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We discuss the role of nonclassicality of quantum states as a necessary resource in deterministic
generation of multipartite entangled states. In particular for three bilinearly coupled modes of the
electromagnetic field, tuning of the coupling constants between the parties allows the total system
to evolve into both Bell and GHZ states only when one of the parties is initially prepared in a
nonclassical state. A superposition resource is then converted into an entanglement resource.
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I. INTRODUCTION

Undoubtedly state entanglement of multicomponent systems is one of the most remarkable features of quantum
mechanics [1], with both fundamental and practical implications. While performing a central role in discussions of
nonlocal correlations [2], it is also the basis for quantum computation [3], quantum cryptography [4], teleportation
[5] and dense coding [6]. Nowadays, the most accessible and controllable source of entanglement arises from the
process of spontaneous parametric down-conversion in nonlinear crystals [1, 7]. Recently, experiments with trapped
ions have also shown a high degree of control on entanglement generation [8]. Technological improvements on ex-
periments involving atoms and cavity fields in both optic [9] and microwave [10] frequency regions will lead to new
scenarios for entanglement experiments involving massive particles in the near future. Progress in this direction was
already achieved as in the generation of atomic Eistein-Podolsky-Rosen (EPR) pairs [2, 11] and in the multiparticle
entanglement engineering [12].

Recently the nonclassicality of a light beam state was identified as a necessary resource for entangling two light
beams at the two arms of a beam splitter[13]. In fact the need of a nonclassical state in one of the beam splitter arms
to tangle the fields has a dramatic consequence on the principle of nonseparability of quantum mechanics [14, 15]. As
it is stated, state entanglement occurs in any multicomponent (multipartite) interacting system, meaning that each
party can not be any more described in terms of an uncorrelated state vector. The dependence on nonclassicality
adds the importance of initial conditions to establish quantum correlations. This dependence has no counterpart to
establish classical (statistical) correlation. Thus deterministic generation of entanglement is (consistently with the
nature of the quantum systems involved) dependent on their interaction and their initial state. Throughout this
paper we call attention to these necessary conditions for deterministic entanglement generation, particularly to the
importance of initial conditions. We begin in Sec. II with a clear definition of necessary quantum resources for
deterministic entanglement generation and observe the surprisingly dependence on subsystems initial state for the
nonseparability principle to be applied. As a specific application example, in Sec. III we focus our attention on a
system with an infinite dimensional Hilbert space, a three mode linear bosonic system (linear equations of motion),
corresponding to a three partite continuous variable system. In Sec. IV we discuss the role of nonclassicality for the
entanglement of the three modes. We assume the modes initially uncorrelated. Classical states remain uncorrelated
as time evolves. However with a truly quantum resource or state (a superposition state) in one of the modes we
show how (near maximal) entangled states are formed (GHZ like). In fact it is also possible to transfer the quantum
resource from one mode to the others entangling them in a Bell like state. The mode with the initial quantum resource
is left unentangled. These examples are discussed in terms of quantum information transfer.
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II. INITIAL CONDITION AS QUANTUM RESOURCE FOR DETERMINISTIC ENTANGLEMENT
FORMATION

For the deterministic (through dynamic evolution) generation of entanglement and superposition states, there are
a few necessary conditions to be applied. A condition for entanglement formation is the evolution map itself - the
interaction between involved parties. A second condition, to which we will pay more attention here, is the initial state
considered. To begin our discussion consider a general system composed by two subsystems, initially decorrelated
and described by the density operator ρ acting on H = HA ⊗HB :

ρ = ρA ⊗ ρB (1)

Any allowed (completely-positive, linear and trace preserving) quantum map L : ρ → UρU−1 = σ(t) ∈ H, as stated
by the nonseparability principle [14, 15], lead their uncorrelated states to

σ(t) = (1− ε)
∑
m

pmσA
m ⊗ σB

m + ε|ψ〉〈ψ|AB , (2)

where ε is a number (as defined here it is actually a dynamic variable) such that 0 ≤ ε ≤ 1. pm is the probability
associated to each subset m such that

∑
m pm = 1. If ε = 0, the state σ is said to be separable as soon as it is

described by mixtures of classical correlation origin [16]. The essential question posed here is to the entangling power
of the unitary operation U [18] and to whether or not the initial condition ρ plays an important role for entanglement
generation.

For special classes of evolution maps the initial state of each party plays an essential role in the establishment of
entanglement. Such is the case for the special class of Linear Bogoliubov transformation maps- transformations whose
generator form a Lie algebra of the SU(2) group such as beam-splitter operations [13, 19] for bosonic fields. These
transformation cannot map a gaussian (classical) state into a nongaussian (nonclassical) one. If in a bosonic system
whose the transformation generators (Hamiltonian) are as such, the only way to entangle the state of the parties
is if another quantum resource is present, as the parties initial states [13, 19]. To prove this assertion let the two
uncorrelated bosonic fields A and B, correspondently prepared in coherent states, evolve under a linear map whose
generators are of the form

1
2

(
ab† + a†b

)
,

i

2
(
ab† − a†b

)
, (3)

which are the generators of the SU(2) group. It is direct to prove that any coherent state under this transformation
evolves coherently and so the states of the two parties A and B evolve uncorrelated. However, if one of the states of A
or B is a legitimate quantum state, like Fock states or superposition of coherent states, it will evolve in an entangled
state [13, 19]. The same is not valid for linear Bogoliubov transformations of the form

1
2

(
a†b† + ab

)
,

i

2
(
a†b† − ab

)
, (4)

which together with (3) form the algebra of the sympletic group Sp(4,R)[20]. Hamiltonians of the kind of Eq.(4)
are well known to generate scaling transforms - stretching and contractions in such a way to conserve the volume of
the phase space, know in quantum optics as squeezing [21]. It is straightforward to show that this transformation
map is able to entangle any initial classical state. On the other hand the generators of the SU(2) group generates
rotations in the system phase space. The central result of this discussion is that contrarily to classical correlation
(statistical) generation present in any past time interacting classical multipartite systems, quantum correlations are
fully dependent not only on the parties interaction nature, but also on the quantum nature of their initial states.

III. ENTANGLING POWER OF BILINEAR OPERATIONS

If it is impossible to entangle systems prepared in classical states, through linear Hamiltonians of the (3), it is still
possible, to determine conditions for the dynamic generation of entanglement when one of the parties is prepared in
a special quantum state. This is quite useful as it allows one to understand how a initial one-party quantum state is
transformed in a N -parties quantum state. An applicative example of the above statement is easily found in quantum
optical systems. Let us consider a system composed of three bosonic modes, which are coupled bilinearly. There are
a number of physical systems that this could represent. For instance it essentially describes the interaction of three
electromagnetic fields in a nonlinear crystal [22]. It can also describes the interaction between different polarisation
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of light fields [23], the interaction of light fields and the motion of trapped atoms as in the proposal of Parkins and
Kimble [24], or even the interaction between the ionic motional degrees of freedom, let us say, in the x, y and z
directions, of a trapped ion [25]. Here the important element is the bilinear coupling of the (3) kind.

More specifically, the Hamiltonian describing the interaction between three modes of EM field in the presence of
strong classical pumping can be written as [22, 26]

H = Hfree + HI (5)

where

Hfree = h̄ωaa†a + h̄ωbb
†b + h̄ωcc

†c (6)

HI = h̄λ
[
e−i(νt−φ)a†b + ei(νt−φ)ab†

]

+ h̄κ
[
e−i(µt−θ)a†c + ei(µt−θ)ac†

]
(7)

Here the coupling parameters λ and κ are the product of the pump amplitudes and the coupling constant between
the EM-field and the crystal. ν and µ are the pump field frequencies. The operators a, b, c and a†, b†, c† are the
annihilation and creation of the field quanta respectively. This rotating wave interaction is pictorially useful as it
allows, as presented in [27] for two modes, not only the transference of energy, but the fully transference of state
between the modes.

The Heisenberg equations of motion for the field operators are given by

ȧ = iωaa− iλei(Ωt+φ)b− iκei(Γt+θ)c

ḃ = iωbb− iλe−i(Ωt+φ)a (8)

ċ = iωcc− iκe−i(Γt+θ)a,

where Ω ≡ ωa − ωb − ν and Γ ≡ ωa − ωc − µ. The equations of motion (8) are linear and hence easily solvable.
Choosing Ω = Γ (ωb + ν = ωc + µ) the solution for a(t), b(t) and c(t) are

a(t) = e−iωat [u1(t)a(0) + v1(t)b(0) + w1(t)c(0)] (9)
b(t) = e−iωbt [u2(t)a(0) + v2(t)b(0) + w2(t)c(0)] (10)
c(t) = e−iωct [u3(t)a(0) + v3(t)b(0) + w3(t)c(0)] (11)

where a(0), b(0) and c(0) are the initial conditions for the three modes. The time-dependent coefficients in the above
expression are given by

u1(t) = eiΩt/2f∗(t) (12)

v1(t) = −i
λeiφeiΩt/2

A
sin(At) (13)

w1(t) = −i
κeiθeiΩt/2

A
sin(At) (14)

u2(t) = −i
λe−iφe−iΩt/2

A
sin(At) (15)

v2(t) = 1 +
λ2

κ2 + λ2

[
e−iΩt/2f(t)− 1

]
(16)

w2(t) =
λκei(θ−φ)

κ2 + λ2

[
e−iΩt/2f(t)− 1

]
(17)

u3(t) = −i
κe−iθe−iΩt/2

A
sin(At) (18)

v3(t) =
λκe−i(θ−φ)

κ2 + λ2

[
e−iΩt/2f(t)− 1

]
(19)

w3(t) = 1 +
κ2

κ2 + λ2

[
e−iΩt/2f(t)− 1

]
(20)

where

f(t) =
[
cos(At) +

iΩ
2A

sin(At)
]

, (21)

A =
√

Ω2 + 4(κ2 + λ2)/2. (22)
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The oscillatory character of these solutions is predicted by the quantum recurrence theorem[28].
Using these expressions for the time-dependent Heisenberg operators, it is possible via the characteristic

functions[29] method to find expressions for the state vectors. The symmetric form of the three modes characteristic
function are given by

χS(η, ζ, ξ, t) = TrABC

{
ρABC(0) exp

[
ηa†(t) + ζb†(t)

+ ξc†(t)− η∗a(t)− ζ∗b(t)− ξ∗c(t)
]}

(23)

where the RHS of the first (second) line stands for the Schrödinger (Heisenberg) picture and ρABC is the density
operator for the three-mode system. As the field operators a(t), b(t) and c(t) (Heisenberg picture) depend linearly on
a(0), b(0) and c(0) (Schrödinger picture) we now define for convenience new time-dependent functions

η̄ ≡ ηu∗1 + ζu∗2 + ξu∗3, (24)
ζ̄ ≡ ηv∗1 + ζv∗2 + ξv∗3 , (25)
ξ̄ ≡ ηw∗1 + ζw∗2 + ξw∗3 , (26)

IV. INITIAL CONDITION FOR THE ENTANGLEMENT OF A THREE-PARTITE BOSONIC SYSTEM

Before we continue with our discussion about the initial condition role for deterministic entanglement formation we
give a brief review of three partite entanglement classification as given by Dür et al [17], which we use extensively in
what follows. Let us write down four possible state configuration to which we will address later

ρ(t) =
∑

i

|ai〉A 〈ai| ⊗ |bi〉B 〈bi| ⊗ |ci〉C 〈ci| (27)

ρ(t) =
∑

i

|ai〉A 〈ai| ⊗ |ψi〉BC 〈ψi| (28)

ρ(t) =
∑

i

|bi〉B 〈bi| ⊗ |ψi〉AC 〈ψi| (29)

ρ(t) =
∑

i

|ci〉B 〈ci| ⊗ |ψi〉AB 〈ψi| (30)

where,|ai〉, |bi〉 and |ci〉 are (unnormalized) states of systems A, B, and C, respectively, and |ψi〉 are states of two
systems. One can classify a three-partite state as: The Class 1 (Fully inseparable states) is the one where the states
cannot be written in any of the above forms- when the sate can be written in a state vector form. An obvious example
is the GHZ (|000〉+ |111〉)/√2, which is a maximally entangled state of three qubits. The Class 2 (1-qubit biseparable
states) constitutes the one where biseparable states with respect to one subsystem are states that are separable with
respect to one subsystem, but non-separable with respect to the other two. That is, states that can be written in the
form (28) or (29) or (30), but not in both of them, i e, exclusively. The Class 3 (2-qubit biseparable states) relates to
biseparable states with respect only to two of the subsystems. Those are states that can be written in two and only
two of the forms (28), (29) and (30). The Class 4 (3-qubit separable states) are those that can be written in all of
the forms (28), (29) and (30), but not as (27). Finally the Class 5 (fully separable states) is related to states that
can be written in the form (27).

Assuming that the initial joint density operator is fully separable (class 5)[17],

ρABC(0) = ρA(0)⊗ ρB(0)⊗ ρC(0) , (31)

then the normal joint characteristic function (23) factorises as

χN (η, ζ, ξ; t) = e
1
2 (|η|2+|ζ|2+|ξ|2)χS(η, ζ, ξ, t)

= e
1
2 (|η|2+|ζ|2+|ξ|2)χS(η̄, ζ̄, ξ̄, 0)

= χA
N (η̄; 0) χB

N (ζ̄; 0) χC
N (ξ̄; 0) (32)

In the Fourier space the modes evolve in an apparent uncorrelated fashion. The actual correlations are due to the
temporal functions η̄, ζ̄ and ξ̄. To calculate the evolved joint quantum state we must assume specific initial conditions.
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A. Coherent state

The first and simplest situation to consider is the case where all the modes are initially prepared in coherent states.
Let us consider the three modes to be given by the density operators

ρA(0) = |α〉 〈α| , ρB(0) = |β〉 〈β| , ρC(0) = |γ〉 〈γ| (33)

where α, β and γ are the amplitudes of the respective coherent states. The normal ordered characteristic function
(32) can be written as

χN (η, ζ, ξ; t) = eηx∗−η∗x+ζy∗−ζ∗y+ξz∗−ξ∗z, (34)

where

x = u1α + v1β + w1γ

y = u2α + v2β + w2γ (35)
z = u3α + v3β + w3γ.

Comparing Eq. (34) with the expression for the normal ordered characteristic function in the Schrödinger picture, it
is straightforward to write the density operator for the combined system as

ρABC(t) = |ΨABC(t)〉 〈ΨABC(t)| , (36)

where the joint state vector |ΨABC(t)〉 is given by

|ΨABC(t)〉 = |x〉A ⊗ |y〉B ⊗ |z〉C . (37)

This state vector simply shows that the three modes will never become entangled. In fact they evolve as separate
coherent states. We started with a fully separable quantum state and it evolved fully separable. The amplitude of
each of the coherent states does change, but not its quantum signature. While these states may develop classical
correlations due to their interaction, to observe quantum correlations such as entanglement requires special conditions
on the prepared states.

B. Superposition states and quantum resources transfer

This example raises several interesting questions. In what follows, we still assume that the three modes are initially
uncorrelated but what occurs if the initial state of the mode A is a actually a true quantum state - a superposition
of coherent states. Does the three modes remain uncorrelated as the total system evolves? How is the information
available in its state distributed over the other modes? To begin this investigation let us describe the initial states as

ρA(0) = |ψA〉 〈ψA| , ρB(0) = |β〉 〈β| , ρC(0) = |γ〉 〈γ| (38)

where mode A is in the coherent superposition state

|ψA〉 =
1

Nα

(|α〉+ eiΦ |−α〉) , (39)

with the normalisation factor Nα =
√

2 + 2 cos Φ e−2|α|2 . For Φ = 0, π/2, π the superposition state given by (39) is
known as the even cat state (even coherent state) [30], Yurke-Stoler cat state [31] and odd cat state (odd coherent
state) [30], respectively.

Now following the same steps as previously the final joint state of the three interacting modes is given by

|ΨABC(t)〉 =
1

Nα
(|X1〉A ⊗ |Y1〉B ⊗ |Z1〉C

+ eiΦ |X2〉A ⊗ |Y2〉B ⊗ |Z2〉C
)

(40)

where

X1 = u1α + v1β + w1γ, X2 = −u1α + v1β + w1γ
Y1 = u2α + v2β + w2γ, Y2 = −u2α + v2β + w2γ
Z1 = u3α + v3β + w3γ, Z2 = −u3α + v3β + w3γ
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In certain parameter regimes (namely |α| À 1) we have 〈X1|X2〉 ≈ 0, 〈Y1|Y2〉 ≈ 0 and 〈Z1|Z2〉 ≈ 0. It can then
be seen that (40) is of the form of an approximate GHZ state, and so it is also very close to be maximally entangled
(class 1)[17]. Such characteristics come from the initial superposition nature of the mode A state.

The evolution of these modes is also very interesting in other parameter regimes and at specific times. For simplicity
we are going to restrict ourselves to the case in which Ω = 0 (ν = ωa − ωb and µ = ωa − ωc). For t = 2nπ/A, where
n =0, 1, 2..., it is easily shown that the joint state recurs to its initial uncorrelated form. Mode A returns to a
superposition state, while the modes B and C are coherent states. No entanglement is seen for such times. However
for times given by

t =
(

n− 1
2

)
π

A
n = 1, 2, 3, .. (41)

the final joint state of the interacting modes is given by

|ΨABC(t)〉 =
1

Nα

∣∣X̄〉
A

⊗ (|Y1〉B ⊗ |Z1〉C + eiΦ |Y2〉B ⊗ |Z2〉C
)

(42)

where X̄ = (X1 + X2)/2. Here it is clear that mode A is in a coherent state and is definitely not entangled with the
modes B+C. The initial superposition state of the mode A is completely transferred to the couple BC in form of a
1-qubit biseparable (class 2) entangled state [17]. More specifically, when the modes B and C are prepared in vacuum
state and with Φ = 0, the state of Eq. (42) is given by

|ΨABC(t)〉 =
1

2Nα
+

|0〉A ⊗
(
N

λα/A
+ N

κα/A
+ |+〉B ⊗ |+〉C

+ N
λα/A
− N

κα/A
− |−〉B ⊗ |−〉C

)
(43)

where

|±〉B =
1

N
λα/A
±

(|λα/A〉 ± |−λα/A〉) (44)

|±〉C =
1

N
κα/A
±

(|κα/A〉 ± |−κα/A〉) . (45)

The couple B-C is in a truly inseparable entanglement of orthogonal states, independently of the magnitude of α. In
fact when mode A is traced out from Eq. (43), the partite B+C system is left in a Bell state.

A related inverse problem is the generation of superposition states. It is straightforward to deduce from the above
discussion that the generation of a superposition (nonclassical) state in the mode A is possible, in principle, whenever
this mode interacts by the Hamiltonian here discussed and if the two other modes B and C are prepared in a entangled
Bell state. It is interesting to notice how these two intrinsic characteristic of quantum systems, entanglement and
superposition states are so related, and that the conservation of quantum information is the strong bond that relates
them. The generation of these kind of states through the Hamiltonian (7) is only possible when a quantum resource
is available.

V. CONCLUSION

In summary, we have discussed in this article the importance of initial conditions (states) as quantum resources
in the deterministic generation of multiparticle entangled systems. We have explicitly considered three bilinearly
coupled modes of the electromagnetic field and showed that without the initial presence of a quantum resource for
one of the three parties the resulting system remains completely unentangled (but may become classically correlated).
If however one of the parties is initially prepared in a Schrödinger cat state (a nonclassical state), then this quantum
resource can be transferred to the other parties. In fact a maximally entangled GHZ (class 1) state for the three
parties can be generated. As a central result the superposition resource has been converted into an entanglement
resource. More interesting however is that this superposition resource for party A can be transferred completely to an
entanglement resource for parties B and C only generating a class 2 state. Parties B and C are left in a maximally
entangled Bell state while party A is now an unentangled coherent state. A slightly different parameter regime leaves
parties B and C strongly entangled to each other but weakly entangled to A while other parameter regimes leave the
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total system completely unentangled (class 5). This results indicate the importance of the nature of the initial state
when the modes are bilinearly coupled and how the nonclassical nature of one parties initial state can be shared or
exchanged with other parties. In this article we have considered only superposition of coherent states as our quantum
resource but any other genuine nonclassical states (for instance Fock states) generate similar effects.
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