
                                                                

       
A framework for coordinated multi-modal 
browsing with multiple clients 
 
Alistair Coles, Eric Deliot, Kevin Lansard1, Tom Melamed 
Cambridge Research Laboratory  
HP Laboratories Bristol 
HPL-2002-330 
November 27th , 2002* 
 
E-mail: {alistair.coles,eric.deliot,tom.melamed}@hp.com, kevin.lansard@insa-lyon.fr 
 
 
multi-modal 
browsing, 
web proxy 
 

As users acquire or gain access to an increasingly diverse range of 
web access clients, web applications are adapting the ir user 
interfaces to support multiple modalities on multiple client types. 
User experiences can be enhanced by clients with differing 
capabilities combining to provide a distributed user interface to 
applications. Indeed, users will be frustrated if their interaction with 
applications is limited to one client at a time. This paper discusses 
the requirements for coordinating web interaction across an 
aggregation of clients. We present a framework for multi-device 
browsing that provides both coordinated navigation between web 
resources and coordinated interaction between variants, or 
representations, of those resources once instantiated in the clients. 
The framework protects the application from some of the 
complexities of client aggregation. We show how a small number of 
enhancements to the XForms and XML Events vocabularies can 
facilitate coordination between clients and provide an appropriate 
level of control to applications. We also describe a novel proxy 
which consolidates HTTP requests from aggregations of clients and 
reduces the burden that multi-client browsing places on the 
application. 

 

* Internal Accession Date Only                              Approved for External Publication 
INSA, Dèpartement Tèlècommunications, 20, Avenue Albert Einstein, 69621 VILLEURBANNE cedex France 
 Copyright Hewlett-Packard Company 2002 



A framework for coordinated multi-modal browsing with 
multiple clients 

Alistair Coles, Eric Deliot, Tom Melamed 
Hewlett-Packard Laboratories 

Filton Road 
Bristol 

BS34 8QZ 
UK 

{alistair.coles,eric.deliot,tom.melamed}@hp.com

Kevin Lansard 
INSA 

Département Télécommunications 
20, avenue Albert Einstein 

69621 VILLEURBANNE cedex 
France 

kevin.lansard@insa-lyon.fr
 

ABSTRACT 
As users acquire or gain access to an increasingly diverse range of 
web access clients, web applications are adapting their user 
interfaces to support multiple modalities on multiple client types. 
User experiences can be enhanced by clients with differing 
capabilities combining to provide a distributed user interface to 
applications. Indeed, users will be frustrated if their interaction 
with applications is limited to one client at a time.  

This paper discusses the requirements for coordinating web 
interaction across an aggregation of clients. We present a 
framework for multi-device browsing that provides both 
coordinated navigation between web resources and coordinated 
interaction between variants, or representations, of those 
resources once instantiated in the clients. The framework protects 
the application from some of the complexities of client 
aggregation.  

We show how a small number of enhancements to the XForms 
and XML Events vocabularies can facilitate coordination between 
clients and provide an appropriate level of control to applications. 
We also describe a novel proxy which consolidates HTTP 
requests from aggregations of clients and reduces the burden that 
multi-client browsing places on the application. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – frameworks. H.5.2 [Information Interfaces and 
Presentation]: User Interfaces - Graphical User Interface, 
prototyping. 

Keywords 
Multi-modal browsing, web proxy. 

1. INTRODUCTION 
An increasing number of information, communication and 
entertainment services are becoming accessible to both fixed and 
mobile internet users. These users are equipped with an 
increasingly diverse array of devices which will be used to access 
web applications in an increasingly diverse range of contexts. In 
response to this, the user interface to web applications is evolving 
to embrace other modalities in addition to the traditional visual 
interface: voice portals already offer a hands-free and eyes-free 
alternative to the visual web browser. 

In contrast to today’s uni-modal, uncoordinated interfaces to web 
applications (e.g. a visual browser, or a voice portal), the user 
interface to future web services will exploit multiple coordinated 
modalities. The exact combination of modalities will seamlessly 
and continually adapt to the user’s context and preferences. This 
will enable greater mobility, a richer user experience of the web 
application and a more flexible user interface. 
In many situations a user’s interaction with a web application will 
be by means of a single multi-modal access device such as a 
desktop PC or a powerful handheld PC. (We use the term 
‘interaction’ to describe both user initiated events within a web 
page such as filling form fields, and also user initiated navigation 
between web pages). However, multi-modal interfaces will not 
only be embodied in powerful access devices, but also in 
aggregations of multiple access devices that are brought together 
to form a distributed user interface. In some cases these 
aggregations will include multi-modal clients (for example a 
visual browser implementing support for SALT [16]) alongside 
uni-modal clients. 
The simplest multi-device multi-modal scenario is when a user 
begins an interaction using a particular modality on a first access 
device, then ceases to use the first device and completes the 
interaction using a different (or same) modality on another access 
device. For example, a visual browser on a desktop PC might be 
used to obtain a map of a campus and directions to a conference 
room from a virtual guide application. Subsequently a voice 
browser might be used to access the directions via a cell phone. 
The interaction spans multiple devices and modalities, but each 
modality is used independently during temporally separated 
phases of the interaction.  
This simple scenario illustrates a first requirement for a multi-
client browsing framework: the second device should be able to 
pick up an interaction at the point that the first device left off.  
This implies that interaction state (which includes current URI 
and any form data that the user has entered) is persistent beyond 
the duration of any one client’s session, and that this state is 
available to other clients.  
In practice users may transition between clients without such a 
clearly defined temporal separation. In our example scenario, the 
user may direct the voice browser to the virtual guide application 
whilst still interacting via the visual browser. Once session 
mobility between clients is enabled, users will expect their 
interaction state to be consistently represented simultaneously on 
multiple clients during periods of temporal overlap. Indeed it 
would be highly undesirable for users to have to explicitly 
suspend one client before activating an alternative client. 

 

 



When the user’s experience is enhanced by the combined 
capabilities of multiple clients then temporal overlap of clients 
will continue beyond these transition periods. For example, we 
envisage the following scenarios: 
Scenario 1: The user is able to control the navigation of a slide 
presentation using a visual browser on a handheld personal 
computer with limited display capabilities while the slide graphics 
(without navigation controls) are rendered by a second browser on 
a large area display device. 
Scenario 2: An interaction started using a voice browser 
accessible via a cellular phone is enhanced by introducing a visual 
browser available at a public kiosk. For example, the voice and 
visual browsers may be used simultaneously to make the query to 
the virtual guide application (“Where are the restrooms in this 
{click} building?”). 
Scenario 3: A multi-modal (aural and visual) browser on a 
handheld personal computer is supplemented by a network hosted 
voice browser. The network hosted voice browser is used during 
periods of an interaction that require more complex speech 
recognition tasks beyond the capabilities of the handheld 
computer. 
A number of challenges are presented when deploying a multi-
modal user interface across multiple access devices. In addition to 
the requirement for persistent interaction state available to all 
clients, temporal overlap also demands coordination of web 
resource navigation across multiple clients (e.g. ensuring that all 
clients navigate to the same URI) and coordination of interactions 
with a web resource across all clients. 
The remainder of this paper is structured as follows. In section 2 
we discuss our objectives and assumptions for this work. Sections 
3 and 4 detail our approach to navigation coordination and 
interaction coordination respectively. We describe our 
implementation of a multi-device multi-modal framework in 
Section 5. Other work related to this paper is discussed in Section 
6, followed by a summary and discussion of potential further 
work in Section 7. 

2. OBJECTIVES AND ASSUMPTIONS 
The goal of our work has been to develop a framework to support 
the temporal overlap of multiple web clients during interactions 
with web based applications. In doing so we have sought to 
relieve the application of the burden of managing multiple 
aggregated client connections. At the same time we have 
attempted to provide the application with flexible control over the 
coordination of clients. Instead of designing a completely new 
markup language for multi-device multi-modal applications, our 
objective is to leverage as many existing or emerging XML 
vocabularies and enhance them where necessary. 

2.1 Navigation Coordination 
When multiple clients are simultaneously rendering the same web 
resource, navigation to another web resource may be initiated by 
user interaction with any one of the clients. In some cases this 
navigation event should trigger all clients to navigate to the same 
resource in unison. However, it might be that some hyperlinks 
should be followed by only a subset of the clients (for example, 
interactions with a control panel application in one browser result 
in a number of different pages being rendered in another 
browser). These alternatives should be supported by the 

framework and subject to the application’s control through 
markup language. 

2.2 Interaction Coordination 
Many web resources solicit user input through the use of forms. 
When these resources are rendered on multiple clients it is highly 
desirable that the current state of form data is consistent on all 
clients. This requires form data elements to be synchronized 
across the clients, but as with navigation coordination, control of 
the synchronization should be exposed to the application through 
markup language.  

We do not assume that all form data is replicated on all clients. 
Rather, we envisage that an application may distribute a form 
across multiple clients such that some elements of the form appear 
on all clients while other elements appear only on one client and 
therefore do not require synchronization. For example, a form to 
upload an image to an application may have some data bound to 
text fields where the user enters textual annotations (e.g. a 
description of the photograph). This part of the form is rendered 
in a visual browser on a handheld PC. At the same time another 
part of the form data is bound to a specialized control that gathers 
image data from a digital camera. Replicating the image data on 
the handheld PC would consume significant bandwidth.  

Beyond synchronizing form data, interaction coordination also 
involves reflecting user interactions with one client on other 
clients. Selecting a particular form control for keyboard focus on 
a visual browser might cause the associated spoken prompt to be 
generated on a voice browser. Speaking “help” to a voice 
browser might cause some text to be rendered or highlighted on a 
visual browser. We seek to enable a flexible approach to 
specifying interaction coordination through markup language. 

2.3 Assumptions 
A significant aspect of client aggregation is how the aggregation 
is formed and managed e.g. how clients discover each other, 
establish secure communications and authenticate themselves. 
Other work (for example [9]) addresses these problems and for 
the purposes of this paper we assume that clients can be 
aggregated and that clients within an aggregation are able to 
exchange messages in a secure manner. The exact mechanism for 
this message exchange is also beyond the scope of this paper, but 
an example might be to use a publish/subscribe scheme based on 
the Session Initiation Protocol (SIP) [15]. 

3. NAVIGATION COORDINATION 
Previously reported schemes for synchronizing the navigation of 
an aggregation of browsers (e.g. [4][7]) have often relied on a 
third party (e.g. a proxy) to respond to requests from one browser 
by pushing copies of the requested resource to all browsers. This 
requires the third party to maintain knowledge of the clients in the 
aggregation i.e. it must hold state. We have sought to avoid the 
use of a stateful third party by having the clients coordinate their 
individual requests to the resource. Furthermore, in contrast to 
many previous schemes, we anticipate that rather than replicating 
the same view of the resource in all clients, each client will 
potentially load a different variant of the same resource. This is a 
subtle but important characteristic of the current problem: all 
clients make requests to the same resource but receive different 
variants of that resource in response. (For a discussion of 
resources and variants see [12].) 



 

Consolidating 
Proxy 

Client1 Client2 

1. Request 

2. Inter-client 
message 

3. Request 

Resource server 

4. Consolidated request 

A 

A+B

Figure 1. Consolidating proxy operation. 

B 

The stateful proxy may be avoided as follows. When any one 
client in the aggregation initiates loading of a new resource it 
issues an HTTP request to that resource and at the same time 
sends a message to other clients which stimulates further HTTP 
requests to the resource. Each client may include in its request a 
description of its capabilities, for example through the use of 
CC/PP [18]. The resource responds to each client with a variant of 
itself that may have been adapted to suit the capabilities of that 
client. 

As it stands this scheme has two significant problems. First, the 
resource server receives multiple requests every time a navigation 
event occurs. Not only does this increase the server load, but it 
also requires any application accessed via the resource URI to 
treat non-idempotent requests (e.g. HTTP POST’s) as idempotent. 
For example, a POST to an e-commerce website might result in 
an item being added to a shopping cart. When multiple clients in 
an aggregation perform similar POST’s the results will be 
unpredictable unless the application is aware of the client 
aggregation and able to consolidate the multiple requests into a 
single transaction. 

Second, the resource server is able to adapt its response to each 
client’s capabilities, but it is not able to adapt for a client within 
the context of the aggregation. For example, the server could not 
tailor an HTML variant on the basis of whether or not a voice 
browser is also available. To achieve this, the server would again 
need to correlate the multiple requests and construct an 
aggregation profile prior to responding to any request. 

3.1 Consolidating Proxy 
To overcome these problems we have introduced an intermediary 
function to our system which consolidates HTTP requests from 
multiple clients into a single HTTP request that propagates to the 
resource server. In doing so it also constructs an aggregation 
profile i.e. a description of the composition of the aggregation and 
the capabilities of each client within it (see section 3.2). The 
resource server now receives a single request and is able to 
construct variants for each client contextualized for the 
aggregation. These variants are returned in the HTTP response 
and distributed to the appropriate clients by the intermediary.  

Although the intermediary function could be implemented as a 
front end for the resource server, we have chosen to implement it 
as a “consolidating proxy” (figure 1) so that the functionality is 
associated with the client aggregation rather than the resource. 
This offloads the burden of request consolidation from every 
resource server. An important feature of the consolidating proxy 
is that it is stateless apart from while handling a request. The 
proxy retains no knowledge of the individual clients or the 
composition of the aggregation. 

To facilitate request consolidation, clients include a number of 
new HTTP headers in their requests to the proxy. These headers 
include the originating client’s unique ID and capability profiles, 
the ID of all other client’s that will make an associated request 
and a unique request identifier. For example: 
Client-ID: client1 
Agg-Client-ID: client1, client2 
Req-ID: abcde1234 
Profile: “www.example.com/profile1” 
 
These headers enable the proxy to identify requests that should be 
grouped together and to determine when the whole group has 

been received, at which point it constructs the aggregation profile 
from the set of client profiles and forwards a request to the 
resource. 

The consolidating proxy waits for the whole group of client 
requests to be received before issuing the consolidated request for 
two reasons. The first is that each client supplies its component 
profile for the aggregation profile. The second is that requests 
may contain form data, and as previously described this form data 
may be distributed across clients. When forms are distributed 
across clients then each client may have a fragment of the 
complete form data to submit within a HTTP request. (We 
describe later how fragmented submission can be specified by the 
application.) The consolidating proxy must gather form data from 
all client requests and include the amalgamated data in the 
consolidated request. 

When there is no form data being submitted or when the form 
data is included in all client requests, we would like to avoid 
delaying the consolidated request. In an enhancement to our 
scheme, the first request to reach the proxy in these circumstances 
is immediately forwarded to the resource server. This implies that 
each client is made aware of the other clients’ profiles via inter-
client messaging and includes the aggregation profile in its 
request (this only needs to be updated when there is a change to 
the aggregation). In cases where that client has the complete form 
data, or there is no form data, its request is now sufficient for the 
consolidating proxy to immediately forward to the resource 
server. We therefore introduce another HTTP header Request-
Status which indicates to the proxy whether a client request is 
complete or partial. If the consolidating proxy receives a partial 
request it waits for all other partial requests or a complete request 
to arrive before issuing the consolidated request. If a complete 
request is received and triggers the consolidated request, then 
subsequent associated requests are stalled pending the response 
from the resource server (figure 2). 

3.2 Aggregation Profile 
The aggregation profile must describe not only the combined 
capabilities of the aggregation but must also associate those 
capabilities with individual clients. For example, if the 
aggregation profile merely indicates that visual and aural 
interfaces are available then the application cannot distinguish 
between an aggregation comprising a visual-only client and an 



3.3 Response Demultiplexing  

Consolidating 
Proxy 

Client1 Client2 

1. Request 

2. Inter-client 
message 

4. Request 

Resource server 

3. Consolidated request 

Complete 

Complete 

Figure 2. Consolidating proxy operation with 
a complete client request. 

On receiving a consolidated request the resource generates a set of 
variants of itself adapted for each client and returns these in a 
multipart HTTP response. Each part of the multipart response is 
labeled with a header that identifies the client(s) for which it is 
appropriate, for example: 
--boundaryABCDE 
Content-For: client1 
 
…variant1… 
 
--boundaryABCDE 
Content-For: client2, client3 
 
…variant2… 
 
The Content-For header is used by the consolidating proxy to 
demultiplex the variants and return them in the HTTP responses 
to each client. 

3.4 Markup for navigation coordination 
To provide the application with flexible control of the navigation 
coordination we add a single new markup tag, also. This is used 
to modify the clients’ behavior when executing hyperlink 
elements.  

aural-only client, and an aggregation comprising a visual-plus-
aural client and a visual-only client. 
The aggregation profile should therefore include the constituent 
client profiles along with bindings between those profiles and the 
clients they match. This is achieved by the consolidating proxy 
first associating a tag with each unique profile. Since HTTP 
headers may be reformatted and consolidated by intermediaries, 
the tag should be associated with each component of a profile, as 
shown in the example below for the tag “yy”. When more than 
one client has the same profile, only one tagged profile need be 
included in the aggregation profile. A Profile-Agg header may 
then be used to bind each unique client ID to a profile tag. This 
has the advantage of not repeating potentially verbose profile 
definitions for identical clients. 

In our markup examples we use several XML vocabularies with 
the following namespace prefixes: mu for our new multi-device 
coordination markup, xh for XHTML [22] , xf for XForms [21] , 
xl for Xlink [24]  and ev for XML Events [23] . For the sake of 
brevity we omit the namespace declarations from the examples. 
An example of the use of the also tag is shown below: 
<!-- in client1 --> 
<xh:span id=”myLink”>Click here</xh:span> 
 
<ev:listener ev:event=”click” ev:target=”myLink” 
ev:handler=”#myLoader”/> 
 As an example, consider the case when three clients requests are 

received each including client specific headers: 
<xf:load id=”myLoader” xl:href=”foo.html”> 
  <mu:also name=”client2”/> 
  <mu:also name=”client3”/> Client-ID: client1 </xf:load> Profile: “www.example.com/profile1”   
Here XML Events markup is used to route click events on the 
span element to an XForms load element which loads a new 
resource. The also elements specify (using the name attribute) 
other clients with which the load operation should be 
coordinated. (By default also inherits the href attribute of its 
parent load element, but it could possibly be modified with a 
different href attribute.) When the load handler is executed in 
one client it triggers other clients via messages which include the 
URI for each client to load. 

Client-ID: client2 
Profile: “www.example.com/profile2”, 
         “www.example.com/profile3” 
 
Client-ID: client3 
Profile: “www.example.com/profile2”, 
         “www.example.com/profile3” 
 
Note that client2 and client 3 have identical profiles. From these 
headers the consolidating proxy is able to construct the 
aggregation profile: 

Since the unique client IDs are included in the HTTP request 
headers, the application has them available when dynamically 
generating the also elements. Of course, there remains the 
question of how this process is bootstrapped i.e. how are the also 
elements generated by the first application to be loaded? One 
mechanism by which this may be achieved is to have a ‘portal’ 
web application which provides a mechanism for clients to join an 
aggregation and begin navigation.  

Profile-Agg: client1;xx, client2;yy, client 3;yy 
Profile: xx;”www.example.com/profile1” 
Profile: yy;”www.example.com/profile2”, 
         yy;”www.example.com/profile3” 
 
This set of headers is robust to being reformatted by 
intermediaries with no loss of information, e.g.: 
Profile-Agg: client1;xx, client2;yy, client 3;yy 
Profile: yy;”www.example.com/profile2”, 

A detailed description is beyond the scope of this paper, but in 
summary the portal would maintain a list of clients in the 
aggregation and is therefore always able to generate hyperlinks 
annotated with the appropriate also elements. It has the usual 
navigation controls (address entry field, back/forward) and also 

         xx;”www.example.com/profile1”,          
         yy;”www.example.com/profile3” 



acts as a persistent store for navigation history. We are 
considering alternative schemes that would avoid holding 
aggregation related state at a portal application. 
Navigation events also occur when a user submits a form. The 
example below shows how we enhance XForms markup to 
coordinate form submissions: 
<!-- in client1 --> 
<xf:model> 
  <xf:instance> 
    <data1>   
  </xf:instance> 
<xf:submission action=”http://example.com/submit” 
    method=”post” ref=”data1” id=”subInfo1” 
    mu:status=”partial”/> 
</xf:model> 
 
<xf:submit submission=”subInfo1”> 
  <mu:also name=”client2” submission=”subInfo2”/> 
</xf:submit> 
 
<!-- in client2 --> 
<xf:model> 
  <xf:instance> 
    <data2>   
  </xf:instance> 
<xf:submission action=”http://example.com/submit” 
    method=”post” ref=”data2” id=”subInfo2” 
    mu:status=”partial”/> 
</xf:model> 
 
<xf:submit submission=”subInfo2”> 
  <mu:also name=”client1” submission=”subInfo1”/> 
</xf:submit> 
 
In this example the form submission is triggered by the user 
activating the submit control (declared by the XForms submit 
element). The details of form submission (HTTP method, which 
data should be submitted) are provided by the XForms 
submission element. We use the new also tag again to modify 
operation of the submit element by specifying that the form 
submission should be coordinated with another client. In the 
example the also element has its own submission attribute so 
that a different submission element may be specified for each 
client. This allows each variant to specify different elements of 
form instance data that should be submitted by its host client 
when a form is fragmented across clients. We have also added a 
new attribute, status, to the submission element that indicates 
whether the submitted form data is partial or complete. In the 
example above client1 submits the value of  the data1 element 
and client2 submits the value of the data2 element. Both client 
requests are partial. 
As with a load operation, the client initiating the submission uses 
inter-client messages to instruct other clients to submit and 
includes in those messages the identity of the appropriate 
submission element for each variant. Other clients then locate 
that submission element in order to construct their individual 
HTTP requests. 

3.5 Inter-client locking 
Any navigation event, whether it be a form submission or 
following a hyperlink, should occur atomically across all clients. 
Given finite latency in messages passing between clients, it might 
be possible for a user to activate one navigation operation on a 
first client and then activate a different navigation operation on 
another client, resulting in unpredictable outcomes as both clients 
attempt to trigger associated requests from the rest of the 
aggregation (not to mention a potential deadlock at the 

consolidating proxy). This is prevented by having a token scheme 
operate within the aggregation, such that only the client with the 
token may initiate a navigation event. Such schemes are well 
known [13] . 
The client on which a navigation operation is initiated uses the 
inter-client messaging to request ownership of the navigation 
token. Once all other clients involved in the navigation have 
responded with messages agreeing that the first client can proceed 
with navigation, it then instructs the other clients to issue HTTP 
requests, and issues its own HTTP request. Any navigation 
operation initiated on another client during this process is blocked 
until the token is released by the first client, preventing the 
possibility of two unrelated sets of HTTP requests being 
generated. Before releasing the token the first client instructs all 
other clients to abort pending requests (again ensuring atomicity). 
The need for atomic navigation events caused us to adopt the 
markup constructs described above which offload the details of 
navigation coordination to the client browsers. We considered an 
alternative scheme in which application events (e.g. “click”, 
“submit”) are explicitly passed between clients subject to markup 
declarations. For example, a click event could be routed to 
separate load handlers in each client, with each handler 
independently loading the new resource. However, there would be 
no way to guarantee atomic navigation in such a scheme without 
introducing far more complex markup. 
 A further benefit of offloading the navigation coordination to 
client browsers is that we are able to retain the ability for 
browsers to cancel loads in progress (e.g. using the “Stop” 
button), and again to ensure that the cancellation is atomic across 
all clients.  

4. INTERACTION COORDINATION 
Coordination of interactions with multiple variants of a resource 
may be achieved by extending the events and event handler model 
that underpins “dynamic HTML” across an aggregation of clients. 
A good basis for this is XML Events [23], which provides a 
flexible means to declare the routing of events from event targets 
to event handlers within XML documents. 

To illustrate the use of XML Events we consider the case of 
coordinating visual and aural interfaces to a form. The desired 
effect is for the user to be able to click (or otherwise select) a 
form field in a visual browser and to have the corresponding 
spoken prompt rendered by the speech browser. To simplify the 
illustration we assume that both browsers support modality 
independent XForms declaration of the form, but it should be 
noted that in principle the same result can be achieved using 
combinations of XHTML, VoiceXML [20]  and SALT. The 
required markup is shown below: 
<!-- client1, visual --> 
<xf:input id=”visualIp” xf:ref=”data1”> 
 
<ev:listener ev:event=”focus” ev:target=”visualIp” 
ev:handler=”#myActions”/> 
 
<xf:action id=”myActions”> 
  <mu:fork mu:to=”client2” ev:handler=”#myFocus”/> 
  <mu:fork ev:handler=”#localHandler”/> 
</xf:action> 
 
<!-- client2, aural --> 
<xf:setFocus id=”myFocus” control=”auralIp”> 
 



In this example, when the focus of the visual browser is moved to 
the input element, the focus event is fired and is routed to a 
handler in the resource variant hosted by client2, the aural 
browser. In response to the event the handler in client2 - an 
XForms setFocus element - sets the aural focus to the 
corresponding aural form control. 

To facilitate the event routing between clients we have introduced 
a new event handler tag fork which provides a generic means to 
asynchronously route a copy of any event to another variant of the 
resource. It can also route the event to a local handler in which 
case the to attribute may be omitted. Whilst XML Events already 
provides for event handlers to be addressed in different 
documents through the use of URI’s, there is no provision for 
routing events to handlers in different variants of the same 
document. This is presumably due to there being no clearly 
defined method for addressing variants of the same resource [12]. 
We therefore utilize the unique client ID as a means to address 
variants of a document and specify this as an attribute of the fork 
element. 

Events are distributed by serializing the local event object and 
sending it to the receiving variant. Sufficient contextual 
information is embedded in the serialized event to avoid the need 
for callbacks to the event generating variant. For example, in a 
focus event we include the identity of the event target, which 
allows a generic remote focus event handler to modify its 
behavior on that basis. 

4.1 Form Data Synchronization 
In some circumstances the interaction coordination should be 
symmetric amongst clients. A good example of this is when 
elements of form data are replicated in several variants of the 
resource: changes to those elements in one client should be 
reflected in all other clients. We considered applying the generic 
event routing solution described above, for example: 
<!-- client1 --> 
<xf:instance id=”myData”> 
  <dataX/> 
</xf:instance> 
 
<ev:listener ev:event=”xforms-value-changed” 
ev:target=”myData” ev:handler=”#publish”/> 
 
<xf:action id=”publish”> 
  <mu:fork mu:to=”client2” ev:handler=”#change”/> 
</xf:action> 
 
<xf:setValue id=”change”/> 
 
<!-- client2 --> 
<xf:instance id=”myData”> 
  <dataX/> 
</xf:instance> 
 
<ev:listener ev:event=”xforms-value-changed” 
ev:target=”myData” ev:handler=”#publish”/> 
 
<xf:action id=”publish”> 
  <mu:fork mu:to=”client1” ev:handler=”#change”/> 
</xf:action> 
 
<xf:setValue id=”change” /> 
 
In this example when the instance data element dataX changes in 
either variant, an xforms-value-changed event is fired which 
is routed by the listener element to a publish handler. The 
handler contains a fork element which causes the event to be 

distributed to the other client where it should be routed to a 
change handler. The change handler is an XForms setValue 
action element which sets the local copy of the data to the new 
value. We assume that the change handler is capable of querying 
the event object for the data element path and the new value. 

This approach presents two problems. First, change events will 
“rebound” to the originator due to the symmetric nature of the 
markup – execution of the “change” handler will trigger a local 
xforms-value-changed event that will trigger the “publish” 
handler. Second, due to event latencies, the scheme does not 
guarantee consistency across all clients when more than one client 
invokes its “publish” handler at or close to the same time. 

The second problem can be solved by imposing universal event 
ordering or time-stamping. The first problem is harder to solve 
without introducing more complex markup constructs. 
Recognizing that data synchronization will be a commonly used 
feature we have therefore again chosen to offload this function to 
the client browsers and avoid further cluttering the application 
markup. The resulting markup is simply: 
<!-- client1 --> 
<xf:instance id=”myData”> 
  <dataX/> 
  <dataY> 
    <dataZ/> 
  </dataY> 
</xf:instance> 
 
<mu:also ref=”dataX” name=”client2, client3”/> 
<mu:also ref=”dataY/dataZ” name=”client3”/> 
 
 
<!-- client2 --> 
<xf:instance id=”myData”> 
  <dataX/> 
</xf:instance> 
 
<mu:also ref=”dataX” name=”client1, client3”/> 
 
In this context the also element instructs the browser to 
synchronize the referenced data elements with their counterparts 
in other variants. We use the inter-client messaging subsystem to 
publish “data-change” events containing sufficient context for 
remote clients to update their copies of the data i.e. the path to the 
data item within the instance data structure and the new and 
previous values. Given the possibility of quasi-simultaneous 
changes to data on multiple clients, consistency is ensured by 
including either a time-stamp or globally unique event number in 
each event so that all clients have the same view of the order of 
data changes.  

Note that there can be more than one also element referring to 
sub-trees of the instance data that are to be synchronized with 
different subsets of the client aggregation. In fact this example 
illustrates one of the reasons we have been motivated to use 
XForms: the declaration of form data as structured XML allows 
us to easily bind the also element to the data, with the flexibility 
of binding to individual elements, sub-trees or the whole instance 
data structure. 

4.2 Data locking 
Some events may invoke handlers whose operation is dependent 
upon the state of the resource. For example, a handler that 
calculates the total amount for an online shopping cart will 
depend upon the quantity and prices of the items in the cart. As 
with any other distributed system it is necessary to “lock” 



elements of data during the execution of code with dependencies. 
We have therefore added a lock attribute to event handlers which 
specifies instance data that should be locked before the handler 
executes. Client browsers cooperate to lock the instance data (i.e. 
prevent any write operations) whenever a handler with a lock 
attribute is invoked. For example: 

 

SIENA 

HTTP 

Tomcat 
servlet 
container 

Persistence
module

Figure 3. Prototype system 

Generic HTTP proxy 

Consolidation module 

<xf:instance id=”myData”> 
  <dataX> 
</xf:instance> 
 
<mu:also ref=”dataX” name=”client2, client3”/> 
 
<xf:action mu:lock=”dataX”> 
  <!-- some handlers/scripts --> 
</xf:action> 
 
This combination of the lock attribute and the also element that 
is bound to the specified instance data contains enough 
information for the client to negotiate a lock on the specified data 
when the handler is invoked. The mechanism by which a lock is 
obtained is similar to that used by clients to negotiate a token for 
initiating navigation operations. In Websplitter, a single device-independent variant of the 

resource is adapted for specific clients on the basis of rules 
described in an associated policy file. Device independent 
authoring (DIA) is essential for enabling web application 
deployment across multiple clients, and other approaches have 
also been proposed (see [3] for a review). However, the focus of 
our work has been not on DIA itself but on providing a 
framework for simultaneous multi-client browsing that can be 
exploited by DIA. 

5. PROTOTYPE FRAMEWORK 
We have developed a prototype system to demonstrate the multi-
device browsing framework (figure 3). This provided valuable 
experience that shaped the design of the new markup language 
tags.  

We have implemented a number of clients that provide the 
navigation and interaction coordination features described above, 
including support for XForms declaration of forms. For visual 
browsing we have enhanced a Mozilla web browser and also 
implemented a limited set of capabilities for a Windows CE 
version of Internet Explorer running on a handheld PC.  We have 
also integrated navigation and interaction coordination support 
into a proprietary VoiceXML browser. Combinations of these 
clients are capable of fully synchronized form filling and 
navigation. The clients communicate using the Siena [5]  message 
passing system. 

Recently there has been considerable interest in multi-modal web 
browsing (e.g. [2][14][19]) and others have proposed architectures 
for multi-device multi-modal browsing (e.g. [1][10][11]). XForms 
is proposed as a tool for synchronizing form data in [10] but no 
details are given of markup language extensions to support 
synchronization. The architecture described in [1] differs from 
ours in that each modality or browser is assumed to access 
different resources rather than variants of the same resource. 
Resources for each modality are associated with each other using 
cross-referencing tags and there appears to be no provision for 
these resources to be dynamically adapted in response to an 
aggregation profile.  

We have also built a prototype consolidating proxy which 
interoperates with our Mozilla based clients and a rudimentary 
application server. The consolidating proxy performs request 
consolidation, form data amalgamation and response de-
multiplexing. The prototype system also has support for 
persistence of user sessions beyond the duration of any one client 
session: a persistent set of bookmarks is available to all clients, 
and form data is automatically reloaded when clients return to a 
previously visited resource. 

The need for interaction state persistence beyond the duration of 
interactions with any one client has been identified in [17] where 
a session state is persistently stored in response to user stimulus. 
In our prototype state persistence is a continuous background task 
not requiring user action. 

Finally, the CATCH 2004 [6] project appears to have developed a 
multi-modal browser architecture, although at the time of writing 
we have not been able to access a detailed description. 6. RELATED WORK 

The coordination of navigation across a number of browsers has 
been reported in the context of collaborative web browsing (e.g. 
[4][7]). The goal has usually been to replicate identical web pages 
on browsers belonging to several users. CoWeb [8] went one step 
further and enabled collaborative HTML form filling by replacing 
HTML elements in the source document with Java applets that 
communicated via a central control unit. WebSplitter [7] 
introduces the notion that each client might receive a different 
version of the resource according to its capabilities and other 
policies, but does not provide coordinated form filling across 
multiple clients.  

7. SUMMARY AND FURTHER WORK 
We have described a framework for multi-device multi-modal 
browsing. By enhancing the browsing infrastructure and 
introducing a small number of new markup tags we have enabled 
applications to simply coordinate user interaction and navigation 
across a client aggregation. We have found XML Events and 
XForms to be a good basis for the framework. Much of the 
required coordination is triggered by events and XML Events 
already provides most of the functionality required to route events 
between variants of a resource and to specify handlers for those 
events. The separation of instance data from user interface in 



XForms allows easy binding of multi-client synchronization 
functions to the data. The novel functionality of the consolidating 
proxy allows coordinated navigation without the need for a 
stateful third party, and also enables forms to be split across 
multiple clients for greater flexibility in user interface design. 

Many of the concepts, including the consolidating proxy, have 
been implemented in our prototype multi-device browsing system 
which demonstrates the viability of web access via client 
aggregations. Some aspects of the framework remain to be 
implemented such as the description of aggregation profiles based 
on CC/PP. We are investigating alternatives to the HTTP 
multipart response for returning multiple variants from the 
resource server. The framework does not currently support 
HTTPS and we recognize that SSL will significantly affect the 
consolidating proxy behavior. We would like to consider the 
implementation of inter-client message passing based on other 
event transport protocols such as SIP. 

As a generalization of our XForms instance data synchronization 
it would be interesting to explore the linking of any parts of 
resource variants e.g. synchronizing HTML nodes and sub-trees 
such that any modifications such as re-writing of a text node are 
reflected across multiple clients. XUpdate [25] may prove a useful 
tool for this. One important topic we have not yet addressed is 
server-side adaptation of content in response to aggregation 
profiles. This is likely to be significantly more complex than 
adaptation to a single client capability profile. 

8. ACKNOWLEDGMENTS 
We are grateful for illuminating discussions with Aled Edwards, 
Jim Gettys and Mark Butler of HP Laboratories. 

9. REFERENCES 
[1] Amann, N., Hue, L., Lukas, K. Position Statement for Multi-

Modal Access. World Wide Web Consortium Multimodal 
Interaction Activity. See 
http://www.w3.org/2002/mmi/2002/siemens-26nov01.pdf 

[2] Beckham, J., Di Fabbrizio, G., Klarlund, N. Towards SMIL 
as a Foundation for Multimodal, Multimedia Applications. 
Eurospeech 2001, 1363-1367, Aalborg, September 2001. 

[3] Butler, M., Giannetti, F., Gimson, R., Wiley, T. Device 
Independence and the Web. IEEE Internet Computing, Vol. 
6, No. 5, September 2002, 81-86. 

[4] Cabri G., Leonardi L., Zambonelli F. Supporting 
Cooperative WWW Browsing: a Proxy-based approach. 7th 
Euromicro Workshop on Parallel and Distributed Processing, 
Madeira, Portugal, 1999, pp 138-145. 

[5] Carzaniga, A., Rosenblum, D.S., Wolf, A.L. Design and 
Evaluation of a Wide-Area Event Notification Service. ACM 
Trans. Computer Systems, 19(3):332-383, August 2001.  

[6] CATCH 2004. See http://www.catch2004.org. 

[7] Han R., Perret V., Naghshineh M., WebSplitter: A Unified 
XML Framework for Multi-Device Collaborative Web 
Browsing. ACM CSCW’2000 Conference Proceedings, 
Philadelphia, Dec. 2000 

[8] Jacobs, S., Gebhardt, M., Kethers, S., Rzasa, W. Filling 
HTML Forms Simultaneously: CoWeb - Architecture and 

Functionality. Proceedings of the Fifth International World 
Wide Web Conference, May 1996 

[9] Kumar, R., et al. User-Centric Appliance Aggregation. HP 
Labs Technical Report HPL-2002-277, October 2002. 

[10] Maes, S. A Single Authoring Programming Model: the 
Interaction Logic. Proceedings of the IEEE Symposium on 
Applications and the Internet, Nara City, January 2002.  

[11] Maes, S., Raman, T.V. Multi-modal Interaction in the Age of 
Information Appliances. Proceedings of IEEE ICME 2000, 
New York, July 2000. 

[12] Mogul, J. Clarifying the Fundamentals of HTTP. 
WWW2002, Honolulu, May 2002. 

[13] Mullender, S. (ed). Distributed Systems. ACM Press, New 
York, 343-346. 

[14] Nitta, T., et al. XISL: An attempt to Separate Multimodal 
Interactions from XML Contents. Eurospeech 2001, 1197-
1200, Aalborg, September 2001. 

[15] Roach, A. Session Initiation Protocol (SIP)-Specific Event 
Notification. RFC 3265, IETF, June 2002. 

[16] SALT Forum. Speech Application Language Tags (SALT). 
See http://www.saltforum.org/spec.asp. 

[17] Song, H., Chu, H., Kurakake, S. Browser Session 
Preservation and Migration. WWW2002, Honolulu, May 
2002. 

[18] World Wide Web Consortium. Composite 
Capability/Preference Profiles (CC/PP): Structure and 
Vocabularies. See http://www.w3.org/TR/CCPP-struct-
vocab, March 2001. W3C Working Draft. 

[19] World Wide Web Consortium. Multimodal Interaction 
Activity. See http://www.w3.org/2002/mmi. 

[20] World Wide Web Consortium. Voice Extensible Markup 
Language (VoiceXML) Version 2.0. See 
http://www.w3.org/TR/voicexml20, April 2002. W3C 
Working Draft. 

[21] World Wide Web Consortium. XForms, Version 1.0. See 
http://www.w3.org/TR/xforms, August 2002. W3C Working 
Draft. 

[22] World Wide Web Consortium. XHTML 1.0 The Extensible 
HyperText Markup Language (Second Edition). See 
http://www.w3.org/TR/xhtml1, January 2000. W3C 
Recommendation. 

[23] World Wide Web Consortium. XML Events, An Events 
Syntax for XML. See http://www.w3.org/TR/xml-events, 
August 2002. W3C Working Draft. 

[24] World Wide Web Consortium. XML Linking Language 
(XLink) Version 1.0. See http://www.w3.org/TR/xlink/, June 
2001. W3C Recommendation. 

[25] Laux, A., Martin, L. XUpdate Working Draft. See 
http://www.xmldb.org/xupdate/xupdate-wd.html, September 
2000.

 

http://www.cs.colorado.edu/~carzanig/
http://www.ics.uci.edu/~dsr/

	INTRODUCTION
	OBJECTIVES AND ASSUMPTIONS
	Navigation Coordination
	Interaction Coordination
	Assumptions

	NAVIGATION COORDINATION
	Consolidating Proxy
	Aggregation Profile
	Response Demultiplexing
	Markup for navigation coordination
	Inter-client locking

	INTERACTION COORDINATION
	Form Data Synchronization
	Data locking

	PROTOTYPE FRAMEWORK
	RELATED WORK
	SUMMARY AND FURTHER WORK
	ACKNOWLEDGMENTS
	REFERENCES



