

The ePerson Snippet Manager:
a Semantic Web Application

Dave Banks, Steve Cayzer, Ian Dickinson, Dave Reynolds
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2002-328
November 27th , 2002*

semantic
web,
knowledge
management,
personal
information
management

In this report we describe the lessons and experiences from
developing a substantial semantic web application in the domain of
community knowledge management. This application, the Snippet
Manager, is built upon our ongoing ePerson investigation. An
ePerson is a personal representative on the net that is trusted by a
user to store personal information, and make it available under
appropriate controls. Our prototype Snippet Manager is a tool into
which a community of users can deposit small items of information
(e.g. notes, bookmarks, news items) and annotate, structure and
share them with others in the community. The infrastructure and
architecture we developed, and the insights arising from this work,
are applicable to many semantic web information management
applications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 Page 1

The ePerson Snippet Manager:
a Semantic Web Application

Dave Banks, Steve Cayzer, Ian Dickinson, Dave Reynolds

14/11/02, v.1.0

Keywords: semantic web, knowledge management, personal information
management

Abstract
In this report we describe the lessons and experiences from developing a
substantial semantic web application in the domain of community knowledge
management.

This application, the Snippet Manager, is built upon our ongoing ePerson
investigation. An ePerson is a personal representative on the net that is trusted
by a user to store personal information, and make it available under appropriate
controls. Our prototype Snippet Manager is a tool into which a community of
users can deposit small items of information (e.g. notes, bookmarks, news items)
and annotate, structure and share them with others in the community.

The infrastructure and architecture we developed, and the insights arising from
this work, are applicable to many semantic web information management
applications.

 Page 2

Table of Contents
1 Executive Summary ...4
2 Background and objectives ...5
3 Introduction to the Snippet Manager application8
4 Overview of architecture...12

4.1 Design principles ..12
4.2 Deployment architecture ...12
4.3 Layered architecture ...13

5 Details of the architecture layers..14
5.1 Transport layer ..14

5.1.1 Overview of transport layer..14
5.1.2 Transport-independent addresses ..14
5.1.3 Connector specific addresses ..15
5.1.4 Authority...16
5.1.5 Authentication and end-to-end security...16
5.1.6 Transport layer – assessment and lessons17

5.2 Knowledge base access layer...18
5.2.1 Overview of the KB access layer...18
5.2.2 QBE – query by example...18

5.2.2.1 QBE – assessment and lessons ..20
5.2.3 Network API...20

5.2.3.1 Operations ..20
5.2.3.2 Transport syntax...21
5.2.3.3 Network API – assessment and lessons ...21

5.2.4 Discovery server ...22
5.2.4.1 Discovery server - assessment and lessons......................................23

5.2.5 Provenance representation and API ..24
5.2.5.1 Provenance representation and API – assessment and lessons........25

5.2.6 Access control for RDF data stores ..26
5.2.6.1 Access control for RDF data stores - assessment and lessons28

5.3 Structure layer ...30
5.3.1 Of names … ..31
5.3.2 Encoding classifications...32
5.3.3 Structure layer – assessment and lessons...33

5.4 Knowledge source layer...34
5.4.1 DMOZ Server...34

5.4.1.1 Introduction to the DMOZ dataset ...34
5.4.1.2 Parsing the DMOZ Structure dataset ...34
5.4.1.3 Parsing the DMOZ Content dataset ...34
5.4.1.4 Classifier for mapping from URLs to DMOZ categories35
5.4.1.5 DMOZ with ePerson ..35
5.4.1.6 Issues..36

5.4.2 History server ...36
5.5 Application layer..39

5.5.1 Overview ...39
5.5.2 User abstractions..39
5.5.3 Application UI ..40

5.5.3.1 Workspace Views ..40

 Page 3

5.5.3.2 Metadata Creation..41
5.5.4 Import Tools ...42

5.5.4.1 Bookmark import tool..42
5.5.4.2 Import tools – assessment and lessons...43

5.5.5 Classification Service ...43
5.5.6 Profile management tools ..44
5.5.7 Community browser tool...44
5.5.8 Application layer – assessment and lessons.....................................46

6 Discussion: successes, issues and lessons48
6.1.1 Overall system lessons ...48
6.1.2 Consequences of the extensive use of RDF49
6.1.3 Ontology issues ...51
6.1.4 Performance issues...52

7 Related work...54
8 Conclusions ...56
9 References ...57
Appendix 1 Ontology class hierarchy..59
Appendix 2 Example RDF for imported bookmarks.......................63
Appendix 3 QBE matching algorithm...68
Appendix 4 ePerson profile ontology – design issues.......................70
Appendix 5 Application Layer Implementation Notes77

9.1.1 UI Java classes..77
9.1.2 RDF for configuration ...78

Appendix 6 Transport Layer Implementation Notes80
Transport API ..80
Request-response..80
Request-multiple response ..80
Asynchronous messaging ..80
Example protocol message ..81
Message header description ..82
Message body description..82
Address cache implementation ...82
MessageID cache ..83
Threading model ..83
Transport instances and connector instances..83

 Page 4

1 Executive Summary
In this report we describe the lessons and experiences from developing a
substantial semantic web application in the domain of community knowledge
management.

This application, the Snippet Manager, is part of our ongoing ePerson
investigation. An ePerson is a personal representative on the net that is trusted
by a user to store personal information, and to make it available under
appropriate controls. Our prototype Snippet Manager is a tool into which a
community of users can deposit small items of information (e.g. notes,
bookmarks, news items) and annotate, structure and share them with others in
the community.

We have built a complete prototype implementation of this application together
with a set of supporting semantic web infrastructure components. This exercise
has demonstrated feasibility of the approach and given some hints of the utility
of the application, even though it is not yet suitable for routine practical use. We
have identified many lessons and design issues for each of the system
components and for the overall prototype. The information gained and captured
here is relevant both to any future development of ePerson tools and to many
related semantic web applications.

The key features of the components we developed include:

• transport-independent addressing and message API with support for
broadcast/multicast and for message signing;

• distributed RDF query, based on a query-by-example pattern matching
style;

• a name resolution and service discovery infrastructure based on broadcast
discovery of RDF self-description records;

• a personal knowledge-based hosting infrastructure, supporting role-based
access control;

• networked RDF sources providing access to the DMOZ classification
hierarchy and the DMOZ page classifications themselves;

• a vocabulary for representing user profile information with interoperability
hooks to related profile schemas (which is populated both manually and
from automatically inferred interest vectors derived from browsing
records);

• a set of data models for representing items of user information ranging
from generic snippets through to specific items such as bookmarks in
which the users themselves and personal collections of items (workspaces)
can also be treated as information items for annotation and indexing;

• a functioning user interface and prototype application allowing creation,
organization and navigation of personal information repositories driven by
the DAML files that define the data model;

• tools for import and export of bookmarks and drop-able items into the
information repositories;

• an extensible tool for exploration of a linked community of information
stores.

 Page 5

2 Background and objectives
In this section we present our perspective on personal knowledge assistants, and
our hypotheses for their key characteristics. Our work in this area is set within
the context of the ePerson project [1].

An ePerson is a user’s personal representative on the net, which is trusted by the
user to store personal information, and to make it available under appropriate
controls. Such personal information includes user profiles, user interests and
preferences, opinions and ratings, bookmarks and directly shared items such as
pictures, music and documents. These ePerson nodes are then linked into a peer-
to-peer network to facilitate sharing of opinions and information across ad hoc
communities.

While there are many possible applications for such a concept, the focus of the
work we report on here is the development of personal knowledge assistants that
can help individuals to manage the knowledge and information they need. In
particular, to help them:

• filter information, to track changes and developments in a given area
without excessive information overload

• to forage for information, to investigate and research new areas1
• to organise their information for use by both themselves and their peer

community
These goals are not novel. Many tools have been developed over the years to
cope with information overload and assist in organisation and sharing of
information. Some of the latter have been successful (e.g. Lotus Notes) but
largely the problems of information overload have not been solved. So what
angle do we have to offer to address this?

We believe that the key is a combination of three principles – social filtering,
structured knowledge and a person-centric approach.

Social filtering. Our belief is that it is the people in these connected
communities that will do much of the collecting, filtering, qualifying and
organising of information. The techniques of pattern recognition and
information retrieval have a useful role to play in automated knowledge
assistants but don’t provide a complete solution. Our tools should primarily
support people in performing such filtering, and as far as possible automate the
sharing and reuse of this human work. In summary, harness the people in the
network to help sort the signal from noise.

Structured knowledge. If the annotations and organisational structures that are
built up by these communities are machine accessible we can provide useful
automation or automated assistance. If the metadata concerning individual items
and the links or relations between items are explicitly captured we can provide
more flexible and powerful tools for visualising, exploring and combining such
information. If communities agree on particular structured terminologies, or

1 Simply looking up individual facts does not seem to pose much of a problem for people. It is the
more substantial activities of deeper investigations into a given topic area that appear ripe for
greater assistance [27].

 Page 6

ontologies, to use in annotating and linking items we have a greater chance of
discovering common patterns and automating reuse.

The semantic web [2] provides a set of standards and tools that directly address
this issue of accessed to structured, shared metadata. In particular it defines a
common data model for metadata RDF [3] that supports free combination of
metadata from many terminologies and sources. The next layer up of the
semantic web, intended to explicitly model these terminologies, is still under
development [4] but is likely to be based upon existing proposals such as
DAML+OIL2 [5]. We chose to use DAML in the work reported here.

Person-centric. This principle has several facets – ownership, vocabularies and
scaling.

People should own their own information. This is important both because we
believe, a priori, in respect for the individual and their freedom and privacy, and
because it is more effective. If I create a knowledge base which I use regularly
for my own purposes I am more likely to keep it up-to-date than if I create an
index solely for use by others. Similarly, it is one thing to allow my close
colleagues to see all of my bookmarks and browsing patterns to assist them in
following up my investigations, it is another thing to imagine anyone being able
to see them. We have to balance the benefits of connecting people together
against the problems of intrusiveness. The right balance point, in our view, is
that individuals control the data, annotations and structuring that they put into
the information infrastructure and have complete control over the visibility of
this information.

Second, consider the notion of knowledge structuring, such as the use of
ontologies for metadata tags and relational properties. This is typically applied
top down. Some large organisation, e.g. a professional or standards body, spends
much time developing standard terminologies that can then appear cumbersome
and inflexible when applied to a given specific, personal problem instance. We
invert this and allow individuals and small work groups to chose their own
terminologies (and how rigidly these should be applied) but then support them
in discovering existing ontologies which might be adapted for reuse or in linking
their own terms to ontologies developed by other groups. This bottom up
approach, sometimes dubbed emergent ontologies, allows us to make better
trade-offs between flexibility and reuse.

Thirdly, we believe person-centric approaches are inherently more scalable –
both in the networking sense of decentralised architectures and in the
organisational sense. An information portal that is maintained by a centralised
group is limited by the resources of the group in how effectively they can
maintain it, change its structure, imagine and develop new tools. An information
infrastructure that provides everyone with the building blocks for adapting and
extending the tools to their own needs should be able to grow and adapt.

2 This will henceforth be abbreviated to DAML for narrative convenience; the contribution of the
OIL researchers to the DAML+OIL standard is fully acknowledged.

 Page 7

Our hypothesis is that combining these three principles in the design of a
personal information infrastructure will indeed lead to substantial improvements
in the way people filter, forage for and organise information.

As a first test of this hypothesis we have chosen an example information
assistant – the shared Snippet Manager – and developed a working
implementation of it, based upon semantic web representations, guided by our
three principles. In the rest of this report we describe, in some detail, the design
and implementation of this first test application and the lessons we have learnt
along the way.

 Page 8

3 Introduction to the Snippet Manager application
The Snippet Manager is a tool for organising collections of small arbitrary
information items (news articles, papers, pictures, bookmarks, notes) and
sharing them across ad hoc peer groups. These items may be self-contained units
like pictures or small extracts from larger documents (such as email messages
and reports).

Each user has a knowledge base to store their user profile, preferences and the
information snippets of interest to them.

The user can then view, organise and add to the pool of items in their knowledge
base through a collection of user interface tools (implemented in Java™) that

comprise the Snippet Manager.

These items are all sharable with other peer
Snippet Managers known to the user. Peers
can be discovered using local broadcast or
by receiving a reference to an ePerson
through some other medium like email. A
community browser tool within the Snippet
Manager allows a user to explore this space
of shared information – for example
discovering the comments, ratings and
classifications that other users have applied
to a given item.

Since each ePerson node has knowledge of
peer ePersons, they could be linked more
widely into a decentralized network where
the links follow the social links of the users

rather that some notion of network locality. This provides a platform for future
extensions to community browsing, exploiting topic-based query routing.

When a new user wishes to start using the Snippet Manager they first need to
create a personal knowledge base on some knowledge base host. This kbhost
may be run locally on a personal computer or run centrally on a managed server.
As part of setting up this initial knowledge base a set of cryptographic
credentials3 are created to identify the user to the kbhost. These credentials
enable the user to access their knowledge base securely from multiple locations.

When the Snippet Manager is started (supplying the appropriate credentials file
and password) the user can then create visual collections of information items
which we call workspaces. Each item represents information on some snippet
and consists of an internal id, a URI reference to the item itself and an arbitrary
collection of metadata. Some metadata is appropriate to particular types of items
(for example web bookmarks will often have a title), some metadata is generic
(e.g. comments, ratings).

3 A public/private key pair and an eperson-identity based on a hash of the public key for the person
and a similar key pair and hash-based id for the knowledge base.

Figure 1: Overview of Snippet Manager

 Page 9

Figure 2: Simple workspace and vocabulary-driven property editor

Through the UI, all of the current metadata values can be viewed and edited and
new annotations can be added. The set of properties available for attaching such
annotations is drawn from a set of vocabularies that are loaded into the
application at start up.

A particularly common and important form of metadata is the classification of
an item into one or more categories in one or more classification schemes.
Classification schemes may be shared between users – a user workspace can
export a classification scheme as a classificationService that can then be
discovered and reused by other users in the network. Amongst the standard
classification schemes provided are the DMOZ open directory scheme [6] and
the scheme generated from the bookmark/favourites folder structure when the
user imports their web bookmarks. The same workspace can be viewed
organized according to any of the classification schemes currently available.

Figure 3: Switch between bookmark and dmoz view of item

New items can be added to a workspace by importing them from some external
source (such as the bookmarks or favourites file from a web browser) or by

 Page 10

dragging them from the desktop. It is easy to drop such items into a workspace
and later on go back and add annotations and classifications – capture now,
organize later.
Items that are already on the web are referred to by URI and only their metadata
is stored in the ePerson network. Items such as local text snippets are copied to a
web server integrated with the knowledge-base host and assigned a URI so that
the content data is also accessible to other users.

In addition to the items and their organizing workspaces the ePerson knowledge
base stores a user profile. Part of this profile is manually entered using a
structured editor.

Figure 4 User profile – embedded view and manual editor

This part of the profile includes name and contact information, organizational
membership and contact information for other colleagues.

Another part of the profile is a weighted-vector of user interests organized
according to the DMOZ topic hierarchy. This is automatically derived from the
logs of a proxy server that a user can choose to use when browsing. This history
server offers users the ability to search over previously visited web sites4 as an
incentive to using the service.

The set of other ePersons visible to the user can be derived either from the
colleague information explicitly entered into the user profile or by automatic
discovery of ePersons within the local network region. The user is able to
classify these other ePerson identifiers to according to the roles they can play.

4 “I know I saw something about x just recently …”

 Page 11

Figure 5: Role classification and access control patterns

The user can then base access control on this role classification. They can
choose what patterns of profile and stored data, if any, are visible to people in
each role.

Finally, the community formed from the collection of these known ePersons can
be interactively explored using the community browser tool. This can be seeded
with information items using drag-and-drop or by keyword search. The
community can then be explored for further information on the seed items. For
example, it is easy to take a web item you are interested in, from there find other
users in the community who have bookmarked the same item and view their
annotations and ratings of it. From the classifications they have assigned the
web item you can then view other items they have classified similarly and thus
discover related items that may be of interest to you.

Figure 6: Community browser

 Page 12

4 Overview of architecture
In this section we give an overview of the architecture of the ePerson
infrastructure and the Snippet Manager application. In the next section we will
then explore each component in the architecture in detail looking at design and
API issues.

4.1 Design principles
A basic principle of the ePerson infrastructure design is to use the RDF language
to represent all stored information. The item metadata itself, the user’s profile,
the addressing and capability descriptions of services, the user’s preferences and
configurations and the current state of the application UI are all represented in
RDF and stored in the knowledge base. In this way the same set of data
manipulation and query tools can be reused at many parts of the architecture.
The openly extensible nature of RDF makes it easy to add new properties to
objects within the system as new requirements or opportunities are discovered.

A second key principle in the architecture is to clearly separate the details of the
messaging layer and physical hosting of services from the application code.
Thus all services (knowledge base hosts, ePersons, supporting services) are
identified by location independent names – URNs. In this way services can be
freely relocated – not only to different network hosts but also to different
connection types (for example Jabber or TCP/IP).

4.2 Deployment architecture
Conceptually each ePerson node comprises a knowledge base together with an
application UI. In practice it is
more flexible to separate the
knowledge bases from the
application UI, so that the users
can access their knowledge
base from different locations
and so that the knowledge base
remains available online even if
the user’s access machine is out
of contact.

In addition to the application UI
and the knowledge base host
the ePerson infrastructure
includes:

• a gateway onto the history
logs of a proxy server –
used for inference of user
interests;

• a copy of the DMOZ open directory database [6] which can map URIs
onto DMOZ topics;

• a set of supporting graphical and console based tools to allow developers
to access and test the network, and

transport cloud
- jabber
- TCP /UDP

kbhost dmoz

files R DB s tructure topic index

his tory
s tore

kbclient
kbviewer

dmoz
browser

Snippet
manager

application

his tory db

Snippet
manager

application
discovery

server

Figure 7: Deployment architecture

 Page 13

• a discovery server that can probe the services available on the local
ePerson network.

4.3 Layered architecture
The ePerson infrastructure is designed as a series of layers, each
of which provides an external API which abstracts the
implementation details away from the client application.

The lowest layer, the transport layer, hides the details of the
message transport machinery. Currently, we support raw
TCP/UDP and Jabber [7] transports. This layer supports
broadcast/multicast as well as unicast messaging to enable
discovery of local services. As mentioned above, all end-points
accessible over the transport layer are identified by location-
independent URNs. The transport layer itself does not resolve

these address names into locations but relies on the distributed query machinery
in the next layer up to discover these mappings and inform the transport layer
accordingly.

The knowledge base access layer provides facilities for remote access to RDF
stores and services. It includes support for distributed query, aggregation of
results from multiple sources, provenance tracking and fine-grained access
control.

The structure layer provides facilities for modelling the RDF vocabularies in the
system (both internal vocabularies and application specific ones) using the
DAML language. Both this and the previous layer were built using HP’s Jena
semantic web toolkit [8].

The knowledge source layer provides specific knowledge services such as the
DMOZ classification server, importing profiles from the history server and a
discovery server that maps the local network space on behalf of the applications.

Finally the application layer includes reusable UI components for viewing and
manipulating RDF data, viewing tools for knowledge base access during
development and the Snippet Manager application itself.

 Page 14

5 Details of the architecture layers
In this section we walk through each of the layers of the implementation (as
introduced above) and describe in more detail the precise structure and design.
We will not give complete API specifications (the Javadoc for the complete
software suite is well commented and available online at [9]) but we will give
enough details of the structure and API to illustrate the key features of our
design approach. In each subsection we will summarize the lessons learnt from
this exercise and highlight those features of the design that worked well and
those that did not.

5.1 Transport layer

5.1.1 Overview of transport layer
The ePerson transport layer has the following goals:

• Provide a uniform XML oriented Java messaging API.
• Support the following messaging semantics:

o Request-response (i.e. conventional RPC)
o Request-multiple response
o Asynchronous messaging (i.e. no response expected)

• Provide pluggable connectors to support a variety of underlying transport
technologies, such as direct TCP/UDP connections and Jabber (an XML
based Instant Messaging system [7]).

• Provide persistent names (URNs) for endpoints that are independent of the
underlying connector. It is expected that these names are stable over time.

• Support for flexible mappings between a name and one or more connector
specific addresses. It is expected that these mappings will change over
time.

• Support a limited scope broadcast capability for the discovery of local
peers.

• Support the signing and verification of messages without using a full
public key infrastructure (PKI).

5.1.2 Transport-independent addresses
Transport-independent addresses5 are used to represent the logical transport
endpoints between which messages are sent. The idea is to have a stable
identifier that represents the endpoint, regardless of how the endpoint is
connected to the network.

In particular, consider the case where the endpoint is an ePerson Knowledge
Base (KB) installed on someone's personal laptop. At times, that laptop will be
in work behind a corporate firewall. At other times, it will be at home, possibly
behind a home gateway that implements NAT. At yet other times, it may be
directly connected to the public Internet. The preferred means of supporting

5 It's slightly confusing that we use the term address here, since what we are really doing is
providing a scheme for persistently naming endpoints. With hindsight, we should have called this a
transport name. Generally, if we talk about the name of an endpoint, then we are actually referring
to its transport-independent address.

 Page 15

inbound connections (requests to the KB) may well be different in each case.
When behind a firewall, the KB may expose itself to the world through a public
Jabber server. When not behind a firewall, it may allow direct connections. Over
time, the set of connector specific addresses that are used by the KB will
change. However, the transport-independent address for the KB should remain
stable.

In general, the transport-independent address of an endpoint is treated as an
opaque label. It must minimally conform to the URI syntax, so that it can be the
subject or object of RDF statements. In practice, all of the transport-independent
addresses we have used within ePerson application are also URNs.

There is an important subclass of transport-independent addresses of the form
urn:x-hp-eperson sha:10f93f6e431ff650b5b2b1b35ca79b2be9b0912e

or
urn:x-hp-kb-sha:739f6a3c541a9d18a588f48e9c403447a144c625

that support authenticated messaging without need for a PKI. §5.1.5 contains
more details on this.

5.1.3 Connector specific addresses
One or more connector specific addresses can be bound to the transport-
independent address of a transport endpoint. Each connector specific address
represents a way to actually connect to the endpoint. In the transport API, a
connector specific address is simply represented by a Java properties object. The
only mandatory property is the connector property, which identifies the type
(Jabber, direct, etc) of connector to used. All other properties are connector
specific.

An address cache is used in each endpoint to hold the mappings from transport-
independent addresses to connector specific addresses. The transport API
provides a means to populate the cache directly, and a callback can be registered
to handle the case were no mapping can be found. Other than this the transport
architecture contains no machinery to discover and propagate these address
mappings. This is the responsibility of the KB access layer, where several
techniques are used, including hardwiring them into personal KBs, querying the
discovery service, and using broadcast queries.

Multiple address mappings may be defined for a transport endpoint, as long as
each of these uses a different connector type. When sending a message, the
transport implementation will try each mapping in turn, in no particular order 6.
Mappings may exist in the address cache for connectors not available to the
sender; these are simply skipped. The result of this behaviour is that multiple
copies of the message may be delivered to the recipient, hence a means of
detecting and discarding duplicate messages is necessary. To achieve this, the
sender labels each message with a unique messageID and the recipient maintains
a cache of recently seen messageIDs. A message is discarded by the recipient if
the messageID is already in the cache.

6 Strictly, a correct algorithm should verify successful receipt before terminating a scan of mapping
options. The current implementation only approximates this behaviour.

 Page 16

5.1.4 Authority
In some cases, the endpoint sending a message may be doing so on behalf of
another entity. In ePerson this is the case with Snippet Manager, since multiple
copies of Snippet Manager may exist on different machines all owned by the
same ePerson. So, in a transport message we make a distinction between the
authority on whose behalf the message is sent, and the endpoint actually doing
the sending. In general, this is would usually be combined with the message
actually being signed using the private key of the authority. This implies that the
user would need to distribute their private key to any endpoints acting on their
authority. The means for this distribution is outside the scope of the transport
architecture. In ePerson, we achieve this using credentials files.

5.1.5 Authentication and end-to-end security
Message signing is linked to the notion of the message Authority (see earlier in
this section). The transport can sign a message on behalf of an Authority using
the private key of that Authority.

The Authority element in the message includes the transport-independent
address of the Authority (i.e. the name!) and their public key.

For signing to work (without need for a PKI) the transport-independent address
must take one of the following forms:

urn:x-hp-eperson-sha:10f93f6e431ff650b5b2b1b35ca79b2be9b0912e
urn:x-hp-kb-sha:739f6a3c541a9d18a588f48e9c403447a144c625

In the ePerson system, these are used to represent individual ePersons and their
personal KBs.

The hexadecimal part is a 160-bit SHA-1 hash of a full 1024-bit DSA public
key. By deriving the transport-independent address from the public key, we
avoid the need for any PKI like infrastructure with certificates to map between
names and public keys. In effect, the public key (or a hash of it) is the identity of
the endpoint. This is very much along the lines of the SDSI/SPKI model [11].

The scheme we use for actually calculating the message signature is currently
non-standard because of performance problems with the Apache XML signature
implementation [10].

Our algorithm is:

• Insert an empty signature element (i.e. <eps:signature/>) into the message
to be signed. This should be placed at the end of the header section.

• Perform a rudimentary canonicalization by removing all white space, and
merging any adjacent CDATA sections. The standard eps: element prefix
must be used.

• Serialise the XML to a byte-stream using the UTF-8 character encoding.
• Compute a 160-bit SHA message digest over the serialized XML byte

stream.
• Calculate a DSA signature over the digest.
• Insert it as content into the signature element using Base64 encoding.

This works and is approximately ten times faster than the Apache XML
signature implementation (30ms per signature rather than 300ms on a PIII 700).

 Page 17

The disadvantages are it is non-standard and the canonicalization is less robust
to minor changes in the message format (e.g. white space).

5.1.6 Transport layer – assessment and lessons
The use of URNs to name endpoints in the system seems on balance to have
been a good choice. The original goal was to enable portability of knowledge
bases without ending up with stale links. This was achieved, however the
infrastructure for binding names to dynamic addressing information is not really
in place. Worse, the bindings are not secure, and this represents a weak point in
the security of the whole system. A good solution to these issues is the CNRI
handle system [12]. This provides a general-purpose global name service
enabling secure name resolution over the Internet, and supports custom data
records. The performance of the handle system could be improved with client-
side caching, which is not currently implemented.

For more details on the transport layer implementation, see Appendix 6.

 Page 18

5.2 Knowledge base access layer

5.2.1 Overview of the KB access layer
The job of the knowledge base (KB) access layer is to provide remote access to
collections of RDF. As well as the ePerson knowledge bases themselves, which
are collections of RDF statements, we also found it useful to expose other
services as though they were RDF and make them accessible via the KB access
machinery.

The design approach is to provide a coarse grain remote access API and let
application code perform fine grain extraction and modification of the resulting
RDF data using native Jena API calls. Thus the KB access layer is designed to
retrieve subsets of RDF that match some form of pattern, the application might
then use fine-grain RDF API calls or query languages such as RDQL [36]
locally to extract the salient values from this retrieved RDF subset.

For the client side of the KB access layer we provide an abstraction called a
knowledge source that can be implemented in many ways. In the simple case,
one knowledge source is a remote interface onto one RDF store. We also
support the notion of composite knowledge sources. These act as if they were a
single RDF source that contains the sum of all the statements available from a
set of RDF sources. In the implementation, we use the transport layer multicast
mechanisms to distribute the query and results are delivered incrementally.

One special case composite knowledge source is the cloud. This is the aggregate
of all RDF sources accessible by local broadcast, again with results returned
incrementally. One use of the cloud is to support the discovery of local (peer)
services. Each service is self-describing: it exports a set of RDF statements that
describes its identity, supported connection types, location and capabilities. An
RDF query pattern that matches the description of the required service can be
issued to the cloud. If only one instance of the service is required, the discovery
can complete as soon as the first response is received. We discuss this in more
detail in section 5.2.3.3.

The server side of the KB access layer provides the dual abstraction to
knowledge source, which we called knowledge provider. Several
implementations of knowledge providers were developed, which interfaced onto
file-based and database-based RDF stores. In addition, we built gateways onto
existing database formats by building custom implementations of the knowledge
provider interface. See section 5.4 for an example of this.

5.2.2 QBE – query by example
A critical design decision in developing the KB access layer was how to specify
the patterns used to select subsets of RDF from knowledge sources.

Two existing solutions were already available to us: triple patterns and RDQL,
which solve part of this requirement. We developed a third general pattern
expression approach, which we term Query by Example (QBE). At the API and
network API levels, we support a general and extensible notion of a Pattern that
encapsulates all of these approaches. In practice, we found that QBE offered the

 Page 19

most useful trade-off between complexity and power and used it almost
exclusively.

Triple patterns are simply RDF subject/predicate/object triples where any of the
three arguments may be replaced by a wildcard. These are simple to encode in a
Network API and natively implemented in most RDF toolkits including Jena.7
Unfortunately they are not very selective and for the queries we needed to
express we would either be faced with retrieving unmanageable fractions of the
RDF source or making many smaller queries each costing a network round trip.

RDQL is a query language built into Jena, which supports conjunctions of triple
patterns with variables allowed at any place in the triple pattern. The set of all
matching variable bindings is returned, from which the matching subgraph can
be reconstructed. This is more than powerful enough to express all the queries
we expected. However, the approach of returning variable bindings and the
complexity of supporting arbitrary variable patterns does lead to some
implementation overhead.8

The QBE approach is a trade-off between these two alternatives, which offers
pattern selectivity close to RDQL but with enough restrictions to allow very
simple and high performance implementations.

The core idea is to specify the pattern itself as another RDF graph in which
bNodes are treated as unnamed variables. We restrict the pattern to those graphs
that are expressible using the current RDF/XML or N3 syntax, i.e. where the
bNodes (variables) can only form trees9. This restriction simplifies the matcher
from a subgraph isomorphism problem (NP) into a tree match problem
(polynomial) with a simple recursive implementation.

In our data stores themselves we also use bNodes, typically as a means of
storing structured data. This raises the question of how we should return bNodes
in the query responses since they have no directly addressable identity. In our
current design any result subgraph that has a leaf-bNode is expanded to include
all statements in the source graph that have that bNode as subject, iteratively.
This avoids the need to re-query the source for more information on a bNode.
An alternative approach would be to exploit the newly proposed ability to label
bNodes so that queries can be issued against a particular bNode – though the
integration of that world view with the bNode-as-anonymous-existential-
variable world view is tricky.

In practice, some embellishments to this basic approach were needed. Firstly,
RDF does not have a notion of blank property nodes, so we allowed reserved
property names to act as wildcards, or as wildcards restricted to a specific
namespace. Secondly, we introduced a restricted literal notation to indicate
regular expression matching of literal strings in place of equality matching.
More details on the pattern match algorithm are given in Appendix 3.

7 Using the listStatements(new SelectorImpl(s,p.o)) idiom.
8 Without direct support for subgraph extraction the list-all-variable-bindings approach can lead to
combinatoric overheads when dealing with multiple-valued properties. Even small, 50 triple, test
examples were enough to indicate that in-memory query processing could dominate over network
latency. The current Jena RDQL implementation constructs the matching subgraph on the fly to
avoid some of this overhead.
9 The W3C RDF Core working group is now proposing a named-bNode notation that would enable
arbitrary bNode graphs to be expressed in future RDF/XML notations.

 Page 20

We can construct the QBE pattern graph using any RDF notation or via Jena
API calls. In practice, we found that a simplified N3 [37] subset provided a
compact and relatively understandable syntax and most often used that.

Putting this together, an example query which looks for all services which are of
type kba:KB and returns their access information (address, port number,
connection type) would be:

[] rdf:type kba:KB; kba:accessPoint [].

where we are assuming that namespaces rdf and kba have been defined
appropriately (the latter being the namespace of the ePerson knowledge base
access layer properties). The [] symbol is the N3 notation for a bNode so that
the first clause “[] rdf:type kba:KB” will match any resource that has a
property rdf:type whose value is kba:KB. The semi-colon operator indicates a
new property/value pair that applies to the same subject as the previous pair.
Thus the second clause “; kba:accessPoint []” indicates that this kba:KB
resource should also have a kba:accessPoint property with any value. If this
query is issued to the cloud Knowledge source, the resulting set of RDF
statements would give the identity, type and access information for all KB
services accessible in the broadcast region.

5.2.2.1 QBE – assessment and lessons
This QBE approach worked well for us. The simplified N3 syntax was compact
enough to be usefully embedded with code and sufficiently developer-friendly
to be usable in the UI of various internal developer tools. The high performance
of the matching algorithm meant that reasonable structured queries against in-
memory stores took only a few milliseconds on modest PCs, so that the network
latency and serialize/parse times dominated over query times. This encouraged
us to reuse this machinery at several points in the design. For example, QBE
patterns in the access control system specify the sets of statements accessible
from a given role. In the notification machinery, QBE patterns identify sets of
changes to a knowledge base that should trigger a notification event.

The biggest problem with the design was the decision to automatically expand
leaf bNodes. We wrote queries that relied on this feature and then at a later time
found a need to refer directly to the node and so gave it a label This then broke
the earlier queries, which would no longer auto-expand. More explicit expansion
operators would be an alternative solution or to simply drop this feature and
expect all queries to explicitly match all the levels to be retrieved.

5.2.3 Network API
The communication between the KB clients (as represented by
KnowledgeSource objects) and the KB servers takes place using an RDF
network API which builds on top of the transport layer described in section 5.1.

5.2.3.1 Operations
The key operations in the kb access API were:

• add(Model)
add a set of RDF statements to a KB

 Page 21

• list(Pattern)
return the set of all RDF statements in a KB which match the pattern

• update(deletePattern, addModel)
delete all statements from the KB that match deletePattern and then add
all statements from addModel into the KB

• replace(Model)
for each (subject, property) pair in Model the corresponding subject
resource was found in the KB, all its property values were removed and
replaced with those from Model.

• setNotifier(uri, Pattern)
Arranges for the KB to monitor if any changes take place that match the
given Pattern. If this happens an asynchronous message will be sent from
the server to the client that requested the notifier. This message will
contain both the changed RDF statements and the uri which acts a label for
the notification request.

We later extended these operations with two more to support the representation
of provenance information – these are discussed below in section 5.2.5.

5.2.3.2 Transport syntax
Each message from client to server, and each response back, is packaged as a
small XML fragment comprising:

• an outer element (KBAccessMessage) identifying this as a message of
relevance to the KB access layer

• an operation name defining the action to be performed
• a list of arguments, each a string or an RDF model as indicated by a type

attribute, note that patterns are themselves either models (in the case of
QBE) or encodable as models

• for encoding RDF models we currently use a CDATA section containing
RDF statements in NTriple [10] syntax we chose this for ease of
processing but could use full RDF/XML syntax by extending the range of
type tags supported.

For example a request to list all resources of type presentation:Desktop present
in a knowledge source is packaged as:
<kba:KBAccessMessage xmlns:kba="http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#">
 <kba:operation> list </kba:operation>
 <kba:arg type="rdf-n-triple">
 <![CDATA[

_:A29f3b5X3aXf00ef5102eX3aXX2dX51e8
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://w3.hpl.hp.com/eperson/daml/eperson/presentation#Desktop>
.

]]>
 </kba:arg>
</kba:KBAccessMessage>

5.2.3.3 Network API – assessment and lessons
The general coarse-grain approach for the network API was effective.
Performance was adequate and it was generally easy to define a query that
would delimit the useful subgraph. However, it sometimes led to a clumsy
programming style. If the application is actually trying to extract a few specific
embedded items of information then it would have to issue a general query and
then perform additional low level RDF navigation operations to extract the

 Page 22

relevant information from the retrieved subgraph. An alternative solution that
simulated, for the application programmer, a fine-grained access API but
implemented it using the coarse-gain approach via caching would have been
more comfortable. This raises challenges such as generalising network queries
to ensure adequate cache hits, efficiently determining cache hits for rich pattern
languages and maintaining cache consistency if multiple updates are allowed.

As far as the detailed API design was concerned the main area that required
some iteration was that of updating models. Initially we expected a combination
of add and replace (update specific property values) to be the primary update
mechanisms. However, the update (delete pattern + add statements) proved very
useful and we tended to batch up a set of changes as a single update in
preference to using replace. Using patterns instead of explicit statement sets to
define the subgraph to be deleted worked well. It might sound more dangerous
(because an error in the pattern could cause a lot of damage) but in practice the
same pattern used earlier to retrieve a subgraph was then reused as the delete
pattern in a subsequent update. In principle the delete-by-pattern approach
should be less brittle in the face of multiple updaters but this was not stressed by
our application since we typically only had one updating client at any one time.

5.2.4 Discovery server
As well as its primary role of providing remote access to RDF knowledge bases,
the KB access layer also provides a service back to the transport layer.

We described earlier how and why we use location-independent names for all
services and then need to be able to map these names to specific connector types
(e.g. TCP/UDP or Jabber) and to specific connector-specific addresses. The
knowledge base access layer is used for this.

All servers describe themselves (supported connectors, connector addresses and
capabilities) in RDF using a built-in kbaccess ontology. Applications can then
perform searches for these service description statements, convert them into
name/location maps and register them with the transport layer. Thus for example
a query issued to the cloud of the form:

[] rdf:type kba:KB; kba:accessPoint []; kba:* [].

would pull back location and capability10 information on all knowledge bases11
which would then allow the transport layer to send messages to any locally-
known knowledge base.

There is, however, a problem with this.

To discover a single specific service, the broadcast query can be aborted as soon
as the first response is received. However, to locate all services of a given type
(as is the case in the sample above), then the query issuer has to wait long
enough to be confident that all of the recipients have responded. This waiting for
timeouts is fragile and introduces a substantial slowdown when booting up an
application like the Snippet Manager.

10 The kba namespace is used as the basis for all capability descriptions hence the “kba:* []” sub
pattern.
11 I.e. items of rdf:type kba:KB.

 Page 23

We addressed this by noticing that the RDF statements that describe a service
are, like all RDF, standalone and so can be freely cached and replicated. We
could simply have arranged for applications to create a local RDF file cache of
important name/address mappings. However, in our dynamic situation, where
the service environment can change substantially between application runs, that
was not appropriate.

Our solution was to create an additional network entity – the discovery server.
Each instance of a discovery server does a periodic local broadcast query of the
form above, using a long timeout, and caches all the results in a local database.
A client application can then simply ask the same query of the discovery server,
instead of the whole local cloud, and a get a reasonably up-to-date local network
map with much higher performance.

The remaining problem is then for the client to discover the discovery service.
The discovery server is intended to change only slowly, so we do cache the last
known-good address for the discovery service on each client device.
Alternatively, if the last known address does not function, then we use a
broadcast query to the cloud looking just for a discovery service. This is a query
that we can terminate as soon as the first discovery server responds and so we do
not need to wait for a timeout. If no discovery server is found the application
can continue to function transparently by using the cloud in place of the
discovery server.

5.2.4.1 Discovery server - assessment and lessons
The discovery server was, in retrospect, not a good solution.

The primary problem is clearly that it turns a decentralized network into a
centralized one. In principle, the discovery server is only mapping its local
network region and a full network could have many local discovery servers
doing such mapping, which then link together. In practice the notion of network
region is not well defined in the system and we did not build in any mechanisms
for selective query routing between linked discovery servers. The notion of
separate, self-organizing, index nodes is a common design pattern in peer-to-
peer networks [14][15] and in retrospect we should have treated this is a
substantial design issue and solved it properly rather than patched around it.

Such centralization manifests in fragility. If the discovery server fails
completely, the clients can adapt. However, if the discovery server appears to be
working, but is not giving complete information, then some services will be
undiscoverable. One manifestation of this occurs if a knowledge base sets an
access control pattern that prevents the (anonymous) discovery server from even
seeing its self-description records. In this case, the discovery server will not
index the knowledge base whereas a sufficiently privileged client would be able
to.

The second apparent issue with the discovery server approach is that of security.
An attacker could attempt to masquerade as someone else’s knowledge base by
placing a bogus advert in the discovery server. We do not have a way of signing
sets of RDF statements in a knowledge base, so the discovery server entries are
unsigned. In principle, we have protected against this attack with our self-
certifying names. The client would find there are two addresses for the attacked

 Page 24

knowledge base and when it contacts the bogus one the message-level signatures
would not be signed by the private key corresponding to the public-key hash
embedded in the knowledge base name. In practice not all of the requisite client-
side checks are enabled in our running code.

One could imagine having the discovery server itself perform these signature
consistency checks and so only hold valid address maps. However, this would
only be of use if the application can trust the integrity of the discovery server
would require a different form of certification, perhaps closer to a full PKI
system. Having the address map entries self-certifying, or separately signed, is
preferable if it can be made to scale.

5.2.5 Provenance representation and API
The Snippet Manager application allows users to view comments, ratings and
classifications for an item that could have come from many different
contributors. We would like, therefore, to track the provenance (i.e. the origin)
of such annotations. This is an issue that we tried several solutions for, none of
which were entirely satisfactory.

Provenance cannot be handled at the message level. For example, in querying
the community for some information, we could implicitly note which data
sources provided which statements and so track (at least partial) provenance.
This has no particular value in our application, because each data source is free
to cache information it has found from other data sources (e.g. the discovery
server, or a user copying an item from another person’s workspace into their
own). The provenance we need to track is authorship not “most recent supplier
of this copy”.

Our first approach to provenance representation was to embed it within the data
model itself. We replaced value literals by bNode structures as illustrated in
Figure 8:

urn:x-hp-item:… 4.5
eps:rating rdf:value

eps:provenance

Figure 8: Representing provenance using an intermediate bNode

This is an adequate representation but is difficult to work with at the API level.
If a property like a rating could have either a simple literal value or a structured
provenanced value then we have to ensure that both query patterns and
navigation code deal with both cases. The bNode-closure rule on QBE was, in
part, designed to make the query support transparent but the application is still
faced with traversing one of two different structures. This could have been
simplified by hiding the provenance structure behind an API but that API would
have been very specific to this non-standard method of provenance
representation.

 Page 25

We revised our approach to use the official RDF technique for this problem:
reification. In this case, the information in Figure 8 would be represented as
shown in Figure 9:

urn:x-hp-item:… 4.5
eps:rating

eps:provenance

rdf:subject

rdf:predicate

rdf:object

rdf:type rdf:statement

Figure 9: Representing provenance using RDF reification

This removes the problem that code that does not care about provenance
information has a more complex structure to navigate. Code that does need to
process provenance information is now more complex but we mitigated that by
adding two additional Network API operations:

• addWithProvenance(Model, provenance)
This uploads to the remote store the statements in Model plus a reification
of all the statements in the Model along with a link from each reified
statement to the provenance resource. In the current implementation this
transformation is done client side and translated into a normal add
operation but we could modify the network API to directly support it
which would reduce the size of the upload message.

• listWithProvenance(Pattern)
Returns the set of all RDF statements in a KB that match the pattern, along
with any provenance information available for any of the statements to be
returned.

5.2.5.1 Provenance representation and API – assessment and lessons
This approach of using explicit reification (with some supporting utility
functions) to represent provenance information did work, but it is still not an
ideal solution.

The primary problem is that of bulk – six statements are needed in this approach
for each unadorned statement. In terms of transport syntax the overhead could
be reduced by intelligent use of rdf:ID tags to carry implicit reification but our
RDF tools did not fully support this mechanism. Similarly the storage overhead
could be reduced by custom storage solutions but the current Jena
implementation of this is limited.

This sense of high overhead meant that our application code tended to avoid
using these withProvenance methods, which meant that we captured inadequate
provenance in our knowledge bases. This in turn reduced the incentive to start
adding better convenience tools for provenance support.

The lesson we take from this is that it is important to determine a provenance
mechanism up-front, make sure it works from a practical application developer
viewpoint and a theoretical viewpoint, and then use it everywhere.

 Page 26

5.2.6 Access control for RDF data stores
An important aspect of person-centric knowledge management is the notion that
individuals own their information and can control who has access to it. This
principle drives a need for access control within RDF data stores.

Within the ePerson framework, we implemented a fine grain role-based access
control system, for personal knowledge bases. The fine grain nature of our
design allows the user to control, down to the level of individual statements,
what is visible to others. The complexity of this is balanced by assigning
permission to roles, rather than to specific individuals, as there are likely to be
fewer distinct role permissions than individuals in a community.

To configure the access control system the user must:

1. Define a set of roles
2. Assign patterns (defining what information is visible) to each role
3. Assign roles to known users

When handling a query for information, the knowledge base must:

1. Authenticate the identity of the user making the request
2. Map the user to a legitimate role (or set of roles)
3. Perform the query on the underlying RDF model
4. Filter the results according to the patterns defined for each role

In the rest of this section we will provide some of the details of the
implementation of this scheme, and what we learned.

Defining role hierarchies and permissions
A role hierarchy defines a set of roles, and the relationships between them. In
our system, we have defined two example hierarchies – Simple Roles and HP
Roles – to experiment with. More can easily be added. The Simple Roles
hierarchy is:

AnyoneRole
 FamilyRole
 ParentRole
 SiblingRole
 FriendRole
 ColleagueRole

One or more patterns can be added to each role to define the set of statements
visible to that role. The patterns are actually QBE patterns as described in
section 5.2.2. This is a form of positive selection; if a statement is not selected
by any of the QBE patterns it will be invisible to the role.

Within Snippet Manager there is a Role Editor, which is used to manage roles
and patterns. A screenshot of this is shown in Figure 10:

 Page 27

Figure 10: The Snippet Manager role editor

A role will inherit the permissions of its parent. Thus, at each level in the
hierarchy it is only necessary to specify patterns for the additional information
that needs to be made visible.

The Role Editor is also used for assigning users to roles, by simply dragging the
user and dropping them on the appropriate role. Users can be assigned to
multiple roles; in which case the permissions associated with the different roles
are aggregated together.

It is also possible to use several role hierarchies concurrently; the role editor
queries the local knowledge base for any resources of type RoleRoot, and builds
a role hierarchy view for each. Again, the same user may be assigned to multiple
roles across the different hierarchies.

Although provided primarily as a toy example, the SimpleRoles hierarchy
includes one special role - the AnyoneRole. This role provides a placeholder for
permissions for unknown users. It's also used when the authentication of a user
fails; say because the message signature is invalid.

Authenticating requests
The transport layer provides the basic infrastructure for signing and verifying
messages. This works without any need for certificates, because we have a
convention that the ePerson URN is derived using a hash of their public key.

The Authority structure in the message header includes the claimed identity
(ePerson URN), and the public key needed to verify the message. Authentication
involves checking the message signature is valid, and then checking the
relationship between the claimed identity and the public key.

At the completion of this stage, we have verified that the sender of the message
was in possession of the private key belonging to the claimed identity. That's
about as good as it gets.

 Page 28

Mapping to a set of roles
The next step is to determine the set of roles to which the requestor is entitled.

The algorithm is as follows:

1. Search the local knowledge base for a list of legitimate roles for this
user (as defined by the knowledge base owner).

2. If the requestor has specified a set of desired roles, then form the
intersection of the desired roles set and the legitimate roles set. If no
roles have been requested, then skip this step. Note that by specifying
roles, a requestor can only reduce their access rights.

3. Expand the set of roles by adding all parent roles; this set is termed the
set of granted roles.

At the completion of this stage, we have the set of granted roles that will be used
to filter the results set.

Filtering results according to role patterns
For each role, we periodically (every 30 seconds) build a query by aggregating
the QBE patterns associated with the role, and execute the query against the
RDF model for the knowledge base. This query returns the set of statements
visible to the role (but not its parent). This set is cached (in a Java hash set) for
use as a statement filter. If new data is added to the knowledge base, or the role
patterns are updated, there will be a lag of at most 30 seconds before the
statement filters are consistent with the changes. This was deemed acceptable.

The process of filtering the results of the user's query involves iterating through
the individual statements and testing if they are present in any of the statement
caches associated with any of the granted roles. If not, the statement is deleted
from the results set.

5.2.6.1 Access control for RDF data stores - assessment and lessons
The access control scheme seemed to work well; by maintaining per-role
statement caches (filters) we achieved a good balance between memory usage,
query performance, and correct handling of updates. The only apparent
performance impact of running with access control enabled was an increase in
start up time for Snippet Manager (an extra 5-10 seconds), which is common in
Java applications that use Sun's JCE (Java Cryptography Engine). Once running,
there seemed to be little degradation in query performance.

This high performance is made possible by our policy of caching statement
filters for each role. The current cache implementation might need some
refinement if required to scale to a large number of roles.

A more general concern with this type of access control is the way in which
users must specify the permissions using QBE patterns. These are not really user
friendly. It would be nice to present a higher level user interface, possibly using
pre-formatted queries for specific cases, rather like the way our community
browser works (§5.5.7).

Another shortcoming of the fine grain scheme presented here is that it only
works when reading back information. For write access, we adopted a very
coarse grain model; the KB has one owner, and only that owner can make

 Page 29

updates. Our intent was to extend this to be a list of owners, but the granularity
is likely to remain the same.

We also encountered some system wide issues When access control is enabled
on a KB, it ceases to be discoverable by the discover service, since this does not
currently sign its requests. Clients rely on the discovery service for access point
information, and so were unable to connect to the KB. The fix was to add the
following pattern to the AnyoneRole:

[] rdf:type kba:KB; kba:accessPoint []; kba:* [].
[] kba:providesService [* []].

Finally, we should note that the access control is built upon the message signing
provided by the transport layer. Even minor re-formatting of messages (such as
Windows style new lines being morphed to Unix style new lines) can break the
signatures. We hit several such problems; each of which was hard to diagnose.
Whilst some of these would have been prevented if we had used the full
cannonicalization that is part of XML signature, many would not. Application
writers beware!

 Page 30

5.3 Structure layer
A key user value for the envisaged ePerson applications in general, and the
Snippet Manager in particular, is to provide a coherent, integrated view onto the
plurality of the user’s information sources. Ultimately, a Snippet Manager might
be expected to assist in the management, sharing and discovery of the user’s
email, web bookmarks, citation lists, MP3 playlists and many other resources.
To facilitate this integrated view, an essential architectural component is
conceptual model of these disparate data forms. This section discusses the data
modelling layer of our architecture, and the use of ontologies and other semantic
web technologies. Both general principles and the specifics of the prototype
application are outlined.

The first component of the conceptual model is a top-level abstraction that
encompasses all of the application-layer modelled entities: web addresses,
bookmarks, files, lists, etc. The abstraction Item is used as the top-level concept.
Specific sub-types of Item are then used to model other forms, for example
BookmarkItem represents web addresses. Items can have structure, so an item can
contain other items, and can have a variety of properties asserted about it. It is
important to note that an item is the proxy for the original content; rather is the
locus of knowledge about that content. So, for example, an item representing a
web-address will have as one of its properties the web URL, but the identifying
URI of the item is in a completely separate namespace from standard WWW
URL’s (see below). Among other consequences, this allows us to model a
situation in which both Fred and Jane make different, possibly incompatible,
assertions about the same web page. Each user would create a separate Item,
each of which would point via contentURI to the web page under discussion, but
would provide separate assertions about it (Figure 11).

Web page
http://foo.com

contentURI

Fred’s item

“very helpful”

review

Jane’s item

contentURI

“too long”

review

Figure 11: Separate items refer to the same content

Since items are first-class objects in their own right, other users can also refer to
them, in the same way as other forms of content. So we can envisage networks
of knowledge-sharing building up, as users refer directly to others’ assertions
(Figure 12):

 Page 31

Web page

http://foo.com
contentURI

Fred’s item

“very helpful”

review

Jane’s item
contentURI

“2”
rating

Figure 12: Items can refer to each other

The Snippet Manager conceptual model is defined in terms of DAML ontology
classes and properties. Each item type corresponds to a class, and the standard
properties that we expect to associate with that item are defined as properties
with the class as domain. Extensive use is made of DAML’s sub-class and sub-
property capabilities for defining the conceptual model. Appendix 1 shows the
hierarchy of classes in our current collection of DAML files.

In order to manipulate the elements of the conceptual model in Java, we use the
Jena toolkit [8] to expose RDF and DAML values as Java objects. The full
contents of the ontology defined by the various DAML files is imported into an
ontology model at the start of the Snippet Manager application, and is then
available to the rest of the application. In addition, a tool automatically
generates Java vocabularies that encode the well-known names from the
ontologies as Java constants.

So far, we have discussed the use of the data-modelling layer to store the
domain information the ePerson application will process. A key benefit of RDF
is that other data formats can be defined and freely mixed in with other data.
This is in contrast to, say, a database, in which the relational tables must be
carefully designed a priori, and cannot be easily extended at run-time. The
knowledge base structure described in §5.2 is, therefore, used to store other
aspects of the application. In particular, the way that the user has configured
their view onto the items they have stored is itself stored as a first-class RDF
structure, encoded according to a model defined by a DAML ontology. This
view includes both the structuring of items into classifications, and the grouping
and presentation of items (for example in workspaces, below). The benefits of
this de-segregation between the application data model and the application
presentation model include:

• the user’s working space is stored on the server, and so is accessible
consistently from any instance of the client;

• the user’s organisational view of the content (i.e. item) space is itself a
shareable commodity, which facilitates a further degree of collaboration
between members of a community.

5.3.1 Of names …
Items themselves must be able to record metadata about many different kinds of
entity, many of which don’t have well-known names. Furthermore, even where
well-known names do exist (for example web pages), the item recording
assertions and metadata about the named resource has a separate and distinct
existence. We must, therefore, name each item using a name from a distinct

 Page 32

namespace. The solution we adopted was to create a URI from a GUID: a string
that is highly likely never to be generated by another processor, and can
therefore be safely regarded as a globally unique identifier. This URI is encoded
using an unregistered URN namespace:
 urn:x-hp-item:7aef341a-272d-51b2-8000-d1afd2ea63a4
This scheme works well for generating names that reliably do not accidentally
clash with other item names in the set of all workspaces. The drawbacks include
the fact that the name is highly non-user-friendly, and so generally needs to be
hidden by the user interface, and that there is no obvious way to resolve such
names to the resources that they represent. The discovery server provides some
assistance for resolution, but has its own design limitations as described in
§5.2.4. In general, a scalable decentralised search mechanism would be needed
to resolve item URIs to items.

5.3.2 Encoding classifications
A key part of the vision of the ePerson activity is to support the re-use of
organizations of data by other members of the community. Thus if person A
creates a useful set of categories for classifying links about Java programming,
there are ways in which this classification can be re-used by other users
interested in Java programming. This implies that classifications must be first
class objects that can not only be created and refined by one person, but
discovered and re-used by others.

To encode a classification, a DAML class ClassificationService is defined as
a sub-class of ServiceDescription. This positions a classification as an active
entity – a service in the ePerson network – rather than a purely declarative data
structure. Of course, there is a declarative component to the classification,
including the categories themselves, as discussed further below. However, this
positioning allows us to model dynamic classifications, such as a user’s Java
taxonomy, in just the same way as more static classifications such as the DMOZ
classifier (see 5.4.1).

To model a classification, we must record a number of key properties about it.
For example, noting the root node or nodes allows the UI to present the
classification in a tree-like or graph-like view. For a given Item, a property will
relate that item to the class that contains the item in the classification12. For
different classifications, that property will be different. For example, a
classification according to the user’s bookmark structure may use a
bookmarkInFolder property to classify bookmarks, whereas a DMOZ
classification may use dmozTopic. Thus, to record the classification itself in the
KB, we must record the particular property that is used to map items to classes.
Specifically, a property classificationProperty has a domain of
ClassificationService and a range of rdf:Property. A similar encoding is used
to record the property that determines the sub-categories of a given category,
which again may be different for each classification. This ability to mix levels of
description – ClassificationService is from one perspective a first class
knowledge item in the KB, while from another it is a meta-description of a

12 This is a slight simplification, in that a single item may be in multiple categories. This does not
change the essence of this description.

 Page 33

characteristic of the user’s KB – is a feature of RDF. It is undoubtedly
convenient to be able to so freely mix levels of description, but it remains to be
seen whether in the longer term this introduces hidden complexities.

5.3.3 Structure layer – assessment and lessons
A design goal at the start of the project had been to provide a highly flexible
model for encoding many different types of content items. To this end, we made
the representation very sparse: item class and a small number of sub-classes, and
RDF properties. This is a very flexible design, but suffers from placing too
much burden onto the programmer to manipulate the contents of the items (e.g.
getting, setting and processing item properties). On reflection, it may have been
that a rather richer representation formalism would have provided more
productivity for the application design programmers. For further comments on
the interoperation of Java and RDF, see §5.1.2.

Encoding the ontology information in DAML was straightforward. We tried a
number of editing tools for DAML files, but did not find any of them to add
sufficient value above a capable text editor. Problems included difficulties with
namespaces and multiple imports, and a tendency to define range constraints
locally to classes using DAML restrictions, rather than global daml:range
statements. Thus, ontology editing was performed exclusively in standard text
editors, with the result that syntax errors were detected fairly late in the process.
The DAML validator [16] was helpful in detecting some flaws in the ontology
files, but had some notable limitations. For further comments on the use of
DAML in the project, see §5.1.3.

We lacked the computational tools to make use of all of the information that was
encoded in the ontology. In particular, where the type of a given instance, or the
applicability of a property, might have been inferred from the sub-class and sub-
property hierarchies, we had no direct access to that information and had to
manually code (in the KB or the Java accessors) the closure of the hierarchy.

The flattening of the various layers of the data model into a single RDF KB had
positive and negative features. It did provide a very flexible means of storing a
large variety of different kinds of information, and this was repeatedly valuable.
For example, a new item collection view could be defined that recorded
particular parameters that it needed in the KB. No additional code was needed to
make these parameters available to the Java code building the view. Among the
drawbacks were that resetting the KB during development was hard (without
losing valuable information such as a the user’s registration details), and that
care had to be taken to hide some properties from the user interface (because
they were distracting and unhelpful, or dangerous to modify manually). The
latter requirement was addressed by adding a class EPersonInternal to mark
intended-to-be-hidden information, an inelegant solution at best.

 Page 34

5.4 Knowledge source layer

5.4.1 DMOZ Server

5.4.1.1 Introduction to the DMOZ dataset
The DMOZ (Directory Mozilla) Open Directory Project [17]is an open content
Internet directory. Although it is similar to Yahoo! in directory structure,
DMoz.org offers its directory for free, open use.

The thousands of DMoz.org editors are all volunteers, and DMoz.org has only
a handful of official staff members. It is currently owned by Netscape under
the Mozilla umbrella.

The RDF version of DMOZ comes as two large RDF files:

• The RDF file structure.u8 defines the topic hierarchy. There are 428,590
topic categories13, with an average depth of 6.89 levels below root and a
maximum depth of 16 levels below root. The file is 289 Mbytes and
contains about 3 million RDF statements.

• The RDF file content.u8 provides URLs and descriptions of 3,005,746
web sites, including where they fit into the DMOZ hierarchy. The file is
939MB and contains about 16 million RDF statements.

Our interest in DMOZ is as a tool for classifying web pages. This was useful
in a couple of contexts in ePerson; for organizing a set of bookmarks into a
standard hierarchy and for building a profile of someone's interests from the
web pages they view.

Given the size of the DMOZ dataset, it was preferable to make the data
available as a shared resource on the network, rather than replicate it at each
node. The ePerson knowledge base was the ideal abstraction for this data.

5.4.1.2 Parsing the DMOZ Structure dataset
The structure dataset was parsed directly into a Berkeley DB (BDB) backed
Jena model. This took approximately 16 hours, and resulted in a 3.7GB file.
This ten-fold expansion in space comes from three things:

1. BDB database files are not compact; typical utilizations are around 60%
leaving some room for expansion. (1.7x)

2. Jena stores each RDF statement three times, for fast lookups on subject,
predicate or object. (3x)

3. Jena stores each RDF statement as an expanded triple; this less efficient
than the same statements serialized to XML/RDF since subjects are
replicated and prefixes expanded. We verified this overhead with a
fragment of the DMOZ structure dataset. (2.2x)

5.4.1.3 Parsing the DMOZ Content dataset
The content dataset is much (5x) larger than the structure dataset, and needed
to be handled differently because of its size. Instead of storing this in a

13 On the 17th April 2002.

 Page 35

(generic) BDB backed Jena model, we designed a custom BDB database to
allow efficient lookups keyed on either URL or DMOZ category. This
database was loaded using a custom SAX based parser, which took about 24
hours to run and resulted in a 1.6GB database.14

We then wrote an ePerson KnowledgeProvider backed by this custom
database that answers query-by-example (QBE) queries. We have, in effect,
built a gateway making a legacy database appear as RDF.

A gateway based solution for presenting the content dataset has both strong
and weak points. It results in a smaller faster database than would be the case
if we had used a BDB backed Jena model directly. However, the query
handling side was more complicated; we explicitly coded for the types of QBE
query we expected, and returned an error in other cases. With hindsight, a
better approach would have been to write a wrapper for the custom database
that implemented the Jena Store interface. This could then have been used
transparently by the standard QBE machinery. Future versions of Jena are
planned, which will introduce a simpler interface onto storage sub-systems.
Such simplifications will make the development of gateway solutions much
easier.

5.4.1.4 Classifier for mapping from URLs to DMOZ categories
Our DMOZ classifier works only on the web page URL; all page content is
disregarded. The algorithm starts with the URL and looks this up in the
DMOZ content dataset. If there isn't an exact match, then the URL is truncated
at the last "/" character and the lookup retried. This process is repeated until a
match is found, or there are no more "/" characters. At this point, a few
variants of the base name are tried before giving up.

Multiple matches are possible; this results from editors categorizing the same
site in several places in the DMOZ hierarchy.

5.4.1.5 DMOZ with ePerson
DMOZ category data is used in several places in ePerson:

• The items in a workspace can be classified using the DMOZ service.

• A collection view of items within a workspace can use DMOZ category
data to present the items hierarchically.

• When importing bookmarks, each one can be classified using the DMOZ
service.

• The Community Browser allows a user to lookup the DMOZ category of
an item, and to search for other items in the community in the same
category.

• There is a dmozViewer tool allowing the DMOZ structure to be browsed.
The viewer connects to the DMOZ service to access the structure.

14 Doing the same with a Jena model would have taken an estimated 60 hours and resulted in a
12GB database.

 Page 36

• A users interest profile (extracted from the history store) is represented as
a weighted vector of DMOZ categories.

• A peer-to-peer routing network could be built using a similarity metric
between DMOZ interest profiles.

5.4.1.6 Issues
Although the DMOZ datasets are in an RDF-like format, we were unable to
parse them without extensive modifications. We wrote Unix sed scripts to
correct the many syntactic errors. The most common problem was the presence
of control characters in literals (the files were not even legal XML!). Another
problem was the use of an earlier version of RDF, resulting in an incorrect
namespace for the rdf: prefix which confused our RDF parser. The final
problem was due to the lack of a schema for the DMOZ dataset, leading to
uncertainties about the correct namespaces for the DMOZ properties and topic
classes.

Once we were able to cleanly parse the data, we were surprised by the relative
ease of with which Jena was able to deal with very large RDF models. The long
parse times result from the systems being memory limited (256MB); the BDB
databases seemed to exhibit little locality of reference, and so caching was
generally ineffective.

In general when dealing with large Jena models, it's quite easy to write
"pathological" QBE queries that need to touch every statement. These would
take many hours to execute, giving the appearance that the system had hung.
Interrupting (with ^C) would often cause the Java VM to crash (if the interrupt
hit when executing the native BDB code). For some time we suspected some
kind of database deadlock was occurring. Eventually we realised that these
hangs were caused by pathological queries. The solution was to pre-parse the
query, try to detect the pathological cases, and return a "query too complicated"
exception. This problem was made worse by the need to serialize all accesses to
the Jena model, since Jena's BDB implementation is not thread safe.

5.4.2 History server
A potentially rich source of user profile data is available from the history of
user’s web browser interactions. We make this available through a history store.
This system operates as a web proxy, and maintains a keyword-indexed cache of
all of the web pages browsed by each user. It is built on top of the Jakarta
Lucene search engine [18], and uses PostgreSQL for storing page-hit logs and
BerkeleyDB for storing cached copies of web pages. Members of the project
team have been using the history store (somewhat sporadically) for about a year
now.

The approach we have used to mine the History Store system results in an
interest profile for a user that is a set of weighted DMOZ categories, where the
weights across all of the categories sum to unity at the root of the DMOZ
hierarchy. An example of the RDF data structure used to represent this is shown
in Figure 13.

 Page 37

epid

ep:hasProfile

rdf:type
ep:ProfileRoot

rdf:type
hs:InterestProfile

hs:hasInterestProfile

hs:hasInterest

rdf:type
hs:Interest

hs:weighths:topic

dmoz:Top/…. “0.3”

rdf:type
rdf:Statement

rdf:subject

rdf:object

rdf:predicate

hs:hasProvenance

rdf:type

prov:hasTimestamp

prov:Provenance

prov:hasSource

Figure 13: The RDF structure of history store entries
A hs:hasInterestProfile property links from the profile root to the interest
profile node. This link is reified, allowing statements about the interest profile
instance to be made. This is used to record the origin of the profile (i.e. the
history store system) and the date the profile was generated.

The set of user interests is represented using hs:hasInterest properties to link
from the interest profile node to individual interest nodes, which record a
DMOZ category and the weight associated with the category. Only categories
with non-zero weights are included.

The process for generating an interest profile involves looking at the set of web
pages browsed by a user over a rolling time window - typically the last six
months. A weighting function can be added to this window, so that pages
browsed recently have more significance (linear weighting). Alternatively, all
page hits within the window can be treated equally (flat weighting). The result is
a score in the range 0.0 to 1.0 for each page hit. The page URL is then mapped
to a DMOZ category, using the mechanism outline in §5.4.1.4. This is repeated
for all page hits in the time window, and the page scores are accumulated by
DMOZ category.

Once all of the page hits have been processed, a two-step normalization
transforms the accumulated scores into the final category weights. The first step
is to propagate scores from leaf categories back towards the root. The idea here
is that the score associated with a category should represent all page hits that
mapped onto that category and all of its children. The second stage is to divide
all scores by the value on the DMOZ root node. This ensures the final category
weights are independent of the number of pages browsed.

Clearly, a significant amount of work is involved in generating an interest
profile. Consequently, we have adopted a batch model for processing. The
interest profile is re-generated for each user on a weekly basis, and the RDF
dataset (typically several hundred statements) is added to the user's personal KB.
Since generating an interest profile may involve mapping many thousands of

 Page 38

page hits to their DMOZ categories, it is advantageous to execute this on a
machine with a local copy of the DMOZ database.

There is much more work that could be done on interest profiles. To date we
have not implemented any high level tools for visualizing interest profiles. The
data model outlined above allows many interest profiles to exist in a KB,
allowing changes in users interests over time to be monitored. Again, we have
not exploited this. Finally, there is scope for developing generalized query
routing protocols that select the next destination based on a similarity metric
applied to interest profiles.

 Page 39

5.5 Application layer

5.5.1 Overview
The Snippet Manager application sits at the top of the ePerson technology stack.
It represents the primary means of interaction between the user and the
knowledge sources. In a sense, the lower layers provide the key functionality for
our ePerson hypotheses, and the application layer allows the user to test these in
a simple and intuitive way.

One goal for this first prototype is to produce an application that we could (at
least in principle) see ourselves using. For example, a useful outcome would be
a tool that enables a user to manage their own data effectively; to merge data
from a number of sources and attach useful metadata to it in order to make it
meaningful. This general aspiration can be expressed as a couple of specific
design objectives:

(i) The application should provide a lightweight affordance for data
collection : “capture now, organize later”.

(ii) The application should enable the user to generate new metadata in a
painless and intuitive manner.

The base UI addresses, to a greater or lesser extent, both principles. A set of data
import tools is also provided for lightweight capture.

We would also like the prototype to allow use of other people’s information –
not just the content itself, but also the annotations (metadata) and organisation.
We need to do this in a p2p manner, allowing flexible decentralized control
while respecting privacy. Application extensions such as a community browser,
a classification service and a profile management facility address these needs.

The application thus consists of the base UI itself and a number of tools and
services. These will be examined in turn, but first we introduce the key
abstractions.

5.5.2 User abstractions
The application is based around some key user abstractions. Firstly, there is the
notion of an Item. We deliberately avoid the use of ‘Snippet’ as our base
abstraction, for while snippets are certainly items, our intention (as we shall see)
is for the ‘Item’ concept to cover other types of information and content.

A second user abstraction is the Workspace, which acts as a container for items.
The idea here is that a workspace contains and organises items that are in some
sense related. Workspaces can be used in a number of ways. For example, in an
information foraging task, they might be convenient places to ‘dump’ items that
can be filtered, annotated and organised later. Alternatively, a workspace can be
created specifically to capture the refined output of an investigation, or to accept
data from an import tool. Workspaces can be viewed remotely (subject to access
permissions), thus providing a means of sharing item information across the
peer network. The organisation itself (for example, folder hierarchy) can also be
made available for sharing as a Classification Service (§5.5.5).

 Page 40

A workspace can be examined using a Workspace View, which presents an
overall summary of its contained items (an Item Collection View) and a context
specific view onto a single item (Item View).

With these abstractions in place, we are able to provide some custom extensions.
For example, the profile management tools (§5.5.6) treats users as specialized
items and is thus able to present them in the familiar workspace context. The
community browser (§5.5.7) presents queries as items, and similarly provides a
specialised workspace view for navigation.

5.5.3 Application UI
In this section we describe the base UI itself. Associated application tools and
services are described in subsequent sections.

5.5.3.1 Workspace Views
As mentioned above, the central user concept is that workspaces contain items.
Thus, the main UI component is a workspace view, which contains item
collection views in one (tabbed) pane, and item views in another. Figure 14
shows two such views onto the workspace “Netscape bookmarks”. In both
workspace views, an item collection view (left pane) presents a tree-like
organisation of items15, in which the item “JTP User Manual” (a bookmark) is
selected. The difference between the views is that a different item view (right
pane) is selected in each; the lower view shows a bookmark specific item view,
whilst the upper view shows a default item view.

Same Item Selected

Multiple Views for same Item

Property dependent rendering

Item-dependent view

Multiple Views for item collection

Figure 14: Two workspace views, demonstrating a variety of key features

There are a number of other things worth noting about this diagram. Firstly, the
item collection view (the left hand pane) is split into tabs. This allows the user to

15 In fact, the organisation is imported from the user’s Netscape bookmark folder hierarchy, a
process explained in §5.5.4.1

 Page 41

view their items in a number of different organisational formats, depending on
the context. In this case, a bookmark folder and DMOZ hierarchy view are
offered. These are different organisational structures which both fit a tree like
organisation. Other types of organisation (such as simple lists, graphs, or
clusters) are also supported by this framework.

Secondly, the item chosen is a bookmark. Thus, whereas the default item view
(top) presents all of an item’s metadata16, a bookmark view (bottom) shows the
relevant data fields, sorted and organised in a consistent manner. An item
dependent view is also a good place to present context specific functionality
such as a link out to a browser (the button marked “Browse”). The query
predicate (§5.5.7), ePerson (§5.5.6) and role (§5.5.6) views are other examples
of item dependent views.

Thirdly, property dependent rendering is implemented. In the default item view,
we can see that dates are rendered in a user-defined format (eg “01/03/2002” vs
“01 March 2002”), item labels are presented in bold, and bookmark folders (“in
folder”) are rendered by folder label (“Semantic Web”). This last is an example
of a general trick where one might want to render a resource using some
property of that resource. This allows us to specify some perhaps more
meaningful description of that resource (in the bookmark folder case, the folder
‘value’ itself is essentially a UUID which will carry no useful information for
the user). Figure 15 shows how this technique is used to provide an indirect
label for a bookmark’s folder.

item#2e215e9b-273e-51b2-8000-dc50c524a762

bookmark#2e215e92-273e-51b2-8000-dc50c524a762 “Semantic Web”
bookmark:bmTitle

classification:inFolder

“JTP User Manual”item:label

Figure 15: Indirect property labelling

5.5.3.2 Metadata Creation
Item annotations can be added manually through the item views, as shown in
Figure 2. However, the UI also provides a number of lightweight capture17 and
markup mechanisms. For example, an item (or items) can be dragged from a
browser (or from a file store) and dropped into a workspace. On drop
completion, some information can be gleaned from its MIME type. Thus,
bookmark items and file items are automatically assigned a different rdf:type
property on import. Metadata can also be altered via drag and drop. When an
item is dragged to a new place, the user is making an implicit statement about
that item. For example, if a bookmark is dragged to a new folder, it is given a
new bookmark:inFolder property corresponding to the new folder (and the old
inFolder property is removed, unless the item was copied). A third mechanism
is the bookmark item view, where a user can initiate an HTTP request that will
collect any relevant metadata available at the bookmark’s URL. Other

16 Almost – there is a class of ‘ePerson internal’ metadata, which does not show up even in default
item views.
17 The other main capture mechanism, via import tools, will be described in §5.5.4

 Page 42

mechanisms for assisted markup include the classification service (§5.5.5) and
community annotation (§5.5.7).

5.5.4 Import Tools
In this section we discuss the first of the application tools, the import tools.
These were conceived and in some cases implemented to accept data from a
number of different sources. Examples of such sources include bookmark data
(described below), bibliography data (in BibTex or ProCite format), news
articles (in RSS format) and user specific documents (in custom format, eg
records in an Access database).

In order to provide more context for our discussion, we describe in more detail one of
our implemented import tools, the bookmark importer.

5.5.4.1 Bookmark import tool
A key application of Snippet Manager is to enable the discovery, sharing and
annotation of bookmarks within a community of users. A good source of such
categorized bookmarks is the user's web browser favourites list. Hence, we
looked into ways of importing this data into Snippet Manager.

An easy initial target was a batch import function that creates and populates a
new "Bookmarks" workspace in the user's personal KB. That workspace is then
visible to other users through the Community Browser, just like any other
workspace.

The main issue here was for the import tool to be compatible with the many
different web browsers in use within the group (IE5, Opera, Netscape 4.7 and
Netscape 6.0). To achieve this, we used existing tools to first export the
bookmarks to XBEL (XML Bookmark Exchange Language). We then wrote a
tool that would read the XBEL file and translate this into an equivalent RDF
representation that could be written into the users KB.

It's important to realize that a user’s favourites list really contains two different
things: an organizational hierarchy (how the user sees their world) and the
individual bookmarks that populate that hierarchy. When importing the data into
Snippet Manager both of these concepts are carried across into Snippet
Manager. Firstly, we create a custom classification scheme, where each of the
bookmarks folders becomes a classification node within the scheme. A
classification record (§5.5.5) is created to describe the scheme as a whole.
Secondly, we create a new workspace, and add items to this to represent each of
the user's bookmarks. An appropriate tree-like item collection view is then
added to the workspace to allow the bookmarks to be viewed according to their
original hierarchy. We may also classify each bookmark using the DMOZ
server, yielding a second useful way to view the bookmarks. A walkthrough of
the RDF data generated can be found in Appendix 2.

Note that both these import-time classifications add useful annotations to items
and are thus an important mechanism for assisted metadata creation. Other
annotations (for example, item type and label) are also added at import time.

 Page 43

One minor complexity is the need to include a RDF Sequence to retain the order
of contents of a folder, which has resulted in some duplication of data. This
could probably be avoided (and was not actually used by Snippet Manager).

5.5.4.2 Import tools – assessment and lessons
The import tools provide a convenient method for loading knowledge bases with
non-trivial amounts of test data. However, they are time-consuming to produce;
due to the diverse nature of input data formats, a tailor-made importer is
necessary for each data source. An alternative approach would be to pre-process
the data and then import using some generic importer. However, the pre-
processing is such an overwhelming part of this task that the generic importer
would be trivial, and hence the two approaches are in practice almost identical.

Although the bookmark import tool is useful for generating data for
demonstrations, it is less than ideal for general use. The problem is that there are
two places a user can manage their bookmarks - in their Web Browser and in
Snippet Manager. Changes made in either tool really need to be propagated
through to the other. This is actually a very hard issue to solve transparently,
particularly in an environment with multiple browsers.

A more tractable solution could be to support the manual synchronization of
bookmarks between the web browser and Snippet Manager. The
synchronization process would involve exporting the current set of bookmarks
from the Web Browser and Snippet Manager. These two sets would need to be
merged, somehow resolving conflicting changes. Finally, the merged set would
need to be re-imported back into the Web Browser and Snippet Manager.
Because of the data caching performed by both of these applications, it is likely
that a restart would be necessary to see the synchronized bookmarks - hence the
need for the process to be instigated manually by the user.18

5.5.5 Classification Service
Classification services provide an application extension that enables peers to
share organisational metadata. The DMOZ data source is exposed to the ePerson
network as one such classification service. That means that, given a set of
bookmarks, the service will annotate each with its appropriate DMOZ category
(as explained in §5.4.1.4). Hence, bookmarks can be automatically classified
according to the DMOZ hierarchy. Certain import operations (§5.5.4) also create
a classification service. For example, the bookmark import creates a service that
will assign known bookmarks into that user’s bookmark folders.

Classification services can be advertised via the Discovery Server (§5.2.4) and
thus made available to other peers. Such services are exposed by the “Apply
Classification” function on an item collection view. This function allows the
user to select from a list of discovered classification services. The chosen
service is then invoked to classify (possibly hitherto unorganised) data, and a
new item collection view is created for presentation of the new organization.
This way of working conforms to our design principle “Capture now, organize

18 This is current research into synchronization protocols such as [38] that might be applicable to
the bookmark synchronization issue.

 Page 44

later”, and also provides a mechanism to test our hypotheses about shared
organisational structures.

5.5.6 Profile management tools
Another set of application tools provides the ability to manage user profiles,
which are based on a rich schema. In the current schema, summarized in Figure
17 (page 62), we concentrate on descriptive information such as demographics,
contact points, interests, roles and depictions. The user manually enters most of
this information using an editor tool but this volunteered profile is augmented by
the inferred interest profile discussed in section 5.4.2 above.

The profile editing tool, shown in Figure 4, is a generic structured value editor
driven entirely by the profile schema written in DAML. The only additional
information required is a designation of the top level categories and ordering
preference hints to ensure that fields were displayed in a sensible order. These
hints are provided as additional RDF properties on the classes defined in the
profile DAML file.

The primary challenge in this area was to develop a profile ontology which
could be related to existing schemas (vCard [19], friend-of-a-friend [20] and
DRC Orlando profile [21]) to support future interoperability. This proved non-
trivial – see Appendix 4 for more details.

5.5.7 Community browser tool
Now that we have a connected network of RDF stores and services with all this
imported data, how can we explore it? The main workspace UI tools provide a
view a user’s own knowledge base but a key objective of the application is to let
users benefit from the work of colleagues. The primary tool for this is the
community browser.
The community browser appears like any other workspace tool within the
application. It displays a collection of items, new items can be dragged or copied
into it, and when an item is selected an appropriate multi-tabbed item view is
shown.

The key additional functionality of the community browser is that once an item
is selected a set of predefined community-based queries can be selected from a
menu. The results of these queries get added to the item collection view in a
tree-like layout:

 Page 45

The tree is striped – it alternates between collections of viewable items and
pseudo-relations that represent the community queries themselves. If the relation
link is selected (as in the figure above) the query specification is displayed
including the full QBE query used to generate the results.

• The queries are specified in a DAML file along with a schema for query
description. In this way additional queries can easily be written and shared.

The queries we defined were:

• hasWorkspace (ePerson) – from a ePerson id find all of the workspaces
that that person has allowed to be externally visible;

• communityAnnotation (item) – find all the properties of the given item
which are defined across the community, this might include multiple
annotations and ratings from different people;

• communityKeywordSearch (keyword) – this takes a text keyword and
retrieves all items in the community which have a property whose value
has the keyword as a substring;

• ePersonKeywordSearch (ePerson, keyword) – same as
communityKeywordSearch but restricted to the particular ePerson
currently selected;

• inBookmarkFolder (item) – find all the bookmark folders, across the
community, which contain this item;

• folderContains (folder) – find all the items contained in this bookmark
folder

• inWorkspace (item) – find all the user workspaces across the community
that contain this item (note that a remote workspace can be opened directly
from the workspace view pane so further queries to list workspace content
are not needed);

• dmozCategory (item) – find the DMOZ categories into which this item
could be assigned;

• communityItemsInCategory (category) - find all items across the
community which have been classified as having this DMOZ category.

item being queried

query predicate

result – a bookmark folder

query - finds folder content

results – folder items

explanation of
the selected

query predicate

 Page 46

5.5.8 Application layer – assessment and lessons
Our “RDF everywhere” principle has a number of interesting implications for
the UI. One obvious consequence is that the application represents persistent UI
state in RDF. A rather more significant example is provided by the item
dependent (and property dependent) views. These views (for example the
bookmark view) can be determined by an item’s rdf:type via a set of UI
presentation specifications (in RDF). Further details can be found in Appendix
5, but the key point is that the representation of item classes within a concept
hierarchy allows a configurable and data-driven UI. This approach worked well
for us, although there were some problems with event handling (see Appendix
5), mainly due to the interactions between Swing components and RDF wrapper
objects (see below). We also encountered a need for richer inferencing in the
underlying RDF toolkit, as explained in §5.3.3.

We did consider a number of other paradigms in this space. For example,
Javascript could be used to provide a rich mechanism for sharing configuration
machinery. Unfortunately the Javascript bindings are currently less than ideal,
and this area remains a topic for future investigation.

We adopted as a user model an abstraction over RDF. Rather than presenting a
property-centric view of the world, the UI in essence treats RDF as structured
objects. It is possible that this limits the number of actions that have a natural UI
representation, but we found that the user model was more than adequate for our
needs. Indeed, even if we provided a property-centric view as an alternative
model, it is far from clear that the benefits would outweigh the additional
cognitive load.

A related topic is that of interface style. We tried a number of styles, some of
which were particularly successful and were reused. Often, some evolution was
required before we arrived at a sufficiently general design, but in general, the
conceptual and engineering reuse of interface styles worked well. An example
can be seen in the community browser, which, even though it represents quite
different data, nevertheless has style consistent with the bookmark and DMOZ
views.

Another issue is the use of intermediate models and caches. For example, UI
components such as lists require some model behind them. This model needs to
be in memory for the UI performance reasons. In addition, a raw RDF
representation is not sufficient for certain representations (such as tables of
properties) where we expect the properties to be returned in a consistent order.
Finally, there are some properties that are in some sense privileged (e.g. item
label, which should be exposed to the UI through an object’s toString()
method) and would benefit from access via convenience methods. For all these
reasons we built wrapper objects around items which solved the problem at the
cost of extra UI complexity. This issue is also discussed in §6.1.2

An interesting issue arises from the concept of workspaces as containers. The
advantage of this view is that the user is quite familiar with the idea from
common file manager applications. Hence, an item can be selected, moved or
copied somewhere else. However it is not the content that is manipulated but the
metadata. A more refined concept would be to treat items as akin to UNIX soft
links, or Windows shortcuts. Even this analogy is not perfect, however. Firstly,
remote items are not treated as ‘real time’ links (indeed, the automatic

 Page 47

propagation of metadata between peers is not really addressed in Snippet
Manager19). Secondly, the application does not always make a distinction
between container level operations (‘delete from workspace’) and more subtle
metadata operations (‘delete from folder’)20. Even if it did, this distinction
would further add to the complexity of the user model.

The community browser offers an alternative to the ‘workspace as container’
concept. It presents a filtered view onto the community owned items, and is set
up for directed browsing, rather than manipulation and organisation of the
contained items. One could imagine more radical extensions to the workspace
concept, such as persistent queries (analogous to SQL views), in which the
content can change without user intervention. Whether these shifts in working
mode are intuitive to the casual user remains to be seen.

The Snippet Manager application allows the user to capture individual items in a
reasonably lightweight manner. However, it would be better to integrate the data
capture more with user activities (for example a ‘snippify this item’ button on a
browser). The import tools are useful, but again it would be better to integrate
them more tightly to a user’s normal workflow. In general, integration with
other tools is a weakness of the application.
The UI provides a number of mechanisms to generate new metadata,
particularly via drag and drop. Whilst one could certainly imagine richer
facilities (for example, content analysis of dropped text segments, metadata
extraction from Word documents) the application illustrates the importance of
the principle. Certainly our (user) experience suggests that adding data through
the default methods is rather too tedious to be widely used, and that user
assistance and automation are essential.

Finally, it is worth emphasizing the social filtering aspect of this work, in
particular our aspirations for a richer model of sharing: “share data, share
metadata, share organization”. The application (and in particular the
community browser) demonstrates an ability to share data and metadata. In
addition, the classification service allows a user to discover and reuse a form of
organisation. However, this sharing of organisation is rather coarse grain. In
particular, it is not sufficient to really test our ideas about emergent ontologies.

In summary, it was challenging to implement a UI that both provided a natural
interface and tested (some of) our intuitions. In fact, we have only partially
achieved this goal, and richer user abstractions are still required, in particular to
navigate larger communities and to clearly differentiate between metadata and
content. Nevertheless, we feel that we have made a good first step in exploring
appropriate user models for a semantic web application.

19 For example, a copied remote item’s metadata will stay in synchrony with its twin. But the same
item (by URI) not wrapped by the same Java object (e.g. in a different remote location) will not
receive metadata changes. There is partly a technical issue here (we had talked about, but not
implemented, a ‘lazy update’ mechanism). But there is also a conceptual issue in that our user
model does not clearly differentiate between identical (possibly remote) snippets, and distinct
snippets ‘about’ the same content.
20 Thus, for example, if an item appears in 2 folders, then deletion in one folder will remove the
item from the workspace completely (and thus, apparently, both folders). Actually, the inFolder
annotations are not removed, so that if the item is reintroduced to the workspace later, then the item
will reappear in both folders.

 Page 48

6 Discussion: successes, issues and lessons
The Snippet Manager and ePerson infrastructure required the development a
rich collection of system components. The work of developing a complete first
cut implementation of this system has given us many insights into the design
issues, along with several solutions and tools that are of practical benefit now.

The goal of the phase of the work reported here was to build a first complete,
functioning implementation of the Snippet Manager application and supporting
ePerson infrastructure. Against this goal we were very successful. The
infrastructure and application are sufficiently functional and stable to allow our
local work group to import bookmarks and other snippets and discover
interesting relationships between items. This was a successful demonstration of
feasibility.

This first implementation is not, and was not intended to be, a production system
suitable for daily use. The plan was to build a test system, review it and then
build a second-generation system, which could deliver on the original vision.
The test of this second generation system would be to deploy it to users outside
of our local workgroup and perform a user-based evaluation of whether our
hypothesis, as described in section 1, has been validated or not.

We have tried to highlight the lessons and insights for each subsystem as we
have described it above. In this section we discuss those system level issues that
have not already been covered.

6.1.1 Overall system lessons
The overall system functionality, as exposed through the current UI, is
sufficiently rich to show value in our approach and has enabled individuals to
discover linkages between bookmarks that weren’t apparent beforehand.
However, this first prototype is not sufficiently functional to become an
everyday tool for our workgroup.

Integration with current tools
The chief barrier to using the system in routine work is the lack of integration
with existing tools. For example, in bookmark management, we support bulk
import/export and drag-and-drop addition of single bookmarks but there is no
live dynamic link between the ePerson bookmark store and a user’s normal
browser. The alternative bookmark organizations created or discovered within
the ePerson framework are not visible from the browser only from the Snippet
Manager; conversely new bookmarks or folders created from within the browser
only become visible after a fresh import process.

Configuration complexity
The Snippet Manager, like many semantic web applications, will have greater
value for individual users if there are more users of the system in total. This
implies we should have as low a barrier to entry as possible – it should be
possible for new users to start using such an application with as little initial
investment in installation and configuration as possible. The current design
requires installation of a Java application, locating (or running your own) kbhost
service and creating an initial ePerson identity via a simple web form. The cost

 Page 49

of this could be quite low given good installation scripting, but having to install
any application can be a barrier. Switching to a web-based front end may lead to
a less effective UI, but would make it easier for users to experiment with using
the system.

For other workgroups to deploy the application, they would to need have access
to a Jabber server and configure the transport layer to connect to that.
Alternatively, on a local network configuration, the local UDP broadcast
protocol is effective. Even if we didn’t switch to a web-based UI, then switching
to a more universally available transport like HTTP and changing our distributed
query processing to not require a broadcast infrastructure would be worth
considering.

Scaling
Whilst not an issue for the current deployment levels there are several scaling
issues that would need to be addressed in a full scale implementation.

The key scaling issue is broadcast and discovery. We have already discussed the
issues with broadcast, our attempted solution using a discovery server and the
limitations of that design in section 5.2.4. A decentralized system with adaptive
index nodes would permit greater scaling.

The second scaling issue is that of distributed query. Within a small-scale
system, we can send an RDF query to the whole of the target community and
aggregate the results. With a larger installation, a query routing which chose a
subset of the community most likely to be able to add useful information on the
query would be preferable. This is a key research topic for the future.

6.1.2 Consequences of the extensive use of RDF
We consciously and deliberately used RDF (including DAML) to store all of the
persistent information in the Snippet Manager prototype. In this section we
discuss the consequences, good and bad, arising from this discussion.

Many models
The ePerson architecture in general assumes that client applications and data-
holding repositories are distributed throughout a peer-to-peer network. In
practise, this means that the single set of data held by the repository has to be
replicated on the client side for processing. We chose Jena’s Model as the
appropriate client-side container for the fragments of the server-side KB
containing the full data set. Such fragments are created, for example, when the
properties of an Item are cached in the client while the item in on display. This
policy creates very many models on the client side, which has an effect on the
efficiency of the client, but also complicates client-side programming. Several
bugs were traced to a mismatch between models, for example:
 localModel.getProperty(r, p) vs.
 r.getProperty(p)
produces different results if resource r is not currently bound to model
localModel.

Models and resources as Java data-structures
It is convenient to think of an in-memory RDF model (Jena’s ModelMem class)
data-structure. For example, a Swing Jlist in the user interface has to be backed
by a data structure containing the items to be displayed in the list. However,

 Page 50

RDF models are unordered collections, so cannot be used, for example, to
provide a collection of sorted items. In fact, there is no guarantee that the order
in which resources are returned from a listing method (such as listSubjects) is
consistent from one call to the next.

One solution to this need is to copy the resources into an ordered data structure.
However, this then duplicates the RDF model as a data container, with the loss
of the particular RDF capabilities from the model API. Alternatively, a wrapper
using the delegate pattern could wrap the RDF model, and augment the normal
access modes with modes that provide consistent ordering. This is problematic
because of the complexity of the model API.

The solution we adopted was a compromise between these approaches. The Item
class presents a view onto a model that contains the details of a particular item.
An optional wrapper (ItemWrapper) wraps Item and delegates the interface
methods to the Item class, with the addition that an ordering table imposes a
fixed order on the resources, and access to resources by integer index. In
general, we can see that many applications, but particularly including GUI
presentations, need predictable, linearised access to the resources in a model.

Caching issues
Accessing information directly from the ePerson knowledge base is too slow to
be useful to the client. Network latency and overhead simply do not permit
sufficiently fast response times for an interactive application. We can view the
client-side RDF models as caches. However, this raises the standard concerns
about caches (invalidation, write-through, etc), and makes it the client
programmer’s responsibility to maintain the validity of the cache. It also does
not allow caching between queries, unless the programmer chooses to cache the
results of the query in a locally shared model. An alternative approach, that we
discussed but did not implement, is to allow the client-side query processor to
cache the results of queries and re-use these in subsequent queries. A challenge
with such an approach is to recognise and re-use overlapping or subsuming
queries, otherwise cache hits will be limited to instances of the re-issuing of a
query identical to one in the cache, which will presumably be rare.

Flat database structure (see also §5.3.3)
In our current architecture, the knowledge-base that is the repository of the
individual’s knowledge is a single flat structure. No segregation exists between
items, tool configuration, identification credentials, and personal profile. This
flat structure was helpful during the development of the prototype, since a single
set of query tools could be used to access all of the different stored data. There
were costs to this choice, however, which became apparent during the
development of the software. First, it was often useful or necessary to flush old
or incorrectly structured knowledge from the KB (for example, while trying to
get the right set of statements to record the hierarchy of the user’s bookmarks in
the KB). There was no easy way to selectively remove a region of the KB
without affecting other persistent information, and we evolved a strategy of
keeping one or more shadow copies of a clean knowledge base to allow re-
starting the server but without the need to re-register each user. Secondly, in a
flat structure it is not easy to optimise storage strategies according to the
characteristics of the data. Finally, it was hard to inspect a dump of the

 Page 51

knowledge base while debugging, especially as Jena does not attempt to localise
groups of related statements in the serialised output.

A future version of the ePerson architecture will probably segment the different
categories of data in the KB, and furthermore should provide more tool support
to assist with managing the data both during and after the software development
cycle.

Inferencing models
Our ontology files (see above) although encoded in DAML, make relatively
little use of the representation capabilities of the DAML language. This is
largely because we don’t, at the present time, have a tool that can make use of
much of this information. Jena does include some support for processing DAML
ontologies, and is able to follow links of transitive queries and recognise
equivalences. However, the DAML support is disjoint from the query
processing, and is limited to models that are stored in-memory. These two
factors ruled out the direct use of the DAML support, which in turn meant that
we had no way of inferring answers to queries that should be relatively
straightforward. An example is sub-classing: assume that two classes, A and B
exist, and B is a sub-class of A. Asking a standard Jena model to list all of the
instances of A (for example, all Items) will not deliver any instances of B, so a
list of Items would not automatically include BookmarkItems. This is clearly not
desirable. In the absence of any inference support, we found it necessary to
include extra information in the knowledge base, for example directly asserting
the information contained in the closure under inference. So, a given item
resource would be asserted to have rdf:type BookmarkItem, and rdf:type Item.
This is expensive in storage and transmission costs, very error-prone, and
largely impossible to update retrospectively should the ontology schema change.

An alternative strategy for inferencing over the class hierarchy, which was
implemented on a limited basis in the current prototype, is to manually traverse
the class- and property- hierarchies using custom queries. While this clearly
works, it is too brittle and unwieldy to be generally useful.

6.1.3 Ontology issues
A number of issues relating to working with ontologies in general, as opposed to
DAML/RDFS in particular, also became apparent during the project.

Firstly, we tried to re-use existing ontologies wherever possible. This is
consistent with the vision that the use of an explicit ontology helps to build
shareable knowledge structures. However, in practice, it is difficult to avoid
getting locked-in to a closed world of ontologies whose existence is assumed.
This is particularly so if the ontology is being used to provide a first-class
representation of internal data structures. However, it is also true even when
using ontologies as formalizations of concepts, such as the personal details in a
user profile. Appendix 4 explores this issue in detail. An example of merging
terms from similar, but not identical, ontologies is given in [23].

A related issue is that of needing access to concepts which are very general, and
likely to be shared in many conceptualisations. A concept of a point in time, or a
duration, is needed when making assertions about meetings, or the creation date
of an item, or many similar applications. We can, and in fact did, define our own

 Page 52

micro-ontology of instants and durations. However, such a local definition is
likely to be inconsistent with definitions from other sources, and, in the case of
time, rather limited with respect to the deep thinking that has been addressed to
this question by philosophers and knowledge engineers. An alternative is to
make use of a shared upper ontology of core concepts [24]. Such upper
ontologies, however, are very complex and require detailed understanding.

Finally, we noticed a clear tension between the need to build general structures,
and simple structures. For example, a common piece of metadata is a subjective
rating by one person of an item. A typical rating scheme rates resources on a
scale of 1 (bad) to 5 (good), and this would be very easy to define in an
ontology. However, other rating schemes use different scales, sometimes
reversing the polarity (so 1 is good and 5 bad), and sometimes using a different
range (say, -1 to +1). It is easy to see that, given the appropriate information, it
would be easy to translate between these rating schemes. However, a ontology
structure that is general enough to record these variations appears complex and
unwieldy for the simple case of standard ratings.

6.1.4 Performance issues
The ePerson system was our first large scale application of semantic web
technologies in general, and the Jena toolkit in particular. The personal
knowledge bases we are dealing with contain between 10,000 and 100,000
statements. It's not surprising, therefore, that we hit some performance issues
along the way. This section highlights some of these, the techniques used to
pinpoint the problems, and how they were overcome.

Opening a large workspace
The bookmark import tool allows us to create workspaces containing several
hundred items. We initially found that opening such a workspace took about 40
seconds.

Some analysis of the transport layer debug logs showed that Snippet Manager
was reading items from the remote KB one at time, hence the time to load large
workspaces was dominated the remote query latency. It was possible to re-code
the workspace item cache layer to use just two queries; one to identify the items
in the workspace, and a second to retrieve all the statements about those items.
This reduced the workspace load time from 40 seconds to about 8 seconds.

We then tried an experiment using a tool call AspectJTM [39]. AspectJ is a
simple and practical extension to the Java that supports the aspect-oriented
programming (AOP) paradigm. AOP allows developers to reap the benefits of
modularity for concerns that cut across the natural units of modularity. In Java,
the natural unit of modularity is the class. In AspectJ, aspects modularize
concerns that affect more than one class. We defined an aspect to insert profiling
code at key places in the ePerson stack. The advantage over traditional Java
profiling tools (like prof, hprof and eprof) is the ability to be selective about
where to add profiling. Being selective is important, as is easy for the overheads
of profiling to overshadow the effects being measured.

Using AspectJ allowed us to accurately track where the remaining 8 seconds
was being spent. The results are shown below:

 Page 53

Comment Time (secs)
Various initial queries (5 small) 0.900
Idle while big query being done 1.497
All SAX Parsing (SAXBuilder.build - 0.263 is big query) 0.442
All RDF Parsing (Model.read - 3.889 is big query) 4.442
Loop creating 414 items in workspace 0.241
Loop adding 414 items to bookmark view 0.291
Loop adding 414 items to bookmark view 0.314
Total time to load and render the workspace. 8.127

The above sequence actually involves 14 separate queries to the KB. Most were
to fetch workspace and item presentation information, and consequently were
small. The one that fetched the item data was large (912KB). Almost half the
time to load the workspace was spent in the Jena RDF parser, parsing this one
query. Some minor tweaks to the parser (replacing Strings by StringBuffers)
reduced this from 4.442 seconds to 1.093 seconds, roughly halving the time to
load a large workspace.

The above exercise leads us to two conclusions:

1. Transparent client-side caching is needed in a RDF network API

The latency when retrieving RDF statements from a remote KB is two to
three orders of magnitude slower than when retrieving statements from an
in-memory model. Caching is critical to improving system performance.
Ideally, this caching should be implemented transparently in the client side
of the RDF network API. For ePerson we had to code the caching explicitly
in the application; consequently this was somewhat ad hoc and was
sometimes ineffective.

2. RDF parsers need to be better optimized for throughput

The throughput when retrieving large RDF result sets is an order of
magnitude slower than 100 Mbps network speeds. Most of this overhead
results from RDF parsing. Even after making some optimizations, the N-
Triple parsing took significantly longer than the XML parsing.

Other areas for performance tuning
There are several other areas where we have seen performance problems.
Although we have not analyzed these in detail, the approach outlined above
could be used. These areas are simply listed here for completeness:

• Loading the system ontologies at start-up takes about 10 seconds. Batch or
parallel loading of these may help.

• Enabling message signing increases start-up time by about 6 seconds. This
may be an unavoidable overhead of initializing a Java Cryptographic
Provider, but some vendor's providers may be better than others.

 Page 54

7 Related work
There is a substantial body of literature on the issues of personal and workgroup
information management and knowledge management, it is beyond the scope of
this report to review any significant fraction of this literature. Instead we will
highlight a few of the existing systems and research endeavours that seem to
share substantial overlap with the ePerson philosophy.

First, the name ePerson itself was inspired by the work of Martin Röscheisen
[28]. In Röscheisen’s conceptualisation, the ePerson was an active agent that
stored user policies with respect to digital rights management issues. It would
store the set of rights management contracts entered into by a user and could
negotiate terms of such contracts. Whilst not directly related to the problems of
information management, the vision of an active user agent that stores explicit
user preference information to help mediate between the user and web-based
services was part of the initial inspiration for the ePerson project.

Amongst current research activities, the most closely related project that we are
aware of is probably the Haystack project at MIT led by Prof. David Karger
(see, for example, [29]). Haystack uses a similar approach of representing all
structured information in a common semi-structured data format and has
similarly chosen RDF for this. They also have a rich user interface that is driven
from both the RDF data itself and from ontology or schema files defining the
data models. In Haystack, as in ePerson, the type of the item being displayed
drives the rendering of items and the mapping from category to view is
declaratively defined.

Haystack is attempting a more all-encompassing information management tool
that the ePerson Snippet Manager. Whereas in our case we are primarily
concerned with annotation, rating, classifying and filtering of small information
items, Haystack seeks to offer a complete information management
environment. Haystack supports traditional personal information management
(PIM) tasks, such as calendar and task management, as well as snippet and
document discovery. It has correspondingly less support for annotation, ratings
and manual classification and organization of data, and more support for actions
that can be performed on information items and full integration with all relevant
data sources. One way of characterising this is that we are primarily focused on
the use and exchange of metadata, whereas Haystack supports many forms of
semi-structured data: both meta-level and content level.

However, the biggest difference is probably in research emphasis and
community support. Our primary interest is in cross-community information
management, hence the importance of discovery, distributed query, metadata
and community browsing capabilities. We claim no strong research innovations
in the area of UI design. In contrast, the primary focus for Haystack is the
“semantic UI” approach to information management tools - issues of community
sharing and exploration are a possible future direction rather than a core part of
their work.

The Edutella project [32] is in many ways closer in spirit to the ePerson
approach than Haystack. Edutella is aimed at the discovery of educational
resources through the peer-to-peer (p2p) exchange of metadata expressed in

 Page 55

RDF. Like ePerson, Edutella is developing a peer-to-peer RDF query
infrastructure on top of a transport abstraction. In the case of Edutella they use
the Sun JXTA framework as their transport abstraction. In the early stages of
our work we did experiment with JXTA but had problems making it work well
in our local networking environment. In future versions, we would expect to be
able to plug JXTA in as another connector type alongside Jabber and raw TCP
within our transport API framework. The Edutella project has developed a
hierarchy of query capabilities, with the base level corresponding roughly to our
QBEHigher levels offer disjunction, negation, and eventually recursion. Our
ability to quantify over properties and namespace-constrained properties, plus
our regular expression matching, go beyond the base level offered in Edutella,
and it is not clear where they fit within the hierarchy. Edutella goes beyond the
existing ePerson infrastructure in defining two levels of wrapper-mediators. The
base level is primarily a wrapper that translates to a common RDF data model
and is similar in spirit to our KnowledgeProvider interface. The higher-level
mediators support assembly and distribution of queries across sources, which go
beyond our current functionality. The target application for Edutella appears to
be primarily distributed access to institutional scale repositories, but the
infrastructure could well be applicable to the personal scale repositories we are
investigating.

Another related area of work we should highlight is the work of the digital
library community in devising ways of aggregating metadata from several
sources. A key innovation in recent years has been the introduction of very
practical but scalable common interfaces for metadata aggregation, especially
the Open Archive Initiative (OAI) [30]. Whilst this work was originally aimed at
integrating data from small numbers of large library collections, the Kepler
project [31] at Old Dominion University has explored its application to
integration of large numbers of small personal collections. This system uses a
centralized registration server to link the individual repositories to the service
providers that perform the indexing. The data model for annotation and indexing
is less flexible than the RDF-based approach advocated here. The primary
interoperable metadata is Dublin Core and whilst other formats can be expressed
and harvested, they need to be expressible as well formatted metadata packets,
defined by some XML schema. It is unclear whether the Kepler archivelet
implementations support more than the base Dublin Core data. The centralized
registration and indexing approach of Kepler is appealing for mid-scale systems.
There may be scaling problems for very large collections of sources though
Google has demonstrated that centralized systems can be remarkably scalable
given sufficient funding! Finally, given that a substantial fraction of the snippets
we have actually stored in our repositories are web bookmarks, it is important to
acknowledge existing work in bookmark sharing and organization tools
especially the work of Soumen Chakrabarti on Memex [34], [35]. Memex uses a
web proxy to collect browsing history (similar to our history store) and then
offers automated clustering tools to allow visited sites and bookmarks to be
organized into categories. This work has a much stronger emphasis than ours on
automatic learning of categories and correspondingly little emphasis on sharing
of direct user classifications, annotations and ratings.

 Page 56

8 Conclusions
In summary, we have developed a complete, functioning infrastructure for
personal/workgroup information management building upon semantic web
techniques, along with a functioning prototype application – the Snippet
Manager.

The infrastructure supports the key features of:

• transport-independent addressing and message API with support for
broadcast/multicast and for message signing;

• distributed RDF query, based on a query-by-example pattern matching
style;

• a name resolution and service discovery infrastructure based on broadcast
discovery of RDF self-description records;

• a personal knowledge-based hosting infrastructure, supporting role-based
access control;

• networked RDF sources providing access to the DMOZ classification
hierarchy and the DMOZ page classifications themselves ;

• a vocabulary for representing user profile information with interoperability
hooks to related profile schemas which is populated both manually and
from automatically inferred interest vectors derived from browsing
records;

• a set of data models for representing items of user information ranging
from generic snippets through to specific items such a bookmarks in which
the users themselves and personal collections of items (workspaces) can
themselves be treated as information items for annotation and indexing;

• a functioning user interface and prototype application allowing creation,
organization and navigation of personal information repositories driven by
the DAML files that define the data model;

• tools for import and export of bookmarks and drop-able items into the
information repositories;

• an extensible tool for exploration of a linked community of information
stores.

As a prototype implementation, this exercise has demonstrated feasibility of the
approach and given some hints of its practical utility even though it is not yet
suitable for routine practical use. We have identified many lessons and design
issues for each of the system components and for the overall prototype. The
information gained and captured here is relevant both to any future development
of ePerson tools and to many related semantic web applications.

Our experiences from this experiment point to several avenues for future work.
In terms of infrastructure, the critical area for further investigation is scalability.
Our prototype solution is effective for a modest workgroup sizes but the barriers
to a new participant joining the network should be lowered and the scaling of
discovery (both server and data discovery) and distributed query would be worth
further investigation. In terms of the application, it is the integration with other
desktop tools (both at a technical level and in terms of UI metaphors) that would
focus on. Finally, the ontology mapping issues revealed by the profile ontology
experiment are important areas to address for many future semantic web
applications.

 Page 57

9 References
[1] The ePerson project, HP Labs Bristol

http://w3.hpl.hp.com/eperson
[2] The Semantic Web Activity. http://www.w3.org/2001/sw/
[3] The Resource Description Framework. http://www.w3.org/RDF/
[4] The Web Ontology Working group.

http://www.w3.org/2001/sw/WebOnt/
[5] The DARPA Agent Markup Language. http://www.daml.org/
[6] The open directory project. http://dmoz.org/
[7] The Jabber software foundation. http://www.Jabber.org/
[8] The Jena RDF toolkit. http://www.hpl.hp.com/semweb/Jena-top.html
[9] The ePerson Javadoc archive.

http://w3.hpl.hp.com/eperson/infoAgents/apidocs/index.html
[10] Apache XML signature

http://xml.apache.org/security
[11] Simple public key infrastructure RFC2693.

[12] CNRI Handle System
http://www.handle.net/

[13] RDF Core working draft. N-Triples.
http://www.w3.org/2001/sw/RDFCore/ntriples/

[14] Ben Zhao et al, Brocade: Landmark routing on peer-to-peer networks
http://roc.cs.berkeley.edu/retreats/summer_02/slides/hling.pdf

[15] Morpheus p2p file sharing. See review at
http://www.ics.uci.edu/~isse/hollyshare/presentation4(survey).pdf

[16] DAML Validator
http://www.daml.org/validator/

[17] The Open Directory Project (DMOZ)
http://dmoz.org/

[18] Jakarta Lucene search engine
http://jakarta.apache.org/lucene/docs/index.html

[19] vCard MIME directory profile, RFC 2426.

[20] Dan Brickley, Libby Miller. FOAF: the 'friend of a friend' vocabulary,
http://xmlns.com/foaf/0.1/

[21] Dynamic Research Corporation
http://orlando.drc.com/

[22] DRC Orlando Person ontology.
http://orlando.drc.com/daml/Ontology/Person/current/

[23] Dejing Dou, Drew McDermott & Peishen Qi. Ontology Translation by
Ontology Merging in Proc. EKAW Workshop on Ontologies for Multi-

http://w3.hpl.hp.com/eperson
http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/WebOnt/
http://www.daml.org/
http://dmoz.org/
http://www.jabber.org/
http://www.hpl.hp.com/semweb/jena-top.html
http://w3.hpl.hp.com/eperson/infoAgents/apidocs/index.html
http://xml.apache.org/security
http://www.handle.net/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://roc.cs.berkeley.edu/retreats/summer_02/slides/hling.pdf
http://www.ics.uci.edu/~isse/hollyshare/presentation4(survey).pdf
http://www.daml.org/validator/
http://dmoz.org/
http://jakarta.apache.org/lucene/docs/index.html
http://xmlns.com/foaf/0.1/
http://orlando.drc.com/
http://orlando.drc.com/daml/Ontology/Person/current/

 Page 58

Agent Systems, Sept 2002, Siguenza, Spain. pp3-18. Available from
http://cs-www.cs.yale.edu/homes/dvm/papers/DouMcDermottQi02.ps

[24] IEEE P1600.1 Standard Upper Ontology (SUO) Working Group
http://suo.ieee.org/

[25] Renato Iannella, Representing vCard Objects in RDF/XML, W3C Note 22
February 2001, http://www.w3.org/TR/vcard-rdf

[26] George A. Miller, Wordnet a lexical database for the English language
http://www.cogsci.princeton.edu/%7Ewn/

[27] Sellen, AJ, Murphy, R and Shaw, KL. How knowledge workers use the
Web. CHI 2002, April 20-25. 4(1), 227-234.

[28] Martin Röscheisen, A Network-centric design for relationship-based rights
management, Stanford University PhD Thesis, December 1997.

[29] David Huynh, David Karger, and Dennis Quan. Haystack: A Platform for
Creating, Organizing and Visualizing Information Using RDF. Draft
submission to journal 2002.
http://haystack.lcs.mit.edu/papers/computer-network-2002.pdf

[30] The Open Archives Initiatives, http://www.openarchives.org

[31] Kurt Maly, Mohammad Zubair, Xiaoming Liu, Kepler - An OAI
Data/Service Provider for the Individual, D-Lib Magazine, April 2001,
Volume 7 Number 4.

[32] Wolfgang Nejdl et al, EDUTELLA: A P2P Networking Infrastructure
Based on RDF, WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.

[33] LiGong, Project JXTA: A technology overview. Technical report, SUN
Microsystems, April 2001.
http://www.jxta.org/project/www/docs/TechOverview.pdf

[34] Soumen Chakrabarti et al, Using Memex to archive and mine community
Web browsing experience, WWW-9, 1998.
http://www9.org/w9cdrom/98/98.html

[35] Soumen Chakrabarti, Yusuf Batterywala, Mining themes from bookmarks,
KDD-2000 Workshop on Text Mining, August 20, 2000.

[36] RDQL: RDF Data Query Language,
http://www.hpl.hp.com/semweb/rdql.html

[37] N3: Notation3
http://www.w3.org/DesignIssues/Notation3.html

[38] S. Agarwal, D. Starobinski, and A. Trachtenberg, On the Scalability of
Data Synchronization Protocols for PDAs and Mobile Devices, IEEE
Network Magazine, July/August 2002.

[39] AspectJ
http://aspectj.org

http://cs-www.cs.yale.edu/homes/dvm/papers/DouMcDermottQi02.ps
http://suo.ieee.org/
http://www.cogsci.princeton.edu/%7Ewn/
http://haystack.lcs.mit.edu/papers/computer-network-2002.pdf
http://www.openarchives.org/
http://www.jxta.org/project/www/docs/TechOverview.pdf
http://www9.org/w9cdrom/98/98.html
http://www.hpl.hp.com/semweb/rdql.html
http://www.w3.org/DesignIssues/Notation3.html
http://aspectj.org/

 Page 59

Appendix 1 Ontology class hierarchy
The ePerson prototype made extensive use of DAML files to define an ontology
of representation terms stored in the knowledge base. Reviewing our use of the
DAML files, we can distinguish a number of uses for the ontology definitions:

• a namespace of well-known names for distinguished constants (classes,
relationships and instances) that are referred to in the code base, and in
pre-built queries;

• formally documenting the modelling assumptions that are used to build the
conceptual model of the domain;

• formally documenting the associations between the RDF statements that
form the modelling constructs embodying the conceptual model, of which
a particular case is

• overlaying a frame-like view of structured objects formed from sets of
RDF triples.

Given these multiple roles, it is perhaps unsurprising that our DAML files do
not exploit most of the representational power available in the DAML language.
In reviewing the class hierarchy (see below), we can see that most of the classes
are distinct from each other. Clearly much of the modelling needs at the system
level21 could have been taken care of by RDFS.

It is also noteworthy that the prevalence of the ‘RDF as structured objects’ in
modelling suggests that RDF toolkits, such as Jena [8], should offer direct
support for this use case in their API.

The following two figures show the class hierarchy (i.e. the rdf:subclass and
daml:subclass relationships) for the classes in the current prototype. In common
with the other parts of the codebase, it is clear that a future version of the system
could do much to regularise and improve the hierarchy; this is presented as is,
rather than as an ideal standard. The property hierarchy is omitted due to lack of
space.

21 At the system level, but not at the user domain level, where the needs of ontology representation,
dynamic development and transformation suggest that more representational power than DAML is
needed, not less. A demonstration of this need can be found in Appendix 4.

 Page 61

EPInternal

drc:Bibliography
Entry

Rdf:Bag Item

EPersonBibliography
Entry File

Bookmark

WebAddress Paper

Containable

Separator Alias

Container

Folder Root

Describable

ItemBag

Provenanced Authority

EPersonID

Credential

PublicKey

Context
Constraint

CBQuery
Description

Time

Moment Interval

Classification
Reference

Role
Reference

KB

KbAccessPoint ServerCloud KbHost

Service
Description

Ontology
Specification

KBSimple
Operation

Provenanced

PersonalKB
Service

Ontology
IndexService

Discovery
Service

Classification
Service

DMOZClassific
ationService

Provenance

EPInternal

UIElement UISpecification

Workspace
View

Workspace
Presentation

Spec

ItemCollection
Presentation

Spec

Item
Presentation

Spec

JavaItem
Presentation

Spec

JavaItem
Collection...

Java
Workspace...

Property
Presentation

Spec

JavaProperty
Presentation...

Figure 16 DAML class hierarchy part (i)

 Page 62

ProfileElement

Provenanced

CurrentAffairs
Interest

Professional
Interest

Hobby
Interest Interest Personal

Role Demographic Contact
Point Credential InLine

Media

Contactable
Entity

OrganizationProfile
Root

Postal
AddressHomePage

PhoneNumber Email
Address

CellPhone
Number

Pager
Number FaxNumber

Home
Related

Work
Related

School
Related

Project
Related

Hobby
Related

EPInternalProvenanced

Workspace

Role
Workspace

Community
Browser

Workspace
UserPreference

Uid Role Interest Interest
Profile

DMOZTopicDesktop

Root
Role

Figure 17: DAML class hierarchy part (ii)

 Page 63

Appendix 2 Example RDF for imported bookmarks
In this section we walk through the RDF generated when importing the
following XBEL (XML Bookmark Exchange Language) file:
<?xml version="1.0"?>
<xbel> <desc>No description</desc>
 <folder>
 <title>Starting Points</title>
 <bookmark href="http://www.google.com/" added="1019126208" visited="1022753710"
modified="994758191" >
 <title>Google</title>
 </bookmark>
 </folder>
 <bookmark href="http://quote.yahoo.com/q?s=hpq&d=v1" added="1022749186" >
 <title>Yahoo! Finance - HPQ</title>
 </bookmark>
</xbel>

The RDF starts with various namespaces definitions:
1 <rdf:RDF
2 xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
3 xmlns:item='http://w3.hpl.hp.com/eperson/daml/eperson/item#'
4 xmlns:classification='http://w3.hpl.hp.com/eperson/daml/eperson/classification#'
5 xmlns:rdfs='http://www.w3.org/2000/01/rdf-schema#'
6 xmlns:dmoz='http://dmoz.org/rdf/'
7 xmlns:kbaccess='http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#'
8 xmlns:presentation='http://w3.hpl.hp.com/eperson/daml/eperson/presentation#'
9 xmlns:bookmarks='http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#'
10 xmlns:workspace='http://w3.hpl.hp.com/eperson/daml/eperson/workspace#'
11 >

The next block declares that urn:x-hp-kb:dmoz provides a service (lines 12-14).
The service described (lines 15-32) is the DMOZ classification service used
when the bookmarks were imported. The service description of a classification
service includes all the information necessary to build a
ClassifiedItemCollectionView of the items - the root node, the classification
property, the label property and the narrow property (lines 22-30). Finally, there
is a pointer to a service, which can be used to classify more items in the future
(line 31). This is a directClassifierKB, which means in this case the KB is
expected to contain triples of the form: <URL> <property> <value>.

12 <rdf:Description rdf:about='urn:x-hp-kb:dmoz'>
13 <kbaccess:providesService rdf:resource='#A0'/>
14 </rdf:Description>

15 <rdf:Description rdf:about='#A0'>
16 <rdf:type rdf:resource=
17 'http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#ServiceDescription'/>
18 <rdf:type rdf:resource=
19 'http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#ClassificationService'/>
20 <rdf:type rdf:resource=
21 'http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#DMOZClassificationService'/>
22 <classification:narrowProperty rdf:resource=
23 'http://dmoz.org/rdf/narrow'/>
24 <classification:classificationProperty rdf:resource=
25 'http://dmoz.org/rdf/topic'/>
26 <classification:labelProperty rdf:resource=
27 'http://www.w3.org/2000/01/rdf-schema#label'/>
28 <classification:rootNode rdf:resource=
29 'http://dmoz.org/rdf/Top'/>
30 <classification:expandClassification>false</classification:expandClassification>
31 <classification:directClassifierKB rdf:resource='urn:x-hp-kb:dmoz'/>
32 </rdf:Description>

The next block declares that this KB provides a service (lines 33-35). The
service described (lines 36-52) is a classification service derived from the user's
bookmark folder hierarchy. Again, the service description of a classification
service includes all the information necessary to build a
ClassifiedItemCollectionView of the items (lines 41-49). Finally, there is a

 Page 64

pointer to a service, which can be used to classify more items in the future (line
51-52). This is simply a pointer to back to this KB; however this time it is
defined as an ItemClassifierKB, which means the KB is expected to contain
triples of the form: <GUID> contentURI <URL> ; <property> <value>.

33 <rdf:Description rdf:about='urn:x-hp-kb-sha:739f6a3c541a9d18a588f48e9c403447a144c625'>
34 <kbaccess:providesService rdf:resource='#A5'/>
35 </rdf:Description>

36 <rdf:Description rdf:about='#A5'>
37 <rdf:type rdf:resource=
38 'http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#ServiceDescription'/>
39 <rdf:type rdf:resource=
40 'http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#ClassificationService'/>
41 <classification:narrowProperty rdf:resource=
42 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#containsFolder'/>
43 <classification:classificationProperty rdf:resource=
44 'http://w3.hpl.hp.com/eperson/daml/eperson/classification#inFolder-82bd7c85-2738-51b2-

8000-8ef35df5bdbc'/>
45 <classification:labelProperty rdf:resource=
46 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#bmTitle'/>
47 <classification:rootNode rdf:resource=
48 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c86-2738-51b2-8000-

8ef35df5bdbc'/>
49 <classification:expandClassification>false</classification:expandClassification>
50 <classification:itemClassifierKB rdf:resource=
51 'urn:x-hp-kb-sha:739f6a3c541a9d18a588f48e9c403447a144c625'/>
52 </rdf:Description>

To allow several bookmarks hierarchies to be held in the same KB, the
classification property value used in the previous service description (line 44)
must be different each time. Hence, it is GUID based. To allow consistent
rendering of this property, the next block of RDF defines it as a sub property of
a common parent (lines 60-61).

53 <rdf:Description rdf:about=
54 'http://w3.hpl.hp.com/eperson/daml/eperson/classification#inFolder-82bd7c85-2738-51b2-

8000-8ef35df5bdbc'>
55 <rdf:type rdf:resource=
56 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'/>
57 <rdfs:label>In folder</rdfs:label>
58 <rdfs:range rdf:resource=
59 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#Folder'/>
60 <rdfs:subPropertyOf rdf:resource=
61 'http://w3.hpl.hp.com/eperson/daml/eperson/classification#bookmarkInFolderProperty'/>
62 </rdf:Description>

The next block defines a Workspace to contain the imported bookmarks. The
workspace is given a GUID based name (line 64) a type (line 65-66) and a label
(line 67). It includes links to the contained bookmarks (lined 69-72).

63 <rdf:Description rdf:about=
64 'http://w3.hpl.hp.com/eperson/daml/eperson/workspace#82bd7c84-2738-51b2-8000-

8ef35df5bdbc'>
65 <rdf:type rdf:resource=
66 'http://w3.hpl.hp.com/eperson/daml/eperson/workspace#Workspace'/>
67 <workspace:label>Bookmarks Example imported on Wed Oct 02 11:49:14 BST

2002</workspace:label>
68 <workspace:layout rdf:resource='#A2'/>
69 <workspace:contains rdf:resource=
70 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c88-2738-51b2-8000-8ef35df5bdbc'/>
71 <workspace:contains rdf:resource=
72 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c89-2738-51b2-8000-8ef35df5bdbc'/>
73 </rdf:Description>

The definition of how to render a workspace is held separately from the
workspace itself, in a structure called a workspace presentation spec. The one
used here is a more specific subclass - the Java workspace presentation spec -
which allows the implementing Java class to be specified (line 80). In this case it

 Page 65

is a DefaultWorkspaceView - a class that supports multiple tabbed views. There
are initially two views defined (lines 82-83).

74 <rdf:Description rdf:about='#A2'>
75 <rdf:type rdf:resource=
76 'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#WorkspacePresentationSpec'/>
77 <rdf:type rdf:resource=
78 'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#JavaWorkspacePresentationSpec'/>
79 <presentation:JavaDefinitionClass>
80 com.hp.hpl.eperson.sm.ui.DefaultWorkspaceView
81 </presentation:JavaDefinitionClass>
82 <presentation:itemCollectionView rdf:resource='#A3'/>
83 <presentation:itemCollectionView rdf:resource='#A4'/>
84 </rdf:Description>

The first view is a ClassifiedItemCollectionView that presents the bookmark
folder classification. Note the link to the classification spec defined earlier (line
93).

85 <rdf:Description rdf:about='#A3'>
86 <rdf:type rdf:resource=
87 'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#ItemCollectionPresentationSpec'/>
88 <rdf:type rdf:resource=

'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#JavaItemCollectionPresentationSpec'/>
89 <rdfs:label>Bookmarks</rdfs:label>
90 <presentation:JavaDefinitionClass>
91 com.hp.hpl.eperson.classification.ClassifiedItemCollectionView
92 </presentation:JavaDefinitionClass>
93 <presentation:presentsClassification rdf:resource='#A5'/>
94 </rdf:Description>

The second view is a ClassifiedItemCollectionView that presents the DMOZ
classification. Note the link to the classification spec defined earlier (line 103).

95 <rdf:Description rdf:about='#A4'>
96 <rdf:type rdf:resource=
97 'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#ItemCollectionPresentationSpec'/

>
98 <rdf:type rdf:resource=

'http://w3.hpl.hp.com/eperson/daml/eperson/presentation#JavaItemCollectionPresentationSpec'/>
99 <rdfs:label>DMOZ</rdfs:label>
100 <presentation:JavaDefinitionClass>
101 com.hp.hpl.eperson.classification.ClassifiedItemCollectionView
102 </presentation:JavaDefinitionClass>
103 <presentation:presentsClassification rdf:resource='#A0'/>
104 </rdf:Description>

Next, we get to root folder of the bookmark folder hierarchy. This contains one
folder (lines 110-111) and one bookmark (lines 112-113). If you look at the
classification spec (line 48) you will see this folder (line 105) is the root node of
the bookmark classification hierarchy.

105 <rdf:Description

rdf:about='http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c86-2738-51b2-8000-
8ef35df5bdbc'>

106 <rdf:type rdf:resource=
107 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#Root'/>
108 <bookmarks:title>Bookmarks</bookmarks:title>
109 <bookmarks:orderedContents rdf:resource='#A6'/>
110 <bookmarks:containsFolder rdf:resource=
111 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c87-2738-51b2-8000-

8ef35df5bdbc'/>
112 <bookmarks:containsBookmark rdf:resource=
113 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c89-2738-51b2-8000-8ef35df5bdbc'/>
114 </rdf:Description>

The next block (which we actually ignore) is an RDF Sequence, and is used to
preserve the original order of the items in the root folder. In general one of these
will overlay each imported folder.

 Page 66

115 <rdf:Description rdf:about='#A6'>
116 <rdf:type rdf:resource=
117 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq'/>
118 <rdf:_1 rdf:resource=
119 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c87-2738-51b2-8000-

8ef35df5bdbc'/>
120 <rdf:_2 rdf:resource=
121 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c89-2738-51b2-8000-8ef35df5bdbc'/>
122 </rdf:Description>

Here's the definition of the sub folder ("Starting Points"). It contains one
bookmark (lines 128-129) and is itself contained in the root folder (130-131).
Note the use of the GUID based inFolder property.

123 <rdf:Description

rdf:about='http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c87-2738-51b2-8000-
8ef35df5bdbc'>

124 <rdf:type rdf:resource=
125 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#Folder'/>
126 <bookmarks:bmTitle>Starting Points</bookmarks:bmTitle>
127 <bookmarks:orderedContents rdf:resource='#A1'/>
128 <bookmarks:containsBookmark rdf:resource=
129 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c88-2738-51b2-8000-8ef35df5bdbc'/>
130 <classification:inFolder-82bd7c85-2738-51b2-8000-8ef35df5bdbc rdf:resource=
131 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c86-2738-51b2-8000-

8ef35df5bdbc'/>
132 </rdf:Description>

Again, there is an RDF Sequence overlaying this folder to preserve the order of
the items contained in the folder. This is redundant in this case, since there is
only a single item.

133 <rdf:Description rdf:about='#A1'>
134 <rdf:type rdf:resource=
135 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq'/>
136 <rdf:_1 rdf:resource=
137 'http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c88-2738-51b2-8000-8ef35df5bdbc'/>
138 </rdf:Description>

Finally, here's the definition of the first bookmark item - with type Bookmark (a
subclass of Item). Note that as this is now an Item, it is referenced by a GUID
and the original bookmark URL is retained using the contentUri property (line
146). Other bookmark metadata is retained (lines 142-145). Its classification in
the bookmark hierarchy is defined on lines 148-149. Its classification(s) in the
DMOZ hierarchy is defined on lines 150-153.

139 <rdf:Description rdf:about='http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c88-

2738-51b2-8000-8ef35df5bdbc'>
140 <rdf:type rdf:resource=
141 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#Bookmark'/>
142 <bookmarks:added>Thu Apr 18 11:36:48 BST 2002</bookmarks:added>
143 <bookmarks:bmTitle>Google</bookmarks:bmTitle>
144 <bookmarks:modified>Tue Jul 10 10:43:11 BST 2001</bookmarks:modified>
145 <bookmarks:visited>Thu May 30 11:15:10 BST 2002</bookmarks:visited>
146 <item:contentUri>http://www.google.com/</item:contentUri>
147 <item:label>Google</item:label>
148 <classification:inFolder-82bd7c85-2738-51b2-8000-8ef35df5bdbc rdf:resource=
149 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c87-2738-51b2-8000-

8ef35df5bdbc'/>
150 <dmoz:topic rdf:resource=
151 'http://dmoz.org/rdf/Top/World/Chinese_Simplified/???/????/??/????'/>
152 <dmoz:topic rdf:resource=
153 'http://dmoz.org/rdf/Top/Regional/North_America/United_States/California/Localities/M/Mo

untain_View/Business_and_Economy/Industries/Computers_and_Internet'/>
154 </rdf:Description>

And here's the definition of the second bookmark item.

155 <rdf:Description rdf:about='http://w3.hpl.hp.com/eperson/daml/eperson/item#82bd7c89-

2738-51b2-8000-8ef35df5bdbc'>
156 <rdf:type rdf:resource=

 Page 67

157 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#Bookmark'/>
158 <bookmarks:added>Thu May 30 09:59:46 BST 2002</bookmarks:added>
159 <bookmarks:bmTitle>Yahoo! Finance - HPQ</bookmarks:bmTitle>
160 <item:contentUri>http://quote.yahoo.com/q?s=hpq&d=v1</item:contentUri>
161 <item:label>Yahoo! Finance - HPQ</item:label>
162 <classification:inFolder-82bd7c85-2738-51b2-8000-8ef35df5bdbc rdf:resource=
163 'http://w3.hpl.hp.com/eperson/daml/eperson/bookmarks#82bd7c86-2738-51b2-8000-

8ef35df5bdbc'/>
164 <dmoz:topic rdf:resource=
165 'http://dmoz.org/rdf/Top/Computers/Software/Operating_Systems/Unix/BSD/FreeBSD/Prominent

_Users'/>
166 <dmoz:topic rdf:resource=
167 'http://dmoz.org/rdf/Top/Computers/Internet/Searching/Directories/Yahoo'/>
168 <dmoz:topic rdf:resource=
169 'http://dmoz.org/rdf/Top/Business/Major_Companies/Publicly_Traded/Y'/>
170 </rdf:Description>

171 </rdf:RDF>

 Page 68

Appendix 3 QBE matching algorithm
Recall that the Query By Example (QBE) algorithm is designed to extract a
subset of the statements from some RDF source that matches a query that is
itself expressed as an RDF graph. The bNodes in the query graph are treated as
variables and can match any resource in the source graph. We restrict the pattern
to those graphs that are expressible using the current RDF/XML or N3 syntax,
i.e. where the bNodes (variables) can only form trees. This restriction simplifies
the matcher from a subgraph isomorphism problem (NP) into a tree match
problem (polynomial) with a simple recursive implementation. We also
introduce reserved properties that act as property wildcards (either global or
restricted to a specific namespace) and reserved literals that perform regular
expression string matching.

An example query which looks for all services which are of type kba:KB and
returns their access information (address, port number, connection type) would
be:

[] rdf:type kba:KB; kba:accessPoint [].

where we are assuming that namespaces rdf and kba have been defined
appropriately.

The query-by-example pattern match algorithm is specified as follows:

Inputs:

• P a pattern in the form of an RDF graph in which bNodes are only linked
into tree (not graph) structures

• G an RDF graph to be matched against the pattern
Outputs:

• MG a subset of the statements from G that matches the pattern P.
Algorithm:

• Split P into a forest of tree patterns Pi where
 each statement in P is in exactly one Pi
 each Pi is either a singleton ground statement or a single tree of

statements linked by bNodes (for all bNodes in Pi there is no statement
in another Pj which references that bNode)

• For each Pi compute the matching subgraph MGi as follows:
 if Pi is a singleton ground statement S then MGi = S if S is present in G

otherwise it is empty
 if Pi is a match tree with root node ri then find all nodes nij in G which

couldMatch ri and set MGi = union { treeMatch(ri, nij) }
• let MG = union of all MGi
• let closedMG = bNodeClose(MG, G)
• return closedMG

treeMatch(r, n) returns the set of statements in G, rooted at n which correspond
to the sub-pattern rooted at r; this can be empty if n does not in fact match r

 Page 69

• let res be an empty set
• for each statement Si in P such that Si =<r, *, *>22 {

let SGi = statementMatch(Si , n)
if SGi is empty the match has failed and exit treeMatch with empty set
if SGi is not empty res = res ∪ SGi and continue

}
return res

statementMatch(S, n) returns the set of statements in G, rooted at n which
matches pattern statement S, it may be empty if match fails

• S is statement <r, p, o>
• let res be an empty set
• for each statement SGi in G such that SGi =<n, pi, oi> {

we say that SGi matches S if p matches pi AND o matches oi
 p matches pi

if p is a named property and p=pi, OR
if p is a wildcard, OR
if p is a wildcard over namespace ns and pi is in namespace ns

 o matches oi
if o is a regular expression literal and oi is a string literal and
the regular expression matches the string, OR
if o is a string literal and o = oi, OR
if o is a bNode and TMi = treeMatch(o, oi) is not empty

if SGi matches S by this definition then
let res = res ∪ SGi ∪ TMi

}
return res

couldmatch(r) : returns all the nodes in G which could match with the pattern
node r, this is a heuristic function which uses the most ground constraint in the
pattern to give the smallest set of candidate matches to r.
If r is a ground node then there will only be one match.

bNodeClose(R, G) adds to graph R enough statements from G to ensure there
are no dangling bNodes.

• let B be the set of bNodes referenced as the object of a statement in R
which are not the subject of any statement in R

• for each node ni in B {
 for each statement S in G where S = <ni, p, o> {
 add S to R
 if o is a bNode add o to B
 }
}

• return R

22 We used <s,p.o> to represent an RDF statement with subject s, predicate p and object o where *
is used to indicate don’t care.

 Page 70

Appendix 4 ePerson profile ontology – design issues
Introduction
Our vision of ontology development in the ePerson framework is that users
should find it easy to discover and reuse terms from existing ontologies in
labelling and structuring their own information. This should be sufficiently easy
that the pool of ontologies for a given topic area converges to some reasonably
stable set, rather than growing unbounded as each group develops their own
from scratch. We have plans for tools that would assist in this discovery and
reuse process, but the current prototype application does not have explicit
support for user ontology development23. However, in manually developing the
ontology files that we include in the existing implementation, we tried to pay
attention to issues of ontology development and ontology mapping that arose, to
use as inputs to future tool development.

In this section, we report on one example of such ontology development, which
illustrates some of the ontology mapping issues and support requirements. The
example we have chosen is the development of the user profile ontology24.

The job of the profile ontology is to represent a user in the ePerson network –
the owner of an ePerson ID. The primary use of this information is for informing
other users so it needs to include information such as name, organisation and
role, interests, skills, background, some depiction of the individual and how to
contact them. We also use this as the basis for discovering and exploring social
networks so some explicit representation of other users in the ePerson network
that this user is connected to is useful. We also want to be able to use the profile
as one means of adapting and customising services so that demographic
information and quite detailed interest information is useful along with relevant
cryptographic credentials. Finally, the profile should cater to many aspects of
the user’s life – work, home, school and hobbies.

Existing ontologies and some implications of their modelling choices
Several existing user profile or person description ontologies already exist.

The DRC group at Orlando [21] have a developed a rich set of interconnected
DAML ontologies which includes a person-ont ontology [22]. This covers
name, gender, US Social Security Number and contact point information (phone
number, mail, address). It lacks several key areas for us (interests, colleagues,
organisation, role). Parts of the modelling, such as the social security number,
are US specific. Those areas that are covered, such as contact point information,
lack context sensitivity – there is no separation of home, work email for
example though there is separation of home/work phone numbers.

23 Well, it is easy enough to add new DAML+OIL files into the list of known ontologies that all
Snippet Manager instances load up (via the discovery service) – it is “just” that there is no support
for developing the extension ontologies.
24 We will use schema and ontology somewhat interchangeably here. At one level all we are doing
is describing a complex data structure and so should call this a schema. However, we are also
building a conceptual model of part of the world of sufficient richness that the term ontology is also
reasonable.

 Page 71

The interconnectedness of the DRC ontologies is also an issue for us. The DRC
set of ontologies is a standalone set with many internal references – the person-
ont ontology references a locator and a universal-property ontology, the locator
ontology references a GPS ontology and forth. At no point in this structure are
external schemas or ontologies referenced other than basic Dublin Core25. It
forms a closed world that is nicely structured because it is under the control of
one group but is isolated. This raises a core issue of semantic web ontology
design. Ideally a person ontology should be able to reference some general
concept such as mail address and users of the person ontology should be able to
chose different modelling approaches for the detailed representation of mail
address but these representations should all relate to the same abstract concept.
In that way when a different mail address representation becomes standardised
and generally accepted it can be used within profiles without having to change
the person ontology itself. This decoupling of separable modelling choices via
abstract concept mappings is a key requirement that has arisen from our
empirical explorations to-date.

A second existing user profile tool is the vCard standard defined by IETF
RFC2426. As well as name and contact information vCard also includes
depictions (photos, sounds, logo), organisation, role, credentials (public key),
and minimalist demographics (birthday). It thus covers, at some level, most of
our requirements except for interests and colleagues. The vCard standard itself
is a syntactic standard defining a specific text encoding. Attempts have been
made to translate this standard to an RDFS schema [25] but there are many ways
such a mapping could be done and no standardisation of it.

As an example of the modelling choices that must be made in doing this
translation, consider the issue of locators (email addresses, physical mail
addresses and phone numbers). The vCard specification supports multiple
contact points that can be classified along several dimensions – context (home,
work) and type (e.g. cell-phone vs. fixed phone numbers,
international/domestic/parcel mail addresses) 26. The vCard standard uses type
attributes to model this. In the RDFS modelling of vCard, the different
categories of locator are indicated through subclass relationships – thus a phone
number can be given both an rdf:type vcard:voice and an rdf:type
vcard:work to indicate the nature of the phone number and both of these are
subclasses of a general vcard:TELTYPE class. This works, but is not the only
choice – for example, a specific property such as vcard:category could be have
been used.

Using subclassing is a problem when a category applies in several places – for
example, vcard:work is a subclass of both TELTYPE and ADDRTYPE suggesting that
an instance of vcard:work is in the intersection of these two classes which is not
correct. This is a limitation of using RDFS. Using DAML this could have been
more modelled using unions, which would capture the original intent better, but
it is still awkward if we want to reuse the home label as a modifier for some

25 And even there we encounter a problem in that the DRC Dublin Core references are not in the
correct Dublin Core namespace, DRC changed the namespace to prevent the DAML validator
complaining that there is no published DAML+OIL file at the namespace location.
26 This is an important feature for us – for example users may include their home phone numbers in
their ePerson profile but only want to share that with close colleagues but may be happy for anyone
in the network to see their work phone number.

 Page 72

other concept such as a user interest. There are also situations with vCard where
the range of type modifiers is not bounded by the vCard spec, for example UID
(which refers to country-specific unique identifiers). In that case the RDFS
mapping uses a custom property (vcard:TYPE) whose value is simply a literal.

There are several places in the vCard specification where a property can have
multiple values – the ROLE property for example. In the vCard RDFS mapping
this modelled by using RDF collections (bags, seqs, alts). This has the advantage
that ordering and preference information can be given. It has the disadvantage
that these properties cannot be given a range constraint because neither RDFS
nor DAML can express composite types (e.g. “a bag of role instances”). In the
case of vCard this is not in fact a problem because the values are simple string
literals.

The third important existing profile modelling proposal is Dan Brickley’s
friend-of-a-friend (foaf) schema [20]. This is a much simpler schema than vCard
and consequently has less deep coverage of some areas. It does offer name,
depiction, interest and some contact information (just email and homepage). It
goes beyond person-ont and vCard in having a direct representation of social
networks in the form of the foaf:knows relation and in the of modelling of
university related topics such as current and past research projects and funding
agency. Apart from name information, which has some structuring, most
elements are modelled as simple properties whose value is a uri (well, an
rdf:Resource). This gives more structure than the literals typically used in
vCard (for example for email address or organization) and is more open than the
DRC approach of restricting the range to specific classes of resource. Foaf also
goes some way to supporting the abstract concept mapping we mentioned above
in that a few of key concept classes (person, document, organization, project)
are linked to the corresponding concept in Wordnet 1.6 [26].

Compared to our requirements foaf has incomplete coverage of topics (omits
demographics, credentials, role) and has limited depth of modelling in other
areas (no mail address, interests unstructured). In particular it has no general
mechanism for separation of home, work or school information apart from the
special case of homepages – even there the concepts of, for example,
foaf:homepage and foaf:workplaceHomepage are unrelated; there is no property
or class hierarchy relationship between them included in the model.

ePerson profile solution – structured profile
Our first approach to creating an ePerson user profile ontology was to create a
structured backbone and then refer to leaf concepts modelled via a mixture of
external and locally developed ontologies.

The main profile elements were modelled as substructures rather then
subclasses. Thus the root element was an object of class ProfileRoot, which
then linked to objects such as DemographicInformation or ContactInformation.
These second level nodes in turn linked to specific profile elements. A
subclass/subproperty hierarchy was used to group the specific elements. For
example, all links from the DemographicInformation node were subproperties of
demographicItem whose range was DemographicElement. We then made existing
externally defined classes subclasses of these third level nodes, for example the

 Page 73

users name was stored as a structured object linked to the
DemographicInformation node via a personalName property (a subproperty of
demographicItem) whose range referred to the Person class in DRC Orlando
person ontology.

ProfileRoot DemographicInformation person-ont:Person

ProfileElement

DemographicElement

hasDemographInformation personalName

demongraphicItem

This structured approach had strengths and weaknesses. A particular strength
was that it enabled us to mix references to different ontologies. Because the
second and third level nodes were distinct from each other, we could draw
models for the third level concepts from different ontologies without creating
conflicts. For example, in using DRC person-ont to model personal names we
were not saying that the ProfileRoot or even a DemographicInformation node
represented a person-ont:Person - that would have constrained the other
information that could attach to those nodes. Instead ProfileRoot and
DemographicInformation remained malleable abstract nodes that simply linked
together separately modelled pieces.

The structured approach also had some advantages for query formation in that
we could retrieve a required subset of the profile just by navigating the structural
links without having to directly use subclass or subproperty relationships.
Though this advantage would have been reduced had we had better inference
support in our query processing.

One disadvantage of the structured approach was its sheer complexity; the
mixture of separate nodes structures, property hierarchies and class hierarchies
was difficult to follow. This complexity resulted in some errors and some
redundancy.

Another concern was that in some sense we were modelling a data structure,
which happened to be holding a user profile, rather than directly modelling a
person. This meant that the semantic relationship between the information
attached to different second level nodes was not captured in the ontology itself
but implicit in the processing model. For example, consider two properties -
personal email address and unique id (such as a social security number). Each of
these is an unambiguous property of a person in that two people with different
values for either should be treated as distinct. In the structural modelling
approach the personal email address would be a property of a
ContactInformation node and the unique id a property of the separate
DemographicInformation node, each property is giving an unambiguous
labelling of a different entity. Without composition operators (which are not
available in DAML) we cannot express the notion that the unambiguous nature
of these relations refers back up to the common ProfileRoot node (or actually
the implicit abstract person concept behind the ePersonID to which the
ProfileRoot is attached).

 Page 74

The structural approach also does not solve the question of how to relate our
representation to the other schemas. For example, having chosen DRC person-
ont for modelling personal names we have no explicit information on how this
concept matches to the related concepts in vCard or foaf data sources.

ePerson profile solution #2 – mapping profile
For the second version of our ePerson profile ontology, we attempted to address
these issues by removing the structural separation of profile elements (relying on
subclassing to provide the separation). Our profile root element was intended to
directly model a “person” in sense of foaf:Person or person-ont:Person so that
unambiguous properties attached to that element uniquely identify the person.
We also tried to explicitly map each ePerson profile concept to the related
concepts in each of vCard, person-ont and foaf.

This led to a rich profile ontology with more complete and uniform coverage of
our needs than any of these existing ontologies but without the structural
complexity of our first design.

This synthesis attempt was mostly successful but the greatest problem was
found in attempting to map the concepts we were modelling to the related
concepts in the other ontologies. Without this mapping all we are doing is
creating yet another profile schema.It may be a more complete and
comprehensive schema, but it risks being just as standalone and isolated as all
the other schemas we have discussed.

Amongst the mapping challenges we encountered were: structural dissimilarity,
type annotations, conflicts between literals and resources, and range issues. We
explore each of these further below.

structural dissimilarity
Consider a personal name. All the ontologies provide some breakdown of a
name into components (surname, given name, title etc), some notion of a display
name (often expected to be some concatenation of the components) and some
notion of alias or nickname. However, they all differ in the precise breakdown
and how it is achieved.

For example, in vCard the structured name is a resource of type NPROPERTIES
attached to the root person via a property N. The name components (Family,
Given, Prefix, Suffix, Other) then attach to the NPROPERTIES node. In contrast in
foaf all the name components (givenname, surname, title, firstname27) attach
directly to the root Person resource. The DRC person-ont takes a similar
approach to foaf but with a different breakdown of components (firstName,
lastname, title, middleName).

There are several structural problems here. First, even though all are just trying
to break a name string into a set of concatenatable components they all have at
least one option unique to them. For example, a person with a middle name is
happy with person-ont, might use Other if forced to use vCard and within foaf

27 We believe this may be a small bug in foaf in that givenname and firstname are the same
concept.

 Page 75

might use a repeated firstname property or include their middle name in the
firstname string. None of these sets can be mapped onto any of the other
without loss. We made our structured name a superset of these components but
could not directly express any consistency checks, for example that the
concatenation of these string values in a given order should be an invariant.

However, even if we restrict ourselves to the common components (e.g.
firstname/lastname pairs) we still have a structural problem. The vCard model
has an explicit structured name entity that is distinct from the person being
named. If we try to assert individual properties such as vCard:Family and
foaf:surname as equivalent, this would then imply that our root entity is both a
foaf:Person and a vCard:NPROPERTIES (since that is the domain of the
vCard:Family property). If we mapped data from vCard to foaf and back we
would end up with a single root node with the vcard:N property both starting
and terminating on the same node. Whilst this doesn’t lead directly to
contradictions in this case (RDFS has insufficient representational power to ever
lead to contradictions) it is clearly unsatisfying. This situation could possibly be
handled with DAML if we had a property composition operator – that would
enable us to map two property sequences together without having to map the
intermediate classes.

type annotations
There are situations where the same concept (e.g. a phone number) needs to be
tagged with some context modifier (e.g. work versus home) where the different
modelling choices make the mapping hard. In person-ont there are distinct
classes WorkTel and HomeTel, which then have the actual phone numbers
attached to them as literals via distinct properties workTel and homeTel. In vCard
there is no explicit type that is the intersection of the concepts “work related”
and “phone number”. Anything which is the range of a vCard:TEL property is a
phone number, but its type may be restricted by also being of type vCard:work.
In foaf there is little support for such categories with the exception of personal
and work related homepages – that case is modelled by having two different
properties with no explicit relationship between them.
We followed the vCard like approach and defined a range of type modifiers
(WorkRelated, HomeRelated, SchoolRelated, ProjectRelated, HobbyRelated) that
could be applied to any profile element.

This works reasonably and in most cases the mapping to other schemes is hard
rather than impossible. Our concept workRelated is at an abstract level the same
thing as vCard:work but we can’t say they are equivalent because vCard:work is
specific to addresses and phone numbers. This can be captured in DAML by
saying that the intersection of PhoneNumber and workRelated is equivalent to the
intersection of vCard:TELTYPE and vCard:work though this will be costly to
reason with and is a slight mischaracterization of vcard:TELTYPE.

literals verses resources
In designing a schema, there is a choice about how external referenced entities
are represented. Schemas like vCard tend to use literal strings to represent
entities such as email addresses or types of unique identifier. In contrast, foaf

 Page 76

uses URIs (rdf:Resource) for such leaf concepts and the DRC ontologies
constrain the resources to be in specific classes. In some cases, email addresses
for example, an agent with additional information on the syntactic form of the
literal could map between the two but it is not possible to directly relate either
the classes (literals and resources being distinct) or the properties. So while
vCard:EMAIL (with range restricted to the class vCard:internet) and foaf:mbox
are trying capture same high level concept we cannot directly relate the two.

This caused problems internally in the ePerson profile ontology. We wanted all
properties of the profile to be subproperties of prof:profileElement and all
property values to be subclasses of prof:ProfileElement. For example this
would have enabled us to allow prof:WorkRelated to be a subclass of
prof:ProfileElement and so be attachable to any value. However, many
properties had non-resource ranges and so need to be modelled as either
range:Literal or as datatype properties with range such as xsd:string. We
compromised by having all properties be subproperties of prof:profileElement
which then precluded us from having the class prof:ProfileElement as the
range of profileElement since neither literals nor concrete datatypes can be
subclasses of such a class.

range of literals
A small but annoying problem occurs when a property has a value that is “some
sort” of string. RDFS schemas such as foaf typically express this by saying the
property has range rdf:Literal whereas DAML schemas typically use a
datatype property whose range is xsd:String. RDF Literals and XSD strings are
different concepts and two such properties cannot be equated even though the
user intent and the actual character sequence written down in each case will be
identical.
Our interim solution to these problems was to introduce a set of properties to
indicate a partial relationship exists between two elements in different
ontologies but where the precise semantics is left undefined. We called them
things like relatedTo, nearEquivalent¸ specializationOf and
generalizationOf. This is not really a solution, in that the semantics of the
relationship is not being captured. However, it is useful as a set of annotations
that an ontology-mapping tool could use to create partial mappings – it is
capturing information on the sorts of structural and term similarity that is often
used for schema mapping.

A better solution that we would like to explore in the future would be to link the
classes in each ontology to some grounding set of abstract concepts (such as the
wordnet classes). Thus, instead of a direct mapping between two classes we say
that each class is a partial attempt to represent the same underlying concept. We
want this mapping to be valid even though there might be differences in
representation choice. For example, two properties could be both mapped to the
same abstract relationship even if different modelling choices are made for
capturing the object of the relationship (for example one property might have
range Literal and the other might have range Resource). The details of this is a
topic for future research.

 Page 77

Appendix 5 Application Layer Implementation
Notes

9.1.1 UI Java classes
We defined two Java interfaces, Item and Workspace, which allowed us to
implement classes encapsulating the RDF data. Essentially, these classes wrap
instances of (DAML) classes. Each of these Java classes was specialised as
required (for example we implemented EPersonItem to encapsulate data about
a peer). We also implemented an ItemWrapper that enabled us to provide useful
services like property ordering and caching.

In order to provide a flexible framework for viewing data, we provided a set of
view abstractions. The main three were WorkspaceView, ItemCollectionView
and ItemView. The DefaultWorkspaceView class was composed of item
collection views and item views, and the CommunityBrowser tool was
implemented as an extension of this class. The DefaultItemCollectionView
was a simple list. The view was specialised by allowing collections to be viewed
hierarchically (as a tree), although other options (eg graphs) are also possible.
The DefaultItemView was agnostic with respect to the item’s class (a simple
list of properties) or could be specific to the class – e.g. bookmark, ePerson,
workspace. The way in which item views are chosen is described in the next
section.

Event flow proved to be an issue, in particular the task of keeping the different
views and the underlying data in synchrony. An example UML sequence
diagram (below) shows how item data changes were propagated to all interested
parties. The essential point is that data change requests are propagated down to
the item, while modelChanged events are propagated up from the item to
registered viewers. We implemented a chaining, with ItemWrapper listening to
Item, and ItemView listening to ItemWrapper. This was achieved using a
controller class (the Item and ItemWrapper in the diagram below broadcast
their changes using different controller objects).

ItemPropertyTableModelItemView ItemWrapper Item ItemPresentationController

User
setValueAt()

setProperty()
setProperty()

updateCache()

fireItemModelChanged()

itemModelChanged()

fireItemModelChanged()

itemModelChanged()

refresh()

 Page 78

A similar scheme was implemented for ItemCollectionView, which listened to
collection level changes (such as item selected/added/removed) and
WorkspaceView, which listened to workspace level changes (such as workspace
added/deleted/updated).

One advantage with this scheme was that data changes are reflected wherever
viewers are listening to the same item. So, for example an item copied to a new
(even remote) workspace will reflect the item changes in progress. Note that the
changes are not (at this stage) written out to the underlying RDF store; rather,
the Item (Java) object caches all changes and writes them out when the user
selects ‘Save Changes’. A disadvantage is that the viewers have to be listening
to the same Java object. Thus, the same item (by URI), if represented by 2 Java
objects, will not be updated until the changes are written out to store and the
workspace refreshed. This could be addressed by using a ‘push’ model of
updating and propagating changes, but such a mechanism would add to the
complexity of the UI.

9.1.2 RDF for configuration
The state of the UI was stored in the RDF model. Thus, the currently open
workspaces are displayed in their correct screen positions when the Snippet
Manager is restarted. This is achieved by use of a UIElement (DAML) class
which presents a workspace, and has attributes such as width and height. In
order to specify the presentation in RDF, we defined a UISpecification
DAML class, and specialised this as shown below.

UISpecification
WorkspacePresentationSpec

JavaWorkspacePresentationSpec

PropertyPresentationSpec

ItemPresentationSpec

ItemCollectionPresentationSpec

JavaItemPresentationSpec

JavaPropertyPresentationSpec

JavaItemCollectionPresentationSpec

As can be seen, this mechanism gave us a way to map from presentation
specifications (coded in RDF) to Java classes, for example for the bookmark
item view:
<ItemPresentationSpec rdf:ID="theBookmarkItemView">
 <rdfs:label>Bookmark item view</rdfs:label>
 <rdf:type rdf:resource="#JavaItemPresentationSpec" />
 <rdfs:comment>The item view for bookmarks</rdfs:comment>
 <pres:JavaDefinitionClass>
 com.hp.hpl.eperson.sm.ui.BookmarkItemView
 </pres:JavaDefinitionClass>
 <pres:viewOrder>2</pres:viewOrder>
</ItemPresentationSpec>

The appropriate presentation specification can then be passed to a factory, which
will instantiate the required class through the Java Reflection API.

 Page 79

For workspaces, the specification is unambiguously defined via the layout
property. The workspace presentation specification may define one (or more)
item collection presentation specifications (these can be tabbed). Item collection
presentation specifications may define a preferred item view. The item class
(or one of its superclasses) will define one or more additional item views (the
root class, ‘Item’ has its itemView property set to theDefaultItemView, so
that view is always available for any item). Again, multiple item views can be
tabbed, with the preferred item view (if defined) always coming first.

Property values could be viewed and edited using classes implementing the
PropertyComponent interface. This allowed a variety of methods for the
appropriate rendering of data (eg simple text, date formatting, highlighted as
bold) or more complex formatting (eg if the property value is itself an RDF
resource, render it as a selected property of that resource). The appropriate
component is specified using a PropertyPresentationSpec. Unlike item
views, property values are only allowed one view (renderer). Therefore some
conflict resolution may be required. The pseudocode follows:
IF property (or superProperty) has preferredPropertyView defined
 use that
Elif range of property (or one of its superproperties) has propertyView defined
 use that
Elif property value has a class for which propertyView is defined
 use that
Else
 use default component

 Page 80

Appendix 6 Transport Layer Implementation Notes

Transport API
The TransportFactory allows new Transport instances to be created. A
Transport instance is typically used to send and receive messages on behalf of
one entity (e.g. an ePerson or a KB). The credentials of that entity are
represented by an Authority instance, which can be created from an XML
credentials file using the Credentials helper class. After creating the Transport
instance, it should be bound to the Authority using the setDefaultAuthority
method. The Snippet Manager and KBHost applications only operate on behalf
of one Authority, so only need to create a single Transport instance.

The transport API supports the following messaging semantics:

Request-response
This looks like conventional RPC, where a single response is expected. In
general, the destination endpoint will be a single node, rather than a broadcast
address. This type of interaction can be achieved as follows:
sendRequest(Address dst, MessageBody body, boolean sign, int timeout)

The application thread is blocked until either a response is received, or the
timeout occurs. The response is returned by the call. Any additional responses
are dropped.

Request-multiple response
This mode allows multiple responses. There are really two cases where this is
useful. The first is when the destination may provide a partial response quickly,
and the remainder of the response some time later. The second is when the
destination is actually a multicast or broadcast address, and so responses may be
received from several different nodes. No attempt is made to keep track of the
number of responses; it is down to the application to decide how long to wait
and when to give up.

This type of interaction can be achieved as follows:
sendRequest(Address dst, MessageBody body, boolean sign, MessageListener listener)

The application thread is not blocked and each response results in the specified
message listener being called (from a different thread). The application can
cancel the message listener when it has received sufficient responses. Note that
this mode can be used for non blocking RPC if the listener is cancelled when the
first response is received.

Asynchronous messaging
In this mode, no response is expected. This type of interaction can be achieved
as follows:
sendMessage(Address dst, MessageBody body, boolean sign)

 Page 81

Example protocol message
<eps:Message xmlns:eps="http://www.hpl.hp.com/eperson">
 <eps:Header>
 <eps:MessageType>
 1
 </eps:MessageType>
 <eps:SrcAddr>
 anonymous
 </eps:SrcAddr>
 <eps:DstAddr>
 urn:x-hp-kb-sha:739f6a3c541a9d18a588f48e9c403447a144c625
 </eps:DstAddr>
 <eps:MessageId>
 a913efa5-2732-51b2-8000-8ef35df5bdbc
 </eps:MessageId>
 <eps:Authority>
 <eps:Identity>
 urn:x-hp-eperson-sha:10f93f6e431ff650b5b2b1b35ca79b2be9b0912e
 </eps:Identity>
 <eps:PublicKey Algorithm="DSA" Format="X.509">
 MIIBtzCCASwGByqGSM44BAEwggEfAoGB
 AP1/U4EddRIpUt9KnC7s5Of2EbdSPO9E
 AMMeP4C2USZpRV1AIlH7WT2NWPq/xfW6
 MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+f
 6AR7ECLCT7up1/63xhv4O1fnxqimFQ8E
 +4P208UewwI1VBNaFpEy9nXzrith1yrv
 8iIDGZ3RSAHHAhUAl2BQjxUjC8yykrmC
 ouuEC/BYHPUCgYEA9+GghdabPd7LvKtc
 NrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeO
 utRZT+ZxBxCBgLRJFnEj6EwoFhO3zwky
 jMim4TwWeotUfI0o4KOuHiuzpnWRbqN/
 C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/h
 WuWfBpKLZl6Ae1UlZAFMO/7PSSoDgYQA
 AoGARaATcxT/0UETKc4BxxcW9hRc8mOA
 LJXOy7qPpnVb+VvhWoNi7hvOn+BbF6qZ
 FOIj8OPF7mJdV776W8g0oYVX4WmSW8H3
 0RKF9JsIYdiRPKqc3PVbJEPB2thegx8y
 xiGoFH9m/wyMiKWsuIrNNEii+80azJPh
 +rhVXIC7G66NkxE=
 </eps:PublicKey>
 <eps:Role>
 http://w3.hpl.hp.com/eperson/daml/eperson/role#Individual
 </eps:Role>
 </eps:Authority>
 <eps:Signature>
 MCwCFHVJp4XhUDUBGpF+42/9jjGtFC3A
 AhRHqGjySGj4Y44/QrQEO7fsQTq+ZQ==
 </eps:Signature>
 </eps:Header>
 <eps:Body MimeType="text/xml">
 <kba:KBAccessMessage
xmlns:kba="http://w3.hpl.hp.com/eperson/daml/eperson/kbaccess#">
 <kba:operation>
 list
 </kba:operation>
 <kba:arg type="rdf-n-triple">
 <![CDATA[
_:A29f3b5X3aXf00ef5102eX3aXX2dX51e8
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://w3.hpl.hp.com/eperson/daml/eperson/presentation#Desktop> .
_:A29f3b5X3aXf00ef5102eX3aXX2dX51e6
<urn:dummy#_ANY_>
_:A29f3b5X3aXf00ef5102eX3aXX2dX51e5 .
_:A29f3b5X3aXf00ef5102eX3aXX2dX51e8
<http://w3.hpl.hp.com/eperson/daml/eperson/presentation#displays>
_:A29f3b5X3aXf00ef5102eX3aXX2dX51e6 .
]]>
 </kba:arg>
 </kba:KBAccessMessage>
 </eps:Body>
</eps:Message>

 Page 82

Message header description
MessageType - 0 Asynchronous message, 1 Request message, 2 Response
message.

SrcAddr - Transport-independent source address; if anonymous, then consider
the node as a client only, i.e. it can only accept responses.

DstAddr - Transport-independent destination address; optional AddrType attribute
can take values broadcast or community.

MessageID - A unique GUID for this message; allows the recipient to drop
duplicates.

Authority - Indicates on whose behalf (authority) the message is being sent;
comprises and Identity, an optional public key and optional list of roles. This is
not to be confused with a certificate authority.

Identity - the transport-independent address of the authority; for authentication
to be possible, this must be derived from the public key as outlined above.

PublicKey - the public key of the authority; currently this must be a DSA public
key in X.509 format.

Role - the role being claimed by the sender of the message; either the special
Individual role, or one of the roles from a shared role ontology. Multiple roles
may be claimed, and it is the responsibility of the recipient to validate that claim
is legitimate.

Signature - the message signature (see §5.1.5).

Message body description
The format of the message body is really down to the application. Currently we
provide special support for the text/xml mime type. In the example above, the
message is a KB access message requesting a list operation be formed on the
KB.

Address cache implementation
A single address cache is shared by all Transport instances. This maintains a
mapping from transport-independent address (i.e. name) to connector type and
connector specific address. Multiple mappings may exist, as long as they use
different connector types.

 Page 83

Entries are added to this cache automatically whenever a message is received.
Entries can also be added manually by the application. No background
management of this cache is performed, so entries remain until there are deleted
or overwritten.

Since multiple mappings are allowed for each endpoint, we should probably
order these based on when they were added, and try the most recently added
mapping first, when sending a message. We don't currently do this.

MessageID cache
Duplication of messages may happen because the transport supports multiple
paths to the destination, over different connectors. When sending a message,
there are cases where multiple paths are tried. To detect duplicates, each
Transport instance maintains a cache of recently seen messageID values.

There may be an issue to address here. Currently, response messages are not
subject to this check, since a node may legitimately send multiple responses. The
messageID of a request is copied to the response, so that the transport can match
the response with the original request. Consequently, the current scheme cannot
distinguish the case where the responder sends two separate responses from the
case where a single response is duplicated in the network. A possible solution is
to ensure that the messageID is set to a unique value in all messages, and adding
a separate inResponseTo field to the response header.

Threading model
The following threads exist:

• In general, all sending is handled by the application thread that called
send(). Also, any resolution listeners will also by called by the application
thread.

• Each MessageID cache (one per transport) has a garbage collection thread.
• Each DirectConnector has two server threads, one listening on a TCP port

for unicast messages, the other listening on a UDP multicast port listening
for broadcast messages. When an incoming message is received, a new
thread is created to handle just that message.

• The JabberConnector is built on top of the JabberBeans API. Each
JabberConnector creates a ConnectionBean, which create two threads: an
InputStreamHandler and an OutputStreamHandler.

Transport instances and connector instances
An application may create multiple transport instances. Multiple source address
mappings may then be added to each transport, causing connector instances to
be created. What does the resulting set of objects look like? This actually
depends on the source address mapping, and the rules implemented in the
connector factory for each type of connector. In general, the connector factory
for each type of connector will maintain a map from a part of connector specific
address to the created connector, allowing connectors to be reused. If two
different transports add the same source address mapping, then the connector
will be shared between them. When a connector is shared by multiple transport
instances, any incoming messages are passed on to all of the transport instances.

 Page 84

In the Jabber connector, the connector specific address contains the following
fields:

connector = "Jabber"

address = local Jabber address (user@server)

password = password to user when connecting to local server

resource = (optional) used to distinguish several concurrent connections

register = (optional) if present, will attempt to create a new account on the
server

name = (optional) when registering, allows a name to be specified

email = (optional) when registering, allows a email address to be specified

The Jabber connector maintains a map from address to created connector.

In the direct connector (TCP/UDP), the connector specific address contains the
following fields:

connector = "direct"

address = local IP address (or name)

port = local TCP port to use to listen for incoming messages

The direct connector factory maintains a map from port to created connector.

In the direct connector factory, we should (but don't) check that the address
property corresponds with one of the local IP addresses

mailto:user@server

	Executive Summary
	Background and objectives
	Introduction to the Snippet Manager application
	Overview of architecture
	Design principles
	Deployment architecture
	Layered architecture

	Details of the architecture layers
	Transport layer
	Overview of transport layer
	Transport-independent addresses
	Connector specific addresses
	Authority
	Authentication and end-to-end security
	Transport layer – assessment and lessons

	Knowledge base access layer
	Overview of the KB access layer
	QBE – query by example
	QBE – assessment and lessons

	Network API
	Operations
	Transport syntax
	Network API – assessment and lessons

	Discovery server
	Discovery server - assessment and lessons

	Provenance representation and API
	Provenance representation and API – assessment and lessons

	Access control for RDF data stores
	Access control for RDF data stores - assessment and lessons

	Structure layer
	Of names …
	Encoding classifications
	Structure layer – assessment and lessons

	Knowledge source layer
	DMOZ Server
	Introduction to the DMOZ dataset
	Parsing the DMOZ Structure dataset
	Parsing the DMOZ Content dataset
	Classifier for mapping from URLs to DMOZ categories
	DMOZ with ePerson
	Issues

	History server

	Application layer
	Overview
	User abstractions
	Application UI
	Workspace Views
	Metadata Creation

	Import Tools
	Bookmark import tool
	Import tools – assessment and lessons

	Classification Service
	Profile management tools
	Community browser tool
	Application layer – assessment and lessons

	Discussion: successes, issues and lessons
	
	Overall system lessons
	Consequences of the extensive use of RDF
	Ontology issues
	Performance issues

	Related work
	Conclusions
	References
	
	UI Java classes
	RDF for configuration

	Transport API
	Request-response
	Request-multiple response
	Asynchronous messaging
	Example protocol message
	Message header description
	Message body description
	Address cache implementation
	MessageID cache
	Threading model
	Transport instances and connector instances

