

Specifying and Monitoring Guarantees in
Commercial Grids through SLA

Akhil Sahai, Sven Graupner, Vijay Machiraju, Aad van Moorsel
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-324
November 14th , 2002*

E-mail: {asahai, svgr, vijaym, aad}@hpl.hp.com

Grid, SLA,
specification,
web services,
monitoring,
OGSA,
management

Grid computing has relied on “best effort” as the guiding principal
of operation. However, commercial grids need to provide much
stricter guarantees. These guarantees have to be specified in terms
of service level agreements and have to be monitored and assured.
We propose an architecture for specifying and monitoring service
level agreements to achieve the above. The architecture relies on a
network of communicating proxies each maintaining SLAs
committed within the administrative domain of the proxy. SLAs are
either negotiated between or specified to management proxies, and
they are responsible for automated monitoring of data and for
triggering evaluations of the registered SLAs. An unambiguous and
flexible language for formalizing SLAs is presented to achieve the
above. The management proxy allows reasoning about the overall
status of SLAs related to an application context across multiple
administrative domains by contacting and querying involved
management proxies, obtaining measurement information from
multiple proxies, if needed and performing a consolidated SLA
evaluation. The process of measurement collection, and SLA
evaluation is automated and based on web services technology. The
scenario considers HP Utility Data Center as a typical Commercial
Grid deployment environment.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

- 1 -

Specifying and Monitoring Guarantees in
Commercial Grids through SLA

Akhil Sahai, Sven Graupner, Vijay Machiraju, Aad van Moorsel
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

{asahai, svgr, vijaym, aad}@hpl.hp.com

Abstract

Grid computing has relied on “best effort” as the guiding
principal of operation. However, commercial grids need
to provide much stricter guarantees. These guarantees
have to be specified in terms of service level agreements
and have to be monitored and assured. We propose an
architecture for specifying and monitoring service level
agreements to achieve the above. The architecture relies
on a network of communicating proxies each maintaining
SLAs committed within the administrative domain of the
proxy. SLAs are either negotiated between or specified to
management proxies, and they are responsible for
automated monitoring of data and for triggering
evaluations of the registered SLAs. An unambiguous and
flexible language for formalizing SLAs is presented to
achieve the above. The management proxy allows
reasoning about the overall status of SLAs related to an
application context across multiple administrative
domains by contacting and querying involved
management proxies, obtaining measurement information
from multiple proxies, if needed and performing a
consolidated SLA evaluation. The process of
measurement collection, and SLA evaluation is
automated and based on web services technology. The
scenario considers HP Utility Data Center as a typical
Commercial Grid deployment environment.

1 Introduction
Grid computing emerged as a paradigm of sharing
resources for collaboration and resource usage
optimization purposes. A Grid is made up of a finite set
of nodes. Where a node is a system that manages a set of
resources. A node may be a single system or a cluster. A
resource being managed can be a network, system, or an
application. Being mostly used in academic environments,
“best-effort” was (and is) a sufficient policy for
committing resources to users performing their
computational workload.
Moving into the commercial space, businesses will be
bound by commitments. Monitoring and accountability
are becoming increasingly important in networked
environment. “Best effort” is no longer sufficient. Thus
commercial grid need to develop appropriate monitoring

and metering tools for observing resource utilization,
managing performance degradations, availability and
other parameters. Observed data need to be validated
against commitments made to consumers. Automation of
these processes is highly desirable due to the scale and
complexity involved.
Commercial grid products such as offered from HP,
IBM, Platform, or Sun, as yet do not focus on
specification, measurement and validation of
measurements against commitments (contracts) as
specified in terms of service level agreements.
Several problems arise. SLAs determine the kind of data
to be observed or monitored in the system. At any given
point of time hundreds of SLA may exist. Each SLA in
turn may have large number of metrics to be observed. A
formalized representation of commitments in the form of
SLA documents is required, so that information
collection and SLA evaluation may be automated.
Another problem is that for a given application context
multiple resource providers and resource consumers are
involved. This could be the case when multiple cluster
grids within an enterprise form an enterprise grid and
provide common interface to consumers. Consolidation
of management information is required when resources
are spread across geographically distributed clusters. A
similar problem arises when multiple enterprise grids
collaborate together to provide a common interface to
consumers. Since participants in a grid are inherently
distributed, SLAs are distributed as well since validation
of SLAs depends on local measurements. However, the
SLA management system must have the ability to
combine the distributed states of SLAs providing a
consolidated view in the embracing application context.
Given the fact that SLA management has made some
progress in web services [4], and the fact that grid
technology is moving towards web services [6]
technology (Open Grid Services Architecture), the
proposed solution consequently is founded in web
services technology.
The paper first surveys the status of SLA in the grid.
Section 3 describes a typical Grid deployment
infrastructure and describes a sample request for resource
allocation in such an environment. In the subsequent

- 2 -

section, a generic Grid management architecture and the
place for SLA management in it is debated Section 5
describes the SLA specification and the monitoring
engine. It also describes the measurement exchange
protocol for obtaining measurements from multiple sites.

2 SLA and the Grid
In a grid environment users and resource providers, often
belonging to multiple management domains are brought
together. Users must be given some form of commitment
and assurances on top of the allocated resources, such as
performance, security, availability, latency, throughput,
variance etc. (sometimes also referred to as quality of
service) as well as in terms of responsibilities for dealing
with erroneous conditions, fail-over policies or backups
and more. Those terms need to be agreed upon before
use and manifested in form of a SLA.
Negotiating a SLA is an exchange (protocol) of messages
between user and provider, potentially involving some
form of a middleman or broker. The result is an
agreement of all terms that are important for either side.
The Service Negotiation and Acquisition Protocol
(SNAP) [11] provides support for the following three
types of SLAs:
- resource acquisition agreements (right to

use/consume a resource),
- task submission agreements (inform a resource of

the existence of a task), and
- task/resource binding agreements (enabling the task

to consume an agreed quantity of a resource).
These notions are primarily focused on task submission
techniques used in traditional grids and are related to
allocation time negotiations in terms of resources and
tasks. The Quality aspects as mentioned above are not
negotiated. We propose an extension of scope.
A second extension we propose is the need to not only
negotiate agreements, but also to maintain them in the
system for their life-span meaning that agreed upon terms
must be validated during use by appropriate
measurements, consolidation and comparison of those
measurement against the terms manifested in the SLA.
We propose a SLA monitoring engine in the context of
OGSA for this purpose.
A grid node controls a set of resources. The resources are
allocated, de-allocated and managed over a
hosting/deployment environment. The hosting
environment could be a data center. For example, HP’s
Utility Data Center (UDC) that provides virtualized
resource infrastructures could be an instantiation of a
Grid deployment environment. It is important to
understand a typical hosting environment to understand

how service level agreements may be specified, and
monitored.

3 Grid Deployment Infrastructure
The central notion of the UDC is called a “farm”, a
programmable hosting environment for applications.
Farms can be dynamically requested, with resources
contained in them, by users submitting farm resource
descriptions to UDC’s resource allocation manager[2].
Since farms may contain resource topologies, a special
language is used to specify resource topologies. Resource
topologies include not only the sets of required resources,
but also their “wiring” topology, how resources are
connected by protected subnets.
Figure 1 shows an example of a hosting environment [1]
that can be described and instantiated when a respective
document is sent to the resource manager, and the farm
with all its wired resources is instantiated without further
manual involvement.

Figure 1: Resource topology of a simple two-tier
application.
Alternatively, the shown resource topology can be
described in Grid resource specification languages such as
the Globus Resource Specification Language (RSL).
Besides resources and resource attributes, topology
information must be encoded in RSL. Topology
information describes the connection relationships
between resources. This information is needed by the
UDC resource manager in order to configure resources
properly. The RSL used in the example uses specific
attributes understood by the UDC controller. The major
extension compared to “standard” RSL is the encoding of
topology information (relationships among components).
&(farm (name “My-2-TierFarm”) (version “1.1”))
 (subnet (id “outer”) (name “outer”) (ip “external”))
 (subnet (id “inner”) (name “inner”) (ip “internal”))
 (subnet (id “db”) (name “db”) (ip “internal”))
 (lb (id “lb1”) (name “lb1”) (type “lb”)
 (interface (name “eth0”) (subnet “outer”))
 (interface (name “eth1”) (subnet “inner”))
 (policy “round-robin”)

- 3 -

 (vip (name “vip0”) (subnet “outer”)
 (bind (id “bind1”) (name “WebTier:eth0”)

(virtualport “8080”) (realport “8081”)))
)
 (serverrole (id “WebServerRole”) (name “WebServerRole”)
 (disk (target “0”) (drivesize “8631”) (drivetype “scsi”)
 (diskimage (type “system”) (element “NT_IIS”)))
 (hw “cpu-x86-x2”)
)
 (serverrole (id “OracleRole”) (name “OracleServerRole”)
 (disk (target “0”) (drivesize “8631”) (drivetype “scsi”)
 (diskimage (type “system”) (element “HPUXOracle”)))
 (hw “cpu-pa-risc”)
)
 (serverrole (id “FileServerRole”) (name “FileServerRole”)
 (disk (target “0”) (drivesize “8631”) (drivetype “scsi”)
 (diskimage (type “system”) (element “RedHat”)))
 (hw “cpu-ia-64”)
)
 (tier (id “WebTier”) (name “WebTier”)
 (interface (name “eth0”) (subnet “inner”))

(interface (name “eth1”) (subnet “db”))
(role “WebServerRole”)
(minservers “5”) (maxservers “20”) (initservers “10”)

)
 (tier (id “OracleServer”) (name “OracleServer”)
 (interface (name “eth0”) (subnet “db”))

(role “OracleServerRole”)
(minservers “1”) (maxservers “1”) (initservers “1”)

)
 (tier (id “bebop”) (name “bebop”)
 (interface (name “eth0”) (subnet “db”))

(role “FileServerRole”)
(minservers “1”) (maxservers “1”) (initservers “1”)

)

Figure 2: RSL fragment of the shown resource topology.
In order to protect different farm instances from each
other, two types of resources are virtualized for farms:
- network resources: by permitting the programmable

rewiring of server machines and devices to create a
virtual LAN network. Virtual wiring is achieved by
programming switches connecting machines and
programmatically connecting or removing machines
to or from virtualized subnets, and

- storage resources: by not containing storage in
machines, but programmatically attaching storage
from external storage units to machines through SAN.
Entire disk images with all persistent states of
application environments, file systems, bootable
operating system images, application software, etc.
are maintained separated from machines and are
attached to them during the farm instantiation
process. Disk images appear on SCSI interfaces from
where machines then boot images and further data.

4 GRID Management Architecture
The Grid conceptual architecture is presented in Figure 3.
The Grid deployment infrastructure is where the resources
(applications/software, machines, networks, farms) are

provisioned. The OGSA infrastructure which is based on
a web services infrastructure (.Net, J2EE based), provides
the basic functionalities that deal with creation through
factory, life-cycle management, obtaining management
related information through manageability interfaces, and
other services like notification and invocation. The OGSA
meta-services are higher-level functionalities that deal
with provisioning/allocation, clustering, policy
specification, security and problem determination.
Applications can be defined on top of the meta-services.

Figure 3: SLA Management in
Architecture.
SLA management in the OGS
will be classified as an O
Management will in turn, need
service, registration and disco
resources based on QoS
management service, managea
measurement data, reliable invo
resources and notification servi
parties.
For deployment of the architec
required that provides all
functionalities. The Grid pro
particular Grid deployment in
undertake a set of protocols wi
Grid community has already ag
set of protocols. Some of these p

� GRAM protocols such
resource allocation and

� GIS is used for registra
services.

� GASS, deals with trans
� GSI, deals with authen
� Grid FTP, is an extensi

transfer facility.
� Other protocols, like S

OGSA meta services

Allocation
Clustering

 Grid Deployment Infr

monitapplicati

OGSA Infrastructure
Factory Registration

& Discovery
Life-
Cycle

Man

Policy Logging
Tracing Man

User Interface

Application
Grid – Conceptual

A conceptual architecture
GSA meta-service. SLA
 interfaces to the factory
very service for finding
requirements, life-cycle

bility interface to collect
cation for controlling the

ce for informing impacted

ture, a Grid proxy will be
 the above-mentioned
xy corresponding to a
frastructure will have to
th other Grid proxies. The
reed on (or discussing) a
rotocols are:

 as GRAAP are used for
 management.
tion and discovery of

parent access to data.
tication and authorization.
on to traditional FTP

NAP etc.

astructure

ageability Notification Reliable
Invocation

Security SLA
agement

Problem
detection

- 4 -

Some of these protocols are executed at the initialization
time while some need to be executed in run time.

Figure 4: SLA management requires additional protocols
between Grid proxies.
The grid proxies will interact with each other forming a
Grid management proxy overlay as shown in Figure 5.
The SLA Management engine in the proxy may need to
execute some additional protocols amongst each other.

Figure 5: Grid-wide management proxy overlay.
Why does SLA management require additional grid
protocols? In the simplest case, all the measurements
needed to measure its SLAs and all the controls needed to
assure SLAs will be within the same cluster and there is a
single cluster in the enterprise. Even in that case, how do
the consumer and provider agree on the outcome of the
SLA? Since the two are in different management domains,
the provider may argue that its SLA has been met while
the user may argue that it has been violated. This requires
agreement protocols that will repudiate and ensure that
the two parties agree on the outcome.

Beyond this simplest case, there exist scenarios in which
not all data required for managing SLAs can be measured
locally. This can happen in two types of situations - one,
when the provider's behavior is dependent on user's
behavior, and two, when the provider's behavior is
dependent on another provider's (provider-of-provider's)
behavior. To understand the first situation, consider a
utility infrastructure service provider (U) who offers
resources such as servers and network. Consumers (C)
can invoke operations on U to request a particular number
of servers. The SLA between U and C states that the
requested number of servers will be offered with a
specified availability. Once C receives the servers, she
completely owns what she can place on those servers
(including operating systems and applications). Now, C
can affect the behavior of U's servers since a failure in C's
application can bring down U's server. In order to manage
to its SLAs, U's management system should be able to
figure out whether a server failure is attributed to a
hardware failure (U's responsibility and hence should be
counted in the SLA) or to an application failure (C's
responsibility and hence should not be counted in the
SLA). The only way to resolve this would be by making
U's management system and C's management
communicate status with each other or to a third party.
A more common situation is when a user has an SLA with
a provider and the outcome of that SLA is dependent on a
third provider. For example, consider a provider A that
promises a certain number of resources to a customer B
with some quality guarantees. However, A uses another
provider C for some of the resources. As a result, A will
not know whether the SLA with B has been met or not.
The only way that A can measure its SLA is by
consultation with B or C. A monitors its resources, C
monitors its resources, they exchange the results to
measure the end-to-end SLA between A and B. This
would be the case when multiple geographically disparate
clusters provide a common interface to a client through an
enterprise grid. In such a case, the resources allocated for
a client, may be distributed across geographically
disparate clusters. In order to evaluate client SLAs,
measurement data has to be collected and aggregated at
one place necessitating a measurement exchange protocol.
This case could also arise if multiple enterprise grids
provide a common Grid interface to clients.
There are also scenarios where all the controls needed to
manage SLAs are not available locally. Consider a user M
that uses a provider N. The management system that
manages M may detect that its SLAs with its own
customers are going to be violated. It may also detect that
the cause of those violations is N not meeting its SLA.
However, it does not have any control actions it can
execute over N's service. The only controls it has

Grid Management Proxy

resource
allocation

 Grid Management
Proxy

registration
and

discovery data
access

security security

registration
and

discovery

resource
allocation

data
access

SLA
management

GIS

GSI

GRAAP

GASS

Measurement Protocols
Assurance Protocols

SLA
management

- 5 -

available are switching from N to a different supplier O,
making up the difference caused by N's violations by
changing its own execution, or negotiating for higher
penalties with N. In a slightly different scenario, let us say
that M's management system detects SLA violations, but
this time, they are not caused by N. It may be able to
prevent the violation from happening if it had access to
some control actions on N, such as ability to ask for more
resources, or escalate the quality guarantees on offered
resources. In summary, SLA assurance may also be
accomplished by management systems across multiple
domains exchanging messages that invoke a limited set of
explicitly stated control actions. This is in addition to the
local control actions that can be taken by a management
system.
In this article we will focus on specification of service
level agreements between parties, the SLA monitoring
engine and a Measurement Exchange Protocol (MEP) for
SLA monitoring purposes.

5 Specifying and Monitoring
Service Level Agreements

5.1 SLA definition
An SLA is typically signed between two parties, which
have the role of provider and consumer respectively. A
typical SLA [7] has the following components:
Purpose – describing the reasons behind the creation of
the SLA
Parties – describes the parties involved in the SLA and
their respective roles.
Validity Period- defines the period of time that the SLA
will cover. This is delimited by start time and end time of
the term.
Scope – defines the services covered in the agreement.
Restrictions – defines the necessary steps to be taken in
order for the requested service levels to be provided.
Service-level objectives – are the levels of service that
both the users and the service providers agree on, and
usually include a set of service level indicators, like
availability, performance and reliability. Each aspect of
the service level, such as availability, will have a target
level to achieve. Service Level objectives have day-time
constraints associated with them, which delineate their
validity.
Service-level indicators – the means by which these levels
can be measured. Service Level Indicators (SLI) are the
base level indicators.
Penalties – spells out what happens in case the service
provider under-performs and is unable to meet the
objectives in the SLA. If the agreement is with an external

service provider, the option of terminating the contract in
light of unacceptable service levels should be built in.
Optional services – provides for any services that are not
normally required by the user, but might be required as an
exception.
 Exclusions – specifies what is not covered in the SLA.
Administration – describes the processes created in the
SLA to meet and measure its objectives

5.2 Unambiguous and Precise SLA
specification

The first enabler for automated SLA management is a
flexible but precise formalization of what an SLA is. The
flexibility is needed since we neither completely
understand nor can anticipate all possible SLAs for all the
different types of web service providers. This will also
help create a generic SLA management system for
managing a range of different SLAs. The precision is
essential so that an SLA management system can
unambiguously interpret, monitor, enforce, and optimize
SLAs.
Examples of the lack of flexibility and precision in
existing SLA formalizations are discussed in [3]. Detailed
explanation of how we have addressed flexibility and
precision in coming up with SLA formalization are also
presented in [3]. Below is a summary of the formalization.
An SLA is specified over a set of data that is measurable.
An SLA typically has a date constraint (start date, end
date, nextevaldate) and a set of Service Level Objectives
(SLOs). An SLO in turn has typically a day–time (Mon-
Wed, 6:00PM-8:00 PM) constraint and a set of clauses
that make up the SLO. A clause is based on measured
data. This is referred to as a measuredItem. A
measuredItem can contain one or more items. A
measuredAt element determines where the measurements
are taken (provider, consumer side). A clause evaluation
is triggered either when an event happens, e.g. say a
message arrives, an operation completes or at a fixed
time, say at 6PM. We call this an evalWhen component of
an SLO.
Once the evalWhen trigger arrives, a set of samples of
measuredItem are obtained applying a sampling function.
The evalOn component determines how this sample is
computed. The sample set is a constrained set of
measured data that is constrained by the evalOn
component. Examples of evalOn components may be a
number or a time period, e.g. the 5 longest running
transactions, or all the samples for last 24 hours. A
function (evalFunc) is thereafter applied on the sample set
so obtained. An example of evalFunc would be average
response time function < 5 ms. The evalFunc must be a
mathematical function that is expressible in terms of its

inputs and logic. The evalAction specifies what action to
perform after the evaluation is done. The following
grammar shows a portion of this formalization.

F
I
s
s
a
d
o
d
d
m

F
A
l
t
f
c
<

 <evalOn>all</evalOn>
 <evalFunc>Availability:99.9:percent </evalFunc>
 </slo>
</sla>
Another SLA specified between ASP.com and UDC.com,
dealing with Mean Time To Repair (MTTR) specified
using trouble ticketing messages as described in the Web
Service Description Language (WSDL) [13] of the
services could be as follows
<sla>
 <slaId>2</slaId>
 <partnerName>ASP.com</partnerName>
 <startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
 <endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
SLA = dateconstraint SLO*
Dateconstraint = startdate enddate nextevaldate
SLO = daytimeconstraint clause*
Daytimeconstraint = Day* time
Clause = MeasuredItem evalWhen evalOn evalFunc evalAction
MeasuredItem = Item*
Item = measuredAt constructType constructRef
- 6 -

igure 6: SLA specification grammar
n order to explain in detail the concepts involved in SLA
pecification and monitoring, we consider an example
cenario. The example scenario comprises of a customer,
n application service provider (ASP.com) and a Utility
ata center (myUDC.com). The management proxies not
nly ask for resources as explained in section 3 but also
ecide on a SLA specification (based on resources
escribed in the RSL specification) which in turn is
onitored by the Grid proxies.

igure 7: An example scenario.
ssuming that myUDC.com and ASP.com have a clause

ike At month-end, the availability of the farm allocated
o the user myASP.com, measured on the myUDC.com
rom Mon-Fri from 9AM-5 PM should be at least 99.9%,
an be specified as follows.
sla>
 <slaId>1</slaId>
 <partnerName>ASP.com </partnerName>
 <startDate>Fri Feb 15 00 :00:00 PST 2002</startDate>
 <endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
 <slo>
 <sloId>1</sloId>
 <dayTimeConstraint>9:5:1:5</dayTimeConstraint>
 <measuredItem>
 <item>
 <constructType>udc.hp.com/farm</constructType>
 <constructRef> My-2-Tier-Farm</constructRef>
 <measuredAt>myUDC.com </measuredAt>
 </item>
 </measuredItem>
 <evalWhen>month-end</evalWhen>

 <slo>
 <sloId>1</sloId>
 <dayTimeConstraint>0:24:1:7</dayTimeConstraint>
 <measuredItem>
 <item>
 <constructType>message</constructType>
 <constructRef>TroubleTicketLaunchMsg</constructRef>
 <measuredAt>myUDC.com </measuredAt>
 </item>
 <item>
 <constructType>Message</constructType>
 <constructRef> TroubleTicketClosedMesg</constructRef>
 <measuredAt>myUDC.com</measuredAt>
 </item>
 </measuredItem>
 <evalWhen>month-end</evalWhen>
 <evalOn>all</evalOn>
 <evalFunc>AvgRespTime:LT:10:min</evalFunc>
 </slo>
</sla>

The complete set of examples of how complex SLAs can
be represented in the specification language are presented
in [3].

5.3 SLA Monitoring
As the specification typically has startdate, enddate,
daytimeconstraint, evalWhen, evalOn and evalFunc
components to it, each of these constitutes a generic
component that can be used by our SLA Management
engine. In addition, we have also identified the most
common variants of these generic components, which can
be readily parameterized by the engine for a large number
of possible combinations of SLAs. Using a new,
evalWhen, evalOn, or evalFunc component in an SLA
requires an administrator to first develop such a
component within the framework of our engine and then
to add it to the engine. The model generator creates a
model for the Grid hosting environment in the model
repository. All the measurements collected are attached to
this model. The instrumentation in the hosting
environment is responsible for collecting these
measurements and passing them on to the management

ASP.com

Client

[Application Service Provider] [Customer]
myUDC.com
[UDC Owner]

- 7 -

handler to be stored in the model repository. If the
measurements are collected on the client side (as
determined by the measuredAt components of the items in
SLA clauses), then the communicator is responsible for
receiving the measurements and storing them into the
repository. SLM Engine process controller receives the
SLA executes a monitoring process flow (as explained in
subsequent section) and accordingly informs the SLA
customizer which in turn customizes the alarms at the
Alarm Manager (depending on the evalWhen and
dateconstraint components). The Alarm Manager
comprises of the SLO Validity Period Monitor, and
triggers (time based and event based). The SLA
customizer also creates an SLO object in the
SLA/contract repository and registers it as the call back
handler of the alarms. The SLO object maintains the state
of the SLO (valid, active, invalid). If a registered alarm
for start-date of an SLO arrives the state of the SLO is
changed from init to valid. The SLO is invalidated when
the end-date trigger arrives. In between as the evalWhen
alarms are triggered (because of a time or an event
happening) the SLO evaluator evaluates the SLO. The
SLO evaluator obtains the required management
information (based on start-date, end-date, evalOn,
daytime Constraint and the evalFunc constituent of the
specification) from the high performance database in
memory. The SLO evaluator determines
compliance/violations. The SLA violation engine
maintains the record for violations, their timestamps, the
levels of violation, and the clauses that are violated (both
in memory and in log files). The management console
can be used for looking and visual analysis of the current
SLAs, SLOs, and their violation records. The violation
records are used for triggering SLA assurance processes.

Measurement and modeling
In order to undertake SLA Management it is essential to
measure data and model it. The measurement data is
collected through manageability interfaces of the
resources. Although a variety of instrumentation
techniques and tools exist it is essential that network,
system, software layer data be collected through uniform
manageability interfaces that are CIM compliant.
Currently, instrumentation is done by installing probes at
the network, system and software levels of the Grid
deployment infrastructure. These probes could range from
SNMP agents for network components and machines, a
set of perf tools (e.g. perfview) for system level data
collection, and special mechanisms for software like the
web server (NSAPI/ISAPI filters, log files), application
servers (ARM, JMX) and data bases (APIs). Once the
probes are installed the data collected has to be modeled
in the SLM engine. The CIM [12] based model mimics
the topology and dependency of the resources.

Measurement exchange protocol
In cases where an SLA cannot be evaluated solely based
on local measurements a measurement exchange protocol
is executed for transferring measurements from one site to
the site that evaluates the SLAs. Such a protocol is
designed with the following objectives in mind: (a)
minimize the amount of data that is transmitted between
the two sides, and (b) transfer the data in time for the
evaluation of SLA to take place when triggered.

Figure 8: SLA Monitoring engine.
The following needs to be agreed upon (a) what
measurements need to be transferred and at what level of
aggregation, and (b) how frequently they should be
transferred. The type and level of aggregation of the
measurements depends on both evalFunc and measuredAt.
To specify the level of aggregation, we use typical
sampling functions such as count (t), totaled, averaged,
movingAvg(lastN), minN, maxN, threshold. In the case
when the sampling function cannot be determined from
the evalFunc, all measurements are transferred. The
reporting frequency depends on evalWhen. The
measurement protocol handles both the agreement on
level of aggregation and frequency, as well as the transfer
of agreed measurements. There are in essence 5 different
types of messages that form the protocol

� Init: sent by the site that measures to the site that
evaluates the SLA. The init message carries
possible choices of sampling function, interval,
duration and reporting interval details that the
site supports.

� Request: The evaluator site decides the exact
measurement specification (sampling function,
sampling params and reporting params) that it
chooses and specifies it in its request message

� Agreement: The measurement site sends this
message if it agrees to the request

SLO Vailidity
Time Trigger

Instrumentation

Instrumentation

SLA
Customizer

Management
Process Controller

Proxy

SLA
Violation
Engine SLO Validity

Management
Protocol Handler

Communicator

SLA repository

manager Model Generator
Aggregator

Database

Instrumentation
dictionary

Measurement
Handler

Templates
Repository Data

Warehouse

Infrastructure
Instrumentation

Management
Proxy

SLA/SLO
Evaluator

Time
Trigger

Custom
Period Monitor

Events Information Daemon

SLM Engine

- 8 -

� Start: message from the evaluator site to
commence the reporting

� Report: actual measurement report messages
� Close: Message to terminate reporting.

A management proxy prototype was implemented in Java.
The management proxy uses an Oracle9i warehouse for
data archiving and retrieval purposes. A metric model
derived from CIM was used to model the collected data.
The management proxy was implemented as web service
using Tomcat 3.2.3. It uses Apache SOAP router to
communicate with other proxies. The measurement
exchange protocol was also implemented.

6 Summary and Conclusion
Applying the Grid model to commercial environment
requires specification, monitoring and assurance of
guarantees expressed in terms of service level agreements.
In this article we described a language for unambiguous
and precise specification of service-level agreements. We
also explained a monitoring engine for evaluating these
SLAs and a measurement exchange protocol for obtaining
and aggregating measurements from multiple sites.

References
[1] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S., The

Physiology of the Grid – An Open Grid Services
Architecture for Distributed Systems Integration,
http://www.globus.org/research/papers/ogsa.pdf, May
2002.

[2] HP, Utility Data Center, http://www.hp.com/go/hpudc,
http://www.hp.com/go/always-on, November 2001.

[3] Sahai A, Durante A, Machiraju V. Towards Automated
SLA Management for Web Services. HPL-2001-130.

[4] Sahai A, et al. Automated SLA Monitoring for Web
Services. IEEE/IFIP DSOM 2002. Montreal Canada
2002.

[5] The Global Grid Forum, http://www.gridforum.org/..
[6] Sahai A, Graupner S, Wooyoung K. The Unforlding of

Web Services Paradigm. Internet Encyclopedia by John
Wiley. Also HPL-2002-130.

[7] Sturm R, Morris W, Jander M. Foundation of Service
Level Management. SAMS publication.

[8] Krauter, K., Buyya, R., Maheswaran, M.:A Taxonomy and
Survey of Grid resource Management Systems, Software-
Practice and Experience, 32(2):135-164, 2002.

[9] Graupner, S., Kotov, V., Trinks, H.: Resource-Sharing
and Service Deployment in Virtual Data Centers, IEEE
Workshop on Resource Sharing in Massively Distributed
Systems (ICDCS-2002), July 2, 2002, Vienna, Austria.

[10] Graupner, S., Reimann, C.: Globus Grid and Firewalls:
Issues and Solutions in a Utility Data Center

Environment, HP Labs Technical Report, HPL-2002-278,
September 2002.

[11] Czajkowski, K., Foster, I., Kesselman, C., Sander, V.,
Tuecke, S.: SNAP: A Protocol for Negotiation of Service
Level Agreements and Coordinated Resource
Management in Distributed Systems, submission to Job
Scheduling Strategies for Parallel Processing Conference
(JSSPP), April 30, 2002.

[12] Common Information Model CIM from DMTF.
http://www.dmtf.org/standards/standard_cim.php

[13] Web Service Description Language (WSDL)
 http://www.w3.org/TR/wsdl

http://www.globus.org/research/papers/ogsa.pdf
http://www.hp.com/go/hpudc
http://www.hp.com/go/always-on
http://www.gridforum.org/
http://www.dmtf.org/standards/standard_cim.php
http://www.w3.org/TR/wsdl

	Introduction
	SLA and the Grid
	Grid Deployment Infrastructure
	GRID Management Architecture
	Specifying and Monitoring Service Level Agreements
	SLA definition
	Unambiguous and Precise SLA specification
	SLA Monitoring
	Measurement and modeling
	Measurement exchange protocol

	Summary and Conclusion
	References

