A

inwvent

Maximal entanglement ver sus entr opy
for mixed quantum states

Tzu-Chieh Weit, Kae Nemoto?, Paul M. Goldbart!,
William Munro, Frank Verstraete®

Hardcopy Technology Laboratory

HP Laboratories Bristol

HPL-2002-344

December 23'¢ | 2002+

guantum Maximally entangled mixed states are those states that, for a given
information, mixedness, achieve the greatest possible entanglement. For two-
coherent qubit systems and for various combinations of entanglement and
pulses, mixedness measures, the form of the corresponding maximally
guantum gate entangled mixed states is determined primarily anayticaly. As

measures of entanglement, we consider entanglement of formation,
relative entropy of entanglement, and negativity; as measures of
mixedness, we consider linear and von Neumann entropies. We
show that the forms of the maximally entangled mixed states can
vary with the combination of (entanglement and mixedness)
measures chosen. Moreover, for certain combinations, the forms of
the maximally entangled mixed states can change discontinuously
at a specific value of the entropy. Along the way, we determine the
states that, for a given value of entropy, achieve maximal violation
of Bel's inequality.

* Internal Accession Date Only Approved for External Publication
1 Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana,
[1linois 61801-3080, USA
2 School of Informatics, Bangor University, Bangor LL57 1UT, UK
3 Department of Mathematical Physics and Astronomy, Ghent University, Belgium
a Copyright Hewlett-Packard Company 2002



Maximal entanglement versus entropy for mixed quantum states

Tzu-Chieh Wei,! Kae Nemoto,? Paul M. Goldbart,! Paul G. Kwiat,! William J. Munro,® and Frank Verstraete*

! Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801-3080, USA
2Informatics, Bangor University, Bangor LL57 1UT, UK
3 Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 $Q2, UK
4 Department of Mathematical Physics and Astronomy, Ghent University, Belgium
(Dated: November 5, 2002)

Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest
possible entanglement. For two-qubit systems and for various combinations of entanglement and
mixedness measures, the form of the corresponding maximally entangled mixed states is determined
primarily analytically. As measures of entanglement, we consider entanglement of formation, relative
entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von
Neumann entropies. We show that the forms of the maximally entangled mixed states can vary
with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain
combinations, the forms of the maximally entangled mixed states can change discontinuously at a
specific value of the entropy. Along the way, we determine the states that, for a given value of
entropy, achieve maximal violation of Bell’s inequality.

PACS numbers: 03.65.Ud, 03.67.-a

I. INTRODUCTION

Over the past decade, the physical characteristic of the
entanglement of quantum-mechanical states, both pure
and mixed, has been recognized as a central resource
in various aspects of quantum information processing.
Significant settings include quantum communication [1],
cryptography [2], teleportation [3], and, to an extent that
is not quite so clear, quantum computation [4]. Given the
central status of entanglement, the task of quantifying
the degree to which a state is entangled is important for
quantum information processing and, correspondingly,
several measures of it have been proposed. These in-
clude: entanglement of formation [5, 6], entanglement of
distillation [7], relative entropy of entanglement [8], neg-
ativity [9, 10], and so on. It is worth remarking that even
for the smallest Hilbert space capable of exhibiting entan-
glement, i.e., the two-qubit system (for which Wootters
has determined the entanglement of formation [6]), there
are aspects of entanglement that remain to be explored.

Among the family of mixed quantum mechanical
states, special status should be accorded to those that,
for a given value of the entropy [11], have the largest pos-
sible degree of entanglement [12]. The reason for this is
that such states can be regarded as mixed-state gener-
alizations of the Bell states, the latter being known to
be the maximally entangled 2-qubit pure states. The
notion of maximally entangled mixed states was intro-
duced by Ishizaka and Hiroshima [13] in a closely related
setting, i.e., that of 2-qubit mixed states whose entan-
glement is maximized at fixed eigenvalues of the density
matrix (rather than at fixed entropy of the density ma-
trix). Evidently, the entanglement of the maximally en-
tangled mixed states of Ishizaka and Hiroshima cannot be
increased by any global unitary transformation. For these
states, it was shown by Verstraete et al. [14] that the max-

imality property continues to hold if any of the following
three measures of entanglement—entanglement of forma-
tion, negativity, and relative entropy of entanglement—is
replaced by one of the other two.

The question of the ordering of entanglement measures
was raised by Eisert and Plenio [15] and investigated nu-
merically by them and by Zyczkowski [16] and analyti-
cally by Verstraete et al. [17]. It was proved by Virmani
and Plenio [18] that all good asymptotic entanglement
measures are either identical or fail to uniformly give con-
sistent orderings of density matrices. This implies that
the resulting maximally entangled mixed states (MEMS)
may depend on the measures one uses to quantify entan-
glement. Moreover, in finding the form of MEMS, one
needs to quantify the mizedness of a state, and there can
also be ordering problems for mixedness. This implies
that the MEMS may depend on the measures of mixed-
ness as well.

This Paper is organized as follows. We begin, in
Secs. IT and III, by reviewing several measures of en-
tanglement and mixedness. In the main part of the Pa-
per, Sec. IV, we consider various entanglement-versus-
mixedness planes, in which entanglement and mixedness
are quantified in several ways. Our primary objective,
then, is to determine the frontiers, i.e., the boundaries of
the regions occupied by physically allowed states in these
planes, and to identify the structure of these maximally
entangled mixed states. In Sec. V, as well as making
some concluding remarks, we determine the states that,
for a given value of entropy, achieve maximal violation of
Bell’s inequality.



II. ENTANGLEMENT CRITERIA AND THEIR
MEASURES

It is well known that there are a large number of
entanglement measures E. For a state described by the
density matrix p a good entanglement measure must
satisfy, at least, the following conditions [19, 20]:

Cl1. (a) E(p) > 0; (b) E(p) =0 if p is not entangled [21];
(c) E(Bell states) = 1.

C2. For any state p and any local unitary transformation,
i.e., a unitary transformation of the form Uy ® Up, the
entanglement remains unchanged.

C3. Local operations and classical communication
cannot increase the expectation value of entanglement.
C4. Entanglement is convex under discarding informa-

tion: 3, pi E(pi) > E(3_; pi pi)-

The entanglement quantities chosen by us satisfy the
properties C1-C4. Here, we do not impose the condition
that any good entanglement measure should reduce to
the entropy of entanglement (to be defined in the follow-
ing) for pure states.

A. Entanglement of formation and entanglement
cost

The first measure we shall consider is the entanglement
of formation Er [5]; it quantifies the amount of entangle-
ment necessary to create the entangled state. It is defined

by
Er(p) = min
{pi,¥i} sz

(1a) (Wil), (2.1)

where the minimization is taken over those probabilities
{p;} and pure states {1;} that, taken together, reproduce
the density matrix p = ), p;|;)(¢;|. Furthermore, the
quantity E(|v;){(¢;|) (usually called the entropy of en-
tanglement) measures the entanglement of the pure state
|1;) and is defined to be the von Neumann entropy of the

reduced density matrix p( ) = = Trplvi) (i, ie.,

E([¢a)(¥il) =

For two-qubit systems, Er can be expressed explicitly

as [6]
(g0 + VI=COR)
h(z) = —xlogyz — (1 —x)logy (1 — x),
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where C(p), the concurrence of the state p, is defined as

p) = max{0, VA1 = V22 = Vs = VA, (230)

in which A;,..., Ay are the eigenvalues of the matrix
ploy @ oy)p*(0y ® oy) in nonincreasing order and oy
is a Pauli spin matrix. Er(p), C(p), and the tangle

7(p) = C(p)? are equivalent measures of entanglement,
inasmuch as they are monotonic functions of one another.

A measure associated with the entanglement of forma-
tion is the entanglement cost Ec [5] which is defined via

Ec(p) = lim M.

n— 0o n

(2.4)

This is the asymptotic value of the average entanglement
of formation. E is, in general, difficult to calculate.

B. Entanglement of distillation and relative
entropy of entanglement

Related to the entanglement of formation is the en-
tanglement of distillation Ep [7], which characterizes the
amount of entanglement of a state p as the fraction of
Bell states that can be distilled using the optimal purifi-
cation procedure: Ep(p) = lim,_,oc m/n, where n is the
number of copies of p used and m is the maximal num-
ber of Bell states that can be distilled from them. The
difference Ec — Ep can be regarded as undistillable en-
tanglement. FEp is a difficult quantity to calculate, but
the relative entropy of entanglement Er [8], which we
shall define shortly, provides an upper bound on Ep and
is more readily calculable than it. For this reason, it is
the second measure that we consider in this Paper. It is
defined variationally via

Er(p) = min Tr (plogp — plog o), (2.5)
oceD

where D represents the (convex) set of all separable den-

sity operators o. In certain ways, the relative entropy of

entanglement can be viewed as a distance D(p||o*) from

the entangled state p to the closest separable state o*.

We remark that for pure states Er = Ec = Eg = Ep,

but in general Exr > Ec > Eg > Ep.

C. Negativity

The third measure that we shall consider is the nega-
tivity. The concept of the negativity of a state is closely
related to the well-known Peres-Horodecki condition for
the separability of a state [22]. If a state is separable
(i.e., not entangled) then the partial transpose [23] of its
density matrix is again a valid state, i.e., it is positive
semi-definite. It turns out that the partial transpose of a
non-separable state may have one or more negative eigen-
values. The negativity of a state [9] indicates the extent
to which a state violates the positive partial transpose
separability criterion. We will adopt the definition of
negativity as twice the absolute value of the sum of the

negative eigenvalues:
N(p) = 2max(0, —Aneg), (2.6)

where Aneg is the sum of the negative eigenvalues of p'B
In C? @ C? (i.e., two-qubit) systems it can be shown



that the partial transpose of the density matrix can have
at most one negative eigenvalue [24]. It was proved by
Vidal and Werner [10] that negativity is an entanglement
monotone, i.e., it satisfies criteria C1-C4 and, hence, is
a good entanglement measure. We remark that for two-
qubit pure states the negativity gives the same value as
the concurrence does.

D. Ordering difficulties with entanglement
measures

We now pause to touch on certain difficulties posed by
the task of ordering physical states using entanglement.
As first discussed and explored numerically by Eisert and
Plenio [15] and by Zyczkowski [16], and subsequently in-
vestigated analytically by Verstraete et al. [17], different
entanglement measures can give different orderings for
pairs of mixed states. Verstraete et al. showed that the
negativity of the two-qubit states of a given concurrence
C, rather than having a single value, instead ranges be-
\/2(C-1)2+1 + (C—1) and C. Thus, there is
an ordering difficulty: pairs of states, A and B, exist
for which C(A) — C(B) and N(A) — N(B) differ in sign.
Hence, when one wishes to explore maximally entangled
mixed states one must be explicit about the measure of
entanglement (and also the measure of mixedness; see the
following section) considered. Different measures have
the potential to lead to different classes of MEMS states.

tween

III. MEASURES OF MIXEDNESS

In the entanglement-measure literature, two measures
of mixedness have basically been used: (1 — Tr[p?]) and
the von Neumann entropy. Whereas the latter has an
natural significance stemming from its connections with
statistical physics and information theory, the former is
substantially easier to calculate. Of course, for density
matrices that are almost completely mixed, the two mea-
sures show the same trend.

A. von Neumann entropy

The von Neumann entropy, the standard measure of
randomness of a statistical ensemble described by a den-
sity matrix, is defined by

Sv(p) = —Tr(plogp) = — Z)\i log A; , (3.1)
K]

where ); are the eigenvalues of the density matrix p and
the log is taken to base N, the dimension of the Hilbert
space in question. It is straightforward to show that the
extremal values of Sy are zero (for pure states) and unity
(for completely mixed states). To compute the von Neu-
mann entropy it is necessary to have the full knowledge
of the eigenvalue spectrum.

As we shall mention in the following subsection, there
is a linear entropy threshold above which all states are
separable. Qualitatively identical behavior is encoun-
tered for the von Neumann entropy. In particular, as we
shall see in Sec. IV C1, for two-qubit systems all states
are separable for Sy > —(1/2)log,(1/12) =~ 0.896.

B. Purity and linear entropy

The second measure that we shall consider is called
the linear entropy and is based on the purity of a state,
P = Tr [p?], which ranges from 1 (for a pure state) to
1/N for a completely mixed state with dimension N.
The linear entropy Si, is defined via

51.00) = e (1~ Ty, (32)
which ranges from 0 (for a pure state) to 1 (for a max-
imally mixed state). The linear entropy is generally a
simpler quantity to calculate than the von Neumann en-
tropy as there is no need for diagonalization. For C?® (C?
systems the linear entropy can be written explicity as

S1(p) = 501~ Te [p?]).
A related measure, which we shall not use in this Pa-
per (but mention for the sake of completeness), is the
inverse participation ratio. Defined via R = 1/Tr [p?],
it ranges from 1 (for a pure state) to N (for the maxi-
mally mixed state). An attractive property of the inverse
participation ratio is that all states with B > N — 1 are
separable [9], which implies all states with a linear en-
tropy Sr(p) > N(N —2)/ (N —1)* (which is 8/9 when
= 4) are separable.

(3.3)

C. Comparing linear and von Neumann entropies

The aim of this subsection is to illustrate the differ-
ence between the linear and von Neumann entropies. We
shall do this by considering the N/ = 4 Hilbert space,
and seeking the highest and lowest von Neumann en-
tropies consistent with a given value of linear entropy.
Before restricting N to 4, the corresponding stationarity
problem reads:

A%SL(p) - (v- l)Trp) =0, (34)

b (Sv(p) +8
where § and v are, respectively, Langrange multipliers
that enforce the constraints that linear entropy be fixed
and that p be normalized. Thus, we arrive at the engag-
ing self-consistency condition

p = exp(—v — Bp), (3.5)

in which v and B can be fixed upon implementing the
constraints.
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FIG. 1: Comparison of linear entropy and von Neumann

entropy. 6,000 dots (2,000 each for the Rank 2, 3, and 4
cases) represent randomly generated states (see Ref. [25]);
pure (Rank-1) states lie at the origin; Rank-2 states lie on
segment b; the lighter dots in the interior are Rank-3 states;
the darker ones are Rank-4 states. The lower boundary com-
prises three segments meeting at cusps, whereas the upper
boundary is a smooth curve. The two dashed lines repre-
sent thresholds of entropies beyond which no states contain
entanglement.

By working with the eigenvalues of density ma-
trices, the stationarity problem becomes straightfor-
ward: maximize or minimize the von Neumann entropy
— > Ailog \; subject to the constraints >, A? = const
(fixed linear entropy) and ), A; = 1 (normalization).
The maximal Sy vs. Sy corresponds to eigenvalues of
the form

{,\j/__A1 i/__l} for A € [%1]
Nt1

(3.6a)

The minimal Sy vs. Si, consists of A/ — 1 segments, of
which the k-th segment corresponds to eigenvalues of the
form

1 1
YD VRUTI W R 75 W1 for \e |——,
{ b ) ) 9 707 70}7 Or el:k"‘].’k],
k 1 N—k—-1
(3.6b)

where k = 1,--- ,N — 1. For the case of N/ = 4, the
boundary of the physical region in the Sy, vs. Sy plane
(see Fig. 1), when given in terms of eigenvalues, reads

1
(M52 152 for 7 <A<, (37a)
1
A1=00,0},  for 5 <AL (3.7b)
1 1
{/\,/\,1 - 2,\,0}, for <A<z, (370)
[Aaa1-3] for <A< (37d)
) 7 ) ) 4 —_— —_— 3

These segments respectively correspond to the upper
boundary, and the lowest, middle, and highest pieces

of the lower boundary. Note that the lower boundary
comprises three (in general, N' — 1) segments that meet
at cusps. We remark, parenthetically, that the solutions
with zero eigenvalues correspond to extrema within some
subspace spanned by those eigenvectors with nonzero
eigenvalues, and therefore only obey the stationarity con-
dition (3.5) within the subspace.

Is there any significance to the boundary states?
Boundary segment (a) includes the Werner states de-
fined in Eq. (4.7). Boundary segment (b) includes the
first branch of the MEMS for Er and Sy, specified below
in Eq. (4.6). The segment (c) includes the states

pe =r|ot)(oT| + ¥(|01)<01|+|10)(10|). (3.8)

States on segment (d) are all unentangled. Of course, the
boundary segments include not only the specified states
but also all states derivable from them by global unitary
transformation.

As for the interior, we have obtained this numerically
by constructing a large number of random sets [25] of
eigenvalues of legitimate density matrices, and comput-
ing for each the two entropies. As Fig. 1 shows, no points
lie outside the boundary curve, providing confirmatory
evidence for the forms given in Eq. (3.7).

The fact that the bounded region is two-dimensional
indicates the lack of precision with which the linear en-
tropy characterizes the von Neumann entropy (and vice
versa, if one wishes). In particular, the figure reveals an
ordering difficulty: pairs of states, A and B, exist for
which St — S and S — S differ in sign. Worse still,
states having a common value of Sy have a continuum
of values of St,, and vice versa.

IV. ENTANGLEMENT-VERSUS-MIXEDNESS
FRONTIERS

We now attempt to identify regions in the plane
spanned by entanglement and mixedness that are inhab-
ited by physical states (i.e., characterized by legitimate
density matrices). We shall consider the various measures
of entanglement and mixedness discussed in the previous
section. Of particular interest will be the structure of
the states that inhabit the frontier, i.e., the boundary
delimiting the region of physical states. Frontier states
are maximal in the following sense: for a given value
of mixedness they are maximally entangled; for a given
value of entanglement they are maximally mixed.

A. Parametrization of maximal states

The aim of this subsection is to derive the general form
of the maximal states given in Eq. (4.4), which is what we
will use to parametrize maximal states. In Ref. [14], it is
shown that, given a fixed set of eigenvalues, all states that



maximize one of the three entanglement measures (en-
tanglement of formation, negativity or relative entropy)
automatically maximize the other two. It was further
shown that the global unitary transformation that takes
arbitrary states into maximal ones has the form

U= (U, ® U2)TDs®1, (4.1)
where U; and U, are arbitary local unitary transforma-
tions,

0001
Lo Lo
V2 U 2
0100

Dy is a unitary diagonal matrix, and ® is the uni-
tary matrix that diagonalizes the density matrix p, i.e.,
p = ®A®!, where A is a diagonal matrix, the diagonal
elements of which are the four eigenvalues of p listed in
nonincreasing order (A1 > A2 > A3 > A4). Hence, the
general form of a density matrix that is maximal, given a
set of eigenvalues, is (up to local unitary transformations)

A 0 0 0 Ar O 0 0
0 X 0 O 0 AAs AMimds g
Tlo 0 0 =\, —*12*3 Aa g (43)
0 0 0 M\ 0 0 0 X
This matrix is locally equivalent to the form
z+5 00 3
0 a0 O
0 0b O ’ (4.4)
7 00z+3%

with £E+% = ()\1‘}‘)\3)/2, r :)\1—/\3, a= /\2, and b= )\4. The
above derivation justifies the Ansatz form (4.5) used in
Ref. [12] to derive the entanglement of formation vs. lin-
ear entropy MEMS. We remark that one may as well use
the four eigenvalues )A;’s as the parametrization. Nev-
ertheless, the form (4.4), as well as (4.5), can be nicely
viewed as a mixture of a Bell state |¢T) with some diag-
onal separable mixed state.

B. Entanglement-versus-linear-entropy frontiers

We begin by measuring mixedness in terms of the lin-
ear entropy, and comparing the frontier states for various
measures of entanglement.

1.  Entanglement of formation

The characterization of physical states in terms of their
entanglement of formation and linear entropy was intro-
duced by Munro et al. in Ref. [12]. (Strictly speaking,

they considered the tangle rather than the equivalent en-
tanglement of formation.) Here, we shall consider yet an-
other equivalent quantity: concurrence (see Sec. ITA). In
order to find the frontier, Munro et al. proposed Ansatz
states of the form

M

(4.5)

pAnsatz =

oo oo
+ o owvis

[

oo O

Y

N O O+

where z,y,a,b,r > 0and x +y +a+ b+ r = 1. They
found that, of these, the subset

pi(r), for 2 <r<T;

. = 4.
PMEMS:Eg, S1, {p]I(T), fOI"OST‘ < %; ( 6&)
1000 § BEE

_/,‘ =
— — 3
PI(T)— 0000 aPII(T)— 0000} (46b)
5003 5003

lies on the boundary in the tangle vs. linear-entropy plane
and, accordingly, named these MEMS, in the sense that
these states have maximal tangle for a given linear en-
tropy. We remark that at the crossing point of the two
branches, r = 2/3, the density matrices on either side
coincide.

In Fig. 2 we plot the entanglement of forma-
tion/concurrence vs. linear entropy for the family of
MEMS (4.6); this gives the frontier curve. For the sake
of comparison, we also give the curve associated with the
family of Werner states of the form

147
1-r

pw =l e[+ 1=

+ © Ol

147

(4.7
Evidently, for a given value of linear entropy these MEMS
(which we shall denote by {MEMS: Er, St.}) achieve the
highest concurrence. As the tangle 7 and entanglement
of formation Eg are monotonic functions of the concur-
rence, Eq. (4.6) also gives the boundary curve for these
measures. This raises an interesting question: Is (4.6)
optimal for other measures of entanglement?

NS O O
-
jen] O»h‘l jen]
=
=
O%‘I OO
3

"h‘

2. Relative entropy as the entanglement measure

To find the frontier states for the relative entropy of
entanglement we again turn our attention to the maximal
density matrix (4.4). For this form of density matrix
the linear entropy is given (with x expressed in terms of
a,b,r) by

_2
~3

To calculate the relative entropy of entanglement, we
need to determine the closest separable state to (4.4).

St (—3a® +2a (1-b) + (1—b) (1+3b)—1?). (4.8)



Ent. of formation
/
/

0 0.2 0.4 06 0.8 1
Linear entropy

Concurrence
/

0 0.2 0.4 0.6 0.8 1
Linear entropy

FIG. 2: Entanglement frontier. Upper panel: entanglement
of formation vs. linear entropy. Lower panel: concurrence
vs. linear entropy. The states on the boundary (solid curve)
are pMEMS; Eg, S, - A dot indicates a transition from one branch
of MEMS to another. The dashed curve below the boundary
contains Werner states.

It is simpler to do this analysis via several cases. We be-
gin by considering the Rank-2 and Rank-3 cases of (4.4).
We set b = 0 (A4 = 0) and express = in terms of a and r
in the density matrix, obtaining

—
|
Q

(4.9)

s
I
vy O Own
SO O
S oo O
=
m‘\oowlﬁ
Q

and the corresponding closest separable density matrix
o* was found by Vedral and Plenio [19]:

cC 0 0 D
. _[oE 0o o
=10 01-20-E 0|  (+10)
D 0 0 C
(14a) (1—a2—r2)
¢ = 2(1+a-r) (1+a+r)’ (4.10b)
a(l+a)r
b= (14+a-r)(1+a+r)’ (4.10¢)
2
E = a(l+a) (4.10d)

(1+a—7r)(1+a+r)’

1 T
|
0.8 :
0.4 ,
0.6 |
= @ 0. 2 |
|
“0.4. o .
0 0.30.7 1

r
0.2 :
|
O |
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FIG. 3: Dependence of a and r of the frontier states on linear
entropy. The upper curve is a vs. St whereas the lower is r
vs. SL. The dotted line indicates the transition between two
branches of MEMS. The inset shows the dependence of a on
r for the frontier states.

The relative entropy is now simply given by

1+a, (1+a)?—r® r_ 1+a+r
E = 1 =1 4.11
R(p) 9 og (1+a)2 + 9 0 1+a_r7 ( )
with the linear entropy being given by
2
SL=§(1+2a—3a2 —r?), (4.12)

subject to the constraint (a + r) < 1. For the Rank-2
case a = 1 —r (b = z = 0), and the resulting solution
is the Rank-2 matrix p;(r) given in Eq. (4.6) with 1/2 <
r < 1. We remark that this Rank-2 solution is always
a candidate MEMS for the three entanglement measures
that we consider in this Paper. In order to determine
whether or in what range the Rank-2 solution achieves
the global maximum, we need to compare it with the
Rank-3 and Rank-4 solutions.

By maximizing Eg(p) for a given value of Sy,, we find
the following stationary condition:

(1+a)? —r?
(1+a)?

l4+a+r

= — 1)1 .
(3a—1)log ===

rlog (4.13)

Given a value of S, we can solve Eqgs. (4.12) and (4.13),
at least numerically, to obtain the parameters a and r,
and hence, from Eq. (4.9), the Rank-3 MEMS. However,
if the constraint inequality a + r < 1 turns out to be
violated, the solution is invalid.

We now turn to the Rank-4 case. It is straightforward,
if tedious, to show that the Werner states, Eq. (4.7),
obey the stationarity conditions appropriate for Rank 4.
However, it turns out that this solution is not maximal.

To summarize, the frontier states, which we denote by
{MEMS: ER, SL}, are states of the form (4.9); the de-
pendence of the parameters @ and r on St is shown in
Fig. 3. In Fig. 4, we show the resulting frontier, as well as
curves corresponding to non-maximal stationary states.
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FIG. 4: Entanglement frontier: relative entropy of entangle-
ment vs. linear entropy. The frontier states are pmewms;Eg, Sy -
The dot indicates the transition between branches of MEMS.

The frontier states have the following structure: (i) for
St < 0.5054 they are the Rank-2 MEMS of Eq. (4.6) but
with r restricted to the range from 1 (at Sy = 0) to ap-
proximately 0.7459 (at Si, ~ 0.5054); (ii) for SL = 0.5054
the MEMS are Rank 3, with parameters a and r satis-
fying Eqs. (4.13) and (4.12) at each value of Si, and
(a,r) ranging between approximately (0.3056,0.7459) (at
St ~ 0.5054) and (1/3,0) (at Sr. = 8/9). As noted pre-
viously, beyond Si, = 8/9 there are no entangled states.
As the inset of Fig. 3 shows, the parameter a can be re-
garded as a continous function of parameter r € [0,1].
The two branches of the solution, (i) and (ii), cross at
(St, Ef) ~ (0.5054,0.3422); at this point, the states on
the two branches coincide,

0372047 0 0 0.37294
[ o o2s4060 o0
e 0 0 0 (4.14)
0.372047 0 0 0.372047

Just as in the case of entanglement of formation vs. linear
entropy, the density matrix is continuous at the transition
between branches.

We remark that the curve generated by the states
{MEMS: Er, S1.}, when plotted on the Eg vs. S1, plane,
falls just slightly below that generated by the states
{MEMS : Eg, St} for S;, 2 0.5054 (and coincides for
smaller values of S1,). We also remark that the parame-
ter r turns out to be the concurrence C' of the states, so
that Fig. 3 can be interpreted a plot of the concurrence
of the frontier states vs. their linear entropy. By compar-
ing this concurrence vs. linear entropy curve to that in
Fig. 2, we find that the former lies just slightly below the
latter for St, 2 0.5054 (and the two coincide for smaller
values of Sp,), the maximal difference between the two
being less than 1072,

It is evident that, for a given linear entropy, the rela-
tive entropies of entanglement for both {MEMS: ER, Si.}
and {MEMS: Ep, S} are significantly less than the cor-
responding entanglements of formation. In fact, for small
degrees of impurity, the entanglements of formation for
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FIG. 5: Difference in entanglement (Er — ERr) vs. St for the
MEMS in Eq. (4.6) and Werner states. The solid curve shows
states from pmEMS;ER,s;,; the dashed curve shows the Werner
states.

the two MEMS states are quite flat; however, the rela-
tive entropies of entanglement fall quite rapidly. More
specifically, for a change in linear entropy of ASp, = 0.1
near S, = 0 we have that AEr ~ 0.05 (see Fig. 2) and
AER ~ 0.2 (see Fig. 4). As the curves of the states
{MEMS: Ep, S1.} and {MEMS : Eg, S1.} are very close
on the two planes, Er vs. S, and ER vs. Sp,, we show, in
Fig. 5, the entanglement difference Er — ER for the states
{MEMS: EF, St.}, and compare it with the correspond-
ing difference for the Werner states. While it is clear that
Egr(p) < Er(p), for certain values of the linear entropy
the difference turns out to be quite large, this difference
being uniformly larger for {MEMS: Er, St} than for the
Werner state; see Fig. 5.

As we have seen, Werner states are not frontier states
either in the case of entanglement of formation or in the
case of relative entropy of entanglement. By contrast,
as we shall see in the next section, if we measure en-
tanglement via negativity, then for a given amount of
linear entropy, the Werner states (as well as another
Rank-3 class of states) achieve the largest value of en-

tanglement. Said equivalently, the Werner states belong
to {MEMS:N, S, }.

8. Negativity

In order to derive the form of the MEMS in the case
of negativity, we again consider the density matrix of the
form (4.4), for which it is straightforward to show that
the negativity N is given by

N =max{0,/(a —b)2 + 72 — (a+b)}.

Furthermore, because we aim to find the entanglement
frontier, we can simply restrict our attention to states
satisfying N > 0, i.e., to states that are entangled [22].
Then, by making N stationary at fixed Si, and with the
constraint 2z +a+ b+ r = 1, we find two one-parameter

(4.15)
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FIG. 6: Entanglement frontier: negativity vs. linear en-
tropy. States on the boundary (full line) are pg,l[;]MSz n,s, and
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families of stationary states (in addition to the Rank-
2 MEMS, which are common to all three entanglement
measures). The parameters of the first family obey

a=b=z, r=1—4z. (4.16)

When expressed in terms of parameter r, the density ma-
trix takes the form
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(1)

PuEMS:N,5;, —

0 0 %
i1-r 0

T . (4.17)

0 14_T 1-?—7'

0 0 5

N O O

which are precisely the Werner states in Eq. (4.7). For
the second solution, the parameters obey
_4-2v3r2+1 0.3 1+/3r24+1 r
B 6 T 6 2’
When expressed in terms of parameter 7, the density ma-
trix takes the form

a (4.18)

14++3r%H1 0 0 T
6 2
4—2+/3r2H
pl(\/%]?:MS:N,SL = 8 8 8 8 (4-19)
V3r21
% 0 0 1+ gT2+1

We remark that the two solutions give the same bound on
the negativity for a given value of linear entropy. The re-
sulting frontier in the negativity vs. linear entropy plane
is shown in Fig. 6.

Thus, the states {MEMS: N, S.} on the boundary in-
clude, up to local unitary transformations, both Werner
states in Eq. (4.17) and states in Eq. (4.19). We also
plot in Fig. 6 the curve belonging to {MEMS : Er, Si. };
note that it falls slightly below the curve associated with
{MEMS: N, Si.} and that it has a cusp, due to the struc-
ture of the states, at the value 2/3 for the parameter r in
Eq. (4.6). Here, we see that maximally entangled mixed
states change their form when we adopt a different en-
tanglement measure.

C. Entanglement-versus-von-Neumann-entropy
frontiers

We continue this section by choosing to measure
mixedness in terms of the von Neumann entropy, and
comparing the frontier states for various measures of en-
tanglement,.

1. Entanglement of formation

To find this frontier, we consider states of the
form (4.4), and compute for them the concurrence and
the von Neumann entropy:

C=r —2Vab, (4.20a)
Sy=—aloga—blogb—zxlogz— (z+r)log(z+r). (4.20b)

Note that the parameters obey the normalization con-
straint 2z4+a+b+r = 1.

As we remarked previously, the Rank 2 MEMS is al-
ways a candidate. For the Rank-3 case, we can set b = 0
in Eq. (4.20). By maximizing C at fixed Sy, we find a
stationary solution:

(i)yr=C,z=(4-3C—/4-3C?)/6, and a = (vV4—-3C?*—

1)/3; the resulting density matrix is

4—+/4-3C2 0 0 C
6 2
0 V/4-3C2%2-1 0 0 491
A 3 .
P 0 O 0 0 (421)
C 0 0 4—+/4-3C?
2 6

For the Rank-4 case (b # 0), the stationarity condition
can be shown to be

(4.22a)
(4.22b)

ulog(u) = wlog(w),
2ulog(u) = (u+ w)log(v),

where u = +/a/(z+r), v = Jz/(z+7r), and w =
\V/b/(z+r). There are two solutions, due to the two-
to-one property of the function zlogz for z € (0,1). The
first one is (u = v = w).

(i) a=b=z = (1-C)/6, and r = (1+2C) /3, which can
readily be seen to be a Werner state as in Eq. (4.7) or,
equivalently,

24-C 1 C
S0 05T
_| 0 %5 0 0 (4.23)
A=l 0 o0 2 o :
HC0 0 HE

Being the concurrence, C' is restricted to the interval
[0,1]. The second solution is transcendental, but can
be solved numerically.

In Fig. 7 we compare the four possible candidate solu-
tions, and find that the global maximum is composed of
only (i) and (ii). We summarize the states at the frontier
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FIG. 7: Entanglement frontiers. Upper panel: entanglement
of formation vs. von Neumann entropy. Lower panel: con-
currence vs. von Neumann entropy. The branch structure is
described in the text.

as follows:

pii, for 0 <C <C%

4.24
pi, forC*<C<1. (424)

PMEMS:Ep,Sv = {

Note the crossing point at (C,Sv) = (C*,Sv(C*)), at
which extremality is exchanged, so the true frontier con-
sists of two branches. It is readily seen that C* is the
solution of the equation Sy (pi(C)) = Sv(pu(C)), and
the approximate numerical values of C* and the corre-
sponding S5, are 0.305 and 0.741, respectively.

The resulting form of MEMS states is peculiar, in
that, even at the crossing point of two branches on the
entanglement-mixedness plane, the forms of matrices on
the two branches are not equivalent (one is Rank 3, the
other Rank 4). This is in contrast to the {MEMS :
Er,S1}. This peculiarity can be partially understood
from the plot of the two mixedness measures, Fig. 1: as
the value of the von Neumann entropy rises, there are
fewer and fewer Rank-3 entangled states, and above some
threshold, no more Rank-3 states exist, let alone entan-
gled Rank-3 states. There are, however, still entangled
states of Rank 4. Hence, if Rank-3 states attain higher
entanglement than Rank-4 states do when the entropy
is low, a transition must occur between MEMS states of
Rank 3 and Rank 4.

From Fig. 7 it is evident that beyond a certain value of

the von Neumann entropy no entangled states exist. This
value can be readily obtained by considering the MEMS
state (4.23) at C =0,

(%)?8(%)

6 (4.25)
1 ’

Y oE

5 3

for which Sy = —(1/2)log,(1/12) ~ 0.896.

As an aside, we mention a tantalizing but not yet fully
developed analogy with thermodynamics [26]. In this
analogy, one associates entanglement with energy and
von Neumann entropy with entropy, and it is therefore
tempting to regard the MEMS just derived as the analog
of thermodynamic equilibrium states. If we apply the
Jaynes principle to an ensemble in equilibrium with a
given amount of entanglement then the most probable
states are those MEMS shown above.

2. Relative entropy of entanglement

Let us now find the frontier states for the case of rela-
tive entropy of entanglement. To do this, we first consider
the Rank-3 states in Eq. (4.9), for which the relative en-
tropy is given by Eq. (4.11). For these states, the von
Neumann entropy is given by

l—a—r
logTa
(4.26)
where the log function is taken to be base four. Even
though the log functions in Sy and Eg use different bases,
the stationary condition for the parameters r and a does
not change, because the difference can be absorbed by a
rescaling of the constraint-enforcing Lagrange multiplier.
Thus, in maximizing ER at fixed Sy, we arrive at the
stationarity condition

1—a+r 1—a—r

1—atr
—aloga — 5

Sy = —Tlog

1 1—a)? —r?
+a_wlog(_a) T

(1-'—(1/)2 _,r2

(1+a)? 1+a—r 4a?

(4.27)
We can solve for the parameter a as a function of r €
[0,1], at least numerically; the result is shown in Fig. 8,
along with Sy and ER.

Turning to the Rank-4 case, it is straightforward, if
tedious, to show that the Werner states satisfy the cor-
responding stationarity conditions. In order to ascertain
which rank gives the MEMS for a given Sy, we compare
the stationary states of Rank 2, 3, and 4 in Fig. 9. Thus,
we see that for Sy < Sy ~ 0.672 the frontier states are
given by the Rank-3 states, whereas for Sy > Sy the
frontier states are given by the Werner states (4.7) with
the parameter r ranging from approximately 0.6059 down
t0 0. At the crossing point, (S5, Ef;) ~ (0.672,0.124), the
MEMS undergo a discontinuous transition; recall that we
encountered a similar phenomenon in the case of entan-
glement of formation vs. von Neumann entropy.

o l—a—r_ o
gl—a—H‘_ &

log



FIG. 8: Dependence of Er, Sv and a on r for the Rank-3
maximal states.
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FIG. 9: Entanglement frontier: relative entropy of entangle-
ment vs. von Neumann entropy. The solid curve is the fron-
tier. The branch structure is described in the text.

3. Negativity

We saw in Sec. IV B 3 that there is a pair of families of
MEMS which differ in rank but give the identical frontier
in the N vs. Sy, plane. It is interesting to see what hap-
pens for the combination of negativity and von Neumann
entropy.

Once again, we begin with states of form (4.4), for
which the negativity and the von Neumann entropy are
given in Egs. (4.15) and (4.20b), respectively. By making
N stationary at fixed Sy, we are able to find only one
solution (in addition to the Rank-2 candidate): a = b =
z. Expressing the resulting density matrix, as we may, in
terms of the single parameter r, we arrive at the following
candidate for the frontier states:

l—é_r 1 9T 8 g
pMEMS:N,Sv = 0 6 1—7r 0 I (428)
1
0 0 Hr

where 0 < r < 1, i.e., the Werner states.
The resulting frontier in the negativity vs. von-
Neumann-entropy plane is shown in Fig. 10 which, for
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FIG. 10: Entanglement frontier: negativity vs. von Neumann
entropy. The solid curve is the frontier. The broken curve
represents the Rank-2 candidate states.

comparison, also shows the curve for the Rank-2 candi-
date.

V. CONCLUDING REMARKS

In this Paper we have determined families of maximally
entangled mixed states (MEMS, i.e., frontier states,
which possess the maximum amount of entanglement for
a given degree of mixedness). These states may be use-
ful in quantum information processing in the presence
of noise, as they have the maximum amount of entan-
glement possible for a given mixedness. We considered
various measures of entanglement (entanglement of for-
mation, relative entropy, and negativity) and mixedness
(linear entropy and von Neumann entropy).

We found that the form of the MEMS depends heavily
on the measures used. Certain classes of frontier states
(such as those arising with either entanglement of forma-
tion or relative entropy of entanglement vs. the von Neu-
mann entropy) behave discontinously at a specific point
on the entanglement-mixedness frontier. Under most of
the settings considered, we have been able to explicitly
derive analytical forms for the frontier states.

For entanglement of formation and relative entropy-
and for most values of mixedness, we have found that the
Rank-2 and Rank-3 MEMS have more entanglement than
Werner states do. On the other hand, at fixed entropy no
states have higher negativity than Werner states do. At
small amounts of mixedness, the {MEMS: Er, S} states
“lose” entanglement with increasing mixedness at a sub-
stantially lower rate than do the Werner states. However,
when the entanglement is measured by the relative en-
tropy, the difference in loss-rate is significantly smaller.

Having characterized the MEMS for various measures,
it is worthwhile considering them from the perspective
of Bell-inequality violations. To quantify the violation of
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FIG. 11: Violation of Bell’s inequality for various fami-

lies of states: (a) {MEMS : Er,Sp}, (b) Werner states,
(c) pl(\,Q:MS:N’SL, (d) pi in Eq. (4.21), (e) the Rank-2 Bell diag-
onal states with spectrum given in Eq. (5.3a), (f) the Rank-4
Bell diagonal states with spectrum given in Eq. (5.3b). These
two constitute the maximal B vs. Sp. (g) the Rank-4 Bell
diagonal states with spectrum given in Eq. (5.4), which give
maximal B vs. Sy.

Bell’s inequality, it is useful to consider the quantity

B= max {E@ab) + E@b)+

=
a,a',b,b’

- -

E(al7b) - E((_],‘I,b’)},
(5.1)

where E(d@,b) = (7-@® & - b) and the vectors @ and @ (b

and b’ ) are two different measuring apparatus settings for
observer A (observer B). If B > 2 then the corresponding
state violates Bell’s inequality. For the density matrix of
the form (4.4) it is straightforward [27] to show that the
quantity B is given by

B= 2\/(4(a;+ 5)- 1)2 472,

Now, Theorem 4 of Ref. [28] asserts that for any given
spectrum (A1 > A2 > A3 > \y) of a density matrix, states
that achieve maximal violation of Bell’s inequality are di-
agonal in the Bell basis (|®*), |¥*)), and that the quan-

tity B is equal to 2v/2y/(A1 — A1)? + (A2 — X3)2. From

(5.2)

this, it is straightforward to derive states that, for a given
value of mixedness, achieve maximal Bell-inequality vi-
olation. For the case of linear entropy, we get the state
with eigenvalues

(M1=0,0,0}, with A€ [2,1],  (5.30)
1-2) 1-2\y . 11
oA —=5257) withae [£,5]. (5.30)

For the case of von Neumann entropy, the corresponding
eigenvalues are

{(1—04)2,a(l—a),a(l—a),a2}, with a € [0, %] (5.4)

In Fig. 11 we plot B vs. linear and von Neumann en-
tropies for several families of frontier states. As a com-
parison, we also draw the corresponding maximal viola-
tion in each case.

Another natural application for which entanglement is
known to be a critical resource is quantum teleportation.
How do these frontier MEMS teleport, compared with the
Werner and Rank-2 Bell diagonal states? If we restrict
our attention to high purity situations (i.e., to states with
only a small amount of mixedness) then it is straight-
forward to show that, e.g., {MEMS: Ef, Si} states tele-
port average states better than the Werner states do, but
worse than the Rank-2 Bell diagonal state does. Part of
the explanation for this behavior is that standard tele-
portation is optimized for using Bell states as its core
resource.

It is also interesting to note that for certain combina-
tions of entanglement and mixedness measures, as well
as the Bell inequality violation, the Rank-2 candidates
fail to furnish MEMS. Thus, these states seem to be
less useful than other MEMS. However, from the per-
spective of distillation, these states are exactly quasi-
distillable [29, 30], and can be useful in the presence of
noise because they can be easily distilled into Bell states.
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