

Replication: Optimistic Approaches

Yasushi Saito, Marc Shapiro1
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-33
February 8th , 2002*

E-mail: ysaito@hpl.hp.com, Marc.Shapiro@acm.org

optimistic,
replication,
survey

Replication is a key enabling technology in distributed
data sharing systems for improving both availability and
performance. This paper surveys optimistic replication
algorithms, which allow replica contents to diverge in the
short term, in order to support concurrent work and to
tolerate failures in low-quality communication links. The
importance of such techniques is increasing as
collaboration through wide-area and mobile networks is
becoming more popular.

Optimistic replication algorithms employ techniques vastly
different from those for traditional pessimistic algorithms.
Whereas a pessimistic algorithm relies on synchronous
replica coordination, an optimistic algorithm propagates
its updates in the background, discovers conflicts after
they happen, and reaches an agreement on the final object
contents incrementally. This paper identifies the key
challenges that optimistic replication systems face −
achieving uniformity, guaranteeing quality of replica
contents, and scaling − and presents a comprehensive
survey of techniques developed for addressing these
challenges.

* Internal Accession Date Only Approved for External Publication

This work is supported in part by DARPA Grant F30602-97-2-0226 and National Science Foundation
Grant # EIA-9870740.
1 Microsoft Research Ltd., Cambridge (UK)
 Copyright Hewlett-Packard Company 2002

2 · Saito and Shapiro

Contents

1 Introduction 4
1.1 Pessimistic Replication Algorithms and their Limitations4
1.2 Optimistic Replication: Overview and Benefits .6
1.3 Optimistic Replication: Goals and Challenges .7

1.3.1 Uniformity . 7
1.3.2 Quality-of-contents guarantee .8
1.3.3 Scalability .9

1.4 Road Map .9

2 Applications of Optimistic Replication 10
2.1 Internet Services .10

2.1.1 DNS: Wide-area Caching and Mirroring .10
2.1.2 Usenet: Wide-area Information Exchange11

2.2 Mobile Data Systems .11
2.3 CVS: Computer-supported Collaboration .12
2.4 Summary .12

3 Basic Definitions 12
3.1 Objects .12
3.2 Consistency and Conflicts .13
3.3 A Taxonomy of Conflict Handling Techniques .14

4 Single-Master Systems 14

5 Multi-Master State-Transfer Systems 15
5.1 Update Propagation and Conflict Resolution using Thomas’s Write Rule15
5.2 Detecting and Resolving Conflicts in State-transfer Systems16

5.2.1 Two-Timestamp Algorithm .16
5.2.2 Version Vectors .16
5.2.3 Resolving Conflicts in State-transfer Systems17

5.3 Supporting Large Objects .17
5.4 Bounding Space Overheads .18

6 Multi-master operation transfer systems 18
6.1 Constructing a log .19
6.2 Update Propagation using Timestamp Vectors .19

7 Scheduling and Conflict Resolution in Operation-Transfer Systems 20
7.1 Syntactic Operation Scheduling .21
7.2 Semantic Operation Scheduling .21

7.2.1 Exploiting commutativity .21
7.2.2 Canonical Operation Ordering .22
7.2.3 Semantic Ordering in IceCube .22

7.3 Operational transformation .23
7.4 Resolving Conflicting Operations .23
7.5 Committing Operations .23

7.5.1 Ack Vectors .24
7.5.2 Primary Commit Protocol .24
7.5.3 Quorum Commit Protocol .24

Replication: Optimistic Approaches · 3

8 Ensuring Quality of Contents 24
8.1 Preserving Causal Relationship among Accesses .25

8.1.1 Explicit Causal Dependencies .25
8.1.2 Session Guarantees .25

8.2 Bounding Inconsistency .26
8.3 Probabilistic Techniques for Reducing Inconsistency27

9 Scaling Optimistic Replication Systems 27
9.1 Estimating Conflict Rates .27
9.2 Scaling by Controlling Communication Topology27
9.3 Push-Transfer Techniques .28

9.3.1 Blind Flooding .29
9.3.2 Link-state Monitoring Techniques .29
9.3.3 Timestamp Matrices: Estimating the State of Remote Sites29

9.4 Combining Multiple Protocols .30
9.5 Adding and Removing Masters .30

10 Conclusions 31
10.1 Comparing Optimistic Replication Strategies .31
10.2 Summary of Algorithms .31
10.3 Summary of Optimistically Replicated Systems .31
10.4 Hints for Optimistic Replication System Design .31

Appendix 34

A The order of events in a distributed system 34
A.1 The Happens-Before Relationship Among Updates34
A.2 Scalar Clocks .34

A.2.1 Physical Clocks .34
A.2.2 Logical Clocks .34
A.2.3 Counters .34
A.2.4 Limitations of Scalar Clocks .35

A.3 Timestamp Vectors .35

4 · Saito and Shapiro

1. INTRODUCTION

Replication maintainsreplicas(copies) of critical data on multiple computers and allows access to
any one of them. It is the critical enabling technology of distributed services, improving both their
performance and availability. Availability is improved by allowing access to the data, even when
some of the replicas or network links are unavailable. Performance is improved in two ways. First,
users can access nearby replicas and avoid expensive remote network access and reduce latency. Sec-
ond, overall service throughput improves by having many sites serve data simultaneously, especially
when data accesses are mostly reads. Replication has traditionally been used in local-area network-
ing environments to ensure the availability of mission-critical services, especially database systems
and file systems. The evolution of the Internet and mobile computing technologies is changing the
picture. Wide-area distributed services are now a practical necessity, as demonstrated by the popu-
larity of services such as DNS, Usenet, CVS, or Lotus Notes. Optimistic replication systems achieve
high availability in such environments, where where latency and availability are orders of magnitude
worse than in a LAN. They let users read or write any replica at any time, making the service ex-
tremely available. In return, they sometimes let replicas carry and present inconsistent data, which is
repaired after the fact.

This paper surveys optimistic replication algorithms. We first identify the three key challenges
optimistic algorithms face — maintaining data consistency, guaranteeing the quality of contents, and
supporting large number of replicas. Next, we analyze previously developed systems and develop a
comprehensive taxonomy of algorithms.

The remainder of this section introduces the concept of optimistic replication. Section 1.1 re-
views traditional, or “pessimistic” replication algorithms and points out their limitations. Section 1.2
overviews optimistic replication systems at a high level and explains their advantages. Section 1.3
presents the challenges optimistic replication systems face, and Section 1.4 introduces a broad clas-
sification scheme we use to review algorithms for solving these challenges and lays the road map for
the rest of the paper.

For the reader’s convenience, we summarize recurring notions and terms in Tables 1 and 2. De-
tailed definitions and examples will be found in the sections referenced.

1.1 Pessimistic Replication Algorithms and their Limitations

Replication has been studied and deployed for a long time. Traditional replication algorithms aim
at supporting mission-critical applications and offersingle-copy serializability. They give users the
illusion of having a single, highly available and up-to-date copy of every object. This goal can be
achieved in several ways, but the basic concept remains the same: they prohibit access to a replica
unless it is provably up to date. We call them “pessimistic” algorithms for this reason. For example,
primary-copy algorithms, used widely in commercial database systems [Kronenberg et al. 1986;
Oracle 1996; Dietterich 1994; Bernstein and Newcomer 1997], elect one replica as the primary,
responsible for serializing requests for a particular object. The other sites act as secondaries that only
receive changes from the primary. Other systems, for instance Microsoft Cluster Service [Vogels
et al. 1998; Vogels et al. 1998] and DDS [Gribble et al. 2000], serialize updates using two-phase
commit, which globally locks all replicas and updates them in unison [Bernstein et al. 1987; Gray
and Reuter 1993]. Group multicast systems, e.g., Isis [Birman and Joseph 1987], Totem [Moser et al.
1996], and Transis [Amir 1995], serialize updates by delivering messages to all nodes in the same
order. By running a non-replicated database on each node and feeding clients’ requests through such
a service, one can in theory build a replicated database system [Patiño-Martinez et al. 2000]. Quorum
consensus algorithms make replicas vote every time an object is read or updated, and they require
that a plurality of the replicas agree on which content is the newest [Gifford 1979; Thomas 1979;
Herlihy 1986; Keleher 1999].

Pessimistic replication techniques perform well in local-area networking environments. Given the
continuing progress in Internet technologies, it is tempting to apply these techniques to wide-area

Replication: Optimistic Approaches · 5

Term Meaning Definition
M Number of master sites §1.4
N Number of sites §1.4
TV Timestamp vector §6.2,§A.3
VV Version Vector §5.2.2

Table 1. Notations used in the report.

Term Meaning Definition
Commit Agree on a common state or on a final scheduling order. §6, §7.5
Conflict Set of updates from different sites that together violate consistency. §3.2
Consistency Enforcement of correctness invariants between replicas. (Internal: within

an object;external: between objects.)
§3.2

Epidemic replication Propagation mode that allows any pair of sites to exchange any update. §1
Log Record of local, tentative operations. §6, §6.1
Logical clock Technique for expressing precedence among updates. §A.2.2
Master A replica allowed to issue updates.Single-master:a system supporting one

master per object;multi-master: a system supporting several masters per
object.

§1.4,§4, §5, §6

Multi-log Record of all known tentative updates. §6
Object Any piece of data being shared. §3.1
Operation Semantic description of an update to an object. §1.4,§6
Operation transfer Technique that propagates updates as operations. §1.4,§6
Operational transforma-
tion

Technique for transforming the parameters of an operation to make it com-
mute with others.

§7.3

Propagate Transfer an update to sites that have not seen it yet. §1
Pull Technique that makes each site poll others to find new updates. §5
Push Technique that makes sites with updates send them to others §5, §9.3
Physical clock A hardware clock tracking time on each computer. §A.2.1
Quality of Contents The closeness of replicas’ contents to each other and to the object’s “true”

value.
§8

Replica A copy of an object for local access. §3.1
Resolve Detect and repair conflicting updates. §3.3,§5.2.3,§7
Resolver An application-provided procedure for resolving conflicts. §5.2.3
Schedule The order of applying operations. §6, §7
State transfer Technique that propagates entire object contents as an update. §1.4,§5
Tentative State or operation applied to a replica while isolated from others. Tentative

state or operation might be undone or deactivated before commit.
§1.4,§2.2,§5.1

Timestamp Any counter that monotonically increases. §A.2.3
Thomas’s write rule “Last-writer wins” algorithm for state-transfer systems. §5.1
Timestamp vector Data structure for tracking the distributed order of operations. §A.3
Uniformity Property that replica contents eventually converge §1.3.1,§5.2.3,§7
Version vector A per-object timestamp vector, used to detect update conflicts. §A.3

Table 2. Glossary of recurring terms.

6 · Saito and Shapiro

data distribution. Good performance and availability cannot be expected, however, for three main
reasons:

(1) Wide-area networks continue to be slow and unreliable.The Internet’s end-to-end communi-
cation latency and availability have not improved in recent years [Chandra et al. 2001; Zhang
et al. 2000]. There are many mobile computing devices and devices behind firewalls with only
intermittent connectivity to the Internet.
Pessimistic replication algorithms work poorly in such environments. For example, a primary-
copy algorithm demands that a site’s failure be accurately detected (and distinguished from, say,
link failure or node thrashing) so that it can reliably re-elect another primary when one fails.
This is theoretically impossible [Fischer et al. 1985; Chandra and Toueg 1996; Chandra et al.
1996], and becomes probabilistically possible only by over-provisioning hardware end-to-end.

(2) Pessimistic algorithms face a trade-off regarding availability: while increasing the number of
replicas improves read availability, it decreases write availability, because these algorithms coor-
dinate replicas in a lock-step manner to update their contents.Thus, they have difficulty support-
ing services that deploy many replicas and experience frequent updates. Unfortunately, many
Internet and mobile services fall in this category; for instance Usenet [Spencer and Lawrence
1998; Lidl et al. 1994], and mobile file and database systems [Walker et al. 1983; Kistler and
Satyanarayanan 1992; Moore 1995; Ratner 1998].

(3) Some human activites inherently demand optimistic data sharing.For example, in cooperative
engineering or program development, users work concurrently and in relative isolation from one
another [Cederqvist et al. 2001; Ferreira et al. 2000]. It is better to allow concurrent updates
and repair occasional conflicts after they happen than locking data during editing. Optimistic
replication becomes all the more valuable when such working style is combined with network
latencies or time-zone differences.

1.2 Optimistic Replication: Overview and Benefits

Optimistic replication algorithms allow users to access any replica at any time, based on the opti-
mistic presumption that conflicting updates are rare, and that the contents are consistent enough with
those on other replicas. A key feature that separates optimistic replication algorithms from their pes-
simistic counterparts is the way updates to data are handled. Whereas pessimistic algorithms update
all replicas at once and possibly block “read” requests from users while an update is being applied,
optimistic algorithms let any replica be read or written directly most of the time, propagate updates
in the background, and reconcile update conflicts after they happen. This feature makes optimistic
algorithms more available and efficient using unreliable network media and inexpensive computers.
Optimistic replication is not a new idea (e.g., data backup is a crude form of optimistic replica-
tion), but its use has recently grown explosively due to the proliferation of the Internet and mobile
computing devices. Optimistic replication algorithms offer many advantages over their pessimistic
counterparts:

Availability: Optimistic algorithms work well over slow and unreliable network links or computers,
because they can propagate updates in the background without blocking accesses to any replicas.

Networking flexibility:Optimistic algorithms also work well over intermittent or incomplete net-
work links. For example, many algorithms allow updates to be relayed through intermediate
sites (calledepidemiccommunication). Such property is essential in mobile environments in
which devices can be synchronized only occasionally.

Scalability: Optimistic algorithms can support a larger number of replicas, because background
update propagation demands less coordination among sites.

Site autonomy:Optimistic algorithms often improve the autonomy of sites and users. For exam-
ple, some services, such as FTP and Usenet mirroring [Nakagawa 1996; Krasel 2000], allow a

Replication: Optimistic Approaches · 7

1

2

1

21

2

12

1

12

2

12

1+2

1+2

1+2

(a) Update issuance.
Updates may be issued at
multiple replicas
simultaneously.

(b) Update propagation:
Decide where to propagate
which update. Let all
replicas receive all updates.

(c) Scheduling:
Compute the ordering of
updates.

(d) Conflict resolution:
Transform conflicting
updates to produce results
intended by users.

(e) Commitment: Replicas
agree on the final ordering.
Their contents become
consistent.

Fig. 1. The steps performed by optimistic replication systems to achieve uniformity.

replica to be added without any administrative change on the existing sites. Optimistic replica-
tion is also used in multi-user collaboration, for instance in CVS [Cederqvist et al. 2001; Purdy
2000], PerDiS [Ferreira et al. 2000] and Lotus Notes [Kawell Jr. et al. 1988], to let users work
independently on the same project and later merge their changes.

Quick Feedback:Optimistic algorithms usually apply updates as soon as they arrive at a site. This
feature lets users see the effects of their updates immediately, resulting in a better user experi-
ence. Note, however, that these updates are onlytentativebecause the system might undo and
redo them when the final application order is determined [Terry et al. 1995; Kermarrec et al.
2001; Gray et al. 1996].

1.3 Optimistic Replication: Goals and Challenges

The aforementioned advantages come with a cost. Any distributed information system faces a trade-
off between availability and consistency [Fox and Brewer 1999; Yu and Vahdat 2001]. Pessimistic
replication algorithms keep replicas strictly consistent by sometimes prohibiting access to them,
whereas optimistic algorithms guarantee any-time access by sometimes letting their contents diverge
temporarily: where a pessimistic algorithm waits, an optimistic algorithm speculates.

The high-level goals of an optimistic replication system are to provide access to “sufficiently fresh”
data all the time and minimize the user confusion due to divergence. These goals are more precisely
stated in terms of the following sub-goals, ordered from the basic to more advanced.

1.3.1 Uniformity. Uniformity, also calledeventual consistency, demands that replica contents
eventually converge, regardless of when and where the updates are issued and in which order they
are received at each site. It is the most important goal for optimistic replication systems for two
reasons. First, without this guarantee, replica contents may remain corrupted forever. Second, an
eventually consistent service usually makes a best effort to disseminate updates quickly among sites,
and such a best effort is strong and practical enough for many applications. Uniformity is achieved
by the combination of four mechanisms,1 as depicted in Figure 1: reliable updatepropagation(b),

1 These mechanisms are often folded into one, as in Thomas’s write rule (Section 5.1).

8 · Saito and Shapiro

well-defined updatescheduling(c), conflict detection and resolution(d), and updatecommitment(e).

Update propagationinvolves a site accumulating changes while being isolated from others, de-
tecting when it can (or should) communicate with another, computing the set of changes to be
transferred to the other site to make the two replicas consistent with each other, and transferring
the changes quickly.
One desirable property here isepidemic propagation[Demers et al. 1987]. Any site communi-
cates with any other and transfers both its own updates and those received from other sites. This
protocol eventually broadcasts every update to all sites whatever the network topology, includ-
ing when connectivity is poor or incomplete, as in Usenet [Spencer and Lawrence 1998]. It is
robust when communication links change, as in ad-hoc networking environments (Section 2.2),
and when sites fail [Golding 1992; Petersen et al. 1997].

Schedulingdefines the update ordering policy. It is needed because different sites may receive the
same updates in a different order. A scheduling algorithm has two (somewhat contradictory)
goals:
—to apply updates quickly to reduce latency and increase concurrency, and
—to respect user intents and avoid user confusion, e.g., to maintain causal ordering, to avoid

conflicts, and not to lose updates.
For example, simply sorting updates totally by order of issuance (e.g., by physical clocks)
achieves the uniformity goal, but may increase conflict rate. Taking advantage of application
semantics such as commutativity between operation can extract more concurrency, thus improv-
ing user experience by minimizing the chance of update conflicts or of the undoing and redoing
of tentative updates, at the expense of algorithmic complexity.

Conflict detection and resolution:Conflicts happen, because users can issue updates without know-
ing of updates issued at other sites. Moreover, the users may not be available when the conflicts
are detected. Many systems offer no conflict detection support but still deliver fair results, be-
cause people often voluntarily arbitrate accesses to avoid conflicts. For instance, users rarely
write to a single file concurrently [Ousterhout et al. 1985; Baker et al. 1991; Vogels 1999; Wang
et al. 2001]. Automatic conflict detection, although optional, greatly improves the users’ expe-
rience. Consider a conference room reservation system for example [Terry et al. 1995]. If two
people reserve the same room for the same time slot, the system can easily maintain uniformity
by accepting one request and ignoring the other. However, users would be happier if they are
informed of the conflict and allowed to negotiate the schedule.
Once a conflict is found, it must beresolvedby replacing conflicting updates with ones that do
not. A common policy, known as “last writer wins”, simply chooses the update with the newest
timestamp and discards older updates. A more advanced policy tries to compute a semantic
union of the two. For example, in a replicated file system, when two users create files in the
same directory, the system can accept both updates if the file names differ. As well, when two
users write to the same file simultaneously, the system can create two files with different names,
containing the users’ versions [Walker et al. 1983; Kistler and Satyanarayanan 1992].
Conflict detection and resolution is usually the most complex part of an optimistic replication
system. For this reason, we define conflicts and overview the approaches for remedying them in
more detail in Section 3.

Commitmentdefines a mechanism for making sites agree on the scheduling and the results of con-
flict resolution. Committed updates can be applied to objects without fear of future undoing. All
data structures associated with the updates (e.g., operation log) can be deleted after committed.

1.3.2 Quality-of-contents guarantee.Uniformity, while crucial, guarantees nothing about the ac-
tual quality of transient replica contents — that the contents eventually converge means little to users.
A quality-of-contents (QoC) guarantee controls when and where updates propagate and replica con-
tents become accessible to users. This feature is not universally adopted, and many systems serve

Replication: Optimistic Approaches · 9

Optimistic Replication Algorithms(((((((
hhhhhhh

Single-master
(Section 4)

WWW/FTP mirroring
DNS, NIS

Multi-master����
PPPP

State transfer
(Section 5)

Locus, Clearinghouse, Ficus,
Roam, Active Directory

Operation transfer
(Sections 6 and 7)

Usenet, TSAE, Bayou, Ice-
Cube

� -
Simple Efficient

Versatile

Fig. 2. Taxonomy of optimistic replication algorithms. The summary of the systems mentioned here appears in Table 6.

arbitrarily stale data to users; because it restricts objects accesses, it can lower the system’s availabil-
ity [Yu and Vahdat 2001].

QoC control takes several forms. The most popular is atemporal guaranteethat ensures that a
replica’s contents are no older than a specified number of seconds from the newest contents, as in
WWW caching [Fielding et al. 1999].Causal consistency, preserving causal orderings among read
and write requests, is another form of QoC control. For example, consider a replicated password
database [Birrell et al. 1982; Terry et al. 1994]. A user may change her password on one site and
later fail to log in from another site using the new password, because the change has not reached the
latter site. Such a problem can be avoided by having acausal read guarantee, that is, by guaranteeing
that a read request honors past updates by the same user. We discuss the QoC issues in Section 8.

1.3.3 Scalability. An optimistic replication system must scale, being able to support large number
of replicas and large objects. Having a large number of replicas increases both propagation delay
and conflict rate [Gray et al. 1996]. The situation is improved by choosing an appropriate topology
linking replicas, and by pro-actively controlling the flow of updates. We discuss these strategies
in Section 9. Supporting large object is an issue only for certain type of systems (“state-transfer”
systems; see next section); we discuss their strategies in Section 5.3.

1.4 Road Map

The rest of this paper is structured as follows. Section 2 reviews several popular applications that
utilize optimistic replication techniques and discusses their diverse requirements. Section 3 defines
concepts that play crucial role in this paper: objects, conflicts, and consistency. In particular, we
define when updates are said to conflict and overview a range of options to tackle conflicts.

The rest of the paper surveys algorithms for addressing the three challenges mentioned in Sec-
tion 1.3. Sections 4 to 7 discuss uniformity. We present algorithms for achieving uniformity — e.g.,
update propagation, scheduling, and conflict resolution — along the taxonomy shown in Figure 2,
which classifies the systems by where and how updates are issued and propagated. As we will see,
these choices determine types of algorithms that can be used for uniformity maintenance and their
functional characteristics, e.g., scalability.

Number of Writers: Single- vs. Multi-Master: The first classification distinguishes where an up-
date can be issued and how it is propagated.Single-mastersystems designate one replica as
the master. All updates originate at the master and then are propagated to other replicas, or
slaves. These systems are simple but have limited availability. On the other hand, multi-master

10 · Saito and Shapiro

systems let updates be issued at multiple master replicas independently and exchange them in
the background. They are more available but significantly more complex. In particular, update
scheduling, conflict detection, and resolution are issues unique to multi-master systems. In the
paper, we noteN the total number of replicas in the system, andM the number of master replicas.

Unit and Mode of Update Transfer: State vs. Operation: The second classification is concerned
with whatis propagated as an update. Astate-transfersystem exchanges the new object contents
among sites. Anoperation-transfersystem makes each master site remember or reconstruct alog
of operationsto the object, and sites exchange operation descriptions. State transfer is simple,
because propagating updates only involves transferring the contents of the newest replica to older
replicas. Operations transfer is more complex, because sites must agree on the set and schedule
of updates. On the other hand, they can be more efficient especially when objects are large and
allow for more flexible conflict resolution. For example, in a bibliography database, two updates
that modify the authors of two different books can be merged semantically in operation-transfer
systems [Golding 1992; Terry et al. 1995], but it is difficult to do the same in a system that
transfers the entire database contents every time.
This classification applies to both single- and multi-master systems, but this paper focuses on its
implication on the latter type of systems.

Section 4 discusses single-master systems. Sections Section 5 discusses algorithms for multi-
master, state-transfer systems. Sections 6 and 7 are devoted to multi-master operation-transfer sys-
tems. In particular, Section 6 surveys algorithms from distributing updates, and Section 7 surveys
scheduling and conflict handling.

Section 8 discusses the techniques for guaranteeing the quality of replica contents. Three broad
approaches are reviewed: preserving causality of read requests, explicitly bounding of inconsisten-
cies, and probabilistic techniques for reducing replica staleness. Section 9 discusses issues scaling
optimistic replication as the number of replicas grows. Section 10 concludes this survey by summa-
rizing the algorithms and systems reviewed so far and presenting lessons learned. Appendix A is a
brief reminder of techniques for ordering events in a distributed system.

2. APPLICATIONS OF OPTIMISTIC REPLICATION

Optimistic replication is used in several major areas of applications, including wide-area data man-
agement, mobile information systems, and computer-based collaboration. To provide some back-
ground for the technical discussion that follows, we pick major services in these areas and overview
their functions and structures.

2.1 Internet Services

Optimistic replication is attractive when communication between sites is slow and unreliable, which
is particularly true for Internet applications. We review two classes of Internet applications, one for
broadcasting information, and another for more interactive information exchange.

2.1.1 DNS: Wide-area Caching and Mirroring.Many Internet data dissemination service utilize
optimistic replication to ensure availability and performance. Examples include WWW [Fielding
et al. 1999; Chankhunthod et al. 1996; Wessels and Claffy 1997; Gwertzman and Seltzer 1996;
Wolman et al. 1999], FTP [Nakagawa 1996], NNTP caching [Krasel 2000], and directory services,
such as Grapevine [Birrell et al. 1982], Clearinghouse [Demers et al. 1987], DNS [Mockapetris 1987;
Mockapetris and Dunlap 1988; Albitz and Liu 2001], and Active Directory [Microsoft 2000].

This section overviews DNS, a distributed, hierarchical name service. Names for a particular
DNS zone (i.e., sub-tree) are managed by a single master server that maintains the authoritative
database for that zone, and optional slave servers that copy the database from the master. The master
and slaves can both answer queries from remote clients and servers. To update the database, the

Replication: Optimistic Approaches · 11

administrator changes the database, increments its timestamp, and reloads it on the master. A slave
server periodically polls the master and downloads the database when its timestamp changes.2

DNS is an optimistically replicated service in that it allows the contents on the slaves to lag behind
the master’s and clients to observe the inconsistency. Optimistic replication is well suited to DNS and
similar services for three reasons. First, optimistic replication allows replicating data over unreliable
long-haul network links. Second, it avoids the expensive hardware components that would be needed
for reliable pessimistic replication. Finally, because DNS already allows stale data to be cached
in clients and intermediate servers, using a replication algorithm with loose consistency does not
degrade its end-to-end service quality perceptibly. DNS is a single-master (all writes for a zone
originate at that zone’s master), state-transfer (the master sends a copy of its registration information
to slaves) system.

2.1.2 Usenet: Wide-area Information Exchange.Usenet, a wide-area bulletin board system de-
ployed in 1979, is the oldest and still the most popular optimistically replicated service [Kantor and
Rapsey 1986; Lidl et al. 1994; Spencer and Lawrence 1998; Saito et al. 1998]. Usenet originally
ran over UUCP, a non-interactive store-and-forward network [Ravin et al. 1996]. Each server in
UUCP could communicate only with a fixed set of neighbors, and network links (usually dial-up
phone lines) could support only intermittent file copying between servers directly connected with
each other.

Usenet consists of thousands of servers forming a strongly connected (but not complete) directed
graph built through a series of human negotiations. Each server replicates all news articles,3 so that a
user can read any article from the nearest server. Usenet lets any user post articles to any server. New
articles posted on a server are periodically pushed to neighboring servers. A receiving server also
stores and forwards these articles periodically to its own neighbors. This way, each article “floods”
its way through inter-server links eventually to all servers in the world. Infinite propagation loops are
avoided by each server accepting only those articles missing from its disks. An article is deleted from
servers either by administratively mandated expiration (e.g., deleting articles more than two weeks
old) or by a user posting a cancellation message, which propagates among servers just like ordinary
messages but forces servers to delete a particular message.

Usenet’s periodic article propagation scheme creates a highly variable delay before an article
posted on one server reaches another, sometimes as long as a week. While this variability often
confuses users, many accept it to be a reasonable cost to pay for Usenet’s excellent availability.

Usenet is an example of a multi-master system (a write can originate at any replica), based on
operation transfer (a master sends article creation and cancellation operations to other sites), and
using an epidemic update propagation protocol (any site can send an update to any other site).

2.2 Mobile Data Systems

Optimistic replication is especially suited to environments where computers are frequently discon-
nected. Mobile storage systems use optimistic replication, as in Lotus Notes [Kawell Jr. et al. 1988],
Palm [Rhodes and McKeehan 1998], Coda [Kistler and Satyanarayanan 1992; Mummert et al. 1995],
Roam [Ratner 1998], and Bayou [Petersen et al. 1997; Terry et al. 1995].

Consider the Bayou system. It allows users to replicate a database on a mobile device (e.g., a
laptop computer), modify it while being disconnected, and later merge the changes with any other
device that the user manages to communicate with. Bayou remembers changes to a site as a series of
high-level operations, and uses timestamp vectors (Section 6.2) to minimize the number of operations
exchanged between sites. Updates are applied “tentatively” as they arrive, but the arrival order can

2 Recent DNS servers support proactive update notification from the master and incremental zone transfer. See Section 5.3.
3 In practice, articles are grouped into newsgroups, and a server usually stores only a subset of newsgroups to conserve
network bandwidth and storage space. Still, articles in a specific newsgroup are replicated on all servers that subscribe to the
newsgroup.

12 · Saito and Shapiro

be different from the final order on which all sites must agree. Thus, tentative updates are undone
and redone repeatedly as the site gradually learns about the final ordering. Conflict detection and
resolution are controlled by application-defined scripts that can exploit application semantics.

Algorithmically, Bayou is a multi-master system that uses epidemic propagation of high-level op-
erations. Two types of timestamps control tentative execution and the final schedule, and application-
specific scripts resolve conflicts semantically. Bayou is the most sophisticated and complex of the
systems mentioned in this section because of the challenging requirements of mobile environments,
i.e., slow and unreliable network links, and non-negligible chance of update conflicts.

2.3 CVS: Computer-supported Collaboration

CVS (Concurrent Versions System) keeps a history of changes to a group of files and allows users to
retrieve old versions of the files on demand [Cederqvist et al. 2001; Purdy 2000]. The communication
in CVS is centralized through a single server. The central server manages therepositorythat contains
the authoritative copy of the files along with all changes that happened to them in the past. To update
files, a user first creates a private copy (i.e., replica) of the files and edits it using standard tools such
as Emacs. Any number of users can have their own private copies and modify them concurrently.
After the work is done, the usercommitsher private copy into the repository. If no other user has
modified the same file, the commit succeeds immediately. Otherwise, CVS compares the versions
line by line. As long as the updates modify disjoint sets of lines, CVS merges them automatically
and lets the user commit the merged version. Otherwise, the user is informed of aconflict, which she
must resolve manually.

CVS is a significant departure from the previous generation of pessimistic version control tools,
such as RCS and SCCS [Bolinger and Bronson 1995], which lock the master repository when a user
is editing a file. CVS supports a more flexible style of collaboration, at the cost of occasional manual
update conflict resolutions. Most users readily accept this trade-off.

Although CVS centralizes communication at a single primary server, it is a multi-master operation-
transfer system with decentralized conflict detection and resolution.

2.4 Summary

This section overviewed popular systems that use optimistic replication. Optimistic replication has
wide-ranging and important applications and has been in use at least since the invention of Usenet.
Note the variety of mechanisms these systems use to maintain replica consistency. The following
sections of this paper dissect these systems.

3. BASIC DEFINITIONS

This section introduces important vocabulary for the rest of the survey. Section 3.1 defines objects,
Section 3.2 ‘defines conflicts, and Section 3.3 classifies techniques for dealing with conflicts.

3.1 Objects

Any replicated system has a concept of a minimal granule of updates, some means of identifying a
granule, and a mechanism for propagating an update to a particular granule. We call the minimal
granule anobjectin this paper. Objects may be very different between systems. For instance, in a file
synchronizer [Balasubramaniam and Pierce 1998], an object is typically either a directory or file. In a
groupware system [Palmer and Cormack 1998; Sun 2000], the same file would instead be considered
as a document containing many objects; e.g., sections, lines, and characters. Some systems operate
at several levels of granularity; e.g., CVS [Cederqvist et al. 2001] operates both at the level of files
and lines.

In some systems, object boundaries and identity are context-dependent. For instance, in a collabo-
rative text editor, an object might be a line in a file identified by a line number. As users concurrently
modify the file contents, the system needs to compensate for the fact that the same location may be

Replication: Optimistic Approaches · 13

numbered differently in different contexts. Such relative identity adds considerable complexity to
conflict resolution, as demonstrated in the discussion of operational transformations in Section 7.3.

A replica is a copy of an object stored atsite, i.e., a computer. A site may store replicas of multiple
objects. This paper, however, sometimes uses replica and site interchangeably, since most optimistic
replication algorithms manage each object independently.

3.2 Consistency and Conflicts

An optimistic replication system lets replicas diverge, i.e., assume different values. In single-master
systems, divergence is usually benign, resulting only in a delay of access. Most of this paper is
devoted to multi-master systems, where divergence may result in an error, orconflict. This sec-
tion defines more precisely what we mean by conflict in multi-master systems, and its relation to
concurrent access and the semantics of shared data.

There are several definitions of conflict suitable for different purposes, but all of them have two
things in common. First, a definition of conflict is inseparable from that of consistency, because
a conflict occurs when a set of operations violate consistency. Second, an operation that causally
“happened-before” another operation (Appendix A.1) never conflicts with each other. In other words,
if an operation may have observed the effects of another, systems assume that the former did take the
latter into account. From here, the definitions diverge, along two dimensions:

Internal vs. external consistency:Most systems support objects that are independent, discrete, and
uniquely identified. Their Independence means that a program that updates several objects can-
not assume that the updates are applied atomically (it is not an atomic transaction [Gray and
Reuter 1993]). The update to each object is propagated separately, possibly with different con-
flict resolution outcomes.
Most optimistic replication systems consider objects to be independent, i.e., operations on dis-
joint objects never conflict. They supportinternal consistency, between replicas of the same
object. A typical example is a replicated file system, where updates to different files do not
conflict. Other systems try to maintain invariants across objects, orexternalconsistency. For
instance, a replicated database system uses transactions to ensure that updates to several objects
are applied atomically.4

Syntactic vs. semantic detection:A system that flags conflicts based only on the occurrence of
concurrent updates detectssyntacticconflicts.5 For instance, a file system that flags any two
concurrent writes to the same file as conflicting adopts this policy.Semanticconflict detection
tries to distinguish conflicts from benign concurrent updates using application semantics. For
instance, a file system with semantic conflict detection may allow concurrent updates to a di-
rectory when they modify different files; creating file”X” does not conflict semantically with
deleting file”Y”.

All four possible combinations make sense. Internal-syntactic systems are probably the most
prevalent, being very simple to implement. Since internal consistency does not consider relation-
ships between different objects, users may observe surprising results. Consider for instance a per-
sistent hash table where one file contains the table and another the overflow buckets. An insert
operation updates both files; concurrent inserts may be resolved differently at the two files, resulting
in an incorrect hash table. Nonetheless, support for external consistency is rarely seen in optimistic
replication systems, because it necessitates extra mechanisms to maintain or detect inter-object con-
straints. Some are examined briefly in Section 8. This paper considers internal consistency unless
explicitly mentioned otherwise.

4 One can emulate multi-object updates by enclosing several small objects into a larger object (Section 5.3). Still, such a
system cannot ensure true serializability because of the possibility of concurrent updates. This also restricts object placement,
in that a site that replicates any small object must replicate the entire enclosing object.
5 Most optimistic replication systems ignore reads.

"X"
"Y"

14 · Saito and Shapiro

Conflicts
((((((((((((

hhhhhhhhhhhh
Avoid
���

�
�

�

PPPPP
@

@
Prohibit Bound

inconsis-
tency
§8.2

Quick
propaga-

tion
§9

Divide
objects
§5.3

Detect
"

"
"

HHHH
Syntactic

���������

�
�

�
��

Two
times-
tamps
§5.2.1

Version
vectors
§5.2.2

Semantic
���

���

Q
Q

Q
Q

Commuting
opera-
tions
§7.2.1

Canonical
ordering
§7.2.2

Operational
transfor-
mation
§7.3

Repair
PPPPPP

Automatic Manual
HHH

HHH
Overwrite

§5.1
Semantic
merging
§5.2.3

Fig. 3. Taxonomy of conflict handling techniques.

3.3 A Taxonomy of Conflict Handling Techniques

Figure 3 presents a taxonomy of approaches for dealing with conflicts. We distinguish three basic
steps: avoid, detect, and repair conflicts.

Conflict avoidance is the best measure, although not always possible in optimistic environments.
Pessimistic algorithms (which are out of the scope of this survey) and single-master systems (Sec-
tion 4) avoid conflicts altogether by serializing updates before propagating. Even when prohibition
is impossible, a system can propagate updates quickly to keep replicas from diverging too far (Sec-
tion 9). Alternatively, dividing objects into small fragments can reduce false-positive conflicts; i.e.,
updates to different parts of the same object that are not actual conflicts (Section 5.3). Finally, some
systems estimate the amount of inconsistency and signal the user when it exceeds a threshold (Sec-
tion 8.2).

If conflicts are unavoidable, they should be detected and repaired. Syntactic conflicts can be de-
tected using automated mechanisms, such as two-timestamps (Section 5.2.1) and version vectors
(Section 5.2.2). Semantic mechanisms can filter out syntactic conflicts that are not conflicting ac-
cording to object semantics (Section 5.2.3). Examples include detecting commuting updates (Sec-
tion 7.2.1) and using favorable orderings (Section 7.2.2). Operational transformation modifies pa-
rameters of conflicting operations to let them execute in any order even when they are not naturally
commutative (Section 7.3).

Conflicting updates must be resolved. Resolution need not depend on detection; one can simply
invalidate all updates that can potentially conflict with others, e.g., with a “last writer wins” pol-
icy (Section 5.1). Advanced systems support application-specific automatic resolution procedures
(Section 5.2.3). In some cases, conflicts are not automatically resolvable, in which case the final
alternative is to ask the user or the administrator to resolve the conflict manually.

4. SINGLE-MASTER SYSTEMS

This section discusses the design issues for single-master systems. Single-master systems designate
one replica (per object) as themasterwhere all updates originate. Update propagation and scheduling
in single-master systems is often trivial as data flows only one way, from master to slaves. The
simplest design is state transfer (Section 1.4), as in DNS zone transfer [Albitz and Liu 2001], NIS
[Sun Microsystems 1998], and WWW/FTP mirroring [Nakagawa 1996]. Here, when the master
updates an object, it assigns it a new timestamp. The slave’s timestamp indicates the version it
currently holds. A slave polls the master periodically, and if its timestamp differs from the master’s,
then it obtains the new contents. Alternatively, the master can push updates to slaves every time the

Replication: Optimistic Approaches · 15

object is updated, as in DNS proactive pushing [Albitz and Liu 2001], or NIS [Sun Microsystems
1998]. Single-master operation-transfer is also seen in relational database systems [Oracle 1996] and
recent implementations of DNS [Albitz and Liu 2001].

Conflict detection and resolution are non-issues in single-master systems, because the master node
can immediately detect and delay (or abort) concurrent updates. This property allows single-master
systems to potentially scale better when they experience frequent write sharing (Section 9.1).

On the downside, the master becomes the single point of failure and a performance bottleneck.
Still, single-master replication is useful when the system’s engineering cost must be minimized, or
the service is mostly-read.

5. MULTI-MASTER STATE-TRANSFER SYSTEMS

We now commence the discussion of achieving uniformity in multi-master systems. This section
focuses on state transfer systems; discussion of operation transfer systems is deferred to Sections 6
and 7.

A state-transfer system involves the following elements at each site: the object contents, and
some information describing how up-to-date the replica is (e.g., a timestamp). Replica consistency
management is typically carried out in the following steps:

(1) A site decides to exchange updates with another site. Many systemspull updates; i.e., they rely
on periodic polling (e.g., FTP mirroring, DNS zone transfer) . Other systems, such as NIS,
pushupdates; i.e., they make a replica with a new update be responsible for sending it to other
replicas. The choice between pulling and pushing is orthogonal to uniformity, but it affects the
system’s scalability. We discuss the pushing mechanisms in more detail in Section 9.3.

(2) The two sites find out which objects’ contents differ (Section 5.1).
(3) For each modified object, the sites discover whether it has been modified concurrently. If so,

they resolve the conflicts (Section 5.2).
(4) The resolved state is propagated to the replicas.

We discuss Thomas’s write rule, a popular technique that serves both to detect differing replicas
and to resolve conflicts. We then introduce several algorithms for more refined conflict detection and
resolution. Finally, we discuss scaling issues and space overheads.

5.1 Update Propagation and Conflict Resolution using Thomas’s Write Rule

State-transfer systems need to agree only on which replica stores the newest contents, because trans-
ferring contents from the newest replica to others will bring all replicas up to date.Thomas’s write
rule is the most popular epidemic algorithm used for this purpose [Birrell et al. 1982; Mockapetris
and Dunlap 1988; Rabinovich et al. 1996; Gwertzman and Seltzer 1996]. Its name is derived from a
paper that introduced a voting-based pessimistic replication algorithm [Thomas 1979], but it is now
used widely in optimistic environments.

Thomas’s write rule is shown in Figure 4. Contents managed by Thomas’s write rule are always
tentative; an update can be overridden by a concurrent update by another user, and one cannot tell
when an update has been applied to all replicas.

With Thomas’s write rule, deleting an object requires special treatment. Simply deleting a replica
and its associated timestamp could cause anupdate/delete ambiguity. Suppose that sitea updates the
object contents (timestampTa), and siteb deletes the object (timestampTb) simultaneously. Later,
sitec receives the update fromb and deletes the replica and timestamp from disk. Sitec then contacts
sitea. The correct action forc is to create a replica whenTa > Tb, and ignore the update otherwise.
Sitec cannot decide so, however, because it no longer stores the timestamp.

Two solutions have been proposed to address the update/delete ambiguity. The first solution is
simply to demand an off-line, human intervention to delete objects, as in DNS [Albitz and Liu 2001]
and NIS [Sun Microsystems 1998]. The second solution keeps the timestamps (but not the contents)

16 · Saito and Shapiro

—— Global persistent data structures on each site ——
var data: Contents

ts: Timestamp
proc IssueUpdate(newData)

data← newData
ts← CurrentTime()

—— Receiver side: called periodically ——
proc ReceiveUpdate(src)

srcTs← Receivesrc ’s timestamp.
if ts < srcTs then

data← Receivesrc ’s data.
ts← srcTs

Fig. 4. Update propagation using Thomas’s write rule. Each object keeps timestampts that shows the last time it was mod-
ified along withdata, the actual replica contents. An update is issued locally byIssueUpdate. Each site callsReceiveUpdate
periodically and downloads a peer’s contents when its own timestamp is older than the peer’s.

of deleted objects on disk, as in Usenet [Spencer and Lawrence 1998], Active Directory [Microsoft
2000], and Clearinghouse [Demers et al. 1987]. Such timestamps are often called “death certificates”
or “tombstones”.

5.2 Detecting and Resolving Conflicts in State-transfer Systems

Thomas’s write rule implements a “Last writer wins” policy for conflict resolution; it ensures uni-
formity by making sites eventually converge to the newest value (assuming that communication is
complete and updates eventually cease to be generated). This rule, however, does not explicitly de-
tect conflicts, which makes it unattractive in interactive applications that cannot tolerate lost updates.
Two techniques have been developed to alleviate this situation: the two-timestamp algorithm and
version vectors.

5.2.1 Two-Timestamp Algorithm.The two-timestamp algorithm extends Thomas’s write rule to
detect syntactic conflicts [Balasubramaniam and Pierce 1998; Gray et al. 1996]. It is used in systems
such as Lotus Notes [Kawell Jr. et al. 1988] and Palm Pilot [Rhodes and McKeehan 1998]. Some
systems apply the same technique in the context of operation transfer [Terry et al. 1995; Golding
1992].

Here, a replicai keeps a timestampTi and aprevioustimestampPi . Ti is incremented every time
an object is updated. Sitesa andb communicate, compare their timestamps, and take the following
actions:

(1) If Ta = Tb andPa = Pb, then the replicas have not been modified.

(2) If Ta > Tb and Pa = Tb, then the object has been modified only on sitea. Site b copies the
contents from sitea and setsTb,Pb, andPa to Ta. Symmetrically, ifTb > Ta andPb = Ta, then the
contents are copied fromb to a.

(3) If none of the above holds, there is an update conflict.

The downside of this technique is inaccuracy. It may report false-positive conflicts with more than
two masters, as shown in Figure 5. Thus, this technique is feasible only in systems that employ few
master sites and experience conflicts infrequently.

5.2.2 Version Vectors.Version vectors (Appendix A.3) is another extension to Thomas’s write
rule that is more accurate than the previous algorithm. They were first used in the Locus distributed
operating system [Parker et al. 1983; Walker et al. 1983].

Here, instead of a single timestamp as in Thomas’s write rule, a replica at sitei carries anM-
element vector of timestampsVVi (the VVs for different objects are independent from one another).
VVi [i] shows the last time an update to the object was issued ati, andVVi [j] indicates the last update
to the object issued at sitej that sitei has received. The VV is exchanged, updated and compared

Replication: Optimistic Approaches · 17

Ta=Pa=0 Ta=2,Pa=0

Tb=Pb=0

(1) Initial state.
(2) A modified. (3) A and B

synchronize.
(4) A and C
synchronize. False-positive
conflict detected.

Tc=Pc=0

Ta=Pa=2

Tb=Pb=2

Fig. 5. An example of errorneous conflict detection using the two-timestamp algorithm.Tx andPx show the current and
previous timestamps at sitex, respectively. In step (4), sitesa andc synchonize, and the algorithm detects a conflict even
though sitec is strictly older thana.

according to the usual timestamp vector algorithm (Appendix A.3). Conflicts are detected between
two sitesa andb as follows:

(1) If VVa = VVb, then the replicas have not been modified.
(2) Otherwise, ifVVa dominatesVVb, then the object has been modified only ata. Siteb copies the

contents and VV froma. Symmetrically, ifVVb dominatesVVa, the contents and VV are copied
from b to a.

(3) Otherwise, there is a (syntactic) update conflict.

Unlike the two-timestamp algorithm, VVs are complete and accurate; a VV provably detects a
conflict if and only if a real syntactic conflict exists [Fidge 1988; Mattern 1989]. One downside is
that it is not easy to add or remove master replicas, because VVs encode the number of the master
sites in itself (see Section 9.5).

5.2.3 Resolving Conflicts in State-transfer Systems.Once a conflict has been detected syntacti-
cally using either of the aforementioned algorithms, it must be resolved. Many systems simply store
two versions of the object and ask the user to resolve them (e.g., Lotus [Kawell Jr. et al. 1988] and
Palm Pilot [Rhodes and McKeehan 1998]).

Sometimes, it is possible to automate resolution by exploiting the object semantics. Replicated
file systems such as Locus [Walker et al. 1983], Ficus, Roam [Reiher et al. 1994; Ratner 1998], and
Coda [Kumar and Satyanarayanan 1995] incorporate semantic detection and resolution viaresolver
programs for well-known file types. For instance, a syntactic conflict on a mail folder file can be
resolved by computing the union of the messages from the conflicting replicas. On the other hand, a
conflict on compiled files can be left unresolved, because they can be regenerated from their source.

Writing a useful automatic resolver is not a trivial task. First, semantic resolution in state-transfer
systems is limited, as the resolver can only access the states of the conflicting replicas. For instance,
the above mail resolver may cause a message deleted in one of the replicas to re-appear. Second,
the resolver must obey strict rules to ensure uniformity. It must be deterministic; rules for choosing
and running a resolver must be identical at every resolving site. A resolver may depend only on the
current state [Petersen et al. 1997] and not access time-varying or site-specific information such as
the current system clock or the site’s name. Resolvers must commute; i.e., given a set of conflicting
updates, resolution must produce the same result regardless of the order they arrive at a site. Finally,
resolvers that fail due to exceeding their limits on resource usage must fail deterministically: all sites
must place uniform bounds on the CPU, memory, and file resources allocated to a resolver, and must
consistently enforce these bounds during execution.

5.3 Supporting Large Objects

The primary scaling bottleneck in state-transfer systems is that the size of an update (and the propa-
gation overhead) increases with object size. This problem can be alleviated in several ways without

18 · Saito and Shapiro

losing the simplicity of state-transfer systems.
Some systems use a hybrid of state- and operation-transfer; for instance, DNS incremental zone

transfer [Albitz and Liu 2001], CVS [Cederqvist et al. 2001; Purdy 2000], and Porcupine [Saito and
Levy 2000]. Here, each site keeps a short history of past updates (“diff”s) to the object along with
past timestamps recorded when these updates were applied. When updating another replica whose
timestamp is recorded in the history, it sends only the diffs needed to bring it up to date. Otherwise
(i.e., if the replica is too old or the timestamp is not found in the history), it sends the entire object
contents. This technique is far simpler than operation transfer, because it uses a single timestamp to
serialize updates.

Another approach is to divide an object into smaller sub-objects.6 The key issue here is efficiently
discovering newly updated sub-objects, because simply polling each sub-object independently is too
costly. Some systems structure sub-objects into a tree (which happens naturally for a replicated file
system) and let each intermediate node record the timestamp of the newest update to its children
[Cox and Noble 2001]. They then apply Thomas’s write rule on that timestamp and walk down
the tree progressively to narrow down changes to the data. Other systems explicitly maintain the
log of updates to sub-objects and use a data structure similar to version vectors to detect the set of
sub-objects that are modified [Microsoft 2000; Rabinovich et al. 1996]. They resemble operation-
transfer systems, but differ in several essential aspects. First, the log size is naturally small and
bounded, because they only log the names of modified sub-objects, and there is only a finite number
of sub-objects. Second, they still use Thomas’s write rule to serialize individual sub-objects.

5.4 Bounding Space Overheads

Tombstones are the main source of space overhead in state-transfer systems (VV-based systems still
need to keep VVs as tombstones). While tombstones are small, they can fill the disk up when
objects are created and deleted frequently. In most systems, tombstones are erased unilaterally after
a fixed period, long enough for most of updates to complete propagation, but short enough to keep
the space overhead of tombstones low; e.g., one month [Spencer and Lawrence 1998; Kistler and
Satyanarayanan 1992; Microsoft 2000]. This technique is clearly unsafe (e.g., a site rebooting after
being down for two months may send spurious updates), but works well in practice.

Some systems run consensus algorithms to delete tombstones safely. Roam and Ficus use a two-
phase protocol to ensure that every site has received an update before purging the corresponding
tombstone [Guy et al. 1993; Ratner 1998]: Phase one informs a site that all sites have received the
update, and phase two ensures that all sites receive the “delete the tombstone” request. A similar
protocol is also used in Porcupine [Saito and Levy 2000].

6. MULTI-MASTER OPERATION TRANSFER SYSTEMS

We now turn to the study of multi-master operation-transfer systems. Operation-transfer systems are
substantially more complex than state-transfer systems, because replicas need to agree on the set and
order of operations just to achieve the uniformity goal. An operation-transfer system works basically
as follows:

(1) Replicas start in some common initial state.

(2) Each master replica maintains alog of locally submitted update operations. In addition, every
replica (be it a master or not) collects operations logs from all master replicas into what we call
amulti-log. Section 6.1 discusses logging algorithms in detail.

(3) A master accepts update operations from the local user, applies them locally, and adds them to
the log and the multi-log. A replica also receives operations from remote masters, applies them,
and adds them to the multi-log. Section 6.2 discusses update propagation in more detail.

6 This has the added advantage of providing external consistency between the sub-objects.

Replication: Optimistic Approaches · 19

(4) The correct update application order, called theschedule, is learned by replicas only gradually
and is often different from the update reception order. When a site adds a request to the multi-
log, it recomputes the schedule (to the best of its knowledge) and plays the schedule, possibly
undoing and reapplying operations already applied to the replica, to reach the next tentative state.
The beginning of Section 7 (up to Section 7.3 inclusive) discusses scheduling algorithms.

(5) Optionally, when operations are found to be conflicting, replicas resolve them. The beginning
of Section 7 discusses conflict handling.

(6) When all sites agree on the schedule for a set of operations, theycommit the state, remove
the records for these operations from the multi-log, and repeat the algorithm from the start.
Section 7.5 discusses commit algorithms.

6.1 Constructing a log

A log can be viewed as a program for bringing the shared objects from an initial state to a tentative
state. There are three choices when designing a logging algorithm:

—The layer of abstraction where logging takes place.
—Whether to clean redundant actions.
—Whether to record or to reconstruct user actions.

The first choice is the level of abstraction of the logged operations. At one end of a spectrum, a
log might contain only reads and writes to byte regions, which provide little semantic content. At the
other end, a log might record high-level user actions; this is both concise and expressive but complex
to reason about. Ramsey and Csirmaz [2001] suggest to log simple operations (simple to reason
about) grouped to represent high-level intents (expressive).

A log that contains no redundant actions is said to beclean; no shorter log achieves the same
tentative state from the same initial state. A clean log is not just more efficient [Blaustein and
Kaufman 1985; Berger et al. 1996; Dedieu and Pacitti 2001], but also easier to reason about [Ramsey
and Csirmaz 2001]. Consider a collaborative jigsaw puzzle as an example Kermarrec, Rowstron,
Shapiro, and Druschel [2001]. Suppose user A puts piece X in some position. Concurrently, user
B puts the same piece X in a different position, then changes his mind and removes it. If B’s log is
clean, it contains no moves concerning X, and the system can easily determine that the operations
are conflict-free.

The final choice is about whether to record operations as they are executed, or to reconstruct a
possible history by “diffing” (comparing) the initial and the current state. Recording can log oper-
ations at any abstraction level by intercepting appropriate user activities, but it must implement a
separate cleaning pass. In contrast, diffing can be implemented outside of the object editor, and its
log is naturally clean; but it involves intimate knowledge of the editor’s semantics.

6.2 Update Propagation using Timestamp Vectors

Operation-transfer systems must propagate all updates to all sites, even if not all sites are fully con-
nected at any one time (i.e., epidemic update propagation, defined in Section 1). A naı̈ve solution
exists for this problem: let each site periodically send its entire multi-log to the other sites. Given
enough time for sites to communicate at least indirectly, this algorithm eventually propagates all op-
erations to all sites. It has an obvious downside, that is, unbounded disk space and network bandwidth
consumption as it accumulates more updates.

In an operation-transfer system, the solution is to use timestamp vectors (Appendix A.3) [Golding
1992; Ladin et al. 1992; Adly 1995; Fekete et al. 1996; Petersen et al. 1997]. Sitei records an M-
element timestamp vectorTVi . TVi [i] keeps the number of operations issued ati, i.e., the size of its
log.7 TVi [j] represents the newest update issued at sitej received by sitei. The difference between

7 In TSAE (Time-Stamped Anti-Entropy protcool) [Golding 1992],TVi [i] keeps the last (physical-clock) time an update was

20 · Saito and Shapiro

—— Global persistent data structures on each site ——
constM = Number of master sites.
type Update = record

issuer: SiteID // The site that issued the update.
ts: Timestamp // The timestamp at the moment of issuance.
op: Operation // Actual update contents
end

var tv: array [0 .. M-1] of Timestamp // The site’s timestamp vector.
multiLog: Set〈Update〉 // The set of update the site has received.

proc IssueUpdate(val)
tv[myself]← tv[myself] + 1
u← new Update(issuer=myself, ts=tv[myself], op=val)
multiLog← multiLog ∪ { u }

—— Sender side: Send updates from this site to sitedest——
proc SendUpdates(dest)

destTV← Receivedest ’s timestamp vector.
upd← φ
for 0 ≤ i < M

if destTV[i] < tv[i] then
upd← upd ∪ { u ∈ multiLog |
u.issuer = i ∧ u.ts > destTV[i]}

Sendupd to dest.

—— Receiver side: Called via SendUpdates() ——
proc ReceiveUpdates(upd)

for u ∈ upd
Apply u to the site
tv[u.issuer]← max(tv[u.issuer], u.ts)

multiLog← multiLog ∪ upd

Fig. 6. Replica reconciliation using timestamp vectors. The receiver-side site first calls the sender’s “SendUpdate” procedure
and passes its timestamp vector. The sender-side site sends updates to the receiver, which processes them in “ReceiveUpdates”
procedure.

two TVs shows precisely the set of updates that need to be exchanged to make them identical.
Figure 6 shows the update propagation procedure using timestamp vectors. To propagate updates

from site i to site j, site i first receivesj ’s timestamp vector,TVj . Site i comparesTVi andTVj ,
element by element. If∃k,TVi [k] > TVj [k], site i extracts from its multi-log those updates issued at
site k, stored oni, and with timestamps larger thanTVj [k], and sends them to sitej. This process
ensures that sitei receives all updates stored on sitej and that sitei never receives any update that it
has already received. After swapping the roles and letting sitej receive updates from sitei, the two
sites will have received the same set of updates.

7. SCHEDULING AND CONFLICT RESOLUTION IN OPERATION-TRANSFER SYSTEMS

This section reviews algorithms for scheduling operations in an operation-transfer system and re-
solving conflicting operations to achieve uniformity. Scheduling is closely related to reliable group
communication that delivers network messages to sites in a well-defined order [Birman and Joseph
1987; Birman et al. 1991; Hadzilacos and Toueg 1994]. In fact, TSAE (Time-Stamped Anti-Entropy
protocol) [Golding 1992] is presented as a group communication service, although it is more eas-
ily understood as an optimistic replication service. Syntactic update ordering presented in this pa-
per roughly corresponds to total and causal broadcast, and semantic ordering corresponds to causal
broadcast with an application-specific policy to resolve concurrent updates. However, the mecha-
nisms for implementing such policies are very different, because optimistic replication systems work
in an asynchronous, epidemic way.

Starting from the same initial state and given the same set of operations, uniformity in operation-

locally issued. The update propagation process works identically otherwise.

Replication: Optimistic Approaches · 21

transfer systems is achieved when each replica computes a schedule that produces an identical final
state. More precisely, we require the following properties:

(1) There exists an equivalent prefix of the schedules at all sites, which we call thecommittedprefix.
(Schedule prefixes are equivalent when they contain the same operations, and they produce the
same state starting from a same initial state.)

(2) Every operation is eventually included in the committed prefix, with a status of eitheractivated
(executed) ordeactivated(not executed).

(3) Once included in the committed prefix, an operation is never removed, and never changes status.

To allow for conflict resolution, the above definition allows a schedule to deactivate one or more
operations, i.e., not execute them. Thus, if two operations conflict, one or the other is deactivated.
A more general definition would allow a set of conflicting operations to be transformed into a non-
conflicting set.

There are several possible approaches for generating an equivalent schedule. A sufficient con-
dition is that the schedules are identical (assuming deterministic operations).Syntacticscheduling
strategies (Section 7.1) use static rules to order updates totally and generate an identical schedule.
An identical schedule, however, is not a necessary condition.Semanticscheduling (Section 7.2) ex-
ploits operation semantics to order updates partially to reduce conflicts and yet generate equivalent
schedules. Operational transformation, described in Section 7.3, modifies operations themselves to
make schedules equivalent without reordering them. Section 7.4 discusses strategies for resolving
conflicting updates. Section 7.5 discusses update commitment (or stabilization), which is a mecha-
nism for letting replicas agree on a schedule and allowing updates to be permanently applied to the
replicas without fear of future undoing.

7.1 Syntactic Operation Scheduling

The minimal requirement for operation scheduling is that the schedule be compatible with the happens-
before partial order (Appendix A.1). Syntactic scheduling policies provide this minimal requirement
via static ordering rules.

Many systems record a scalar clock (i.e., physical clock or logical clock; see Appendix A.2)
for each operation and use that to order operations, as in Bayou [Petersen et al. 1997] and TSAE
[Golding 1992]. Since a scalar clock alone cannot detect conflicts, these systems must use a separate
mechanism to detect conflicts semantically.

One could imagine using version vectors (Section 5.2.2) for update ordering and conflict detection,
but they are not common in operation-transfer systems. The reason is that the multi-log usually
already capture the semantic relationships between the operations, and version vectors offer little
additional value.

7.2 Semantic Operation Scheduling

A different approach to operation scheduling is to view scheduling as an optimization problem for re-
ducing conflicts and achieving uniformity. Suchsemantic schedulingis more complex than syntactic
scheduling but may reduce conflicts and reordering of tentative operations.

7.2.1 Exploiting commutativity.The simplest semantic scheduling exploits commutativity be-
tween operations. Two operations known to commute a priori can be scheduled in either order with-
out impacting the final state [Pu and Leff 1991]. This property has long been exploited in database
systems, in which query optimizers often reorder commutative operations to generate a more efficient
schedule [Date 2000, Chapter 17]. Wuu and Bernstein [1984] exploit commutativity to maintain a
multi-master, replicated log data structure.8 In such a data structure, both insertion and deletion are

8 This log is an application-level data structure, unrelated to the operation log used for update propagation.

22 · Saito and Shapiro

commutative and idempotent (assuming that each new record is unique), and scheduling becomes
a non-issue. In GemStone [Almarode and Bretl 1998], an object type can inform the database en-
gine about commutativity between its methods (operations). The database detects possible syntactic
conflicts and ignores those that belong to operations declared commutative by the data type.

7.2.2 Canonical Operation Ordering.Canonical ordering is a technique for defining operation
ordering formally from application semantics. It was pioneered by Ramsey and Csirmaz [2001],
who formalized the semantics of optimistic replication and reconciliation in a file system. Here, logs
and scheduling are ordered using a formal algebra that precisely defines how operations interact. For
instance, if an operation deletes a directory, and another operation (in another log) deletes one of
its subdirectories, then the subdirectory must be deleted before the parent. When there is no natural
structural order, the canonical order is arbitrary. Two operations from different logs (semantically)
conflict either if they do not commute, or if the combination would “break” the file system structure.
This might happen, for instance, if one user modifies a file, and another deletes its parent directory.

Scheduling orders multi-logs so that replicas of the shared file system become “as close as possi-
ble.” The scheduler ignores duplicate updates. It deactivates (does not apply) conflicting operations
and those depending on previously deactivated operations, saving them for manual resolution.

The operations supported by Ramsey and Csirmaz [2001] are very few and primitive: create,
remove, edit.9 Nonetheless, they list an impressive 51 rules for their algebra. The applicability of
this technique in more complex environments is an open issue.

7.2.3 Semantic Ordering in IceCube.IceCube is an application-independent replication toolkit
that computes the optimal scheduling of a multi-log from semantic constraints on operations [Ker-
marrec et al. 2001; Preguiça and Shapiro 2001]. IceCube supports two types of constraints:

(1) A static constraintrelates two operations without a reference to the state of the modified objects.
Among them, alog constraintspecifies the relation between operations in a single log; i.e., it
expresses an intent of the user. For example, a log constraint may impose an execution order
of two operations (predecessor-successorconstraint), or it may specify an atomic unit of update
application (parcelconstraint), or it may specify a set of alternative operations from which the
scheduler can choose (alternativesconstraint).
An object constraintrelates operations that modify shared objects. Four types of object con-
straints are defined: overlapping (the two operations update the same object), commutative,
mutually exclusive, and best-order (one execution order is more favorable than the other).

(2) A dynamic constraintis an assertion on the schedule that must evaluate to true at execution
time. This can be either Bayou-style “dependency checks” (Section 7.4) or classical pre- and
post-conditions.

As an example, consider a travel-planning application that can run disconnected using IceCube.
The user might reserve a flight, pay for his ticket, and plan to hold a meeting on arrival. During
the same session, the user also sets an unrelated meeting. When the user reconnects, a conflict may
appear due to the flight being full, insufficient funds, or a conflicting meeting.

The user indicates his intents by grouping the three related operations in a parcel, indicating that
if any of them fails they should all be reconciled consistently. The unrelated meeting is not made
part of the same parcel. If different flights are equally desirable, they are indicated as alternatives.
The shared calendar implements its semantics by making incompatible meeting requests mutually
exclusive. According to bank account semantics, credits commute with each other, debits with one
another, and credits are best-ordered before debits. Finally, the bank sets a dynamic constraint that
the account used to pay for the ticket is not allowed to go negative.

9In particular, there is no “move”, because such an operation would modify two directories, the source and the destination;
instead a move is modeled as a create and a remove.

Replication: Optimistic Approaches · 23

The IceCube scheduler repeatedly selects and tries out a schedule that fits the static constraints. If
a dynamic constraint is not satisfied, IceCube aborts execution of the current schedule and proposes
another one. Using static heuristics that give preferential treatment to operations most likely to
succeed, according to the static constraints and to the recent history of dynamic constraint failures,
IceCube can schedule a few thousand operations in seconds [Preguiça and Shapiro 2001].

7.3 Operational transformation

Operational transformation (OT) aims to ensure uniformity even when schedules differ, operations
are non-commutative, and they cannot be reordered or rolled back [Sun and Ellis 1998]. The canon-
ical application of OT is a cooperative text editor where an operation specifies the character position
of a change [Cormack 1995; Vidot et al. 2000]. ormackSuppose that users edit a shared string“abc”.
User 1 executesinsert(“X”,1) yielding “Xabc”, and sends the update to Site 2. User 2 executes
delete(1) yielding “bc”, and sends the update to Site 1. The result at Site 2 is“Xbc” as expected, but
the result at Site 1 is an unexpected“abc”. OT modifies the parameters of the operation to preserve
its intention and make its effect identical on all sites, regardless of reception order. In this example,
OT detects that the insert and the delete are concurrent, and it modifies the delete operation at Site 1
to bedelete(2).

OT is complex and highly dependent on application semantics. While transforming a pair of
concurrent operations is relatively intuitive, things get much more complicated with three or more
concurrent threads [Sun and Ellis 1998]. It is possible to reason formally about this issue using
the calculus of Cormack [1995]. For example, Palmer and Cormack [1998] prove the correctness
of transformations for a shared spreadsheet example, supporting all the usual operations such as
updating cell values, adding or deleting rows or columns, and changing formulæ.

7.4 Resolving Conflicting Operations

Conflict resolution is, by nature, highly application-specific and difficult to generalize. This is espe-
cially true for operation-transfer systems that usually describe operations semantically. This section
takes Bayou as an example and overviews its attempt for separating application logic from reusable
conflict detection and scheduling algorithm [Terry et al. 1995].

Bayou schedules updates tentatively by order of issuance. It does not attempt to detect conflicts
syntactically. An operation in Bayou has three main components: a database query called thede-
pendency check, a database update, and a code fragment called themerge procedure. All three are
provided by the application running on top of Bayou. The dependency check is in charge of detecting
conflicts semantically. Typically, it tests if the current replica contents are in a state that would have
been acceptable to the user at the time she requested the update. For instance, if the update deb-
its from a bank account, the dependency check might verify that the balance is over a user-defined
threshold, even though the balance might have changed since the update was issued. If the depen-
dency check succeeds, Bayou runs the update. If it fails, the merge procedure runs instead. The
merge procedure can perform any fix-up necessary. For instance, if the user was trying to set up an
appointment, and the dependency check finds that the slot is not free any more, the merge procedure
might take a different slot.

Writing a merge procedure in Bayou is not easy. All the restrictions imposed on a state-based
resolver (Section 5.2.3) still apply here. Practical experience with Bayou has shown that writing
merge procedures for all but the simplest of cases is extremely difficult [Terry et al. 2000].

7.5 Committing Operations

This section examines the protocols for committing updates, i.e., for replicas to agree on an equiva-
lent schedule prefix, allowing them to be finalized. Commitment is used for three purposes. First, a
system’s scheduling policy may make non-deterministic choices, in which case the sites must agree
on the choice to be applied finally. Second, commitment can inform the user that a particular opera-

24 · Saito and Shapiro

tion is permanently applied on all replicas. Third, commitment acts as a space-bounding mechanism,
because committed operations can safely be removed from the multi-logs.

7.5.1 Ack Vectors.Acknowledgment vectors (ack vectors) is used in conjunction with timestamp
vectors (Section 6.2) to let each site learn about the progress of other sites [Golding 1992]. Sitei
stores the ack vectorAVi , anN-element array of timestamps.AVi [i] is defined to be min

j∈{1...M}
TVi [j],

i.e., sitei has received all updates with timestamps no newer thanAVi [i], regardless of their issuers.
Ack vectors are exchanged among sites and updated by taking pairwise maxima, just like TVs.
Thus,AVi [k] represents sitei’s conservative estimate of the newest update received by sitek. With
this definition, all updates with timestamps older than min

j∈{1...N}
AVi [j] are guaranteed to have been

received by all sites, and they can safely be ordered by their timestamps, committed, and deleted
from the multi-log. This algorithm requires loosely synchronized physical clocks (Appendix A.2.1)
to be used as timestamps. Otherwise, a site with a very slow timestamp could stall the progress of
ack vectors of all other sites.

This algorithm is inferior to the primary commit protocol, which we discuss next. First, it can
only be used for syntactic, timestamp-based scheduling. It is also prone to live-locking; a single
unresponsive site hampers the progress of ack vectors on all other sites, and this problem worsens as
the number of sites increases.

7.5.2 Primary Commit Protocol.Bayou implements a primary-commit protocol [Petersen et al.
1997]. In this protocol, all sites agree on a single primary site for a given object (a Bayou transaction
cannot access more than one object). The primary unilaterally and totally orders updates by assign-
ing a monotonically increasing commit sequence number (CSN) to each operation it receives. The
primary is free to choose any scheduling policy; Bayou uses syntactic, timestamp-based ordering.
The mappings between operations and their CSNs are propagated back to other sites by piggyback-
ing on ordinary updates. A non-primary site receiving the CSNs can commit operations in that order
and delete them from the multi-log.

Notice the difference between this protocol and single-master replication. In this protocol, all
sites are masters. They can issue, exchange, and tentatively apply updates even when the primary is
unreachable, because the primary is responsible only for CSN assignment.

7.5.3 Quorum Commit Protocol.The protocol proposed by Deno [Keleher 1999] is pessimistic
but also applicable to optimistic environments, because it makes progress even when not all sites are
available. Applying the state-machine approach to replication [Lamport 1978] at each step, it runs a
vote to commit an update among those outstanding. It assigns a weight to every〈site,update〉 pair,
with the total weight for a given update being 1.0. Every update circulates among sites epidemically.
When a site learns of an update, if it does not conflict locally with any other completed update, the
site votes in favor of that update. When a site observes that votes for an update reach a plurality, that
update commits locally, and it sends a commit notice to all other sites.

In the general case, the commitment protocol considers a single operation at a time serially. An
operation that conflicts with a committed operation is aborted unless they commute. Deno allows the
application to declare commutativity among operations. Simulation results suggest that this protocol
performs similarly to the classic primary-copy scheme [Keleher 1999].

8. ENSURING QUALITY OF CONTENTS

Optimistic replication algorithms cannot ensure single-copy replica consistency. Uniformity only
guarantees replica consistency in some hypothetical quiescent state, or up to some virtual point in
the past. With updates arriving possibly out of order, and no hard bound on transmission delay,
uniformity itself offers little clue to users regarding thetransientquality of replica contents.

Some replicated services do fine with such a weak guarantee. Usenet and the Porcupine mail

Replication: Optimistic Approaches · 25

server are such examples [Spencer and Lawrence 1998; Saito et al. 2000]; replica inconsistency is
no worse than potential problems caused by NNTP (for Usenet) and SMTP (for email), such as the
delay of delivery and duplicate messages. Many services, however, benefit from stronger forms of
quality-of-contents guarantees. This section reviews several approaches for controlling the quality
of transient replica contents. Section 8.1.2 discusses techniques for preserving causality for object
“read” requests as well as for updates. Section 8.2 discusses algorithms for explicitly bounding the
amount of inconsistency among replicas. Section 8.3 reviews probabilistic techniques for ensuring
the quality of replica contents.

These techniques are (still) not a panacea, in that they either prohibit object access when replicas
are found too old or demand synchronous inter-site communication. In other words, they cannot
escape the fundamental trade-off between availability and consistency [Fox and Brewer 1999; Yu
and Vahdat 2001].

8.1 Preserving Causal Relationship among Accesses

Ordering updates by causality is a basic feature implemented by any optimistic replication system.
While it ensures that the final object contents are what users expect, it cannot control the quality
of transient contents. For instance, the password database problem (Section 1.3.2) stems from the
lack of quality-of-contents guarantee. A solution to this problem is to let users specify which updates
should “happen before” a read request, and delay handling the read request until all preceding updates
are received. A review of such techniques follows.

8.1.1 Explicit Causal Dependencies.This approach simply lets the user explicitly specify, for
each read request, the set of updates that must be incorporated into the replica contents before the
read can proceed [Ladin et al. 1992]. This feature is easily implemented in either state- or operation-
transfer systems using version vectors. Here, a replica’s state is represented by a version vector. A
request’s dependency is represented as a VV as well, and request processing is delayed until the
dependency VV dominates the state VV.

8.1.2 Session Guarantees.A problem with the previous approach is that specifying dependency
is not a trivial task for users.Session guaranteesare an approach for automatically generating the
appropriate causal dependencies from a user-chosen combination of the following predefined guar-
antees [Terry et al. 1994; Goel et al. 1998]:

—“Read your writes” (RYW) guarantees that the contents read from a replica incorporate previous
writes by the same user. The stale password problem can be solved by enforcing RYW; the user
either waits until the new password arrives or receives a “stale replica” error, both of which are
less confusing than just reading the old password.

—“Monotonic reads” (MR) guarantees that two successive reads by the same user return increasingly
up-to-date contents. For example, in a replicated email service, a user may retrieve the digest of a
mailbox and later read one of the messages in the digest. MR guarantees that the user will not get
a “non-existent message” error (except, of course, when the user deletes a message in between the
two operations).

—“Writes follow reads” (WFR) guarantees that a write request is accepted only after writes observed
by previous read requests by the same user are incorporated in the replica.

—“Monotonic writes” (MW) property guarantees that a write request is accepted only after all write
requests made by the same user are incorporated in the replica. For example, consider a source
code management system. A library module is modified on one replica, and an application pro-
gram is modified on another in such a way that it depends on the new library module. MW
guarantees that the library is updated before the application.

26 · Saito and Shapiro

Property Session updated: Session checked:
RYW on write, expand write-set on read, ensure write-set⊆ writes applied by site.
MR on read, expand read-set on read, ensure read-set⊆ writes applied by site.

WFR on read, expand read-set on write, ensure read-set⊆ writes applied by site.
MW on write, expand write-set on write, ensure write-set⊆ writes applied by site.

Table 3. Implementation of session guarantees.

These properties are automatically guaranteed when the user accesses only a single site, and the
replication algorithm preserves the happens-before ordering among updates.10 In a roaming environ-
ment, they are implemented using asession. A session, carried by each user (e.g., in a PDA), records
two pieces of information: the set of writes issued by the user (write-set) and the set of writes the user
has observed through object-read requests (read-set). The implementations of session guarantees are
summarized in Table 3. For example, to ensure RYW, every update request by the user is appended
to her write-set. In addition, before answering a read request, a replica checks whether her write-set
is a subset of what has been applied by the replica. If so, the read succeeds; otherwise, the user
waits or receives a “stale replica” error. Similarly, to ensure MR, for each read request, the replica
ensures that the user’s read-set is a subset of those applied by the replica. After replying the request,
it requests adding the site’s updates to the user’s read-set.

8.2 Bounding Inconsistency

Some systems explicitly bound the amount of inconsistency among replicas. There is a large body of
work about relaxed two-phase locking algorithms for improving the performance of non-replicated
database systems [Kumar and Stonebraker 1988; Kumar and Stonebraker 1990; O’Neil 1986; Pu and
Leff 1991; Carter et al. 1998; Pu et al. 1995]. As such, they are inapplicable to mobile or wide-area-
distributed environments. Nonetheless, there are several systems that target optimistic replication
environments, which we review below.

Real-time guarantees, i.e., bounding propagation delay, are already popular in network services.
Systems such as WWW [Fielding et al. 1999], NFS [Stern et al. 2001], DNS [Albitz and Liu 2001],
and quasi-copies [Alonso et al. 1990] let an object be cached and remain stale for up to a certain
number of seconds. Most of them are single-master, pull-based systems, because they can enforce
the guarantee by simple periodic polling.

TACT [Yu and Vahdat 2000a; Yu and Vahdat 2000b; Yu and Vahdat 2001] proposes three types
of consistency guarantees: real-time, numerical, and order bounding. In TACT, real-time guarantees
have the same semantics as in WWW, but is implemented by on-demand pushing (Section 9.3).

Numerical bounding puts a constraint on the difference between replicas’ numerical value. It is
implemented by allocating each master replica a “quota” of updates that can be pooled before being
pushed to a specific remote replica. Suppose a user’s bank account is replicated at ten master replicas,
under the constraint that the balance read on any replica is within $50 of the actual balance. Then,
each master receives a quota of $5 (= 50/10) for the account. Whenever the balance change reaches
$5 on any master, it must push all updates to all other replicas before accepting any new updates.

Order bounding ensures that a replica’s current tentative value differs from the committed value
by no more thanX number of updates, whereX is the limit chosen by the replica. The nature of
this guarantee is different from, and perhaps weaker than, numerical guarantees, which ensures that
a replica’s tentative value differs no more thanX from the tentative value of any other replica. It is
implemented by the replica pulling updates from others when the discrepancy between the tentative
and committed values exceeds the limit.

10 In systems that support both tentative updates and epidemic replication (e.g., Bayou), this is not always the case.

Replication: Optimistic Approaches · 27

8.3 Probabilistic Techniques for Reducing Inconsistency

The techniques discussed in this section rely on the knowledge of the workloads to reduce the
replica’s average staleness probabilistically with minimum overhead.

Cho and Garcia-Molina [2000] study policies regarding the frequency and order of page re-
fetching for web proxies, based on a simplifying assumption that update intervals follow Poisson
distributions. They found that to minimize average page staleness, replicas should be re-fetched
in the same deterministic order every time and at a uniform interval, even when some pages were
updated more frequently than others.

Rowstron, Lawrence, and Bishop [2001] did a similar study using real workloads. They present a
tool that learns update patterns from a log of past updates using probabilistic modeling [Bishop 1995].
The tool selects an appropriate period, say daily or weekday/weekend. Each period is subdivided into
time-slots, and the tool creates a histogram representing the likelihood of update per slot. A mobile
news service is chosen as an example. Here, the application running on the mobile device connects
when needed to the main database to download recent updates. Assuming the user is willing to pay
for a fixed number of connections per day, the application uses the probabilistic models to select the
connection times that optimize freshness. A comparison of their adaptive strategy with connecting
at fixed periods shows an average freshness improvement of 14%.

9. SCALING OPTIMISTIC REPLICATION SYSTEMS

This section examines the issues in supporting a large number of replicas in optimistically replicated
environments. (Scaling to large objects was discussed previously in Section 5.3.) We explain the
challenges of supporting many replicas and review three lines of remedies: a structured communica-
tion topology, and proactive update pushing and efficient networking.

9.1 Estimating Conflict Rates

Supporting many replicas raises two issues: increased update conflicts and propagation delay. The
issue of update conflicts requires some explanation. Gray, Helland, O’Neil, and Shasha [1996] argue
that multi-master optimistic replication systems cannot support a large number of master replicas,
because they experienceO(M2) update conflicts, whereas single-master systems would experience
only O(M) update conflicts.11 Intuitively, concurrent updates are reconciled in multi-master systems,
whereas they are delayed or aborted in single-master systems using techniques such as two-phase
locking. Because abortion requires a cycle between the updates’ causal dependencies, the rate of
abortion is far lower than the rate of conflict (Prob(abortion) ≈ Prob(conflict)2). Gray et al. make
two important assumptions to derive their conclusion: data items are updated equiprobably by all
sites, and sites exchange updates with uniform-randomly chosen sites. These assumptions do not
hold universally. For example, write-sharing in file systems has been found to be extremely rare
[Ousterhout et al. 1985; Baker et al. 1991; Vogels 1999]; the more widely a file is shared, the less
likely it is to be written [Wang et al. 2001]. Thus, it is still unclear how severe this conflict problem
is in practice.

Both problems — update conflicts and propagation delay — can be alleviated by (1) structuring
the communication topology so that any update is propagated to all sites with a small number of
“hops”, (2) pushing updates pro-actively as soon as they are issued, or (3) using an efficient network
protocol to propagate updates quickly. We review these lines of techniques in the following sections.

9.2 Scaling by Controlling Communication Topology

The perceived rate of conflicts can be reduced by connecting replicas in specific ways. Some ex-
amples are shown in Figure 7. The conflict rate is minimized by connecting sites in a star shape,

11 We assume that in the single-master system, the master receives remote update requests fromM′ (non-master) replicas, and
thatM′ = M.

28 · Saito and Shapiro

��� 6WDU�

&96

����7ZR�WLHU

5'%��3DOP

&RUH�QRGHV

/HDI�QRGHV

����5LQJ�OHDIV

5RDP

����7UHH�VKRUWFXWV

8VHQHW��$FWLYH�'LUHFWRU\

Fig. 7. Examples of replica communication topologies.

because the central site can resolve conflicting updates before they are propagated to peripheral repli-
cas [Wang et al. 2001; Ratner 1998].12 The star topology also disseminates updates more quickly,
because any update reaches any site within two “hops.” CVS is a well-known example (Section 2.3).
Two-tier replicationis a generalized star topology [Gray et al. 1996; Kumar and Satyanarayanan
1993; Rhodes and McKeehan 1998]. Here, sites are split into mostly connected “core nodes” and
more weakly-connected “mobile nodes”. The core sites often use a pessimistic replication algorithm
to remain consistent with each other, but a leaf uses optimistic replication and communicates only
with the core. Note that both the star and two-tier topologies still need to solve all of the problems
of multi-master optimistic replication systems — e.g., reliable update propagation, scheduling, and
conflict resolution — but they scale better at the cost of sacrificing the flexibility of communication.
In contrast, a topology in which each site interacts with a randomly chosen peer (as Gray, Helland,
O’Neil, and Shasha [1996] assume) has the slowest propagation speed and the highest conflict rate.

These solutions are not universal. First, there is a trade-off among dissemination speed, load bal-
ance, and availability. The star topology puts an inordinate load on the central node, which may
in practice retard update propagation. Its central node also becomes the single point of failure. A
random topology, on the other hand, is highly available and the load is evenly balanced among sites.
Second, sites cannot always choose peers to talk to, especially in mobile ad-hoc networking environ-
ment, where communication topology is determined by how humans meet and connect devices.

Several other topologies are used in real-world systems. Many choose a tree topology [Chankhunthod
et al. 1996; Yin et al. 1999; Adly 1995; Johnson and Jeong 1996], which mixes the properties of both
the star and random topologies. Roam [Ratner 1998] connects core replicas in a ring and hangs other
replicas off them. Multi-master systems such as Usenet [Spencer and Lawrence 1998] and Active
Directory [Microsoft 2000] can push this idea further and connect sites in a ring or tree structure
supplemented by short-cut paths to improve availability and accelerate update propagation.

9.3 Push-Transfer Techniques

In the discussions so far, we have assumed that sites could somehow figure out when they should
start transferring updates and to whom. This is a non-issue in some applications. For example, some
services can rely on explicit manual synchronization (e.g., PDA), and some that manage few objects
can rely on periodic polling (e.g., Web mirroring). In many other environments, however, it is better
to pushupdates — i.e., to make a site with an active update responsible for delivering it to others
— to reduce the update propagation delay and eliminate the polling overhead. The challenge with
pushing is that it may send duplicate updates and increase the network bandwidth consumption and
update processing overhead. We start with the simplest pushing scheme, flooding, and then review
techniques for reducing its overhead in later sections.

12 Note the difference with a single-master system. A single master serializes all writes; a star-shaped multi-master system
resolves conflicts centrally.

Replication: Optimistic Approaches · 29

—— Global persistent data structures on each site ——
constM = Number of master sites.

N = Number of sites(N ≥M).
var multiLog: Set〈Update〉 // The set of updates the site has received.

tm: array [0 .. N-1][0 .. M-1] of Timestamp // The site’s timestamp matrix.

m—— Sender side: send updates to dest ——
proc SendUpdate(dest)

upd← φ
for 0 ≤ i < M

if tm[dest][i] < tm[myself][i] then
upd← upd ∪ { u ∈ multiLog | u.issuer = i and u.ts > tm[dest][i]}

Sendupd andtm to dest.
tm[dest]← PairWiseMax(tm[myself], tm[dest])

—— Receiver side: called via SendUpdate ——
proc ReceiveUpdate(upd, tmsrc)

for u ∈ upd
if tm[myself][u.issuer] < u.timestamp then

multiLog← multiLog ∪ { u }
Apply u to the site

for 0 ≤ i < N, 0 ≤ j < M
tm[i][j]← max(t[i][j], tmsrc[i][j])

Fig. 8. Site reconciliation using timestamp matrices.

9.3.1 Blind Flooding. Flooding is the simplest pushing scheme. Here, a site with a new update
blindly forwards the update to all sites that it has links to. The receiving site uses Thomas’s write
rule or timestamp vectors to filter out duplicates. This technique is used in Usenet [Lidl et al. 1994;
Spencer and Lawrence 1998], NIS [Sun Microsystems 1998], Porcupine [Saito and Levy 2000], and
many relational database systems [Oracle 1996].

While being simple, flooding has an obvious drawback: it sends duplicates when a site commu-
nicates with many other sites [Demers et al. 1987]. This problem can be alleviated by guessing
whether a remote site has an update before sending. Such information is ultimately unavailable in
multi-master systems, but several techniques are developed nonetheless, which we overview next.

9.3.2 Link-state Monitoring Techniques.Rumor mongering [Demers et al. 1987] and directional
gossiping [Lin and Marzullo 1999] are both probabilistic techniques for suppressing duplicate up-
dates. Rumor mongering starts as a flooding, but each site monitors the number of duplicate updates
it has received. It stops forwarding updates when the number of duplicates exceeds a limit. In di-
rectional gossiping, each site monitors the number of distinct “paths” updates have traversed. An
inter-site link not shared by many paths is likely to be more important, because it may be the sole
link that connects this site to another. Thus, the site sends updates more frequently to such links. For
links shared by many paths, the site pushes less frequently, with a hope that other sites will push the
same update via different paths.

Both techniques are probabilistic in that they sometimes fail to propagate updates to replicas. Thus,
for a reliable propagation, the system occasionally needs to resort to plain flooding to flush updates
that have been omitted at some sites. Simulation results, however, show that a reasonable parameter
setting can nearly eliminate duplicate updates while keeping the reliability of update propagation
very close to 100%.

9.3.3 Timestamp Matrices: Estimating the State of Remote Sites.Another technique for reducing
duplicate updates is to let each site estimate the progress of others and push only those updates
that are likely to be missing at a remote site.Timestamp matrices, used for multi-master operation
transfer, are one example of such techniques [Wuu and Bernstein 1984; Agrawal et al. 1997].

Site i stores a timestamp matrixTMi , anN×M matrix of timestamps.TMi [i] holdsi’s timestamp
vector. The other rows ofTMi hold sitei’s conservative estimate of the timestamp vectors of other
sites. Thus, ifTMi [k][j] = c, then sitei knows that sitek has received updates issued at sitej with

30 · Saito and Shapiro

timestamps at least up toc. The update propagation procedure, shown in Figure 8, is similar to the
one using timestamp vectors (Figure 6). The only difference is that when sending updates to sitej,
site i usesTMi [j] as an estimate of sitej ’s timestamp vector, rather than receiving the vector fromj.

9.4 Combining Multiple Protocols

Another class of techniques employs unreliable multicast protocols (e.g., MBONE, Digital fountain
[Byers et al. 1998], or the techniques described in Section 9.3.2) to propagate updates efficiently in
the common case and to back it up with a slower but reliable algorithm [Lidl et al. 1994; Demers
et al. 1987].

9.5 Adding and Removing Masters

A TV contains one entry per master. Thus, its space complexity increases linearly as the system
scales. It is more convenient to identify a master by some identifier such as its IP address, rather than
by a number between 1 andM; thus TVs are represented sparsely, as a map of site identifiers to rows.
Adding a new master is relatively painless.

Deleting a master that leaves the system permanently is more complex. When an entry for a master
Y is missing in another siteZ’s TV, Z must determine whether it is becauseY is added (whichZ still
hasn’t learned), or becauseY is deleted (andZ has forgotten about). Not distinguishing between
these cases would cause the system to fetch again updates that had already been applied. Thus, all
sites must remove the TV entry for a removed master consistently. Some protocols for doing this are
described in [Ratner 1998; Petersen et al. 1997; Adya and Liskov 1997].

Systems that support many replicas are likely to experience frequent replica addition and removal.
Many systems indeed require off-line intervention to add or remove sites (e.g., NIS [Sun Microsys-
tems 1998], and Usenet [Saito et al. 1998]), but such a design is feasible only when the site set is
mostly static.

Adding and removing sites are trivial in single-master or in pulling state-transfer systems. In fact,
this is why services such as Web and FTP mirroring [Nakagawa 1996; Krasel 2000] use pull, state-
transfer; they want to install a site, possibly in a different administrative domain without a hassle.

In systems that use a TV or TM, the previous sections assumed that the number of sites (or masters)
is precisely known, and that they are numbered consecutively. However, sites join the system and fail
dynamically; assigning a dense numbering is impractical. Actual implementations therefore use a
sparse representation mapping unique node identifiers (such as static IP addresses) to indices. Adding
a new node is easy: if a message is received that contains the identifier of a node not previously
known, it is simply added to the vector or matrix of interest, with an assumed previous timestamp
value of 0.

Node removal is a problem however. When an entry for a siteY is missing in another siteZ’s TV,
Z must determine whether it is becauseY is added (whichZ still hasn’t learned), or becauseY is
deleted (andZ has forgotten about it since). Not distinguishing between these cases would cause the
system to incorrectly assume a previous timestamp value of 0, and to fetch a second time updates
that had already been applied.

The solution used in Bayou is the following [Petersen et al. 1997]. Consider some siteX adding
a new siteY to the system.Y’s site identifier is a tuple containingX’s identifier andX’s timestamp
vector at the time of creation.13 The site creation event is logged and transmitted to other sites. When
some other siteZ receives a message containingY’s identifier, and does not currently have forY in
its TV, it can distinguish the two cases:

—If the timestamp embedded inY’s name is less thanTVZ[X], thenZ has not yet received notice of
the creation ofY. Z addsY to its TV, assuming a previous value of 0.

13 A site identifier can be arbitrarily long in Bayou.

Replication: Optimistic Approaches · 31

Single/State or Op. Multi/State Multi/Op.
Availability low: master is the

single point of fail-
ure.

high

Conflict resolution
flexibility N/A inflexible flexible: semantic

operation
scheduling.

Algorithmic com-
plexity very low low high: scheduling

and commitment.
Space overhead low: Tombstones high: multi-log
Network overhead high: O(|object|) low: O(|#updates|)

Table 4. Comparing estimated costs of optimistic replication strategies. (Single = single master systems; Multi = multi-
master systems; State: state-transfer systems; Op. = operation-transfer systems.)

—Otherwise,Z had previously received notice of the creation ofY, and the only reason it is not
currently in the TV is because siteY has been deleted.

10. CONCLUSIONS

This section concludes the paper by summarizing the algorithms and systems presented so far and
giving hints for designers and users of optimistic replication systems.

10.1 Comparing Optimistic Replication Strategies

Table 4 summarizes how different classes of optimistic replication systems introduced in Section 1.4
achieve the high level goals. This table confirms that there is no single winner; each strategy has
advantages and disadvantages. Single-master transfer is a good choice if the workload is read-
dominated or there is a single writer, because of its simplicity and conflict-freedom. Multi-master
state transfer is reasonably simple, and has a low space overhead (consisting of a single timestamp
or version vector per object). Its downside is that it cannot exploit operation semantics during con-
flict resolution, and that its overhead grows with object size. Thus, it is a good choice when objects
are naturally small, the conflict rate is low, and conflicts can be resolved by a simple rule such as
“last writer wins”. Multi-master operation transfer overcomes the shortcomings of the state-transfer
approach but pays the cost in terms of algorithmic complexity and space overhead (the multi-log).

10.2 Summary of Algorithms

Table 5 summarizes the algorithms used to solve the challenges of optimistic replication introduced
in Section 1.3. A cell is colored gray to mean that the combination is irrelevant or not an issue. For
example, scheduling and conflict management in single-master systems are solved by local concur-
rency control, and the space overhead of tombstones in state-transfer systems is far lower than that
of logs in operation-transfer systems.

10.3 Summary of Optimistically Replicated Systems

Table 6 summarizes the optimistic replication systems mentioned in this survey and the algorithms
they use.

10.4 Hints for Optimistic Replication System Design

We summarize some of the lessons learned from our own experience and in reviewing the literature.
Optimistic, asynchronous data processing does improve networking flexibility and scalability. As

such, it is hard to do without it, in data-sharing across slow and unreliable networks, in wide-area col-
laborative work, and in disconnected computing. However appealing, optimistic replication comes
at a cost. One is high algorithmic complexity for ensuring uniformity. Conflicts usually require

32 · Saito and Shapiro

Single/State or Op. Multi/State Multi/Op.
Update propagation Thomas’s write rule

(§5.1)
Thomas’s write rule, ver-
sion vector (§5.2.2)

Timestamp vector (§6.2)

Scheduling Syntactic or semantic
(§7)

Schedule commitment Local concurrency con-
trol

Thomas’s write rule, version vector Operational transforma-
tion (§7.3), ack vector
(§7.5.1), primary com-
mit (§7.5.2), voting
(§7.5.3)

Conflict detection Two timestamps, version
vector

Syntactic or semantic

Conflict resolution App. specific (§5.2.3) App. specific (§7.4)
QoC guarantee Temporal (§8.2) Temporal, session

(§8.1.2)
Temporal, session, nu-
merical, order

Many replicas Tree topology Tree topology,two-tier replication
Many objects Flooding (§9.3.1), rumor mongering, directed gossiping (§9.3.2) Flooding, rumor mon-

gering, directed gossip-
ing, timestamp matrix
(§9.3.3)

Large objects Object decomposition, state/op. hybrid N/A
Space reclamation Expiration Expiration, 2-phase

reclamation.
Expiration, commit.

Table 5. Summary of algorithms. (A cell is colored gray when the combination is irrelevant or not an issue.)

application-specific resolution, and the lost update problem is ultimately unavoidable. Hence some
recommendations:

(1) Keep it simple.Pessimistic replication, with many off-the-shelf solutions, is often a perfectly
valid answer when working in a fully connected, reliable networking environment. Otherwise,
try single-master replication: it is simple, conflict-free, and scales well in practice. Thomas’s
write rule works well for many applications.
Advanced techniques such as version vectors and operation transfer should be used only when
you need flexibility and semantically rich conflict resolution.

(2) Make objects independent to avoid false negatives.Most optimistic replication algorithms can
maintain consistency between replicas of an object, but not between objects.

(3) Quick propagation is the best way to avoid conflicts.While connected, propagate often and
keep replicas in close synchronization. This will minimize divergence when disconnection does
occur.

(4) Design objects to be conflict-free whenever possible.Some hints in this direction follow:

—Partition large objects into smaller ones to avoid false positives (Section 5.3).
—Design operations to be commutative (Section 7.2.1). For example, use monotonic data struc-

tures such as an append-only log, a monotonically increasing counter, or a union-only set.

(5) Use simple, structured topologiessuch as the star-shaped or two-tiered topologies. These are
easier to control and to scale than a purely peer-to-peer network.

Acknowledgements

We thank the following people for reading drafts of this paper and giving us valuable feedback:
Miguel Castro, Yek Chong, Christos Karamanolis, Anne-Marie Kerrmarec, Dejan Milojicic, Ant
Rowstron, Susan Spence, and John Wilkes.

Replication: Optimistic Approaches · 33

Update
propagation Scheduling Conflict

resolution Commitment
WWW/FTP mirroring [Nak-
agawa 1996] Single/State,

pulling
Single master

DNS [Mockapetris and Dun-
lap 1988; Albitz and Liu
2001], NIS [Sun Microsys-
tems 1998]

Single/State,
blind
push/pull

Single Master

Clearinghouse [Demers et al.
1987] Multi/State,

push
Thomas’s write rule expiration

Active Directory [Microsoft
2000] Multi/State,

pull
Thomas’s write rule expiration

Usenet [Spencer and
Lawrence 1998] Multi/Op,

blind pushing
Thomas’s write rule expiration

Bayou [Terry et al. 1995; Pe-
tersen et al. 1997] Multi/Op,

timestamp
vector

syntactic semantic primary commit

TSAE [Golding 1992] Multi/Op,
timestamp
vector

syntactic none (seman-
tic)

Ack vector

IceCube [Kermarrec et al.
2001; Preguiça and Shapiro
2001]

Multi/Op,
timestamp
vector

semantic semantic (Not documented)

TACT [Yu and Vahdat 2000a;
Yu and Vahdat 2001] Multi/op,

timestamp
vector

syntactic semantic primary commit

Ficus, Roam [Ratner 1998] Multi/State,
pull

version vector two-phase consensus.

Palm Pilot [Rhodes and Mc-
Keehan 1998] Multi/State,

pull
two timestamps expiration

Deno [Keleher 1999] Multi/State,
pull, times-
tamp vector

voting

Wuu&Bernstein [Wuu and
Bernstein 1984] Multi/Op,

timestamp
matrix

commuting operations N/A

CVS [Cederqvist et al. 2001] Multi/Op,
pull, star
topology

syntactic syntactic manual, primary
commit

Table 6. Summary of systems.

34 · Saito and Shapiro

APPENDIX

A. THE ORDER OF EVENTS IN A DISTRIBUTED SYSTEM

This appendix is a brief reminder of a few important distributed systems concepts and algorithms.

A.1 The Happens-Before Relationship Among Updates

Lamport’s “happens-before” relation and causality are central concepts in replica consistency man-
agement. UpdateU1 happens before(or precedes) another updateU2 when either:

—Both the updates originated at the same site, andU1 was issued beforeU2, or

—U1 originated at siteS1, U2 at a different siteS2, andU2 is issued afterS2 receivedU1 from S1, or

—There existsU3 such thatU1 happens before U3 andU3 happens before U2.

Two updates areconcurrentwhen neither happens-before the other. Since neither causally depends
on the other, they might conflict.

The happens-before relationship is used in optimistic replication mainly in two ways: update
scheduling and conflict detection. For the former, the system must choose a schedule compatible
with the happens-before relationship to make the final results intuitive to users. The latter requires a
little more; the system needs to detect not only happens-before relationship, but also its absence, i.e.,
concurrency. Below, we review two classes of techniques for expressing and/or detecting happens-
before relationship among updates: scalar clocks, which can express happens-before but cannot
detect its absence, and vector clocks, which can do both.

A.2 Scalar Clocks

A scalar clock is a single scalar value that records some form of “newness” of a replica or an update.

A.2.1 Physical Clocks.Physical clocks can capture the happens-before relationship between up-
dates from a single site; this is called the FIFO property [Birman 1993]. If properly synchronized,
they capture the same relationship globally. Physical clocks are ubiquitous and easy to synchronize.
With a negligible cost, modern algorithms can keep clock skew within a few microseconds in a LAN,
and a few milliseconds in a wide-area network [Mills 1994]; this is enough to capture most causality
relationships that happen in practice. Another benefit is that they can capture “hidden” causality. For
example, if a user contacts two different sites sequentially, the accesses are causally related according
to the user, but not according to the formal definition. Physical clocks can capture causality even in
such cases.

The downside of physical clocks is that they are inaccurate unless perfectly synchronized. Con-
sider an object with two replicasR1 andR2. SayR1 issues updateU . R2 receivesU and then issues
updateU ′ (thus,U “happened before”U ′). If R2’s physical clock lags far behindR1’s, U ′’s times-
tamp may be smaller thanU ’s, violating their causality relationship. Because clock synchronization
is merely a best-effort service in asynchronous networks [Chandra and Toueg 1996], the above situ-
ation cannot ultimately be avoided.

A.2.2 Logical Clocks.A logical clock (or Lamport clock) [Lamport 1978] is a counter maintained
on each node. It increments before an update is issued at the node. In addition, every network
message is tagged with the sender’s logical clock. Upon receiving the message, the receiver sets
its logical clock to be the larger of its current value and the value found in the message. With this
definition, if an updateU2 causally follows updateU1, thenU2’s logical clock (i.e., the clock value
of the node that issuedU2, at the moment of issuance) is guaranteed to be larger thanU1’s logical
clock. Thus, logical clocks are more accurate than physical clocks.

A.2.3 Counters.Some systems use an integer counter that increments just before a replica is
modified [Kawell Jr. et al. 1988]. It cannot capture causality of updates from different sites, but it
is useful when one wants updates from active sites to be considered “newer” than those from idle

Replication: Optimistic Approaches · 35

sites. Other systems concatenate two types of clocks to reap the benefits from both, e.g., physical
and logical clocks [Terry et al. 1995] or a counter and a physical clock [Microsoft 2000].

A.2.4 Limitations of Scalar Clocks.Scalar clocks have one limitation: they impose a total order-
ing on causality relationships, which are naturally a partial ordering. This problem exhibits itself in
two ways. First, these clocks cannotdetectconcurrent updates [Babaoglu 1993] — an update with a
larger clock value does not necessarily causally follow another with a smaller clock value. Second,
when used to express update causality, i.e., to order updates, they introduce artificial dependencies
(or false-positive causality). These problems are solved by timestamp vectors as described below.

A.3 Timestamp Vectors

A timestamp vector, also known as a vector clock, or a multipart timestamp, is a data structure
that succinctly captures the happens-before relationship in a distributed system [Parker et al. 1983;
Fidge 1988; Mattern 1989]. This paper describes several uses of timestamp vectors: for instance,
for ordering and optimizing update propagation in operation-transfer systems (Section 6.2), and for
conflict detection in a state-transfer system (Section 5.2.2). Update ordering uses a single vector,
maintained cooperatively at all sites. Conflict detection uses a vector per object, known as itsversion
vector.

A timestamp vectorTVi , kept on sitei, is anM-element array of timestamps that summarizes the
current state of the site. Any of the algorithms described in the previous section can be used as
timestamps.TVi [i] on sitei shows the last time an update was issued at sitei. Thus,TVi [i] is also
called sitei’s timestamp. IfTVi [j] = t, this means that sitei has received updates issued at sitej and
with timestamps up tot.

A partial order is defined on TVs.TV1 < TV2 (or TV2 “dominates”TV1) if and only if ∀k ∈
{1. . .M}, TV1[k] ≤ TV2[k] and ∃m∈ {1. . .M}, TV1[m] < TV2[m]. This occurs if and only if all
updates applied atTV1 “happened-before” those applied atTV2.

By attaching a site’s TV to each update issued by the site, timestamp vectors accurately keep track
of the happens-before relation or its absence between updates [Fidge 1988; Mattern 1989]. It has
been proved to be the smallest data structure that can accurately capture causality [Charron-Bost
1991]. Two useful generalizations of TVs are version vectors (a TV per object; see Section 5.2.2)
and timestamp matrices (anN-sized vector of TVs; see Section 9.3.3).

REFERENCES

ADLY, N. 1995. Management of Replicated Data in Large Scale Systems. Ph. D. thesis, Corpus Cristi College, U. of
Cambridge. ftp://ftp.cl.cam.ac.uk/opera/naathesis.ps.gz.

ADYA , A. AND L ISKOV, B. 1997. Lazy consistency using loosely synchronized clocks. In16th Symp. on Princ. of
Distr. Comp. (PODC)(Santa Barbara, CA, USA, Aug. 1997), pp. 73–82.

AGRAWAL , D., ABBADI , A. E., AND STEIKE, R. C. 1997. Epidemic algorithms in replicated databases. In16th
Symp. Princ. of Database Sys. (PODS)(Tucson, AZ, USA, May 1997), pp. 161–172.

ALBITZ , P.AND L IU , C. 2001. DNS and BIND(4th ed.). O’Reilly & Associates, Sebastopol, CA, USA. ISBN 0-596-
00158-4, http://www.oreilly.com/catalog/dns4/index.html.

ALMARODE, J. AND BRETL, R. 1998. Reduced-conflict objects.Journal of Object-Oriented Programming 10, 8
(Jan.), 40–44.

ALONSO, R., BARBARA , D., AND GARCIA-MOLINA , H. 1990. Data caching issues in an information retrieval
system.ACM Trans. on Database Sys. (TODS) 15, 3 (Sept.), 359–384.

AMIR , Y. 1995. Replication using group communication over a partitioned network. Ph. D. thesis, Hebrew University
of Jerusalem. http://www.cs.jhu.edu/˜yairamir/phd.ps.gz.

BABAOGLU , O. 1993. Distributed Systems, Chapter 4, pp. 55–96. Addison-Wesley.

BAKER, M., HARTMAN , J. H., KUPFER, M. D., SHIRRIFF, K., AND OUSTERHOUT, J. K. 1991. Measurements
of a distributed file system. In13rd Symp. on Op. Sys. Principles (SOSP)(Pacific Grove, CA, USA, Oct. 1991), pp.
198–212.

BALASUBRAMANIAM , S. AND PIERCE, B. C. 1998. What is a file synchronizer? InInt. Conf. on Mobile Comp. and
Netw. (MobiCom ’98)(Oct. 1998). ACM/IEEE. http://www.cis.upenn.edu/˜bcpierce/papers/snc-mobicom.ps.

ftp://ftp.cl.cam.ac.uk/opera/naa_thesis.ps.gz
http://portal.acm.org/toc.cfm?id=259380&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=259380&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=263661&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=263661&coll=portal&dl=ACM&type=proceeding
http://www.oreilly.com/catalog/dns4/index.html
http://www.cs.jhu.edu/~yairamir/phd.ps.gz
http://portal.acm.org/toc.cfm?id=121132&coll=portal&dl=ACM&type=proceeding
http://www.cis.upenn.edu/~bcpierce/papers/snc-mobicom.ps

36 · Saito and Shapiro

BERGER, M., SCHILL , A., AND V ÖLKSEN, G. 1996. Supporting autonomous work and reintegration in collaborative
systems. In W. CONEN AND G. NEUMANN Eds.,Int. W. on Coord. Techn. for Collaborative Apps.(Singapore, Dec.
1996), pp. 177–198. Springer. http://wwwrn.inf.tu-dresden.de/lsrn/Ps-Files/autonomous.ps.

BERNSTEIN, P. AND NEWCOMER, E. 1997. Principles of Transaction Processing. Morgan Kaufmann.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. 1987. Concurrency Control and Recovery in Database
Systems. Addison Wesley.

BIRMAN , K. 1993. The process group approach to reliable distributed computing.Commun. ACM 36, 12 (Dec.),
37–53.

BIRMAN , K. AND JOSEPH, T. 1987. Reliable communication in the presence of failures.ACM Trans. on Comp. Sys.
(TOCS) 5, 1 (Feb.), 272–314.

BIRMAN , K., SCHIPER, A., AND STEPHENSON, P. 1991. Lightweight causal and atomic group multicast.ACM
Trans. on Comp. Sys. (TOCS) 9, 3 (Aug.), 47–76.

BIRRELL, A. D., LEVIN , R., NEEDHAM, R. M., AND SCHROEDER, M. D. 1982. Grapevine: An exercise in dis-
tributed computing.Commun. ACM 25, 4 (Feb.), 260–274.

BISHOP, C. M. 1995. Neural Networks for Pattern Recognition. Oxford University Press.

BLAUSTEIN, B. T. AND KAUFMAN , C. W. 1985. Updating replicated data during communication failures. In11th
Int. Conf. on Very Large Data Bases (VLDB)(Stockholm, Sweden, Aug. 1985), pp. 49–58.

BOLINGER, D. AND BRONSON, T. 1995. Applying RCS and SCCS. O’Reilly & Associates, Sebastopol, CA, USA.

BYERS, J. W., LUBY, M., M ITZENMACHER, M., AND REGE, A. 1998. A digital fountain approach to reliable
distribution of bulk data. InACM SIGCOMM(Vancouver, BC, Canada, Aug. 1998), pp. 56–67. http://www.eecs-
.harvard.edu/˜michaelm/NEWWORK/postscripts/multicast-conf.ps.gz.

CARTER, J., RANGANATHAN , A., AND SUSARLA, S. 1998. Khazana: An infrastructure for building distributed
services. In18th Int. Conf. on Dist. Comp. Sys. (ICDCS)(Amsterdam, The Netherlands, May 1998), pp. 562–571.

CEDERQVIST, P., PESCH, R., ET AL . 2001. Version management with CVS. http://www.cvshome.org/docs/manual.

CHANDRA , B., DAHLIN , M., GAO, L., AND NAYATE , A. 2001. End-to-end WAN service availability. In3rd USENIX
Symp. on Internet Tech. and Sys. (USITS)(March 2001). http://www.cs.utexas.edu/users/dahlin/papers/failure.ps.

CHANDRA , T. D., HADZILACOS, V., AND TOUEG, S. 1996. The weakest failure detector for solving consensus.
Journal of the ACM 43, 4 (July), 685–722. http://www.cs.cornell.edu/home/sam/FDpapers/CHT96-JACM.ps.

CHANDRA , T. D. AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems.Journal of the
ACM 43, 2 (March), 225–267. http://www.cs.cornell.edu/home/sam/FDpapers/CT96-JACM.ps.

CHANKHUNTHOD , A., DANZIG , P. B., NEERDAELS, C., SCHWARTZ, M. F., AND WORRELL, K. J. 1996. A hier-
archical Internet object cache. InUSENIX Winter Tech. Conf.(Jan. 1996), pp. 153–164. ftp://ftp.cs.colorado.edu/pub-
/techreports/schwartz/HarvestCache.ps.Z.

CHARRON-BOST, B. 1991. Concerning the size of logical clocks in distributed systems.Information Processing Let-
ters 39, 1 (July), 11–16.

CHO, J. AND GARCIA-MOLINA , H. 2000. Synchronizing a database to improve freshness. InInt. Conf. on Manage-
ment of Data(Dallas, TX, USA, May 2000), pp. 117–128. http://www-db.stanford.edu/˜cho/papers/cho-synch.pdf.

CORMACK, G. V. 1995. A calculus for concurrent update (abstract). In14th Symp. on Princ. of Distr. Comp. (PODC)
(Ottawa, Canada, Aug. 1995), pp. 269.

COX, L. P. AND NOBLE, B. D. 2001. Fast reconciliations in fluid replication. InInt. Conf. on Dist. Comp. Sys.
(ICDCS)(April 2001). http://mobility.eecs.umich.edu/papers/icdcs01.pdf.

DATE, C. J. 2000. An Introduction to Database Systems(7th ed.). Addison-Wesley.

DEDIEU, O. AND PACITTI , E. 2001. Optimistic replication for collaborative applications on the Web. InInt. W. on
Info. Integration on the Web – Techno. and App. (WIIW)(Rio de Janeiro, Brazil, April 2001), pp. 179–183. http:/-
/www.cos.ufrj.br/wiiw/papers/24-OlivierDedieu(02).pdf.

DEMERS, A. J., GREENE, D. H., HAUSER, C., IRISH, W., AND LARSON, J. 1987. Epidemic algorithms for repli-
cated database maintenance. In6th Symp. on Princ. of Distr. Comp. (PODC)(Vancouver, BC, Canada, Aug. 1987),
pp. 1–12.

DIETTERICH, D. J. 1994. DEC data distributor: for data replication and data warehousing. InInt. Conf. on Manage-
ment of Data(Minneapolis, MN, USA, May 1994), pp. 468. ACM.

FEKETE, A., GUPTA, D., LUCHANGCO, V., LYNCH, N., AND SHVARTSMAN , A. 1996. Eventually serializable data
services. In15th Symp. on Princ. of Distr. Comp. (PODC)(Philadelphia, PA, USA, May 1996), pp. 300–309.

FERREIRA, P., SHAPIRO, M., BLONDEL, X., FAMBON , O., GARCIA , J., KLOOSTERMAN, S., RICHER, N., ROBERTS,
M., SANDAKLY , F., COULOURIS, G., DOLLIMORE, J., GUEDES, P., HAGIMONT, D., AND KRAKOWIAK , S.
2000. PerDiS: design, implementation, and use of a PERsistent DIstributed Store. In S. KRAKOWIAK AND S. K.
SHRIVASTAVA Eds.,Recent Advances in Distributed Systems, Volume 1752 ofLecture Notes in Computer Science,
Chapter 18, pp. 427–452. Springer-Verlag. http://www-sor.inria.fr/publi/PDIUPDSlncs1752.html.

http://wwwrn.inf.tu-dresden.de/lsrn/Ps-Files/autonomous.ps
http://portal.acm.org/toc.cfm?id=285237&coll=portal&dl=ACM&type=proceeding
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/multicast-conf.ps.gz
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/multicast-conf.ps.gz
http://www.cvshome.org/docs/manual
http://www.cs.utexas.edu/users/dahlin/papers/failure.ps
http://www.cs.cornell.edu/home/sam/FDpapers/CHT96-JACM.ps
http://www.cs.cornell.edu/home/sam/FDpapers/CT96-JACM.ps
ftp://ftp.cs.colorado.edu/pub/techreports/schwartz/HarvestCache.ps.Z
ftp://ftp.cs.colorado.edu/pub/techreports/schwartz/HarvestCache.ps.Z
http://portal.acm.org/toc.cfm?id=342009&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=342009&coll=portal&dl=ACM&type=proceeding
http://www-db.stanford.edu/~cho/papers/cho-synch.pdf
http://portal.acm.org/toc.cfm?id=224964&coll=portal&dl=ACM&type=proceeding
http://mobility.eecs.umich.edu/papers/icdcs01.pdf
http://www.cos.ufrj.br/wiiw/papers/24-Olivier_Dedieu(02).pdf
http://www.cos.ufrj.br/wiiw/papers/24-Olivier_Dedieu(02).pdf
http://portal.acm.org/toc.cfm?id=41840&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=191839&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=191839&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=248052&coll=portal&dl=ACM&type=proceeding
http://www-sor.inria.fr/publi/PDIUPDS_lncs1752.html

Replication: Optimistic Approaches · 37

FIDGE, C. J. 1988. Timestamps in message-passing systems that preserve the partial ordering. In11th Australian
Computer Science Conference(University of Queensland, Australia, 1988), pp. 55–66.

FIELDING , R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999.
RFC2616: Hypertext Transfer Protocol – HTTP/1.1. http://info.internet.isi.edu/in-notes/rfc/files/rfc2616.txt.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. 1985. Impossibility of distributed consensus with one faulty
process.Journal of the ACM 32, 2, 374–382.

FOX, A. AND BREWER, E. A. 1999. Harvest, yield, and scalable tolerant systems. InW. on Hot Topics in Op. Sys.
(HOTOS)(Rio Rico, AZ, USA, March 1999), pp. 174–178. http://www.csd.uch.gr/˜markatos/papers/hotos.ps.

GIFFORD, D. K. 1979. Weighted voting for replicated data. In7th Symp. on Op. Sys. Principles (SOSP)(Pacific
Grove, CA, USA, Dec. 1979), pp. 150–162.

GOEL, A., PU, C., AND POPEK, G. 1998. View consistency for optimistic replication. In17th Symp. on Reliable
Dist. Sys.(Oct. 1998), pp. 36–42. http://www.cse.ogi.edu/˜ashvin/publications/consistency.ps.

GOLDING, R. A. 1992. Weak-consistency group communication and membership. Ph. D. thesis, University of Cali-
fornia Santa Cruz. Tech. Report no. UCSC-CRL-92-52, ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z.

GRAY, J., HELLAND , P., O’NEIL , P.,AND SHASHA, D. 1996. Dangers of replication and a solution. InInt. Conf. on
Management of Data(Montréal, Canada, June 1996), pp. 173–182.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan-Kaufmann.

GRIBBLE, S. D., BREWER, E. A., HELLERSTEIN, J. M., AND CULLER, D. 2000. Scalable, distributed data struc-
tures for Internet service construction. In4th Symp. on Op. Sys. Design and Implemen. (OSDI)(San Diego, CA, USA,
Oct. 2000), pp. 319–332. http://www.cs.washington.edu/homes/gribble/papers/dds.ps.gz.

GUY, R. G., POPEK, G. J.,AND THOMAS W. PAGE, J. 1993. Consistency algorithms for optimistic replication. In
Proc. First IEEE Int. Conf. on Network Protocols(Oct. 1993).

GWERTZMAN, J.AND SELTZER, M. 1996. World-Wide Web cache consistency. InUSENIX Winter Tech. Conf.(Feb.
1996), pp. 141–152.

HADZILACOS, V. AND TOUEG, S. 1994. A modular approach to fault-tolerant broadcasts and related problems. Tech-
nical Report TR94-1425 (may), Cornell University. http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrl.cornell-
/TR94-1425.

HERLIHY, M. 1986. A quorum-consensus replication method for abstract data types.ACM Trans. on Comp. Sys.
(TOCS) 4, 1 (Feb.), 32–53.

JOHNSON, T. AND JEONG, K. 1996. Hierarchical matrix timestamps for scalable update propagation. http://w4.lns-
.cornell.edu/˜jeong/index-directory/hmt-paper.ps.

KANTOR, B. AND RAPSEY, P. 1986. RFC977: Network News Transfer Protocol. http://info.internet.isi.edu/in-notes/-
rfc/files/rfc977.txt.

KAWELL JR., L., BECKHART, S., HALVORSEN, T., OZZIE, R., AND GREIF, I. 1988. Replicated document man-
agement in a group communication system. In2nd ACM Conf. on Computer-Supp. Coop. Work(Portland, OR, USA,
Sept. 1988).

KELEHER, P. J. 1999. Decentralized replicated-object protocols. In18th Symp. on Princ. of Distr. Comp. (PODC)
(Atlanta, GA, USA, May 1999), pp. 143–151. http://mojo.cs.umd.edu/papers/podc99.pdf.

KERMARREC, A.-M., ROWSTRON, A., SHAPIRO, M., AND DRUSCHEL, P. 2001. The IceCube approach to the
reconciliation of diverging replicas. In20th Symp. on Princ. of Distr. Comp. (PODC)(Newport, RI, USA, Aug. 2001).
http://research.microsoft.com/research/camdis/Publis/podc2001.pdf.

K ISTLER, J. J.AND SATYANARAYANAN , M. 1992. Disconnected operation in the Coda file system.ACM Trans. on
Comp. Sys. (TOCS) 10, 5 (Feb.), 3–25.

KRASEL, C. 2000. Leafnode: an NNTP server for small sites. http://www.leafnode.org.

KRONENBERG, N. P., LEVY, H. M., AND STRECKER, W. D. 1986. VAXclusters: A closely-coupled distributed
system.ACM Trans. on Comp. Sys. (TOCS) 4, 4, 130–146.

KUMAR , A. AND STONEBRAKER, M. 1988. Semantic based transaction management techniques for replicated data.
In ACM SIGMOD Int. Conf. on Management of Data(Chicago, IL, USA, June 1988), pp. 117–125.

KUMAR , A. AND STONEBRAKER, M. 1990. An analysis of borrowing policies for escrow transactions in a replicated
environment. InSixth Int. Conf. on Data Eng.(Los Angeles, CA, USA, 1990), pp. 446–454.

KUMAR , P. AND SATYANARAYANAN , M. 1993. Log-based directory resolution in the Coda file system. In2nd
Int. Conf. on Parallel and Dist. Info. Sys.(Jan. 1993), pp. 202–213. http://www.cs.cmu.edu/afs/cs/project/coda/Web-
/docdir/sicpds.pdf.

KUMAR , P. AND SATYANARAYANAN , M. 1995. Flexible and safe resolution of file conflicts. InUSENIX Winter
Tech. Conf.(New Orleans, LA, USA, Jan. 1995), pp. 95–106. http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir-
/usenix95.pdf.

http://info.internet.isi.edu/in-notes/rfc/files/rfc2616.txt
http://www.csd.uch.gr/~markatos/papers/hotos.ps
http://portal.acm.org/toc.cfm?id=800215&coll=portal&dl=ACM&type=proceeding
http://www.cse.ogi.edu/~ashvin/publications/consistency.ps
ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
http://portal.acm.org/toc.cfm?id=233269&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=233269&coll=portal&dl=ACM&type=proceeding
http://www.cs.washington.edu/homes/gribble/papers/dds.ps.gz
http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrlunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {cglobal mathchardef accent@spacefactor spacefactor }accent 95 cegroup spacefactor accent@spacefactor ornell/TR94-1425
http://cs-tr.cs.cornell.edu/Dienst/UI/1.0/Display/ncstrlunhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {cglobal mathchardef accent@spacefactor spacefactor }accent 95 cegroup spacefactor accent@spacefactor ornell/TR94-1425
http://w4.lns.cornell.edu/~jeong/index-directory/hmt-paper.ps
http://w4.lns.cornell.edu/~jeong/index-directory/hmt-paper.ps
http://info.internet.isi.edu/in-notes/rfc/files/rfc977.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc977.txt
http://portal.acm.org/toc.cfm?id=301308&coll=portal&dl=ACM&type=proceeding
http://mojo.cs.umd.edu/papers/podc99.pdf
http://research.microsoft.com/research/camdis/Publis/podc2001.pdf
http://www.leafnode.org
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/sicpds.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/sicpds.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf

38 · Saito and Shapiro

LADIN , R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S. 1992. Providing high availability using lazy replication.
ACM Trans. on Comp. Sys. (TOCS) 10, 4, 360–391.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.Commun. ACM 21, 7 (July),
558–565.

L IDL , K., OSBORNE, J.,AND MALCOLM , J. 1994. Drinking from the firehose: Multicast USENET news. InUSENIX
Winter Tech. Conf.(1994), pp. 33–45. ftp://ftp.uu.net/networking/news/muse/usenix-muse.ps.gz.

L IN , M. J. AND MARZULLO , K. 1999. Directional gossip: Gossip in a wide-area network. InThird European De-
pendable Computing Conference(Prague, Czech, Sept. 1999), pp. 364–379. A longer version is published as UC San
Diego TR CS99-0622, http://www-cse.ucsd.edu/˜marzullo/edcc.ps.

MATTERN, F. 1989. Virtual time and global states of distributed systems. InInt. W. on Parallel and Dist. Algorithms
(1989), pp. 216–226. Elsevier Science Publishers B.V. (North-Holland). http://www.informatik.tu-darmstadt.de/VS-
/Publikationen/.

M ICROSOFT. 2000. Windows 2000 Server: Distributed Systems Guide, Chapter 6, pp. 299–340. Microsoft Press,
Redmond, WA, USA.

M ILLS , D. L. 1994. Improved algorithms for synchronizing computer network clocks. InACM SIGCOMM(London,
United Kingdom, Sept. 1994), pp. 317–327.

MOCKAPETRIS, P. V. 1987. RFC1035: Domain names — implementation and specification. http://info.internet.isi-
.edu/in-notes/rfc/files/rfc1035.txt.

MOCKAPETRIS, P. V. AND DUNLAP, K. 1988. Development of the Domain Name System. InACM SIGCOMM
(Stanford, CA, USA, Aug. 1988), pp. 123–133.

MOORE, K. 1995. The Lotus Notes storage system. InInt. Conf. on Management of Data(San Jose, CA, USA, May
1995), pp. 427.

MOSER, L. E., MELLIAR -SMITH , P. M., AGARWAL , D. A., BUDHIA , R. K., AND L INGLEY-PAPADOPOULOS, C. A.
1996. Totem: A fault-tolerant multicast group communication system.Commun. ACM 39, 4 (April), 54–63.

MUMMERT, L. B., EBLING , M. R., AND SATYANARAYANAN , M. 1995. Exploiting weak connectivity for mobile
file access. In15th Symp. on Op. Sys. Principles (SOSP)(Copper Mountain, CO, USA, Dec. 1995), pp. 143–155.

NAKAGAWA , I. 1996. FTPmirror – mirroring directory hierarchy with FTP. http://noc.intec.co.jp/ftpmirror.html.

O’NEIL , P. E. 1986. The escrow transactional method.ACM Trans. on Database Sys. (TODS) 11, 4, 405–430.

ORACLE. 1996. Oracle7 Server Distributed Systems Manual, Vol. 2.

OUSTERHOUT, J. K., DA COSTA, H., HARRISON, D., KUNZE, J. A., KUPFER, M. D., AND THOMPSON, J. G. 1985.
A trace-driven analysis of the UNIX 4.2 BSD file system. In10th Symp. on Op. Sys. Principles (SOSP)(Orcas Island,
WA, USA, Dec. 1985), pp. 15–24.

PALMER , C. AND CORMACK, G. 1998. Operation transforms for a distributed shared spreadsheet. InConf. on
Comp.-Supported Coop. Work(Seattle, WA, USA, Nov. 1998), pp. 69–78. http://www.cs.cmu.edu/˜crpalmer/pubs-
.html/cscw98.ps.gz.

PARKER, D. S., POPEK, G., RUDISIN, G., STOUGHTON, A., WALKER , B., WALTON , E., CHOW, J., EDWARDS, D.,
K ISER, S., AND KLINE , C. 1983. Detection of mutual inconsistency in distributed systems.IEEE Transactions
on Soft. Eng. SE-9, 3, 240–247.

PATI ÑO-MARTINEZ, M., J́IMENEZ-PERIS, R., KEMME, B., AND ALONSO, G. 2000. Scalable replication in
database clusters. In14th Int. Conf. on Dist. Computing (DISC)(Toledo, Spain, Oct. 2000), pp. 315–329.

PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER, M. M., AND DEMERS, A. J. 1997. Flexible update
propagation for weakly consistent replication. In16th Symp. on Op. Sys. Principles (SOSP)(St. Malo, France, Oct.
1997), pp. 288–301.

PREGUIÇA , N. AND SHAPIRO, M. 2001. An efficient, scalable algorithm for history-based reconciliation. Submitted
for publication.

PU, C., HSEUSH, W., KAISER, G. E., WU, K.-L., AND YU, P. S. 1995. Divergence control for distributed database
systems.Dist. and Parallel Databases 3, 1 (Jan.), 85–109. ftp://ftp.cse.ogi.edu/pub/esr/reports/distr-div-control.ps.gz.

PU, C. AND LEFF, A. 1991. Replica control in distributed systems: An asynchronous approach. InInt. Conf. on
Management of Data(Denver, CO, USA, May 1991), pp. 377–386. ftp://ftp.cse.ogi.edu/pub/esr/reports/sigmod-91-
.ps.gz.

PURDY, G. N. 2000. CVS Pocket Reference. O’Reilly & Associates, Sebastopol, CA, USA. http://www.oreilly.com-
/catalog/cvspr/.

RABINOVICH , M., GEHANI , N. H., AND KONONOV, A. 1996. Efficient update propagation in epidemic replicated
databases. InInt. Conf. on Extending Database Technology (EDBT)(Avignon, France, March 1996), pp. 207–222.
http://www.research.att.com/˜misha/epidemic/EDBT96.ps.gz.

RAMSEY, N. AND CSIRMAZ, E. 2001. An algebraic approach to file synchronization. In9th Int. Symp. on the Foun-
dations of Softw. Eng. (FSE)(Austria, Sept. 2001). http://www.eecs.harvard.edu/˜nr/pubs/sync-abstract.html.

ftp://ftp.uu.net/networking/news/muse/usenix-muse.ps.gz
http://www-cse.ucsd.edu/~marzullo/edcc.ps
http://www.informatik.tu-darmstadt.de/VS/Publikationen/
http://www.informatik.tu-darmstadt.de/VS/Publikationen/
http://portal.acm.org/toc.cfm?id=190314&coll=portal&dl=ACM&type=proceeding
http://info.internet.isi.edu/in-notes/rfc/files/rfc1035.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc1035.txt
http://portal.acm.org/toc.cfm?id=52324&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=223765&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://noc.intec.co.jp/ftpmirror.html
http://portal.acm.org/toc.cfm?id=323647&coll=portal&dl=ACM&type=proceeding
http://www.acm.org/pubs/articles/proceedings/cscw/289444
http://www.acm.org/pubs/articles/proceedings/cscw/289444
http://www.cs.cmu.edu/~crpalmer/pubs.html/cscw98.ps.gz
http://www.cs.cmu.edu/~crpalmer/pubs.html/cscw98.ps.gz
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=proceeding
ftp://ftp.cse.ogi.edu/pub/esr/reports/distr-div-control.ps.gz
http://portal.acm.org/toc.cfm?id=115790&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=115790&coll=portal&dl=ACM&type=proceeding
ftp://ftp.cse.ogi.edu/pub/esr/reports/sigmod-91.ps.gz
ftp://ftp.cse.ogi.edu/pub/esr/reports/sigmod-91.ps.gz
http://www.oreilly.com/catalog/cvspr/
http://www.oreilly.com/catalog/cvspr/
http://www.research.att.com/~misha/epidemic/EDBT96.ps.gz
http://www.eecs.harvard.edu/~nr/pubs/sync-abstract.html

Replication: Optimistic Approaches · 39

RATNER, D. H. 1998. Roam: A Scalable Replication System for Mobile and Distributed Computing. Ph. D. thesis,
UC Los Angeles. Tech. Report. no. UCLA-CSD-970044, http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers-
/diss.ps.gz.

RAVIN , E., O’REILLY, T., DOUGHERTY, D., AND TODINO, G. 1996. Using and Managing UUCP. O’Reilly &
Associates, Sebastopol, CA, USA. http://www.oreilly.com/catalog/umuucp/.

REIHER, P., HEIDEMANN , J. S., RATNER, D., SKINNER, G., AND POPEK, G. J. 1994. Resolving file conflicts
in the Ficus file system. InUSENIX Annual Tech. Conf.(June 1994), pp. 183–195. ftp://ftp.cs.ucla.edu/pub/ficus-
/usenixsummer94 resolver.ps.gz.

RHODES, N. AND MCKEEHAN, J. 1998. Palm Programming: The Developer’s Guide. O’Reilly.

ROWSTRON, A. I. T., LAWRENCE, N., AND BISHOP, C. M. 2001. Probabilistic modelling of replica divergence.
In M. SHAPIRO Ed., W. on Hot Topics in Op. Sys. (HOTOS)(Schloss Elmau, Elmau, Germany, May 2001). IEEE
Computer Tech. Commitee on Op. Sys. http://www.research.microsoft.com/˜antr/papers/sync.ps.gz.

SAITO , Y., BERSHAD, B. N., AND LEVY, H. M. 2000. Manageability, availability and performance in Porcupine: a
highly scalable, cluster-based mail service.ACM Trans. on Comp. Sys. (TOCS) 18, 3 (Aug.), 298–333.

SAITO , Y. AND LEVY, H. M. 2000. Optimistic replication for Internet data services. In14th Int. Conf. on Dist.
Computing (DISC)(Toledo, Spain, Oct. 2000), pp. 297–314. http://www.cs.washington.edu/homes/yasushi/disc00-
.pdf.

SAITO , Y., MOGUL, J., AND VERGHESE, B. 1998. A Usenet performance study. http://www.research.digital.com-
/wrl/projects/newsbench/.

SPENCER, H. AND LAWRENCE, D. 1998. Managing Usenet. O’Reilly & Associates, Sebastopol, CA, USA. http:/-
/www.oreilly.com/catalog/musenet/.

STERN, H., EISLEY, M., AND LABIAGA , R. 2001. Managing NFS and NIS(2nd ed.). O’Reilly & Associates, Se-
bastopol, CA, USA. ISBN 1-56592-510-6, http://www.oreilly.com/catalog/nfs2/.

SUN, C. 2000. Undo any operation at any time in group editors. InConf. on Comp.-Supported Coop. Work(Philadel-
phia, PA, USA, Dec. 2000), pp. 191–200.

SUN, C. AND ELLIS , C. 1998. Operational transformation in real-time group editors: issues, algorithms, and achieve-
ments. InConf. on Comp.-Supported Coop. Work(Seattle, WA, USA, Nov. 1998), pp. 59–68.

SUN M ICROSYSTEMS. 1998. Sun Directory Services 3.1 administration guide. http://www.sun.com/sims/Docs-4.0-
/html/sunds/admin/.

TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER, M. J., THEIMER, M. M., AND WELCH, B. B. 1994.
Session guarantees for weakly consistent replicated data. InProceedings Int. Conf. on Parallel and Dist. Information
Sys. (PDIS)(Austin, TX, USA, Sept. 1994), pp. 140–149. http://www.parc.xerox.com/csl/projects/bayou/pubs/sg-
pdis-94/SessionGuaranteesPDIS.ps.

TERRY, D. B., THEIMER, M., PETERSEN, K., AND SPREITZER, M. 2000. An examination of conflicts in a weakly-
consistent, replicated application. Personal Communication.

TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPREITZER, M. J., AND HAUSER, C. H. 1995.
Managing update conflicts in Bayou, a weakly connected replicated storage system. In15th Symp. on Op. Sys. Prin-
ciples (SOSP)(Copper Mountain, CO, USA, Dec. 1995), pp. 172–183.

THOMAS, R. 1979. A majority consensus approach to concurrency control for multiple copy databases.ACM Trans.
on Database Sys. (TODS) 4, 2 (June), 180–209.

V IDOT, N., CART, M., FERRIÉ, J.,AND SULEIMAN , M. 2000. Copies convergence in a distributed real-time collab-
orative environment. InConf. on Comp.-Supported Coop. Work(Philadelphia, PA, USA, Dec. 2000), pp. 171–180.

VOGELS, W. 1999. File system usage in Windows NT 4.0. In17th Symp. on Op. Sys. Principles (SOSP)(Kiawah
Island, SC, USA, Dec. 1999), pp. 93–109. http://www.cs.cornell.edu/vogels/NTFileTraces/index.htm.

VOGELS, W., DUMITRIU , D., AGRAWAL , A., CHIA , T., AND GUO, K. 1998. Scalability of the Microsoft cluster
service. InSecond USENIX Windows NT Symposium(Seattle, WA, USA, June 1998). http://www.cs.cornell.edu-
/vogels/clusters/mscs/scalability.htm.

VOGELS, W., DUMITRIU , D., BIRMAN , K., GAMACHE , R., MASSA, M., SHORT, R., VERT, J., BARRERA, J., AND

GRAY, J. 1998. The design and architecture of the Microsoft cluster service — a practical approach to high-
availability and scalability. In28th Int. Symp. on Fault-Tolerant Computing(Munich, Germany, June 1998), pp. 422–
431. IEEE. http://www.cs.cornell.edu/vogels/clusters/mscs/ftcs28.htm.

WALKER , B., POPEK, G., ENGLISH, R., KLINE , C., AND THIEL , G. 1983. The Locus distributed operating system.
In 9th Symp. on Op. Sys. Principles (SOSP)(Bretton Woods, NH, USA, Oct. 1983), pp. 49–70.

WANG, A.-I. A., REIHER, P. L., AND BAGRODIA, R. 2001. Understanding the conflict rate metric for peer opti-
mistically replicated filing environments. Submitted for publication.

WESSELS, D. AND CLAFFY, K. 1997. RFC2186: Internet Cache Protocol. http://info.internet.isi.edu/in-notes/rfc/-
files/rfc2186.txt.

http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://www.oreilly.com/catalog/umuucp/
ftp://ftp.cs.ucla.edu/pub/ficus/usenix_summer_94_resolver.ps.gz
ftp://ftp.cs.ucla.edu/pub/ficus/usenix_summer_94_resolver.ps.gz
http://www.research.microsoft.com/~antr/papers/sync.ps.gz
http://www.cs.washington.edu/homes/yasushi/disc00.pdf
http://www.cs.washington.edu/homes/yasushi/disc00.pdf
http://www.research.digital.com/wrl/projects/newsbench/
http://www.research.digital.com/wrl/projects/newsbench/
http://www.oreilly.com/catalog/musenet/
http://www.oreilly.com/catalog/musenet/
http://www.oreilly.com/catalog/nfs2/
http://www.acm.org/pubs/articles/proceedings/cscw/358916
http://www.acm.org/pubs/articles/proceedings/cscw/289444
http://www.sun.com/sims/Docs-4.0/html/sunds/admin/
http://www.sun.com/sims/Docs-4.0/html/sunds/admin/
http://www.parc.xerox.com/csl/projects/bayou/pubs/sg-pdis-94/SessionGuaranteesPDIS.ps
http://www.parc.xerox.com/csl/projects/bayou/pubs/sg-pdis-94/SessionGuaranteesPDIS.ps
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://www.acm.org/pubs/articles/proceedings/cscw/358916
http://portal.acm.org/toc.cfm?id=319151&coll=portal&dl=ACM&type=proceeding
http://www.cs.cornell.edu/vogels/NTFileTraces/index.htm
http://www.cs.cornell.edu/vogels/clusters/mscs/scalability.htm
http://www.cs.cornell.edu/vogels/clusters/mscs/scalability.htm
http://www.cs.cornell.edu/vogels/clusters/mscs/ftcs28.htm
http://portal.acm.org/toc.cfm?id=800217&coll=portal&dl=ACM&type=proceeding
http://info.internet.isi.edu/in-notes/rfc/files/rfc2186.txt
http://info.internet.isi.edu/in-notes/rfc/files/rfc2186.txt

40 · Saito and Shapiro

WOLMAN , A., VOELKER, G., SHARMA , N., CARDWELL , N., KARLIN , A., AND LEVY, H. 1999. On the scale and
performance of cooperative Web proxy caching. In17th Symp. on Op. Sys. Principles (SOSP)(Kiawah Island, SC,
USA, Dec. 1999), pp. 16–31.

WUU, G. T. J.AND BERNSTEIN, A. J. 1984. Efficient solutions to the replicated log and dictionary problems. In3rd
ACM Symp. on Princ. of Distr. Comp. (PODC)(Vancouver, Canada, Aug. 1984), pp. 233–242.

Y IN , J., ALVISI , L., DAHLIN , M., AND L IN , C. 1999. Hierarchical cache consistency in a WAN. In2ndUSENIX
Symp. on Internet Tech. and Sys. (USITS)(Boulder, CO, USA, Oct. 1999), pp. 13–24.

YU, H. AND VAHDAT, A. 2000a. Design and evaluation of a continuous consistency model for replicated services. In
4th Symp. on Op. Sys. Design and Implemen. (OSDI)(San Diego, CA, USA, Oct. 2000), pp. 305–318. http://www.cs-
.duke.edu/˜yhf/osdifinal.ps.

YU, H. AND VAHDAT, A. 2000b. Efficient numerical error bounding for replicated network services. InInt. Conf. on
Very Large Databases (VLDB)(Cairo, Egypt, Sept. 2000), pp. 123–133. http://www.cs.duke.edu/˜yhf/vldbfinal.ps.

YU, H. AND VAHDAT, A. 2001. The costs and limits of availability for replicated services. In18th Symp. on Op.
Sys. Principles (SOSP)(Lake Louise, AB, Canada, Oct. 2001), pp. 29–42. http://www-cse.ucsd.edu/sosp01/papers-
/vahdat.pdf.

ZHANG, Y., PAXON , V., AND SHENKAR, S. 2000. The stationarity of Internet path properties: routing, loss and
throughput. Technical report (May), ACIRI. http://www.aciri.org/vern/papers/stationarity-May00.ps.gz.

http://portal.acm.org/toc.cfm?id=319151&coll=portal&dl=ACM&type=proceeding
http://www.cs.duke.edu/~yhf/osdifinal.ps
http://www.cs.duke.edu/~yhf/osdifinal.ps
http://www.cs.duke.edu/~yhf/vldbfinal.ps
http://portal.acm.org/toc.cfm?id=None&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=None&coll=portal&dl=ACM&type=proceeding
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf
http://www.aciri.org/vern/papers/stationarity-May00.ps.gz

	Introduction
	Pessimistic Replication Algorithms and their Limitations
	Optimistic Replication: Overview and Benefits
	Optimistic Replication: Goals and Challenges
	Uniformity
	Quality-of-contents guarantee
	Scalability

	Road Map

	Applications of Optimistic Replication
	Internet Services
	DNS: Wide-area Caching and Mirroring
	Usenet: Wide-area Information Exchange

	Mobile Data Systems
	CVS: Computer-supported Collaboration
	Summary

	Basic Definitions
	Objects
	Consistency and Conflicts
	A Taxonomy of Conflict Handling Techniques

	Single-Master Systems
	Multi-Master State-Transfer Systems
	Update Propagation and Conflict Resolution using Thomas's Write Rule
	Detecting and Resolving Conflicts in State-transfer Systems
	Two-Timestamp Algorithm
	Version Vectors
	Resolving Conflicts in State-transfer Systems

	Supporting Large Objects
	Bounding Space Overheads

	Multi-master operation transfer systems
	Constructing a log
	Update Propagation using Timestamp Vectors

	Scheduling and Conflict Resolution in Operation-Transfer Systems
	Syntactic Operation Scheduling
	Semantic Operation Scheduling
	Exploiting commutativity
	Canonical Operation Ordering
	Semantic Ordering in IceCube

	Operational transformation
	Resolving Conflicting Operations
	Committing Operations
	Ack Vectors
	Primary Commit Protocol
	Quorum Commit Protocol

	Ensuring Quality of Contents
	Preserving Causal Relationship among Accesses
	Explicit Causal Dependencies
	Session Guarantees

	Bounding Inconsistency
	Probabilistic Techniques for Reducing Inconsistency

	Scaling Optimistic Replication Systems
	Estimating Conflict Rates
	Scaling by Controlling Communication Topology
	Push-Transfer Techniques
	Blind Flooding
	Link-state Monitoring Techniques
	Timestamp Matrices: Estimating the State of Remote Sites

	Combining Multiple Protocols
	Adding and Removing Masters

	Conclusions
	Comparing Optimistic Replication Strategies
	Summary of Algorithms
	Summary of Optimistically Replicated Systems
	Hints for Optimistic Replication System Design

	Appendix
	The order of events in a distributed system
	The Happens-Before Relationship Among Updates
	Scalar Clocks
	Physical Clocks
	Logical Clocks
	Counters
	Limitations of Scalar Clocks

	Timestamp Vectors

