a standard mechanism for defining
default property values for attributes so that values can be assigned to the resolution rule and
attribute type of an attribute. The key issue here is that further work is necessary to make
CC/PP a vocabulary independent standard. In the author's opinion, CC/PP should be
sufficiently well specified so that it is possible to implement a CC/PP processor that when
supplied with an appropriate CC/PP vocabulary schema, can process any possible CC/PP
vocabulary. With the current generation of CC/PP processors, too much vocabulary specific
knowledge is being hard-coded into CC/PP processors.

6. Processing CC/PP using XSLT
It is difficult to process CC/PP profiles using existing XML tools such as XSLT. For example
XSLT is widely used in XML publishing frameworks to adapt XML documents to multiple
output devices to support device independence. Therefore one possible use case for using
CC/PP profile information is within XSLT stylesheets22. Recently the author has been
working on incorporating CC/PP and UAProf support into the Apache Cocoon23 XML
publishing framework using DELI. This work has shown that it is easier to manipulate
profiles in XSLT if they are ‘flattened’ first i.e. they just consist of a list of profile attributes
with all extraneous RDF removed. This approach is not ideal as it means XSLT authors
encounter profiles in a non-standard form. Other possible solutions include creating an
extension for XSLT for querying RDF models.

7. Late conversion of CC/PP to RDF
Many of the previous points highlight difficulties that arise when using CC/PP because it is
based on the XML serialisation of RDF rather than XML. A (controversial) solution to

 4

several of these problems is to re-design CC/PP so that profiles are represented in a compact
XML form. This would simplify the task of processing profiles using XML processors and
avoid the creation of an incompatible dialect of RDF for CC/PP. In addition it would reduce
the size of profiles, a desirable characteristic for low bandwidth networks. Furthermore such
an approach would not rule out the use of RDF models with CC/PP; if we require RDF
support, we can use a transform on the compact XML representation to transform it to RDF if
so required.If this solution appears unattractive due to the effort invested in CC/PP, it is vital
that we do due diligence to ensure we are using RDF correctly.

8. Dealing with multiple vocabularies
So why was RDF used as the basis of CC/PP? Unlike XML, RDF has been designed to cope
with data from disparate sources using different vocabularies. RDF can cope with different
vocabularies because it associates each vocabulary with a different namespace. When CC/PP
was created, it was expected that the creation of multiple vocabularies for device profiles was
unavoidable. RDF seemed to provide a way of addressing this problem. Unfortunately,
processing multiple vocabularies presents additional problems beyond distinguishing between
vocabularies. For example, at present, at least two vocabularies for UAProf existi, but the
UAProf specification does not define how a processor should process a request that uses more
than one UAProf vocabulary. Each vocabulary is associated with a different namespace so
one possible interpretation could be for the processor to assume that the attributes, even if
they have the same name, are totally different because they are in different namespaces. Other
interpretations are possible. Current UAProf vocabularies contain some attributes that are
identical in all vocabularies. Hence we might expect these attributes to be merged using
conventional resolution rules. Other attributes are similar but have undergone changes e.g.
they have moved component or have changed resolution rule. The required behaviour in these
circumstances is even more uncertain. It seems that we need to decide how to merge different
vocabularies and to define a way of describing this merge process.

Processing metadata described in multiple RDF namespaces is a key problem for the
Semantic Web. Research is currently focussing on how ontologies can be used to map
between metadata in multiple disparate namespaces. Ontologies may not be the ideal solution
to all problems: they are complicated, based on work in artificial intelligence and still in at
the research stage. Therefore an alternative and possibly better solution is the use of modular
vocabularies. Here instead of replicating attributes so they exist in multiple namespaces for
each vocabulary type, we create small "sub-vocabularies" of standard attributes with a single
namespace. Specific vocabularies such as UAProf then reuse these sub-vocabularies rather
than replicating attributes. For example in the current UAProf vocabularies both the
November 1999 and May 2001 versions use the attribute BitsPerPixel in the component
HardwarePlatform. In the author's opinion it would have been better to re-use the original
BitsPerPixel in the original namespace than create a new version as this creates additional
problems for processors as they need to map between the two versions. Sub-vocabularies
would also reduce the total number of attributes in common use; something that can only
simplify matters for content authors or server developers. One possible problem with sub-
vocabularies is the possible proliferation of components of the same type. Currently you
would need an instance of a component for each component and each namespace used by an
attribute in the profile. This could result in multiple instances of the same component where
each component is associated with a different namespace. This is another unnecessary
complexity introduced by components.

i An aside: the reason for the previous statement being qualified by "at least" is that some profiles
currently use namespace URIs that do not correspond to any available schema. Again, due diligence is
required to ensure that profiles and schemas are correct and consistent. Although RDF schemas may
not be necessary for some uses of RDF, they are necessary for profile resolution in CC/PP as discussed
in Section 5.

 5

9. Defining standards for attribute values as well as attributes
There is an additional problem for content authors with the way UAProf is currently used.
Although the UAProf specifications define several features of each attribute they do not
define the range of values or in the case of literals the set of possible value and the definitions
of those values. For example, the UAProf specification states that possible example values for
Keyboard are "Disambiguating", "Qwerty" and "Keypad". However it is possible that
different phone manufacturers will use attribute values in different ways. For example one
manufacturer might call a keyboard "Keypad" whereas another one might call it
"TelephonePad" when they are both trying to describe the same functionality. This causes a
problem for the content author or server developer as now they need to know how
manufacturers have defined the values.

10. Representing complex alternatives in profiles
There is another standard for describing device capabilities that precedes CC/PP called media
feature sets24,25,26,27,28,29,30. One interesting aspect of this standard is that it allows profile
attributes to be joined explicitly by ANDs and ORs. Early drafts of the documents defining
CC/PP also featured profiles with this type of structure, but the current version only features
profiles that implicitly use ANDs and ORs i.e. all the attributes in a CC/PP profile represent
constraints joined by ANDs except where an attribute contains multiple values. Here the
processor decides whether to interpret the values as being joined by an AND or an OR. This
means that CC/PP profiles can only possess ORs at leaf nodes i.e. you cannot have ORs of
ANDs. Such profiles are limited in their expressive power. For example you might want to
express that a device can accept landscape or portrait documents and these modes are
associated with different screen resolutions. Alternatively you might want to associate MIME
types with quality measures as in HTTP/1.1 content negotiation31. Note that this does not
mean such profiles cannot be created in CC/PP; as CC/PP is based on RDF we can use
standard RDF mechanisms to do this. However because profiles with this structure are not
described explicitly in the CC/PP documents, processors will not able to process them. As
already noted, the CC/PP specification needs to be sufficiently complete so that we can define
general purpose processors that can process any CC/PP vocabulary.

There is one problem with using nested ANDs and ORs in profiles. In the media feature sets,
it was necessary to normalise profiles to a canonical form known as “disjunctive normal
form”. This normalisation represents additional work at the profile resolution stage. If
possible we should try to make profile resolution as efficient as possible. Therefore it may be
desirable to determine whether it is reasonable to restrict the use of ANDs and ORs so that
profiles come “pre-normalised” while gaining the extra expressability that such constructs
provide.

11. Preference Ordering
Preference ordering is used in HTTP/1.1 content negotiation by both the browser and the
content author in order to indicate a preference for a particular alternate when multiple
alternates match the capabilities and requirements of the target device. An important use case
for this is language. On a multilingual site, content may be available in several different
languages. The user may understand several languages to varying degrees e.g. they may
prefer French but be willing to accept English if French is not available. In HTTP/1.1 the
browser can communicate this to the server by attaching “q” values to language alternatives
and giving French a higher q value than English. UAProf uses an ordered set (a Seq construct
in RDF) in order to specify language preference. This causes some additional complexities as
demonstrated in the following situation: a phone has a default value of English in its reference
profile, but the user sets the phone to French which is sent to the server using a profile diff.
There is a potential problem here: as CcppAccept-Language uses the append resolution
rule, the French attribute value will always come after the English value so the phone will still
return English in preference to French. In order to avoid this problem, the phone must specify
language as a default as defaults are always overridden regardless of resolution rule. Clearly

 6

phone manufacturers need to carefully consider the interaction between preference ordering,
defaults and resolution rules if they allow the user to change certain UAProf attributes.

12. CC/PP Protocols
Currently CC/PP does not have an official protocol, as protocols were not in the original
scope of the working group. However there is a W3C note that describes a possible protocol
for CC/PP based on HTTP-ex, the HTTP-extension framework32,33. In the author's opinion the
choice of HTTP-ex is unfortunate as it is an experimental protocol that is not widely
supported. HTTP-ex has two important differences from HTTP/1.1: it defines a number of
new methods e.g. M-GET (mandatory get) and it associates new request header fields with
URI's via numerical namespaces.

The usefulness of M-GET is arguable. This instructs the server only to return content if it can
interpret the enclosed CC/PP profile. If not it should return an error. Servers that are not
HTTP-ex aware will also return an error, as they do not recognise the M-GET method.
However the same functionality can be achieved without having to create new HTTP methods
as demonstrated by the UAProf W-HTTP protocol. If a server is CC/PP aware, it can append
an additional header to the response indicating if it has used the profile while processing the
request. If a server is not CC/PP aware then it will not include this header. This allows a client
to decide whether to try to display the content anyway or whether to report an error.

The usefulness of numerical namespaces is also arguable. HTTP-ex was proposed at a time
when it seemed likely a large number of non-browser applications would use HTTP with non-
standard header request fields. Numerical namespaces were seen as a way of preventing
possible conflicts between these new request header fields. However the introduction of
SOAP 34 has shifted the argument up a layer in many of these applications. This has resulted in
decreased interest in HTTP-ex: for example even now there are very few HTTP-ex capable
webservers available apart from the Jigsaw server 35.

DELI currently uses the W-HTTP UAProf protocol rather than the CC/PP-ex protocol. This is
functionally equivalent to the CC/PP-ex protocol but omits the use of M-GET and numerical
namespaces so is far easier to implement on existing servers. Therefore the author would
prefer to see CC/PP and UAProf standardise on a single protocol derived from W-HTTP
UAProf. Standard protocols are essential in order to support device independence.

13. Profile Resolution in CC/PP
It is important to note that the UAProf specification has a more complete treatment of profile
resolution than CC/PP even though profile resolution is essential to both standards. If future
versions of CC/PP specify standard profile resolution mechanisms, it seems desirable that
they are compatible with UAProf. Unfortunately the current UAProf mechanisms are not
ideal as they perform resolution based on numerical order. An alternative approach to
resolution rules could involve making the parties involved explicit, i.e. for this attribute the
proxy is more important than the device, or for this attribute the device overrides are more
important that the proxy overrides etc. Future work could investigate whether explicitly
identifying parties in this way is better than the implied ordering: for example we might
expect proxies to be well behaved and place any profile diffs after the client device profile
diff. If any intermediate device re-orders profile diffs, this may lead to unexpected behaviour
when the profile is resolved.

14. Conclusions
This position paper has described some key issues identified with CC/PP and UAProf while
implementing DELI. DELI demonstrates that it is possible to implement these standards in
spite of the problems. But we still need to consider these issues described here to ensure these
standards are widely adopted and to provide real and compelling benefits to users. Many of
these issues are important if we wish to provide device independent content. Therefore it is

 7

the author's hope that the relevant working groups will address some of these issues in future
versions of these standards.

1 HPL-2001-83 Current Technologies for Device Independence,
http://www.hpl.hp.com/techreports/2001/HPL-2001-83.html
2 Some comments on "Current Technologies for Device Independence", http://www-
uk.hpl.hp.com/people/marbut/currTechExtra.htm
3 HPL-2001-190 Implementing Content Negotiation using CC/PP and WAP UAProf,
http://www.hpl.hp.com/techreports/2001/HPL-2001-190.html
4 DELI: A Delivery context library for CC/PP and UAProf, http://www-
uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
5 Composite Capabilities / Preferences Profile, http://www.w3.org/Mobile/CCPP/
6 Wireless Application Forum, http://www.wapforum.org/
7 Resource Description Framework, http://www.w3.org/RDF/
8 RDF Model and Syntax Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
9 RDF Schema Specification 1.0, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
10 W3C RDF Validation service, http://www.w3.org/RDF/Validator/
11 CC/PP: Structure and Vocabularies, http://www.w3.org/TR/CCPP-struct-vocab/
12 CC/PP: Requirements and Architecture, http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/
13 CC/PP: Terminology and Abbreviations, http://www.w3.org/TR/2000/WD-CCPP-ta-20000721/
14 DELI, http://www-uk.hpl.hp.com/people/marbut/deli/
15 WAP Forum UAProf mailing list, http://mail.wapforum.org/wap-uaprof.html
16 Jena, http://www.hpl.hp.com/semweb/jena-top.html
17 Co-Parsing of RDF and XML, http://www-uk.hpl.hp.com/people/jjc/docs/r292.pdf
18 RDF-Filter, http://rdf-filter.sourceforge.net/
19 ARP, http://www.hpl.hp.com/semweb/arp.html
20 Apache Xerces, http://xml.apache.org/xerces2-j/
21 UAProf Schema, http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330
22 CC/PP Implementors Guide: Harmonization with exisiting vocabularies and content transformation,
http://w ww.w3.org/TR/CCPP-COORDINATION/
23 Apache Cocoon, http://xml.apache.org/cocoon/
24 RFC 2506: Media Feature Tag Registration Procedure, ftp://ftp.isi.edu/in-notes/rfc2506.txt
25 RFC 2533: A Syntax for Describing Media Feature Sets, ftp://ftp.isi.edu/in-notes/rfc2533.txt
26 RFC 2534: Media Features for Display, Print, and Fax, ftp://ftp.isi.edu/in-notes/rfc2534.txt
27 RFC 2531: Content Feature Schema for Internet Fax, ftp://ftp.isi.edu/in-notes/rfc2531.txt
28 A revised media feature set matching algorithm, http://www.ics.uci.edu/pub/ietf/http/draft-klyne-
conneg-feature-match-00.txt
29 MIME content types in media feature expressions,
http://community.roxen.com/developers/idocs/drafts/draft-ietf-conneg-feature-type-03.html
30 Indicating media features for MIME content,
http://community.roxen.com/developers/idocs/drafts/draft-ietf-conneg-content-features-03.html
31 RFC 2616: HTTP 1.1 Content Negotiation, page 70-73, ftp://ftp.isi.edu/in-notes/rfc2616.txt
32 CC/PP exchange protocol using HTTP Extension Framework, http://www.w3.org/TR/NOTE-
CCPPexchange
33 Content Negotiation Header in HTTP Scenarios, http://search.ietf.org/internet-drafts/drafts-hjelm-
http-cnhttp-scenarios-00.txt
34 W3C Webservices activity, http://www.w3.org/2002/ws/
35 Jigsaw Server, http://www.w3.org/Jigsaw/

