

The Impulse Responses of Block Shift-Invariant Systems
and its use for Demosaicing Algorithms

Yacov Hel-Or
HP Laboratories Israel
HPL-2002-322 (R.1)
September 10th , 2003*

E-mail: renato@hpli.hpl.hp.com

demosaic, color
image,
shift- invariant

Shift- invariant linear algorithms can be described completely by the
algorithm's response to an impulse input. The so called impulse
response can be used as filter kernels when the algorithm is
equivalently implemented using convolution. This, however, is not
true when the system is block-shift invariant, i.e. when invariance is
only at repetitive locations. This paper describes a generalization of
the impulse response for block shift- invariant systems. The
proposed technique, takes any computer program which implements
a linear block-shift- invariant algorithm, and produces its equivalent
filter kernels. These kernels can then be applied efficiently by
using convolution. This greatly reduces run time, especially when
the convolution is implemented in hardware, or using the FFT.

This algorithm can assist in finding filter kernels for interpolating
missing values in mosaic images acquired by digital cameras.
Using this approach any algorithmic description for the
demosaicing problem, which is linear and block shift- invariant, can
be translated into actual filter kernels that can be applied efficiently.

* Internal Accession Date Only Approved for External Publication
HP Labs Israel, Technion City, Haifa, 32000, Israel
 Copyright Hewlett-Packard Company 2003

1 Introduction

A color image is typically represented by three bands each of which is a matrix of values
representing the responses of an array of photo-sensors to the viewed scene. The three bands
are often referred to as red (R), green (G), and blue (B) according to their spectral sensitivity.
Thus, three numbers are given at each matrix location composing a pixel value. Most CCD
cameras, however, provide only a single value for each pixel due to their inability to position
three photo-sensors at the same location. In these cases, the captured image is composed of
three bands whose pixel values are partially sampled. The Bayer color filter array (CFA),
given in Figure 1, is an example of a CCD array with a typical photo-sensor arrangement.

Figure 1: A typical arrangement of photo-sensors in a CCD array. This arrangement provides
three color bands whose pixel values are partially sampled. Note that in this example, the
number of green samples is twice that of the red and the blue. This corresponds to the varying
spatial resolution of the human visual system at different spectral wavelength.

The demosicing problem deals with the reconstruction of a color image I(x, y, c), where
c ∈ {R,G,B}, from a partial sampling D = S(I) of its pixel values. Here, S represents the
sampling operator applied to the image I.

This reconstruction problem is, of course, an under-determined system since the solution
space includes infinite images satisfying D. Several approaches were introduced to solve the
demosaicing problem (see e.g. [3, 1, 2, 5, 4]). These methods assume some prior knowledge
about the probability of the input images P (I). The solution is then chosen such that it
maximizes the a posteriori probability P (I|D).

Regardless of the probability model chosen to describe the input space, some solutions are
implemented using a finite set of linear operations (e.g.[5, 4]). These operations are efficiently
implemented using an iterative or closed form scheme. An Example of such an algorithms
might be:

2

1. Interpolate each missing data using a bilinear interpolation of neighboring values from
the same color band.

2. Transform the RGB values to chrominance/luminance representation, using e.g. the
RGB to YIQ linear transformation.

3. Spatially smooth the chrominance bands (bands I and Q) using Gaussian filtering.

4. Transform back from YIQ to RGB representation using a linear transformation.

5. Reset sampled values to their original values.

6. Iterate again from step 2 several times.

7. Sharpen the result using linear unsharp masking.

The algorithm described above indeed gives very good results after few iterations (typically
3-5 iterations). This algorithm is well understood, and it is efficiently described in an algo-
rithmic manner. Moreover, since each step of this algorithm is a linear operation, the entire
demosaicing process is linear. Therefore, the entire algorithm can be implemented efficiently
using a convolution operation with filter kernels. The goal of the technique presented here
is to find these filter kernels, given the algorithm.

Trivially, it is possible to describe the algorithm mathematically, and find the filter kernels
using mathematical rules and derivations. However, this approach is complicated and re-
quires specific mathematical derivations for each given algorithm. The suggested approach is
general, and can be applicable for any given algorithm. Moreover, the procedure suggested
does not require any elaborated knowledge or description of the algorithm. The algorithm
can be regarded as a black box where the input and the associated outputs are available.
There are only two requirements that must be satisfied:

1. The algorithm process must be linear, i.e., if A{D} represents the results of applying
the algorithm A to the input signal D then:

A{D1 + D2} = A{D1} + A{D2} and A{λD} = λA{D}

2. The algorithm is shift-invariant up to the input pattern repetition. That is, assuming
homogeneity of the input data, the demosaicing process is shift-invariant at pixel po-
sitions having similar neighborhoods in the input mosaic pattern. The specific Bayer
pattern described above has a repetative pattern in blocks of 2×2 (Figure 2). Thus, the
demosaicing process of this pattern is shift-invariant, only if the shift is an integer num-
ber of blocks. We denote such a system as block-shift-invariant. A block-shift-invariant
system with a block shift s satisfies:

A{D(x − ns)}(y) = A{D(x)}(y − ns)

3

for any integer number n, and where, x and s are vectors whose dimensions are similar to the
signal’s domain. Note, that a block-shift-invariant system is not necessarily shift-invariant
in the classical manner (see Figure 2).

Same response

1

1

Figure 2: Block-shift-invariant system for the Bayer input image.

1.1 Determining Block-Shift-Invariant Kernels

In principle, a shift-invariant linear process can be implemented using an appropriate linear
filter, i.e. a convolution with a filter kernel. In the case of a block-shift invariant linear
system, as in the case of the proposed demosaicing process, a linear filtering system can
be used as well, however the filtering is based on a set of linear filters rather than a single
filter, each of which is associated with a particular location in the block. Thus, in the Bayer
pattern depicted in Figure 1, 12 kernels are defined; for 3 different colors and 4 different
locations. In this section a technique is described for determining the appropriate set of
kernels. For clarity, the classical shift-invariant case is first described, and then extended to
describe the block-shift-invariant case.

1.2 Shift-Invariant Case

The appropriate kernel for a given shift-invariant linear algorithm can be extracted by ap-
plying the algorithm to an impulse-function input as in Figure 3a (in the case of image
filtering, the input image is a zero valued image with a single pixel having unit value). This
is known as the impulse response of the algorithm. Due to shift-invariance of the algorithm,
the response for any shifted impulse is the impulse response shifted by the the same amount
(Figure 3b). To compute the kernel values, a single output pixel position is considered (Fig-
ure 3c). At that particular pixel location, the collection of impulse responses is determined
for all possible impulse inputs (Figure 3d).

Formally speaking, let δ(x − p) be an impulse input, positioned at location p, and the
algorithm response for such an input be Rp(y), i.e.

A {δ(x − p)} (y) = Rp(y)

Due to the shift-invariance of the algorithm we have:

Rp(p + y) = Rq(q + y)
.
= R̂(y) ∀ p, q

4

Similarly, the algorithm response to any shifted delta function δ(x − k) is:

A{δ(x − k)}(y) = R̂(y − k)

Now, the algorithm output sout(y) for a given signal input sin(x) can be calculated:

sout(y) = A {sin(x)}(y) = A

{∑
k

sin(y − k)δ(x − (y − k))

}
(y) = (1)

=
∑
k

sin(y − k)A {δ(x − (y − k))} (y) =
∑
k

sin(y − k)R̂(k)

where the third equality is due to the linearity of the algorithm. This result implies that the
impulse response of a shift-invariant linear algorithm completely characterizes the algorithm;
i.e. the output of the algorithm for any input signal can be calculated. This can be viewed
as a kernel convolution where the convolution kernel is R̂(y). The question explored in the
following section, is whether this property is valid also for block-shift-invariant algorithm,
and if so, what are the kernels that should be used in such systems.

a.
12
1

6
1

3
1 6

1

4
1

b.

12
1

6
1

3
1

6
1

4
1

c. d. 1/6 1/4 1/3 1/6 1/121/6 1/4 1/3 1/6 1/12

input

output

input

output

input

output

Figure 3: Finding the appropriate filer for a shift-invariant linear system. a) Applying the
linear system to a Delta-function input. b) The system output for all possible delta-function
inputs. c) A single output pixel position is considered. The system output at that pixel
location is determined for all possible delta-function inputs. d) The kernel values are collected
from the system outputs for the different delta-function inputs (arrow marks the filter origin).

1.3 Block-Shift-Invariant Case

In a block-shift-invariant linear system, the entire signal domain is tiled by a collection of
similar block shapes (see, for example, Figure 4). A canonical block consists of N indexed

5

grid positions p1 · · · pN . Define the function g(p) that maps a general grid position p to its
position index, i.e. g(p) ∈ {1, · · · , N}. In Figure 4, for example, g(p) = g(p + ks1 + ls2)
for any integers k and l. Applying the algorithm to an impulse input located at position p,
results in the output response:

A{δ(x − p)}(y) = Rp(y)

However, due to the block-shift invariance of the algorithm we have:

Rp(y + p) = Rq(y + q)
.
= R̂g(p)(y) if g(p) = g(q)

Therefore, we have a set of N different impulse responses: R̂i(y), i = 1 · · ·N , where

R̂i(y) = Rpi
(y + pi)

Given this set of N impulse responses, the algorithm output to any shifted impulse can be
deduced:

A{δ(x − k)}(y) = R̂g(k)(y − k)

Similar to the classical shift-invariant system, the algorithm output sout(y) for a given signal
input sin(x) can be calculated from the set of R̂i(y):

sout(y) = A {sin(x)}(y) = A

{∑
k

sin(y − k)δ(x − (y − k))

}
(y) =

=
∑
k

sin(y − k)A {δ(x − (y − k))} (y) =
∑
k

sin(y − k)R̂g(y−k)(k)

The last equation states that, similar to the classical shift-invariant systems, the set of
impulse-responses of the block-shift-invariant algorithm R̂i(k) entirely characterizes the al-
gorithm, i.e. the output of the algorithm for any given input signal can be calculated.
However, due to block-shift-invariance, the algorithm output is calculated similarly only for
those positions y having the same position index g(y). Therefore, there are N different
convolution kernels Hi(k), i = 1..N , where:

Hg(y)(k)
.
= R̂g(y−k)(k)

To calculate the algorithm output at position y, the kernel Hg(y)(k) is applied in the following
manner:

sout(y) =
∑
k

sin(y − k)Hg(y)(k)

As explained above, the number of kernels required is equal to the size of a block. Figure 5
shows a 1D example where the block size is two. In this case, 2 filters are required to
implement the linear system. The filters can be found by applying the algorithm to two
impulse inputs as in Figure 5a. To compute the filter kernel values at a single output pixel
position, the collection of system outputs at that pixel location is determined for all possible
impulse inputs (Figure 5b).

6

S1

S2

Figure 4: A signal domain is tiled by a collection of similar shaped blocks. The shift from a
pixel position p1 to a similar block-relative position p2 can be expressed as p2 = p1 + ks1 + ls2

where k and l are integers.

1.4 Block Shift-invariant Kernels for Demosaicing

As described above, the Demosaicing algorithm is a block-shift invariant linear system ap-
plied on a 2D Bayer Pattern which is 2×2 repetitive. Thus, the block size of the linear system
is 2× 2. The input is a single 2D array of sensor inputs. The output of the process consists
of three 2D arrays representing the Red, Green and Blue contents of a color image. Thus,
in practice. the Demosaicing process can be viewed as 3 independent block-shift invariant
linear systems (receiving the same input and producing the R, G or B arrays). Following
the discussion above, the Demosaicing process can be implemented using 12 filters (3 filters
for the R, G and B outputs for each of the 2 × 2 block positions (see Figure 6).

2 Demonstrated Results

In order to demonstrate the proposed technique, two demosaicing algorithms were considered.
The first algorithm, is the trivial bilinear interpolation for the Bayer pattern. The 12 kernels
that were generated by the proposed technique, are shown in Figure 7. In the figure each
row has 4 kernels, for block positions (1, 1), (1, 2), (2, 1), and (2, 2), from left to right. The
rows show the kernels for the Red, Green, and Blue images, from top to bottom. The second
algorithm considered, is that given in Section 4. The kernels that were generated for this
algorithm are shown in Figure 8, in the same order. These kernels were applied to a mosaiced
image that is shown in Figure 9a. Figure 9b shows the resulting image after applying the
bilinear kernels. Figure 9c is the result after applying the kernels generated for the second
algorithm.

7

3 Conclusions

A technique for generating the appropriate kernels for block-shift-invariant algorithms was
proposed. These kernels can be calculated without specific knowledge about the algorithm,
i.e the algorithm can be regarded as a black-box. The advantage of the proposed technique
is that the kernel derivation is automatic and does not require complicated mathematical
derivations. A hardware device that can apply convolution kernels to an image, can be
adjusted efficiently to perform any proposed block-shift-invariant and linear algorithm.

Acknowledgements

The author would like to thank Renato Keshet for his assistance in writing this paper and
for helpful discussions.

4 References

[1] D. R. Cok, Reconstruction of CCD images using template matching, Proc. IS&T’s Annu.
Conf. ICPS, 1994, pp. 380–385.

[2] Yacov Hel-Or and Daniel Keren, Demosaicing of color images using steerable wavelets,
Tech. Report HPL-97-104, HP Labs, August 1997.

[3] R. Kimmel, Demosaicing: Image reconstruction from color CCD samples, EVVC (1),
1998, pp. 610–622.

[4] D. Taubman, Generalized wiener reconstruction of images from colour sensor data using
a scale invariant prior, Proc. of the International Conference of Image Processing, 2000.

[5] D. Taubman, Generalized image demosaicing and enhancement (GIDE), Tech. Report
HPL-97-104, HP Labs (internal), Vancouver, 1996.

8

input

12
1

6
1

3
1 6

1

4
1

a.

b.

d. 1/6 1/5 1/3 1/4 1/12

input

output

12
1

4
1

3
1

6
1

5
1

c.
output

input

output

20
1

4
1

5
2 10

1

5
1

input

output

20
1

6
1

5
2

10
1

4
1

input

output

1/10 1/4 2/5 1/6 1/20

Figure 5: Finding the appropriate filter for a shift-invariant linear filter. a) Applying the linear
system to an impulse input. b) The system output for all possible impulse inputs. c) A single
output pixel position is considered. The system output at that pixel location is determined
for all possible impulse inputs. d) The filter kernel values are equal to the system response for
the different impulse inputs (arrow marks the filter origin).

9

R
Pos 1

R
Pos 1

G
Pos 1

G
Pos 1

B
Pos 1

B
Pos 1

R
Pos 2

G
Pos 2

B
Pos 2

R
Pos 4

G
Pos 4

B
Pos 4

R
Pos 3

G
Pos 3

B
Pos 3

R
Pos 3

G
Pos 3

B
Pos 3

Figure 6: The Bayer pattern in a digitized image consists of a repetitive 2× 2 patterns. Using
a linear demosaicing algorithm, each impulse input produces 3 output images: Red, Green,
and Blue. Therefore, for each output image, 4 kernels are required, and a total of 12 kernels
are needed for the 3 output images.

10

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

Figure 7: The kernels that were calculated for a bilinear algorithm. At each row 4 kernels
are given, for block positions (left to right) (1, 1), (1, 2), (2, 1), and (2, 2). The rows show the
kernels for (from top to bottom) the Red, Green, and Blue images.

11

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

2 4

1

2

3

4

5

Figure 8: The kernels that were calculated for the demosaicing algorithm proposed in Section
4. At each row 4 kernels are given, for block positions (left to right) (1, 1), (1, 2), (2, 1), and
(2, 2). The rows show the kernels for (from top to bottom) the Red, Green, and Blue images.

12

a.

b.

c.

Figure 9: a: The original image from which a mosaiced image was sampled. b: After apply-
ing the bilinear kernels to the mosaiced image. c: After applying the kernels of the second
algorithm

13

