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Quantum computation may allow certain problems to
be solved more efficiently than is possible on any classical
machine [1], and optical realizations of quantum compu-
tation are particularly important because of the negli-
gible effects of decoherence on quantum optical states.
However, many challenges still remain for fault-tolerant
implementations of optical quantum computing. In pro-
posals for quantum computation using optics [2-4], it is
necessary to invoke some form of an optical nonlinear
transformation, and unlike linear optics these nonlinear
transformations either suffer from large losses (decoher-
ence) or employ nondeterministic gates that fail a large
fraction of the time.

The remarkable results by Gottesman and Chuang [5]
show that quantum teleportation [6] can be used as a
universal quantum primitive. In essense, quantum tele-
portation allows for the fault-tolerant implementation of
“difficult” quantum gates that would otherwise corrupt
the fragile information of a quantum state. The linear
optics quantum computation (LOQC) scheme [2] relies
on the quantum teleportation of nondeterministic non-
linear gates in the instances that they succeed in order to
perform fault-tolerant quantum computation. However,
the difficulty in performing Bell-state measurements in
this optical encoding using only linear optics [7] requires
innovative new schemes for near-deterministic quantum
teleportation, and these schemes place severe demands on
the photodetectors employed for the measurements. The
requirements to perform fault-tolerant quantum telepor-
tation in this scheme greatly exceed current technologies.

Fortunately, there exists an alternative approach for
quantum teleportation in optical systems: continuous-
variable (CV) quantum teleportation [8, 9]. The mea-
surements involved in this scheme are the highly devel-
oped and efficient techniques of homodyne detection [10].
Also, experimental CV quantum teleportation can be
performed unconditionally [9], and does not suffer from
the difficulties associated with the Bell-state measure-
ments of qubit quantum teleportation [11]. It is of great

interest, then, to determine what optical quantum gates
can be teleported using CV quantum teleportation, and
if such gates can be used to implement fault-tolerant op-
tical quantum computation.

In this letter, we show that CV quantum teleporta-
tion can easily teleport quantum gates in the CV Clif-
ford group [12], defined below, which includes linear op-
tics and squeezing operations. Also, by allowing squeez-
ing operations conditioned on the results of measure-
ments, one can teleport optical nonlinear gates generated
by some Hamiltonians that are cubic polynomial in the
canonical coordinates. We show that the gates which can
be teleported in this fashion form a universal set of gates
for quantum computation, and that this scheme allows
for the fault-tolerant implementation of quantum compu-
tation in any optical scheme employing qubits, qudits or
CV encodings, provided one can perform fault-tolerant
linear optics and squeezing. We analyze “noisy” tele-
portation employing finitely-squeezed states and imper-
fect detectors, and the resulting effect on the teleported
gates. We conclude by discussing the challenges involved
in using CV quantum teleportation to teleport the non-
deterministic gates in LOQC.

The transformations describing linear optics and
squeezing possess a natural group structure which will
be exploited for their quantum teleportation. Thus, we
begin by reviewing the Pauli and Clifford groups for CV
quantum computation [4, 12]. The standard Pauli group
C;1 on n coupled oscillator systems is the Heisenberg-Weyl
group, which consists of phase-space displacement opera-
tors for the n oscillators. It is the group of “linear optics,”
which can be implemented by mixing states with strong
coherent fields at a beamsplitter [13]. The algebra that
generates this group is spanned by the 2n canonical oper-
ators §¢;, p;, i = 1,...,n, along with the identity operator
I, satisfying the commutation relations [Gi» ;] = ihéijf .
(In the following, we set A = 1.) For a single oscilla-
tor, the Pauli group consists of operators of the form
R(q,p) = exp(—i(gp — pg)), with ¢,p € R. The Pauli



operators for one system can be used to construct a set
of Pauli operators {R;(¢;,p;);i =1,...,n} for n systems
(where each operator labeled by ¢ acts as the identity on
all other systems j # 4). This set generates the Pauli
group Cj.

The Clifford group C» is the group of transformations
acting by conjugation that preserves the Pauli group Cs;
i.e., a gate U is in the Clifford group if URU~! € C; for
every R € C;. The Clifford group Cs for continuous vari-
ables is easily shown [12] to be the (semidirect) product
of the Pauli group and the linear symplectic group of all
one-mode and two-mode squeezing transformations.

For illustrative purposes, we present a generating set
of gates for the CV Clifford group. First, consider gates
that act on a single oscillator mode. The Fourier trans-
form F is the CV analog of the Hadamard transforma-
tion; it is defined as F' = exp(iZ(¢* + p®)), generated
by the harmonic oscillator Hamiltonian. The CV phase
gate P(n) is a one-mode squeezing operation, defined by
P(n) = exp(3ing®). The Fourier transform F, the CV
phase gate P(n), and the Pauli operators R(q,p) gen-
erate the Clifford group for a single mode. In order to
extend the Clifford group to multiple modes, we must
define a basic two-mode gate that entangles the canoni-
cal operators for different modes. The SUM gate is the
CV analog of the CNOT gate and provides the basic in-
teraction gate for two oscillators ¢ and j; it is defined as
SUM;; = exp(—ig;p;). This gate describes the unitary
transformation used in a back-action evasion or quan-
tum nondemolition process [13]. The n-mode Clifford
group Cy can be generated using SUM gates, Fourier
transforms, CV phase gates, and the n-mode Pauli group.

Transformations in the Clifford group do not form
a universal set of gates for CV quantum computation.
However, Clifford group transformations together with
any higher-order nonlinear transformation acting on a
single mode form a universal set of gates [14]. Because
arbitrary nonlinear gates can be constructed with such a
set, this result also applies to qubit-based optical realiza-
tions for any encoding of qubits [2-4]. In the following,
we construct a scheme to use CV quantum teleportation
to teleport such a universal set of gates.

Quantum teleportation, although initially proposed for
remote parties, can also be used in a quantum circuit.
Consider a three mode optical system (interferometer).
Let mode 1 be in an arbitrary pure state |¢) (although
this circuit works equivalently well for mixed states), and
modes 2 and 3 be in the maximally entangled Einstein-
Podolsky-Rosen (EPR) state |EPR)2s = [ |g)2|q)s dg,
where |q) are position eigenstates defined by §|g) = ¢|q).
Modes 1 and 2 are then subjected to joint projective mea-
surements of the form

I,.» = Ri(¢, )| EPR)12(EPR|R] (4, D) , 1)

where Rj(q,p) is the Pauli operator on mode 1. The
measurement yields two classical numbers, go and py,
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FIG. 1: Circuit diagram of CV quantum teleportation.

which are used to condition a Pauli operation R3(qo,po)
on mode 3. The result of this circuit is that mode 3
is left in the state |¢)), and we say that this state has
been quantum teleported to mode 3. A circuit diagram
for quantum teleportation is given in Fig. 1. Repeating
this circuit on many modes allows for the quantum tele-
portation of multi-mode states, preserving entanglement
between modes.

We now consider how CV quantum teleportation can
be used to teleport a quantum gate. Consider an arbi-
trary transformation S in the single mode (n = 1) Clif-
ford group, and suppose we wish to implement this gate
on an arbitrary single mode state |¢). In the following,
we show that it is possible to implement S on one mode
of an EPR state, and then employ a modified CV quan-
tum teleportation circuit to “teleport” this gate onto the
desired state [¢).

We use the property that, if U is in the single mode
Clifford group, then

UR(go,po) = (UR(go,po)U 1)U = R'(go,po)U ,

and R'(qo,p0) = UR(qo,po)U! is an element of the
Pauli group due to the definition of the Clifford group,
determined by the gate U. Thus, the desired Clifford gate
U can be quantum teleported onto the state |¢)) simply
by implementing U on one mode of the EPR pair and by
appropriately altering the conditional displacement R of
the quantum teleportation. Using n single-mode quan-
tum teleportation circuits, it is then possible to teleport
any gate in the n-mode Clifford group. See Fig. 2 for an
illustration of how this gate teleportation is performed.

For example, if one wished to teleport the Fourier
transform F', they would employ the relation

FR(go,po) = (FR(go,po)F')F = R(—po, ) F,

and so, by acting with F' on one half of the EPR pair, and
by employing the conditional transformation R(—py, qo)
rather than R(qo,po) in the quantum teleportation cir-
cuit, the result of teleporting an arbitrary state |¢) will
be the transformed state F'|t)).

In addition, this technique can be used to teleport more
general quantum gates than those in the Clifford group.
Consider the set of gates defined by C3 = {U|UC,U~! C
C2}. This set includes all gates that, when conjugating
any Pauli group operation, yield a Clifford group oper-
ation. Note that Cs is not a group (it is not closed un-
der composition) and contains nonlinear transformations.
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FIG. 2: Quantum teleportation of a gate U. The process of
first teleporting the state then implementing U is equivalent
to acting on one mode of the EPR state with U, followed by
a modified quantum teleportation.

One example of a nonlinear gate in C3 is the cubic phase
gate V(v) = exp(ivg?), with v € R, which Gottesman
et al [4] have shown how to implement using Clifford
group transformations and homodyne and photon count-
ing measurements. (For details, see [15].) An example
of a multimode gate in C3 is the controlled phase gate
CPij = exp(3ig:¢7) acting on two modes i and j. In
comparison to the CV phase gate, this gate performs a
phase gate operation on mode j depending on the state of
mode i. It is a controlled Clifford group transformation;
others can be defined similarly.

We now define a quantum teleportation circuit to tele-
port a gate U € C3. Commuting this gate through the
conditional operations gives

UR(qo,po) = (UR(g0,p0)U~")U = R}(qo,po)U,

where, by the definition of C3, R5(qo, po) is an element of
the Clifford group. Thus, any gate in C3 can be quantum
teleported using Clifford group transformations condi-
tioned on measurement outcomes; i.e., conditional phase-
space displacements and squeezing operations.

Consider, as an example, the CV quantum teleporta-
tion of the cubic phase gate V(). Commuting this gate
back through the Pauli operator gives

= V(7)R(g0,p0)V (7)™
= exp(—i(qop — pod + 37004?)) -

R'2(£107P0; 20

This operation, generated by an inhomogeneous
quadratic polynomial in ¢ and p, lies in the Clifford group
and can be implemented using a combination of condi-
tional phase-space displacements and one-mode squeez-
ing. Thus, to teleport V (v), this gate is performed on one
mode of an EPR state, followed by a modified telepor-
tation scheme with a conditional operation R5(qo,po;7);
the result is that a state [¢) is quantum teleported into
the transformed state V (7)[).

The cubic phase gate V (), being a higher-order non-
linear gate on a single mode, can be combined with Clif-
ford group gates of n modes to form a universal set of
gates for quantum computation on n modes [14], and
a scheme exists to implement this cubic phase gate [4].
Thus, with CV quantum teleportation it is possible to
teleport a universal and realizable set of gates. If Clif-
ford group transformations and CV quantum teleporta-
tion can be implemented fault-tolerantly, then it is possi-
ble to use this scheme to implement a fault-tolerant cubic
phase gate (or other nonlinear gate in C3) using a gate
that is not fault-tolerant. Thus, any nonlinear transfor-
mations can be moved “off-line” [4, 5]; although these
transformations must still be performed in the quantum
teleportation circuit, they can be made to act on EPR
ancilla states non-deterministically rather than on the
fragile encoded states.

We now consider the effects of realistic noise and errors
that may occur in a teleportation scheme. We assume
that Clifford group transformations can be performed
fault-tolerantly, but must take into account finite squeez-
ing and imperfect detection. In experiment [9], the EPR
states are approximated by two-mode squeezed vacua [16]

Imas = V1—n2)_ n"In)2ln)s, (2)

with |n) the n-boson Fock state and 0 < n < 1. In
the limit 7 — 1, this state becomes the maximally en-
tangled EPR state |EPR)23. The projective measure-
ments of Eq. (1) are implemented via homodyne detec-
tion, and the displacement operation Rs3(go,po) is per-
formed by mixing the field with a local oscillator at
a beamsplitter; see [8, 9] for details. Finite squeezing
n < 1 and imperfect homodyne efficiency » < 1 can
characterised by a Gaussian noise term with variance
o = exp(—=2tanh™' ) + (1 — v2)/v?, defined such that
o = 1/2 is the level of vacuum noise [17]. For demon-
strated CV quantum teleportation with fidelity F' > 0.5,
we require o < 1; for fault-tolerant teleportation of quan-
tum gates, 0 must be significantly smaller unless appro-
priate quantum error correction can be applied (see be-
low).

Imperfect quantum teleportation can then be de-
scribed by a transfer superoperator as follows. If p is the
density matrix for an initial state, the teleported state p’
will be related to the input state p by

2 2

4 =/dqdp exp(~ ) Rig, p)pRi(,)
o o

which defines the transfer superoperator &, for the im-
perfect quantum teleportation. Let £y be the superop-
erator corresponding to a unitary transformation U, de-
fined on a density matrix p to be £y (p) = UpU~L. Using
noisy quantum teleportation (with transfer superoper-
ater &) to teleport the gate U, the resulting transforma-
tion is described by the superoperator &y o &,.




Thus, noisy quantum teleportation of gates is de-
scribed by a convolution of the unitary gate with a
Gaussian noise process; the corresponding errors can be
viewed as small (~ /o) random displacements in phase
space. The effect of this Gaussian noise depends critically
on the specific encoding used. For example, superposi-
tions of coherent states [3] are extremely fragile to Gaus-
sian noise, whereas the encoding of Gottesman et al [4]
is specifically designed to protect against such Gaussian
noise because small displacements in phase space can be
detected and corrected. Thus, our proposal for the quan-
tum teleportation of nonlinear gates can be made fault-
tolerant if an encoding (such as [4]) is used that is pro-
tected against Gaussian noise and can be corrected using
fault-tolerant Clifford group operations [18]. As Gaus-
sian noise processes are indicative of optical systems, the
investigation of “Gaussian protected” states that can be
encoded using only Cliford group operations is essential
for robust quantum information using optics.

Because most optical quantum information schemes
employ the Kerr effect (generated by a Hamiltonian of
the form (a')2a2) as the nonlinear transformation out-
side of the Clifford group, it is of interest to consider
how such a transformation can be implemented using
the above universal set of gates. Using the relation
At giBte—iAte—iBt — (ilA.BI* 4 O)($3) a combination of
cubic phase gates and Clifford gates can be used to sim-
ulate the Kerr nonlinearity to any degree of accuracy.
We also note that it is possible to iteratively define more
higher-order sets of gates Cy, = {U|UCLU~! C Cj—_1} that
can be implemented fault-tolerantly if gates in Cr_1 can
be implemented fault-tolerantly. The Kerr nonlinearity
is related to transformations in the set Cy.

Because CV quantum teleportation can teleport any
state of an optical mode, we can consider the use
of CV quantum teleportation in any optical quantum
information process, even qubit-based schemes. One
scheme [3] encoding qubits as coherent states could em-
ploy CV quantum teleportation to implement the “diffi-
cult” Hadamard transformations requiring a Kerr nonlin-
earity in a fault-tolerant way. In LOQC, nondeterminis-
tic gates are used to implement nonlinear transformations
on arbitrary states with up to two photons. Qubit-based
quantum teleportation is employed to implement these
gates fault-tolerantly, but the near-deterministic quan-
tum teleportation of LOQC places strong demands on
photodetectors and requires highly entangled multimode
states. To instead employ CV quantum teleportation,
the problem arises that any gate to be teleported must
be made to act on one mode of an EPR state. The
probability of a successful gate operation may be affected
by the photon number cutoff used for these states (the
nonlinear sign gate being one such example). For high-
fidelity quantum teleportation, one must employ highly
squeezed states that have a corresponding high photon
number cutoff (see Eq. (2)); thus, any effective tele-

portable gate must be designed to operate on such high-
photon states. However, the challenges to design such a
non-deterministic gate that can be teleported using this
scheme may be less significant than the difficulties in-
volved in the near-deterministic teleportation of LOQC.

In conclusion, we have shown that fault-tolerant im-
plementations of Clifford group transformations and CV
quantum teleportation is sufficient to perform fault-
tolerant quantum computation in any optical scheme:
qubits, qudits or CV. A nonlinear transformation such as
the cubic phase gate (possible using Clifford group trans-
formations, homodyne detection, and photon counting)
can be performed “off-line” on EPR states and used as
a resource to perform universal quantum computation.
Such gates would allow the implementation of difficult
but critical nonlinear transformations such as the Kerr
effect in a fault-tolerant way. The definition of an in-
finite series of gates Cj highlights which gates can be
teleported in a straightforward manner. In particular,
the cubic phase gate (rather than a Kerr nonlinearity)
is identified as the most direct nonlinear operation that
would achieve a universal set of gates. The simplicity
and power of this gate clearly motivates its experimental
demonstration and its use in future quantum information
processing tasks. The use of CV teleportation in LOQC
relies on the design of new nondeterministic nonlinear
gates that can be teleported using this scheme. Finally,
the Gaussian noise introduced through realistic CV quan-
tum teleportation can be corrected with suitable “Gaus-
sian protected” encodings and Clifford group transforma-
tions, and the results presested here highlight the need
for new, realistic quantum error correction schemes of
this form.
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