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ABSTRACT 

This paper motivates and develops an end-to-end methodology for representation and adaptation of 
arbitrary scalable content in a fully content non-specific manner. Scalable bit-streams are naturally 
organized in a symmetric multi-dimensional logical structure, and any adaptation is essentially a downward 
manipulation of this structure. Higher logical constructs are defined on top of this multi-tier structure to 
make the model more generally applicable to a variety of bit-streams involving rich media. The resultant 
composite model is referred to as the Structured Scalable Meta-format (SSM). Apart from the implicit bit-
stream constraints that must be satisfied to make a scalable bit-stream SSM-compliant, two other elements 
that need to be formalized to build a complete adaptation and delivery infrastructure based on SSM are: a 
binary or XML description of the structure of the bit-stream resource and how it is to be manipulated to 
obtain various adapted versions; and a binary or XML specification of outbound constraints derived from 
capabilities and preferences of receiving terminals. By interpreting the descriptor and the constraint 
specifications, a universal adaptation engine can adapt the content appropriately to suit the specified needs 
and preferences of recipients, without knowledge of the specifics of the content, its encoding and/or 
encryption. With universal adaptation engines, different adaptation infrastructures are no longer needed for 
different types of scalable media. 

Keywords: Scalable bit-streams, adaptation, transcoding, network, codec-independent, compressed 
domain, secure. 

 
1.  INTRODUCTION 

Users access the Internet today using devices ranging from puny handhelds to powerful workstations, over 
connections ranging from 56 Kbps modems to high speed 100 Mb/s Ethernet. Even though the available 
bandwidth, display and processing capabilities may continue to grow following Moore’s law, the 
heterogeneity and the diversity of capabilities at any point in time is here to stay. On the other hand, as 
bandwidth and other factors grow, so will the richness of media that would need to be delivered to users. 
Under these circumstances, a rigid media representation format, producing content only at a fixed 
resolution and quality is clearly inappropriate. A delivery system based on such a compression scheme can 
only deliver content satisfactorily to a small subset of users interested in the content. The rest, either does 
not receive anything at all, or receives poor quality and/or resolution relative to the capabilities of their 
network connections and /or accessing devices. The inability to cater to this diversity has been a 
determining factor that stunted growth of new rich media, because static rich content would cater only to 
power users comprising a small fraction of the whole. The bottom line is, without adequate focus on 
seamless content adaptation, accessibility and usability of media content will always remain limited. 

1.1  Multiple versions 
A practical approach to catering to heterogeneity is one where multiple versions of any piece of media, 
suiting a variety of capabilities and preferences, are maintained simultaneously. While this approach works 
well with delivery models where the recipient directly connects to a media originator, for any other multi-
hop, multi-recipient delivery scenario, there is inevitable redundancy leading to wastage of bandwidth and 
storage. This is especially so, when the media creator intends to provide a wide range of choices for 
adaptation catering to a large consumer base, and therefore needs to maintain a large number of versions 
differing in a variety of ways. In other words, this approach does not scale well with the amount of 
flexibility a media creator would like to provide. 

Note however, that since the multi-version case is a fully redundant special case of true scalability to be 
described next, the framework proposed in the paper still applies. This is also true for hybrid bit-streams 



that combine multiple versions with true scalability. In all cases, we still need protocols to describe content 
adaptation choices and request adaptations in a flexible way that the proposed framework allows. 

1.2  True scalable bit-streams 
In order to provide a solution more elegant than maintaining multiple versions to cater to diversity, scalable 
compression formats have been proposed. In a scalable bit-stream, smaller subsets of the whole produce 
representations at lower resolution, quality, etc. Different subset bit-streams extracted from the full parent 
bit-stream, can readily accommodate a variety of users by automatically maximizing multimedia 
experience for a given user’s computing power, connection bandwidth, and so on. By adapting rich media 
content written for high-end machines to less powerful machines in various ways, the overheads involved 
in producing different versions for different scenarios can be virtually eliminated. Furthermore, content 
created today at the highest possible quality, remains ‘timeless’ when represented in a scalable format, and 
the experience it provides gradually increases, as the power of machines, connection speeds, etc. improve. 

There are various types of bit-stream scalability that can be designed, depending on the type of media. For 
example, SNR (quality) scalability refers to progressively increasing quality as more and more of the bit-
stream is included, and applies to most types of media. Resolution scalability refers to fineness of spatial 
data sampling, and applies to visual media such as images, video, 3D etc. Temporal scalability refers to 
fineness of sampling in the time-domain, and applies to video and other image sequences. There are several 
types of scalability pertaining to audio, such as number of channels, width of the frequency band. In the 
future, with the evolution of newer, richer and more interactive types of media, there will be newer types of 
scalability, for e.g. different kinds of interactivity scalability, which we do not even know yet.  

In recent years, there has been a great deal of interest in the research community on scalable compression 
of various types of digital media. Here the challenge is to obtain a scalable representation without 
sacrificing compression efficiency. So far however, it is only in the area of still image compression that it 
has been possible to obtain efficient scalable coders that even improve compression performance (Ex. 
EBCOT1, SPIHT2, VSPIHT3, EZW4). EBCOT1 led to the evolution of the new JPEG2000 5 standard for 
contone images. The JBIG and JBIG-2 standards for binary images are also scalable. Besides images, there 
has been considerable effort to obtain efficient and compact scalable representations of video, audio, and 
other types of media. In fact, most existing media encoding standards6, 7, 8, 9, 10, 11 today, incorporate various 
scalability modes, although generally there is a loss in compression efficiency to use them, and they are not 
fully scalable. It is only recently that new fully scalable video codecs, such as 3D-ESCOT12 and MC-
EZBC13, 14, 15 have been shown to be viable. Fully scalable video coding is currently under exploration in 
MPEG.16, 17 Also, there is ongoing activity in MPEG-21 Part 7 Digital Item Adaptation (DIA)18, 19 related to 
adaptation and delivery of scalable bit-streams.20, 21, 22, 23, 24, 25 With evolution of new types of media, it is 
conceivable that there will be emphasis on scalable representations for them as well, but not everything can 
be standardized. 

A scalable bit-stream does not always have a single type of scalability. In fact, different types of scalability 
may co-exist in a multi-dimensional structure, so as to provide a wide range of adaptation choices. For 
example, while SPIHT2, its predecessor EZW4, and several of their derivatives3 only support SNR 
scalability in their original form, EBCOT1 endeavors to combine quality scalability and resolution 
scalability in a common format, to enable distribution and viewing over a wider variety of connections and 
devices. 

Furthermore, in new rich media, different media elements are often clubbed together to provide a 
composite media experience. For example, an image with audio annotation and some animation provides a 
composite experience of a presentation using three elemental media elements (an image, an audio clip, 
some animation data). The composite rich media leads to newer types of scalability specific to the media, 
because certain non-critical elements may be dropped to accommodate other more critical ones within the 
limited resources of a recipient. 

1.3  Scalable content adaptation and delivery infrastructures 
In order to unlock the full potential of a scalable bit-stream, the format alone is insufficient. It is necessary 
to develop and deploy complete infrastructures that support appropriate adaptation and delivery of such 
content, so that a diverse recipient base can experience it with seamless ease of use.  

For example, even though the JPEG20005 format itself is very powerful, the lack of a complete end-to-end 
infrastructure that supports appropriate adaptation of JPEG2000 content and delivery to a heterogeneous 



recipient base has severely restricted the usability of its scalable features. In recent years, a great deal of 
attention has been focused on delivering streaming video over the Internet or wireless.26, 27, 28 In order to 
reach heterogeneous recipients in a dynamic transmission environment, video standards of MPEG-X 
(mostly MPEG-4)6, 7, 8, 9 and H.26X10, 11 families incorporate various forms of scalability. Although limied 
in scope, functionality and efficiency, as compared to JPEG2000, they hold considerable promise for 
supporting diversity. Nevertheless, scalable video over the Internet has been limited to maintaining multiple 
versions for a few different types of connections, because complete infrastructures that support transcoding 
and transport of scalable video formats are non-existent. It is very recently that a new standardization effort 
has started in MPEG on fully scalable video coding. However, without adequate focus on content 
adaptation in the network, its scalability features would remain unexploited. 

1.4  Need for media-type agnostic adaptation Infrastructures 
Any infrastructure, is expensive to deploy, and requires significant financial commitments from patron 
companies or patron consortia. Under these circumstances, use of a standardized format for the content is 
desirable in order to guarantee constancy.  On the other hand, standards evolve all the time. There are often 
extensions added to existing standards to support better and enhanced features, and it is conceivable that as 
new types of media beyond traditional images, video and audio evolve it would be necessary to create new 
standards for their representation. It can also be argued that since standards take several years to come into 
effect, typically much longer than is commensurate with the normal pace of change in the multimedia 
industry, it would become more and more difficult to expect standards to support the representation and 
delivery of new types of content.  

Even if compact scalable formats evolve for every new type of media, the inevitable difference in the 
structure of the content would necessitate use of different infrastructures or components thereof for scalable 
delivery of different types of media. The expenses involved present a very formidable obstacle in adoption 
of such new media and supportability of its scalability features. 

The only way out is to develop infrastructures for content adaptation that are media-type agnostic. Such 
universal adaptation infrastructures only need to be deployed once to support adaptation and delivery of all 
types of scalable media, as long as they conform to certain loose restrictions on the encoding structure. Use 
of universal infrastructures that support delivery and transcoding of a wide variety of media types in a 
convenient manner is the key to successful adoption of new scalable media. 

1.5  Security 
The need for secure communication of media content is already being felt, and in the future will be the 
order of the day. In order of guarantee full end-to-end security, it will be necessary to use delivery 
architectures where no codec-specific elements are used in the entire path from the content server and 
perhaps including it, to the receiving terminal. Anywhere in the network that a codec-specific element is 
used, is potentially a security breach point.  

Even in such a secure transmission scenario, midstream content adaptation to cater to diversity would be a 
necessity. Secure end-to-end streaming using scalable packets has been demonstrated earlier.26, 27 However, 
to enable secure content adaptation in a content-agnostic manner, it is necessary to empower network 
adaptation engines to make decisions about possible adaptations, even when they do not understand the 
semantics of their decision. The only way to do this is to provide information needed to make decisions in a 
compact way using a mathematical abstraction that is content-agnostic, and incorporate them into generic 
descriptors that an adaptation engine can process. 

1.6  Motivation for this work 
In order to enable universal media-type agnostic adaptation infrastructures for scalable media, we propose 
a framework for scalable media representation that formalizes a loosely defined model or meta-format for 
all scalable media types rather than a single format for a specific media type (such as JPEG2000 for 
images). The model is called Structured Scalable Meta-format (SSM). Although the meta-format needs to 
be standardized, it operates at a more abstract level than traditional standards, and requires only format 
compliance in a loose manner. All compressed scalable bit-streams that need be adapted using the universal 
adaptation infrastructure must be SSM-compliant, i.e. must conform to the meta-format. Besides the bit-
stream constraints imposed by SSM-compliance, in order to enable end-to-end adaptation and delivery of 
SSM compliant media, it is also necessary to standardize the languages for conveyance of information, both 
between an adaptation engine and the media server, as well as between the adaptation engine and the media 



receiver. Adaptation engines in the delivery chain need to be able to interpret this communication for 
adaptation purposes. 

Media adaptation and delivery infrastructures based on SSM and standardized communication with 
adaptation engines would be truly media-type- and content-independent, in that they can adapt different 
types of content, both that are currently available (images, video, audio) as well as those that would evolve 
in the future (different types of new 3D media, composite media etc), in a secure manner, as long as they 
comply with the model. 

2.  DIGITAL ITEM ADAPTATION WITH SSM 
2.1  SSM based delivery architecture 
Consider Figure 1, which shows a generic media delivery model, where media data created by the 
originator is routed through an arbitrarily long chain of adaptation engines before reaching an eventual 
recipient. It is assumed that both the originator of the media as well as the software or hardware system 
used to experience it at the recipient end understand the actual media-encoding format. It is likely that 
either the same company created both the media content and the experiencing system, or the creator opened 
up its technology for vendors to develop the experiencing system, or the media format is an SSM-compliant 
open standard.  

Irrespective of the actual content-type and its encoding however, the scalable resource bit-stream is 
conformant with SSM, which all intermediate adaptation engines can interpret and manipulate. These 
engines receive SSM compliant scalable content, and deliver adapted content over multiple outbound 
streams. All content after adaptation is also SSM meta-format compliant so that it can be re-adapted at a 
subsequent stage of delivery. 

Along with the SSM-compliant media bit-stream an adaptation engine also processes a description meta-
data (shown in thin white arrows in Figure 1) that contains vital information for the adaptation engine about 
all possible adaptations. The SSM model restricts the possible adaptation choices and allows a compact 
representation of this description. The adaptation engine not only adapts the media bit-stream but also the 
description meta-data, so that a subsequent stage of adaptation can be applied. There are a variety of 
possibilities for representing and conveying this information to adaptation engines. While in MPEG-21 
DIA the trend is to use XML25, it is to be noted that representing this information in binary form as part of 
the media bit-stream itself is a straightforward extension, and may even be preferred based on 
considerations of compactness and manageability. This information is referred to as resource description 
metadata. 

It is also assumed that each adaptation engine has knowledge of the aggregated capabilities and preferences 
of all eventual recipients connected to each of its outbound streams. This information mostly originates 
from the recipients (shown in thin black arrows in Figure 1), but parts may be sensed by transcoders 
themselves, as it is aggregated up the adaptation chain by the delivery infrastructure involved. For a 
particular engine for a particular outbound connection at adaptation time, this information is referred to as 
its outbound constraints, which in general may change dynamically.  
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Figure 1. Media-Type-Independent Adaptation and Delivery Chain 



Note that while the originator/creator of the media as well as the recipients/consumers of the media must 
have specific knowledge about the encoding in order to provide an experience for the end-user, the 
intermediate infrastructure does not need to know what the content is and how it has been encoded in order 
to adapt appropriately. The adaptation operation is based purely on an interpretation of the resource 
descriptor metadata and the outbound constraints, and does not depend on the specifics of the actual 
content. Furthermore, the content itself can be encrypted, and transcoding can still proceed as before in the 
encrypted domain.  

While adaptation engines in Figure 1 are solely functional blocks, in reality they can be part of media 
servers from where offline or online content originates; midstream routing servers through which scalable 
content is transcoded and routed; or edge servers that connect directly to eventual recipients. Also, the 
generic delivery model considered can collapse to as simple as a client-server delivery system where a 
client requests content from a media server with specified capabilities and preferences, and gets 
appropriately adapted content directly from it. In this case, the functional adaptation engine would be part 
of the media server itself. 

2.2  Isolated adaptation engine model 
In order to understand the scope of the proposal, we isolate a single input single output functional 
adaptation engine from the end-to-end delivery model, and show its external model in Figure 2. As 
discussed above, the adaptation engine receives a SSM compliant piece of scalable media, which it must 
adapt appropriately and forward in a SSM compliant manner to an eventual consumer or another adaptation 
engine. Along with the media bit-stream it also receives a media description metadata (XML or in the bit-
stream) providing the specifics of how the bit-stream is to be adapted for various adaptation options, as 
well as an outbound constraints specification (possibly XML) conveying the capabilities and preferences of 
its output connection. Based on the information contained in the descriptor and the specification, an 
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Figure 2. Adaptation Engine external model 
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adaptation engine makes certain adaptation decisions, performs the adaptation operation based on these 
decisions on the input SSM-compliant stream, and delivers SSM-compliant adapted content to its outbound 
connection. In addition, it can also update the media description meta-data for use in a subsequent 
adaptation stage. 

The internal model for the adaptation engine is shown in Figure 3. In particular, it consists of the following 
functional blocks: 1) A parser for the resource description meta-data; 2) a parser for the outbound 
constraints specification, 3) An optimizer to decide on transcoding options, 4) a SSM resource adaptation 
engine to adapt the resource based on adaptation decisions made by the optimizer, 5) a resource description 
metadata adaptation engine to modify the resource description based on decisions made, and 6) a second 
phase resource description metadata adjustment engine to make adjustments to the resource description 
(needed only in certain cases). 

It is to be noted that the SSM framework does not determine the operation of the optimizer module in the 
adaptation engine. The way the adaptation engine arrives at the optimal adaptation decisions based on the 
resource description and outbound constraints is open to implementation. However, everything else in the 
adaptation engine is more or less determined by the proposed adaptation framework. Furthermore, once the 
decisions have been made, the resource and description adaptation is also deterministic. 

2.3  Relation to network packetization 
It is important to realize that while the SSM framework is about modeling generic scalable content, and 
metadata describing the model parameters and how model-compliant scalable content is to be adapted, in 
an actual delivery scenario the content would probably need to be packetized and transmitted.  In this 
regard, among various design choices, there are two that are of particular interest, one based on 
interpretation of SSM as a file-format, and another based on interpretation as a packet-format.  

In the file-format usage case, the scalable resource is actually much larger than a typical network packet. 
Either the adaptation engine adapts an entire SSM file in one shot before network packetization and 
transmission, or the adaptation is conducted down-stream possibly in multiple stages. In the latter case 
however, it is important to realize that it is not necessary that the entire SSM compliant resource be 
available at the adaptation engine before the adaptation operation can commence. In fact, the resource 
description and the outbound constraint specifications are all that are needed for an adaptation engine to 
decide how to adapt the media content. As long as the meta-data has been received in full, the scalable bit-
stream resource in Figure 3 may come in stages in multiple network packets, and either forwarded or 
dropped or partially dropped by the engine as they arrive, based on the adaptation decisions already made. 
Thus, the same adaptation model applies both to files transcoded in one shot as well as to a streamed file. 

In the packet-format case, the entire SSM compliant content comprises one packet, which can be adapted 
by a mid-stream adaptation engine and transmitted. Packet based scalable adaptation based on truncation 
has been considered before.26, 27 In this scenario, it may make more sense to include the resource 
description as part of the packet, using a form of binary encoding rather than XML. 

In the rest of this paper, we will describe the specifics of the SSM framework: how a generic scalable bit-
stream is modeled and what the required constraints are, what information is contained in the resource 
description metadata that goes with the resource, and how the capabilities and preferences are conveyed in 
the outbound constraints specifications. We will also describe how the adaptation decisions are made at a 
network adaptation engine. 

3.  MODELING SCALABLE BIT-STREAMS 
A scalable bit-stream is one where smaller subsets of the whole produce representations at lower quality, 
resolution etc. Different types of scalability (e.g. SNR, Resolution, Temporal, Interactivity, etc.) apply to 
different types of media, and often more than one kind is combined. Furthermore, in rich media content 
several independent elements can be combined, (e.g. video, audio). From an understanding of how a 
generic scalable bit-stream is naturally organized, we propose a logical model for all scalable bit-streams, 
referred to as the SSM model. 

3.1  Symmetric nested scalability structure 
The proposed SSM framework is based on the assumption that any scalable bit-stream component 
inherently contains logical nested tiers of scalability, as shown in Figure 4. Using zero-based indexing, the 
bit-stream is first divided logically into multiple layers of tier 0 scalability. Here tier 0 is an abstraction, and 



depending on the actual content it may mean any one of resolution, temporal, SNR and so on. Each data 
segment in each tier 0 layer, is further divided into layers of tier 1 scalability, and so on. Again, tier 1 is an 
abstraction, and may mean different things based on the actual media content. And so on.  

As an example, consider a JPEG2000 bit-stream, which can be readily cast into this logical-bit-stream-
format. In one of the scalability progression modes in JPEG2000 – RLCP – the highest tier is resolution 
scalability, and within the resolution scalable layers there are nested SNR scalable layers. In an alternative 
scalability progression mode – LRCP – the highest tier is SNR, and within SNR layers there are nested 
resolution layers. However, the multi-tier nested scalability structure is common in both.  

The above-described logical meta-format is analogous to that of a book, where there are nested layers for 
chapters, sections, sub-sections and so on. It is conceivable that the book-format be common across all 
books irrespective of content. Likewise, all scalable bit-stream representations can be cast into a common 
nested scalability structure that can be standardized into a bit-stream-format, irrespective of content. 

Note that the above nested structure is merely logical, in the sense that in the actual bit-stream there is more 
freedom in where the data segments lie. Normally however, the layers at the deepest tier, called atoms, 
form a single contiguous segment of the bit-stream that can be easily dropped as part of an adaptation 
process. There can also be arbitrary filler code in between the atoms. 

3.2  Notation and data-cube representation 
Formalizing the notation for the bit-stream, if the data has L nested tiers of scalability, and the ith tier 
contains li layers, we can say that the data consists of an ordered concatenation of l0×l1×…×lL–1 data chunks 
B(j0, j1, …, jL-1), where j0=0,1,…, l0–1; j1=0,1,…, l1–1; …; ji=0,1,…, li–1;…; jL–1=0,1,…, lL–1–1. A way to 
visualize this data is to consider a L-dimensional data cube of size l0×l1×…×lL-1, the (j0, j1, …, jL–1)

th 
element of which is the data chunk B(j0, j1, …, jL–1), called the atom. The full bit-stream is essentially a 
concatenation of these data chunks if the indices are scanned in order from jL-1 towards j0.  

Using an example of the first two tiers of JPEG2000 RLCP progression mode, we can visualize the data as 
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Figure 4. Symmetric nested scalability model 
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organized in a 2-dim cube (L=2) as shown in Figure 5. The bulk of the bit-stream apart from any filler code 
and an optional TOC can be visualized as being obtained by scanning the atoms in the data cube in some 
order. The same concept generalizes readily to more than two dimensions or nested tiers. An example of a 
three-dimensional data cube is shown in Figure 6. 

While the data cube representation has been defined above for true scalable bit-streams where successive 
layers in each tier are handled incrementally by a decoder, the same nested format and representation 
applies to the case when one or more tiers are handled exclusively. This is essentially equivalent to multi-
version scalability, where multiple independent versions are maintained simultaneously in the layers of 
these tiers, but an eventual recipient would use only one of them. Generalizing, each tier in the meta-bit-
stream format can be either incremental or exclusive in terms of scalability. The header contains a flag for 
each tier to denote whether the layer is multi-version or incremental. If all tiers are exclusive, the bit-stream 
is fully multi-version where each atom is an independent version. If all tiers are incremental, the bit-stream 
is truly scalable (Eg. JPEG2000). In the most general case, tiers could be mixed between incremental and 
exclusive scalability. In all cases however, the same logical bit-stream format and data cube representation 
applies. 

Also note that exclusive tiers may be regarded as a special case of incremental tiers, but the transcoding is 
no longer efficient unless this distinction is made apparent to a transcoder by header information. 

3.3  Adaptation 
We next define formally an adaptation operation on the multi-tier scalable bit-stream as defined above. The 
multi-tier format not only allows multiple dimensions of scalability to co-exist in a bit-stream, but also 
enables a simplified form of adaptation. In particular, with a scalable bit-stream conformant with SSM, any 
adaptation is simply implemented as dropping atoms, repacking the bit-stream and updating any TOCs 
appropriately, while preserving the generic multi-tier structure so that it can be re-transcoded. For 
incremental tiers, layers can only be dropped from the outer end whereas for exclusive tiers, all but one 
layer is dropped.  

Using our previous notation, if there are L tiers in an SSM component, then an adaptation point is denoted 
by the L-tuple (d0, d1,…, dL–1), where di indicates to a decoder either di layers from the beginning are 
included in the ith tier if the ith tier is incremental, or only the di

th layer is included if the ith tier is 
exclusive. The adapted subset bit stream that reaches the decoder would then be given by some form of 
concatenation of the atoms B(j0, j1,…, jL–1), where for tier i = 0,1,…, L–1 either ji = 0,1,…, di–1 for 
incremental tier i, or ji=di–1 for exclusive tier i. Note that if the transmitted data-stream has to be non-null, 
in all tiers at least one layer must be transmitted. In other words, all non-empty adapted bit-streams must 
contain at least one of the atoms B(z0, z1,…, zL–1), where zi=0 for incremental tier i.  
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Figure 6. Data cube representation of multi-tier scalable media 



Using the data cube visualization, dropping layers from the end in an incremental tier is equivalent to 
chopping off the ends of the data cube in units of layers. Selecting a particular layer from an exclusive tier 
is equivalent to extracting a slice from the data cube. In general, a reduced cube from the original is 
transmitted after adaptation. A couple of examples for the case of 2 nested tiers are shown in Figure 7. 

3.4  Causality Requirement 
Because adaptation can be implemented as simple dropping of layers, an adaptation engine does not need to 
decode or decrypt content in order to perform adaptation. However, an encoder or an encrypter must 
maintain causality of the data atoms, so that a decoder or decrypter can still handle adapted content. In 
general, it is necessary to ensure that there are no dependencies across layers in excusive tiers, and the 
dependency across layers in incremental tiers is limited to being causal. 

Specifically, the causality constraint for encoding ensures that for encoding data atom B(j0, j1, …, jL–1), the 
encoder only uses information from atoms B(k0, k1, …, kL–1), where for ki �� ji and at least one ki �� ji for 
incremental tiers i,  and ki=ji for exclusive tiers i,  within the usual limits 0 ��ji , ki ��li – 1. This ensures that 
for any usable adaptation, the decoder at the receiving end can decode the content unambiguously. 

The causality constraint for encryption is that the starting state of the encryption engine for atom B(j0, j1, 
…, jL–1), is derived from the ending states of the encrypter for adjacent causal atoms of incremental tiers 
B(k0, k1, …, kL–1), where 0 ��ji – ki ��1 at least one ki ��ji for incremental tiers i, and ki = ji for exclusive tiers 
i, within the usual limits 0 ��ji , ki ��li – 1. Progressive encryption enabling adaptation by packet truncation 
in encrypted domain has been considered in prior work. 26, 27 

3.5  Parcels and components 
The discussion so far essentially pertained to a single coded scalable component. A component is a coded 
unit of data that may be represented in a scalable logical bit-stream-format represented by a data cube. 
However, in a composite bit-stream, multiple coded components can co-exist. For example, one component 
may be an image and a second component may be audio annotation that goes with it; both components may 
be packaged together in the bit-stream to provide an experience of image viewing with audio annotation. 
Such a combination of components is called a parcel. 
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Figure 7. Visualization of layer drops for 2-tier examples. 



Generally, a parcel is a super construct of components that essentially define adaptation boundaries. It may 
be comprised by multiple independent scalable components to provide a composite experience. The overall 
bit-stream consists of multiple parcels, often all of the same type. Parcels are adapted almost independently 
and often sequentially in an adaptation engine, with limited dependency between successive parcel 
adaptations. The size of a parcel is really a design choice, and may range from an entire scalable 
compressed file to a network transmission packet. Continuing with our previous example of image with 
audio annotation, both the image and audio components may constitute a parcel, but there may be multiple 
parcels in a composite bit-stream to produce a slide show with audio. An alternative example arises in 
scalable video coding where each Group of Pictures (GOP) is represented independently as a scalable 
component. If GOPs are to be adapted independently, then the parcel is the GOP, and contains a single 
component. 

It is typical for different parcels in the same bit-stream to be comprised by the same components. However, 
the encoding structure for each component may vary from parcel to parcel, depending on characteristics for 
the specific content. 

Finally we note that the parcel construct in SSM is not merely a unit of adaptation. The entire framework 
built around it is designed to fit a variety of delivery models with little or no adjustments. For example, 
SSM accommodates the typical streaming scenario where information for each parcel from both the 
descriptor side as well as the constraints side, along with the parcel bit-stream, comes into an adaptation 
engine separately and sequentially. Alternatively in an interactive application, parcels may be adapted and 
delivered randomly based on user interaction. 

3.6  Bit-stream layout 
Parcels, components and atoms within a component are essentially logical constructs that may exist 
anywhere in the bit-stream. While to make SSM adaptation viable for a given bit-stream, these constructs 
must exist and be defined, it is not necessary to impose syntactic restrictions on the bit-stream based on this 
hierarchy. An example of a bit-stream segment with two parcels, each comprised by two components is 
shown in Figure 8. 

4.  ADAPTATION VARIABLES 
4.1  General 
Having have seen what an adaptation operation involves, we next need to talk about ways an adaptation 
engine can decide on an appropriate adaptation point, without knowledge of the specifics of the media and 
the coding. An adaptation engine is expected to have knowledge of certain relevant scalability properties of 
a SSM resource through the resource description metadata. At the same time it expected to know the 
capabilities and preferences of its outbound connection through the outbound constraints specifications. 
The bridge between the two on the media creator/originator side and the receiver side of the adaptation 
engine is established through adaptation variables. The resource description and the outbound constraints 
speak the same language through these variables, so that an adaptation engine can decide how to drop 
layers to match the two sides. 

If a receiver knew exactly the structure of the content it expects to receive through an adaptation engine, it 
could exactly specify the requested adaptation point in the engine’s outbound constraints specifications. 
However, to assume that to be always the case is too restrictive. For example, if a receiver is expecting 
JPEG2000 images, but does not know what the dimensions and encoding parameters are for a particular 
image, it is not possible for it to request a specific adaptation point based on considerations of display 
resolution, quality, and so on. That is why, it is important to dissociate the resource description and the 
outbound constraints from the structure as much as possible, and adaptation variables allow us to achieve 
that. 

The most important property of all adaptation variables is that they are expressed quantitatively in terms of 
non-negative (floating) numbers, referred to as variable values, defined over the discrete space of all 
possible adaptation choices. Whatever method is used to quantify the variables must be communicated to 
the developer of the media experiencing system.  However, an adaptation engine itself does not need to 
know what they mean.  Values have different interpretations for the media creator, the consumer, and the 
adaptation engines in between. To the media creator/originator, they are quantified properties based on 
which a content may be adapted. To a media consumer they are quantified properties to indicate its 



limitations and preferences. To an adaptation engine, they are simply numbers based on which it must 
decide how to drop layers and adapt an input bit-stream. 

4.2  Feature variables 
4.2.1  Definition 
Feature variables are certain quantifiable properties relevant to the experience of a single media 
component or jointly for a set of media components. Features defined for a single component are called 
elemental features, while those defined over more than one component are called product features. Some 
examples of elemental feature variables are: Codesize, MeanSquaredError, SpatialResolution, 
TemporalResolution etc. An example of a product feature for a parcel with audio and image components  
is: PerceptualRichness which is a product feature of the adaptation points of audio and image components 
of a parcel, but which cannot be expressed as a function of individual features from the two components. 

4.2.2  Identification 
Each feature is associated with a name (in case of XML descriptor) or a code (in case of binary descriptor) 
that uniquely identifies the feature. The uniqueness is within the context of the media parcel being 
adapted/delivered. Thus, the feature names/codes used in the resource description metadata and the 
outbound constraints specifications for the same parcel of media must be consistent, but across different 
media-types or parcels there is no restriction on the names/codes used because when the names/codes are 
resolved at the adaptation engine there is no scope of a conflict.  

The media creator, who provides the resource description metadata, defines features relevant to the media 
the way he/she chooses, and communicates their unique names/codes, meanings, and value spaces to the 
media experiencing system developer so that the latter can generate meaningful outbound constraints. 

4.2.3  Values and distribution 
The resource description metadata conveys for each feature the quantitative values the feature would have 
for all possible adaptation points of the SSM components over which it is defined. This set of values is 
referred to as the feature distribution. We first consider elemental features, and next consider product 
features. 
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Figure 8. Bit-stream layout example for two parcels each containing two components 



4.2.3.1  Elemental features 
If there are L nested tiers in a component with li layers in the ith tier, it is necessary to provide a L-
dimensional matrix of size l0×l1×…×lL-1, whose (j0, j1, …, jL–1) 

th element denoted C(j0, j1, …, jL–1), for j0 = 
0,1,…, l0–1; j1 = 0,1,…, l1–1; …; ji = 0,1,…, li–1;…; jL–1 = 0,1,…, lL–1–1, is a non-negative number 
specifying the value of the feature if (j0, j1, …, jL–1) is the adaptation point, along with an empty feature 
value C  specifying the feature value the component would have when the entire component is dropped, i.e. 
none of the layers are transmitted. The total number of values that need to be sent is therefore 1 + 
l0×l1×…×lL–1. In practice, all these values are specified with respect to a reference feature value for 
convenience. In this case, the elements C(j0, j1, …, jL–1) multiplied by the reference value provides the true 
feature value for adaptation point (j0, j1, …, jL–1). In any case, the reference multiplied by the last fraction 
C(l0–1, l1–1, …, lL–1–1) yields the full feature value, or the value the feature would have if the content were 
transmitted without any layer-dropping adaptation for incremental tiers and with the highest layer versions 
included for exclusive tiers. The same principle of multiplying with the reference applies to the empty 
feature value C . 

From the nature of features that may typically be defined, it is often the case that the distribution is either 
monotonic non-increasing or monotonic non-decreasing. For example, Codesize (rate) is a feature that is 
always monotonic non-decreasing. For a monotonic non-decreasing type feature, the values C(j0, j1, …, jL–

1) would be analogous to the cumulative distribution of a multi-dimensional discrete random vector, if the 
reference multiplier value is the same as the full feature value. This explains the use of the term 
distribution.  

For example, considering the first two tiers of JPEG2000 RLCP progression mode, the distribution 
specifications for features Codesize and DisplayResolution may look as in Figure 9. Both are non-
decreasing monotonic. Here we have four spatial scalability layers nested with three SNR scalable layers 
each. Note that in Figure 9(b), the DisplayResolution attribute does not change with SNR scalable layers. 
As a result of transcoding, if a SNR layer and two spatial layers are dropped, the Codesize attribute of the 
transcoded bit-stream shown shaded in Figure 9 would be 0.18 times the reference Codesize value, while 
the DisplayResolution attribute would be 0.25 times the reference DisplayResolution value.  

Oftentimes, it is be more convenient and less expensive in terms of overheads to express the cumulative 
distributions only approximately using products of one or more individual lower-dimensional marginal 
distributions. In this case, the element C(j0, j1, …, jL–1) is obtained approximately as �j0, j1, …, jL–1) using a 
product combination of marginal distributions. That is, the specification involves P lower dimensional 
cumulative distributions Ci(.) that cover L dimensions together: �j0, j1, …, jL–1) = C0( )×C1( )×…×CP–1( ).  
The empty feature C  is transmitted separately.  

For the JPEG2000 example of Figure 10 the approximate specifications using two one-dimensional 
marginals and the eventual approximate distributions generated are shown in Figure 10. As seen in Figure 
10 (b), the DisplayResolution feature has been represented exactly using the approximate approach, while 
the Codesize feature in Figure 10(a) is represented only approximately. 
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Figure 9. Exact Distribution Specification for JPEG2000 example 



4.2.3.2  Product features: 
The resource description metadata conveys for each product feature the quantitative values the product 
feature would have for all possible joint adaptation points of the SSM components involved in the product 
feature. This set of non-negative values is the product feature distribution. If there are C components 
involved in the product feature, with Lc nested tiers in the cth component (c = 0,1,…,C-1) it is necessary to 
provide 2C-1 non-empty distributions corresponding to the case where at least one component is non-empty 
(included), along with an all empty feature value C

�

corresponding to the case when all components are 
empty. Among the non-empty distributions there is one corresponding to the case where all components are 
included. In this case, the distribution specifies a (L0+L1+…+LC-1)-dimensional matrix with number of 
elements equal to the product ���lc

i) over c = 0,1,…,C–1 and i = 0, 1, …, Lc–1, where lc
i is the number of 

layers in tier i of component c. There are other 2C-2 non-empty distributions corresponding to the cases 
when one or more components but not all are empty. Any such partial empty distribution is specified as a 
reduced dimensional distribution over the non-empty components. The total number of values that need to 
be sent comprising all the non-empty distributions and the empty value is the product ��1 + lc

0×lc
1×…×lc

L
c
–

1) over all c. 

Each non-empty distribution can be individually specified using a product of marginals as in the elemental 
feature case. 

4.3  Component variables 
4.3.1  Definition 
Just as features have unique names/codes so do components within the context of a parcel. The media 
creator not only conveys the names/codes of feature variables, their meanings and value spaces to the 
experiencing system developer, but also the names/codes of components. Based on the component 
name/code, certain variables are defined by default. These are called component variables. 

4.3.2  Indicators and values 
The first variable family defined by default is the inclusion indicator. This variable has a value of 1 for all 
non-empty adaptation points, and zero only if all the atoms are dropped. A component is assumed to be 
included if at least one of its atoms is included. This variable can be used to specify complex constraints 
based on inclusion or exclusion of whole components, for e.g. if a certain component is included another 
one must be included, and so on. 

The second family of indicators is called layers in tier indicators, which convey the number of layers in the 
adaptation point for a specified tier index parameter. Thus if the adaptation point is (j0, j1, …, jL–1), then the 
value of this variable corresponding to tier i is ji. 

The third family of indicators is called the current number of layers in tier indicators, which conveys a 
constant whose value is the total number of layers currently in the bit-stream for a specified tier index 
parameter. 
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Figure 10. Approximate Distribution Specification for JPEG2000 example 



The fourth family called the original number of layers in tier indicators, which conveys a constant whose 
value is the original number of layers in the bit-stream for a specified tier index parameter, before any 
adaptation step. 

4.4  Combination variables 
4.4.1  Definition 
Sometimes the media creator can define combination variables in the resource description metadata, which 
are essentially mathematical real and/or Boolean expressions involving feature variables, component 
variables or other combination variables from a variety of components. The combination variables are 
conveyed to the experiencing system developer in the same way as are feature variables, and serve as a 
short cut for the outbound constraints specifications. 

One example of combination variables is TotalCodesize, which may be defined as the sum of the Codesize 
features for individual components in a parcel. Another example, involving the component inclusion 
indicator variables is a Boolean expression that indicates if component1 is included, component2 must be 
included (x=>y is equivalent to x´+ y) 

4.4.2  Identification 
Combination variable are identified in the same way as feature variables, i.e. with unique names or codes. 
The resource description metadata provides a name/code for each combination variable as they are defined. 

4.4.3  Expression specification and evaluation 
The mathematical expression for each combination variable is specified in the resource description 
metadata by means of an ordered list of numeric constants, adaptation variables and operators that must be 
pushed into an expression stack for evaluation of the expression. Variables pushed into the stack can be 
feature variables, component variables or previously defined combination variables, each identified by its 
unique name/code. Operators pushed into the stack can be either unary or binary operators.  

Evaluation of an expression at an adaptation engine for a given set of adaptation points corresponding to 
components of a parcel is done as follows. When a constant is pushed its numeric value is pushed into the 
stack as a real numeric element. When a variable is pushed, the numeric value of the variable for the given 
set of adaptation points is evaluated, and pushed into the stack as a numeric element. When a unary 
operator is pushed into the stack, the current top operator element as well as the next top stack element, 
which must be a numeric one, are popped out immediately. The operator operates on the numeric operand, 
and the result is pushed back into the stack as a numeric element. When a binary operand is pushed into the 
stack, the current top operator element and the two next top stack elements, both of which must be numeric, 
are popped out immediately. The binary operator operates on the numeric operands, and the result is 
pushed back into the stack as a numeric element. When all the elements in the expression ordered list has 
been processed, the topmost stack element yields the value of the expression. 

A small set of useful real and Boolean operators is allowed for forming expressions. When real and 
Boolean operators and operands are mixed, the following conventions are used to make the necessary 
transformations between the two domains: a Boolean 0 has real value 0.0, a Boolean 1 has real value 1.0, 
any real non-zero value has Boolean value 1, and a real zero 0.0 has Boolean value 0. 

4.5  Reserved adaptation variables 
In the discussion so far, we have been talking about so called custom or content specific adaptation 
variables that can be defined and named/coded at will by content creators so that the experiencing system at 
the receiving end can issue appropriate outbound constraints based on them. It is worth mentioning 
however that there is value in standardizing the identifying names/codes and the quantification method for 
certain variables with universal meaning across different types of content. These variables are called 
reserved adaptation variables, because their identifying names/codes are effectively reserved and 
disallowed for use as custom adaptation variables. Examples of adaptation variables that could be 
standardized in name/code and quantification method are: Bandwidth, NumerOfSpeakers, 
DisplayResolution, ProcessorSpeed etc. Use of reserved variables enable creation of content independent 
profiles for terminals, that allow adaptation say at an edge server, without an explicit request from a 
receiving terminal in the form of outbound constraints, for every type of content that is received. In other 
words, it enables passive reception of various types of content by uploading a stationary content-
independent profile involving reserved variables to an adaptation engine once and for all. 



Reserved adaptation variables may be either feature variables or combination variables defined differently 
for different types of content. But the eventual meaning and the value space of the adaptation variable 
should be the same for different content types. 

Note that since the SSM framework per se does not change depending on whether an adaptation variable is 
custom or reserved, we do not dwell on this issue further. 

5.  RESOURCE DESCRIPTION METADATA 
Because the resource description metadata has mostly been covered already in the discussion so far, here 
we summarize the key points, and mention the additional features. This metadata originates from the media 
creator and contains a full description of the bit-stream that enables an adaptation engine to decide how to 
drop layers.  

5.1  Scalability structure 
The metadata specifies the complete hierarchical model of the bit-stream with parcels, components, and 
atoms, and where the atoms lie in the bit-stream. For each parcel it defines a set of elemental and product 
feature variables and specifies their distributions, as well as a set of combination variables that apply 
locally within the parcel. It also defines global combination variables that apply to all parcels.  

5.2  Limit constraints from content creator 
Besides, defining adaptation variables, the metadata also includes constraints that are to be enforced by an 
adaptation engine. These are directives from the content creator to restrain the adaptation choices, and 
apply either locally to a parcel or globally to all parcels. The type of constraints specified here is referred to 
as limit constraints, and would be elaborated in the next section. The adaptation engine combines the 
constraints specified by the content creator in the resource description metadata with those specified by the 
receiver in the outbound constraints specifications to obtain the full set of constraints that need to be 
satisfied by an adaptation point. 

5.3  Resource edit information 
The resource description metadata contains information pertaining to editing of the resource bit-stream 
based on adaptation decisions made for each parcel. For example, it may often be necessary to modify 
information such as number of layers included and so on in the bit-stream, after adaptation. The metadata 
specifies for each parcel exactly where in the bit-stream a certain number of bits have to be replaced after 
the decisions have been made and the adaptation has been conducted, how many bits the replaced value 
spans, as well as what the modified value is. The modified value is given by a stack expression as in Sec. 
4.4.3 . The output length in bits can be specified through a constant or through a feature variable. Note that 
this protocol actually allows a wide range of bit-stream modifications based on adaptation decisions. Even 
when it is not possible to have expressions to evaluate the modified value, the content creator can always 
define feature variables, one for the content and another for the length to denote what the correct bit-stream 
should be for each adaptation possibility. 

Sometimes in a compressed bit-stream there may be pointers that specify offsets to or locations of other 
parts of the bit-stream. When SSM atoms are dropped as part of the adaptation process it is likely that this 
offset/location information will become invalid. Therefore, in order to keep the adapted bit-stream 
consistent and decodable it is necessary to modify the links as and when atoms are dropped. Because the 
adaptation engine that must modify the bit-stream, it is necessary to provide this offset/location information 
in the resource description metadata. The resource descriptor allows specifying locations in the bit-stream 
where offsets occur, but does not specify exactly what these values are. 

6.  OUTBOUND CONSTRAINTS SPECIFICATIONS 
6.1  Parcel mapping for multiple profiles 
The outbound constraints specification provides a specific request to an adaptation engine to adapt the 
content before delivery. In general, the outbound constraints can be specified for multiple recipient profiles. 
For each recipient profile, a set of constraints can be specified corresponding to each parcel. However, the 
number of parcels specified can be less than the number of parcels in the content bit-stream. In that case, 
there is a sequential one-to-one mapping between the parcels in the outbound constraints specifications and 
the parcels in the resource description metadata, for as many parcels are specified in the constraints 
specification. The rest of the parcels as specified in the resource description are adapted based on the last 
parcel specified in the constraints specification. This principle is shown in Figure 11 assuming XML to be 



the mode of communication. As shown in the figure, the outbound constraints XML can have multiple 
receiver profiles defined. The parcel-mapping rule applies individually to each profile. We will cover 
multiple profiles in the next section. 

6.2  Adaptation constraints 
The adaptation constraints for each parcel can be either adaptation variable driven or structure driven. The 
former, which is based on defined adaptation variables, is a more interesting case because it keeps the 
content creator and the receiver sides more independent of each other, and integrates decision making in an 
adaptation engine. However, if the receiver knew exactly the structure of the content, it could specify the 
adaptation points exactly in its constraint specification. This is called structure driven adaptation, and in 
this case, there is no decision making involved on part of the adaptation engine. Furthermore, in structure 
driven adaptation the framework allows arbitrary adaptations not limited by the dependency structure. That 
is, an arbitrary subset of atoms from the data cube can be selected and included in the adapted resource bit-
stream. 

The adaptation variable driven constraints consist of a set of limit constraints, followed by an optional 
optimization constraint. Each constraint, limit or optimization, is specified in terms of definable functions 
of adaptation variables, called an adaptation metric. The metric is defined using a stack expression 
involving adaptation variables corresponding to the parcel, as defined in the resource description metadata. 
The stack expression methodology used is the same as the one used in Sec. 4.4.3 .  

Limit constraints are specified as lower and/or upper limits of supportable value(s) for outbound 
connections for a defined metric. When both are specified we have effectively provided a range, and when 
both limits are the same, we have imposed an equality constraint. An example of a limit constraint is: 
Codesize/latency < 300 KB/s. Here Codesize is an attribute, but 1/latency is specified in outbound 
constraints as a multiplier. Overall, this indicates a bandwidth restriction on received media. Another 
example is: display resolution<800 diagonal pixels. 

An optimization constraint specifies a requested minimization or maximization of a defined metric. An 
example of such a constraint is in rate-distortion optimization, where a metric such as MeanSquaredError + 
λ.Codesize is minimized. Here the Codesize variable corresponds to rate (R), while the MeanSquaredError 
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variable corresponds to distortion (D). Encrypted domain transcoding based on packet truncation 
minimizing D+λ.R has been covered in prior art.26, 27 

Sometimes it may be necessary to maintain consistency of adaptation across parcels. For example, if each 
parcel is a GOP from a video sequence, we do not want to have different spatial resolutions for each of 
them. The outbound constraints specification incorporates a method to preserve limited dependencies 
across parcels by allowing references to adaptation variables from the previous parcel for the particular 
decision made for the previous parcel. However, because the outbound constraint part for the next parcel 
may not be known at the adaptation time for the current parcel, it is necessary to specify explicitly a list of 
adaptation variables to be remembered by the engine for use in adaptation of the next parcel. The values of 
these variables are computed based on the adaptation points decided for the current parcel. It is up to the 
resource description generator to provide relevant information to the outbound constraints generator to 
make sure that all previous references are correctly resolved. 

6.3  Adaptation engine operation based on constraints 
The information contained in the resource descriptor and the outbound constraints specification is all that 
an adaptation engine needs to decide how to adapt each parcel. For adaptation variable driven adaptation, 
when both a set of limit constraints and an optimization constraint are specified, the adaptation engine 
seeks the minimum or the maximum of the optimization metric, within the allowable adaptation point space 
carved by the limit constraints. For each parcel, the engine can in principle perform an exhaustive search 
over the joint space of all possible adaptation choices for all the constituent components. For each 
candidate decision point, the engine first evaluates the limit constraint metrics to see if they are satisfied. 
Limit constraints in both the outbound constraints specification (from the receiver side) as well as the 
resource descriptor (from the content creator side) are considered. If all limit constraints are satisfied, the 
single optimization metric is evaluated. The optimum decision point is one that not only satisfies all the 
limit constraints but also maximizes or minimizes the optimization metric over all cases also satisfying the 
limit constraints. 

When only limit constraints are specified but no optimization constraint, there is no unique solution. 
Normally, the adaptation engine assumes a default optimization constraint. Note however, that the actual 
decision making algorithm is not a part of the proposed framework. The SSM framework involves ways to 
convey all the information needed to make decisions, and how the adaptation is to be conducted once 
decisions have been made. However, there is no restriction on the decision making process.  

7.  MULTI-STEP MULTI-PROFILE ADAPTATION ARCHITECTURE 
If the outbound constraints specification contains exactly one receiver profile, a single adapted version of 
each SSM component allowing unambiguous decryption/decoding is generated and transmitted. This is 
typically the case when an adaptation engine directly connects to the eventual recipient.  

There is however another scenario where an adaptation engine must adapt and deliver a bit-stream 
containing a combination of several profiles for several recipients, to be eventually extracted by other 
downstream adaptation engines. In this situation, the former adaptation engine could send the bounding box 
containing the different versions for different receiver profiles, for both exclusive and incremental tiers, 
which allows re-adaptation to lower terminal versions downstream. If all atoms within the bounding box 
including those that are not used by any of the profiles are sent, it is referred to as mid-stream adaptation 
type. Alternatively, atoms unused by all profiles may be dropped from the bit-stream, thereby saving 
bandwidth. This type of adaptation is referred to as terminal. The outbound constraints specification also 
conveys the type of adaptation desired. Further, when atoms within the bounding box of profiles are 
dropped as a consequence of terminal adaptation, this information is conveyed in the adapted resource 
description metadata for use by subsequent adaptation engines. 

Consider Figure 12 that shows a delivery chain to two recipients through two adaptation engines, along 
with the example of a SSM component. Both recipients convey their profiles in their respective outbound 
constraints specifications to adaptation engine B. Engine B aggregates the two profiles into single outbound 
constraints specification and forwards it upstream to adaptation engine A, requesting either mid-stream or 
terminal adaptation types. The engine A actually decides on the adaptation points for each profile, and 
packs the bit-stream using either mid-stream or terminal adaptation type as requested by engine B, and 
forwards it to B. On receipt of the bit-stream, B applies the same profiles to the input stream but 
individually for each of the two output streams for the two recipients, performing terminal type adaptation 



in this case. Since the bit-stream transmitted by A already contains the optimal decisions for both 
recipients, the same optimization over a reduced set of possibilities would yield the same solutions 
individually. Hence, engine B is able to extract the bit-stream needed for each recipient, irrespective of the 
adaptation type mid-stream or terminal, from its input bit-stream, and deliver to the recipients. The only 
difference between the two adaptation types used by engine A is that the mid-stream type leaves more 
flexibility for engine B to create further versions other than those needed by the two recipients, while the 
terminal type attempts to minimize the end-to-end redundancy of transmission bandwidth. 

An alternative architecture is based on the assumption that the resource descriptor is available at both 
adaptation engines before the resource is transmitted through either engine. In this case, the engine B could 
do the decision making itself for the two recipients, and send only a structure-driven adaptation request to 
engine A. The required bit-streams are packaged in the same way as in the previous case by engine A and 
sent back to B, which then uses single-profile structure-driven terminal adaptations to extract the 
appropriate bit-stream for each for delivery to each recipient. 

Note that the SSM-enabled multi-step multi-profile architecture above, supports end-to-end adaptation and 
delivery of scalable content in a fully codec non-specific manner, while minimizing overall redundancy in 
bandwidth. 

8.  CONCLUSION 
Use of scalable media for content-agnostic adaptation is well known in the literature. These adaptation 
engines do not need to decrypt or decode compressed content in order to adapt it into a form appropriate for 
lower bandwidth/resolution etc. The underlying assumption behind the adaptation operation is that an 
engine understands the format in which the data is represented in, even though it does not need to know 
what the data actually is. However, the requirement on the structure of the content is still rigid in these 
approaches, because codec specific components are still needed for different types of media content. That 
is, an adaptation engine for images compressed in a particular way, say JPEG2000, would still be different 
from an adaptation engine for a certain kind of interactive content encoded in an entirely different way.  

The SSM proposal for MPEG-21 DIA25 described in this paper advances the level of abstraction to develop 
a flexible methodology for universal adaptation of scalable content, where the adaptation operation is 
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generic enough to be applicable to any type of media having any type of encoding, and does not use any 
codec-specific code or stylesheets at the adaptation engine. The adaptation engine just needs to be told what 
the structure of the particular content that goes through it is, and how this content is to be adapted to 
achieve the desired transcoding operation. This meta-data information is conveyed by the media 
creator/originator to the engine. The specific requirements for a recipient are conveyed to the adaptation 
engine through the outbound constraints specification. With this framework, different adaptation 
infrastructures are no longer needed for different types of scalable media. For media that is non-standard or 
for media that do not exist today but would evolve in the future, as long as they conform to the lose bit-
stream restrictions that the universal adaptation engine understands, it still becomes possible to adapt it 
appropriately using SSM adaptation engines. 

The main features of the SSM framework are: 

�� Modeling of scalability in a very generic way that is not too restrictive, yet not so unrestrictive that 
the number of adaptation choices becomes unacceptably large from the perspective of metadata 
compactness. (Note that unrestricted adaptation is still supported by structure driven adaptation). 

�� Fully content independent operation, making it easy for new content providers to use. The 
adaptation infrastructure does not need to change in any way. 

�� Provides a complete end-to-end delivery solution to multiple recipients minimizing end-to-end 
redundancy, possibly in encrypted domain. 

�� Extensible to new types of content with new types of scalability. 
�� Provides enormous flexibility for adaptation both from the recipient and content creator points of 

view, for a variety of delivery scenarios. 
�� Caters to both incremental scalable, exclusive scalable as well as hybrid scalable bit-streams under 

a common framework. 
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