

n-Simplex Interpolation

Peter Hemingway
Client and Media Systems Laboratory
HP Laboratories Bristol
HPL-2002-320
November 20th , 2002*

E-mail: peterhemingway@acm.org

interpolation,
colour, frame
buffer
algorithms,
halftoning &
dithering, level
of detail
algorithms,
rendering,
printing, texture
mapping

Interpolation has wide application, and in the field of computer
graphics is used for colour maps, sampling pixel images and
generating points on surfaces. The performance of an interpolation
algorithm is important for computer graphics because the
computation is typically carried out repetitively over the typically
large number of data points in an image with the modest resources
of an appliance like a digital camera. The paper describes a new and
practical method of interpolation that selects fewer points to
interpolate between. Using fewer points for the interpolation is
computationally more efficient because it reduces the number of
table accesses and because there are fewer terms and operators in
the interpolation equation. It is particularly good when interpolating
between values that are close together (i.e. large tables) and can be
just as accurate as methods that use more points. The interpolation
method is based on n-simplexes so that it can be applied to
problems in any dimension.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

n-Simplex Interpolation
Peter Hemingway

Hewlett Packard Laboratories
Filton Road, Stoke Gifford

Bristol BS34 8QZ

peterhemingway@acm.org

ABSTRACT

Interpolation has wide application, and in the field of computer
graphics is used for colour maps, sampling pixel images and
generating points on surfaces. The performance of an
interpolation algorithm is important for computer graphics
because the computation is typically carried out repetitively over
the typically large number of data points in an image with the
modest resources of an appliance like a digital camera.

The paper describes a new and practical method of interpolation
that selects fewer points to interpolate between. Using fewer
points for the interpolation is computationally more efficient
because it reduces the number of table accesses and because there
are fewer terms and operators in the interpolation equation. It is
particularly good when interpolating between values that are close
together (i.e. large tables) and can be just as accurate as methods
that use more points. The interpolation method is based on n-
simplexes so that it can be applied to problems in any dimension.

Keywords

Interpolation; Colour; Frame Buffer Algorithms; Halftoning and
Dithering; Level of Detail Algorithms; Printing; Rendering;
Texture Mapping.

1. INTRODUCTION
Look-up tables are a useful method of representing complex
functions. If the function has a large number of parameters, or
requires high precision, then the lookup table can become
unacceptably large. A compromise is to reduce the number of
entries in the lookup table and interpolate between a smaller
number of data points. Interpolation has wide application and one
of its applications in the field of computer graphics is for colour
maps[1][2][7], sampling pixel images and generating points on
surfaces. The performance of an interpolation algorithm is
particularly important for computer graphics because the
computation is typically carried out repetitively over a very large
number of data points in an image.

Consider the problem of colour mapping between a camera and a
printer. Each device has its own colour space, but the camera
must convert to, and the printer must convert from, a common
(shared) colour space. If the camera and printer are both
connected to a device like a PC then the PC can mediate and
perform the mapping from one colour space to another, but if a
camera is to communicate directly with a printer, then each

device needs to provide device specific colour mapping to a
common interchange space like sRGB [8].

This paper describes a new method that interpolates between
fewer points. Using fewer points for the interpolation is
computationally more efficient and yet can be just as accurate as
methods that use more points. The improved efficiency is
achieved in two ways: because the algorithm uses fewer table
accesses, and also because there are fewer terms and operators in
the interpolation equation. The algorithm is particularly
applicable to peer-to-peer systems where each device must take
on its own share of computation when image data is transferred
between peers.

2. BACKGROUND
There are many different methods of interpolation, but they all
use the most significant part of the input values to address lookup
table elements, and the least significant part of the input values
for interpolation. Tri-linear interpolation is a well-known
technique for three dimensions that uses eight entries from a
sparse table (a coarse lattice) to estimate the required value, by
calculating a weighted average of the eight points.

Coarse lattice point

Third linear interpolation: weighted average of
or weighted average of

Second linear interpolation: weighted average of
Alternative second interpolations

First linear interpolation: weighted average of
Alternative first interpolations

Figure 1. Tri-linear Interpolation

 1

Tri-linear interpolation involves looking up eight table values and
then calculating the weighted average that will involve eight
multiplications and seven additions.

Radial interpolation [3][4] reduces the number of table accesses
from eight to five. Tetrahedral interpolation [5] further reduces
the number of table accesses to four. This is an improvement
over tri-linear and other methods that use eight coarse lattice
points for interpolation because the speed of the interpolation can
be improved by using fewer table entries in the averaging step
(and keeping the table size the same). This has a twofold effect:
the number of table memory accesses is reduced, and the
averaging can be performed with fewer multiplications and
additions. Table memory accesses can have significant overhead
because the table may be packed.1

When applied to a three dimensional problem, the n-simplex
interpolation method [6] described here uses less than four table
accesses, with corresponding simplification of the weighted
averaging calculation. Although the interpolation is in three
dimensions, interpolation within a solid (that must have a
minimum of four vertices to exist in three dimensions) is not
always necessary, for example when the interpolation is within a
plane of the lookup table lattice. By detecting these special cases,
without incurring an overhead, it is possible to use less than four
values for the interpolation in three dimensions.

 If the interpolation points lie within a plane rather than the
volume of a solid, then only three points are required (and to
minimize errors, these should be the nearest three points). Where
the points lie on a face of the tetrahedron then could be treated as
an interpolation between three points that make up that face of the
tetrahedron. Some of these points will lie on an edge and so lie
between two vertices of the tetrahedron and sometimes
interpolation will not be required at all if the point coincides with
one vertex of the tetrahedron. By optimising tetrahedral
interpolation for these cases then the interpolation needs, on
average, fewer than four table accesses for each of the
interpolations. Although this example uses three dimensions,
because the interpolation method is based on n-simplexes, the
optimisation applies equally to other dimensions of interpolation
by detecting the optimisation cases and treating them as lower
dimension interpolations.

3. ALGORITHM
n-Simplex interpolation takes advantage of the fact that within a
sparse lookup table, some interpolations can use fewer points.
Some input values will fall precisely on the sparse lattice, in
which case the result is known from the table entry and no
averaging is required. If the table is large and the distance
between lattice points is small, this will happen more frequently
than when the table is smaller with a larger gap between coarse
lattice points. The distance between coarse lattice points, K, is
conveniently represented as K = 2N so that N = log2(K). If N = 0,
then the lattice distance is 20 and elements are adjacent (K = 1). In

this case the sub-cube is the lattice point so there is no
interpolation. If N = 3, then the distance between lattice points in
any direction is 23, and the volume bounded by adjacent lattice
points that make up a sub-cube is (23)3.

1 Packed arrays use less storage but are more difficult to access.

Of those input points that do not fall directly on the lattice, some
will fall directly on a line between two lattice points, and here the
result may be estimated as the weighted average of the two points,
the weights being proportional to the distance of the input point
from the lattice points.

Of those input points that do not fall on a line, some will lie
within a triangle described by three coarse lattice points, and the
position of the input point on the triangle determines the weight
given to each of the three points when interpolating between
them. The remainder of the input points must lie within a
tetrahedron of four lattice points.

It will be shown that testing for these special optimisation cases
can be performed without incurring any additional computational
overhead.

3.1 Coefficients
Where an input point coincides with the table entry, no
interpolation is required.

A

P

B

AP

BP

AB

In two dimensions the length of a line AB with coordinates (xa,ya)
and (xb, yb) is given by

() ()22
baba yyxxAB −+−=

For a point with position P on a line length |AB| between two
lattice points, position A and B, with values a and b respectively,
then the interpolated value p is given by

()
AB

APbBPa ⋅+⋅

Note that this equation yields the value a if P coincides with A,
and b if P coincides with B.

 2

()()()()csbsass −−−=∆
If, and only if, P lies on AB then,

 where

 ()
2

cbas ++
= ABPBAP ≡+

in which case and a, b and c are the lengths of the three sides.

1=
+

AB
PBAP

Applying the same technique in three dimensions, where vol
represents the volume, the interpolated value p is given by

 () () () ()()
()DCBAvol

aPDCBolbPDCAvolcPDBAvoldPCBAvol
,,,

,,,,,,,,,,,, ⋅+⋅+⋅+⋅ ν

The distance between two points (xa,ya,za) and (xb, yb, zb) is

() () (())222
bababa zzyyxx −+−+−

If, and only if, P lies in the volume A,B,C,D, then this equation
will yield unity. Otherwise the equation will yield greater than
unity indicating that the point P lies outside the tetrahedron
A,B,C,D. If the point P lies on a face of the tetrahedron, then the
volume of one of the tetrahedrons becomes zero, and the equation
becomes the same as that for a point on a triangle. If P lies on an
edge then two volumes will be zero (and vice versa). If P lies on a
vertex, then three volumes will be zero (and vice versa).

For a point with position P within a triangle of three points

A

P

B

ACP

BCP ABP

C

A,B,C, with values a, b and c respectively, the interpolated value
p is given by

() () ()()
()CB,A,area

aPC,B,areabPC,A,areacPB,A,areap ⋅+⋅+⋅
=

A

P

B

ABCP

BCDP
ABDP

C

D

ACDP

If, and only if, P lies within the area A,B,C, then,

() () () ()CBAareaPCBareaPCAareaPBAarea ,,,,,,,, ≡++
The volume of a tetrahedron with one vertex at the origin and the
other vertices at (xa ya za), (xb yb zb), (xc yc zc) is given by :

Note that if P lies on a side, then one of the triangles will have
zero area, and the equation becomes the same as that for a point
on the side. If P lies on a vertex then two areas are zero, and the
result is the vertex that P lies on.

() () ()()
6

cbcbacbcbacbcba xyyxzxzzxyyzzyx −+−−−

The area of a triangle is given by Heron’s formula:

 3

 This process of using n-simplexes can be extended to
interpolation problems that have more than three input values by
using the equation for the volume of an n-simplex. N Inter

Lattice
Distance

2N

Sub Cube
Volume

(2N)3

On
Point

On
Line

Within
Triangle

In Tetra-
hedron

0 1 1 1 0 0 0
1 2 8 1 7 0 0
2 4 64 1 33 30 0
3 8 512 1 85 378 48
4 16 4096 1 189 2322 1584
5 32 32768 1 397 11202 21168
6 64 262144 1 813 48918 212418
7 128 2097152 1 4579 188586 1903986

These equations can be used to determine whether a particular
point lies on a coarse lattice point, on a line, within a triangle or
inside a tetrahedron, and also the relative influences of each point
(the ratio of the tetrahedral volumes). Some points will fall on
several lines (triangles, tetrahedrons), and so some points within
the sub-cube will have several equivalent n-simplex interpolation
equations. For example the point in the middle of the cube lies at
the midpoint of three diagonal lines. If the space within the sub-
cube is linear, then all equations should yield similar results2.

There are eight vertices for a cube and for any point within the
cube it is a simple matter of looking at all possible tetrahedral
volumes by enumerating all choices of four vertices from the
eight vertices that define the cubic volume and then finding out if
the point of interest lies inside the tetrahedron. Once an enclosing
tetrahedron is found, further tests can determine if the lies on a
face (triangle), edge (line) or vertex (point) In this way the subset
of the cube vertices that are involved are recorded and their
coefficients derived from the ratios of volumes, areas or distance
as appropriate.

Table 1. Frequency

Assuming an even distribution of the input values, the
probabilities of needing: one table access (if the input value
coincides with a lattice point), or two table accesses (if the input
value lies on line), or three table accesses (if the input value lies
on a triangle) or at most four accesses (since the point must lie
within a tetrahedron), can be calculated by dividing each
frequency by the volume of the sub cube. This is shown in Table
2.

The frequency with which input points fall on lines between two
lattice points, within a triangle of three lattice points or within
tetrahedron described by four lattice points, varies with the
volume of the sub-cube which in turn is the cube of the distance
between lattice points. This is shown in Table 1.

N P
(Point)

P
(Line)

P
(Triangle)

P
(Tetra-
hedron)

Av.
Table

Access

Best Max

0 1.000000 1.0000 1.00 1.00
1 0.125000 0.8750 1.8750 1.00 2.00
2 0.015625 0.5156 0.4688 2.4531 1.00 3.00
3 0.001953 0.1660 0.7383 0.0938 2.9238 1.00 4.00
4 0.000244 0.0461 0.5669 0.3867 3.3401 1.00 4.00
5 0.000030 0.0121 0.3419 0.6460 3.6338 1.00 4.00
6 0.000004 0.0031 0.1866 0.8103 3.8073 1.00 4.00

Table 2. Probability

The worst case is never more than four accesses and, for small N,
case is significantly the worst less than four. The best case is
always one lookup, which occurs for input data that coincides
with lattice points and so requires no interpolation. In some
circumstances it may be useful to also perform a simple lookup
with no interpolation when the input value is very close to a table
lattice point. This may incur a small error but the result will be
computed more quickly. If the interpolation is used for colour
space mapping, snapping some values to lattice points (e.g. for
background or colour business graphics) may even be

2 In practice the results may differ, and the degree of difference is
a measure of the distortion of a particular sub-cube. This can be
useful in determining whether the lattice is too coarse to achieve
an acceptable approximation, but is outside the scope of this
paper.

 4

 advantageous if it ignores small deviations that are due to noise in
the data. P [0][0][0] = (4 V 000 + 2)/4

P [0][0][1] = (3 V 000 + 1 V 001 + 2)/4
P [0][0][2] = (2 V 000 + 2 V 001 + 2)/4
P [0][0][3] = (1 V 000 + 3 V 001 + 2)/4
P [0][1][0] = (3 V 000 + 1 V 010 + 2)/4
P [0][1][1] = (3 V 000 + 1 V 011 + 2)/4
P [0][1][2] = (2 V 000 + 1 V 001 + V 011 + 2)/4
P [0][1][3] = (1 V 010 + 3 V 001 + 2)/4
P [0][2][0] = (2 V 000 + 2 V 010 + 2)/4
P [0][2][1] = (2 V 000 + 1 V 010 + V 011 + 2)/4
P [0][2][2] = (2 V 010 + 2 V 001 + 2)/4
P [0][2][3] = (1 V 010 + 2 V 001 + V 011 + 2)/4
P [0][3][0] = (1 V 000 + 3 V 010 + 2)/4
P [0][3][1] = (3 V 010 + 1 V 001 + 2)/4
P [0][3][2] = (2 V 010 + 1 V 001 + V 011 + 2)/4
P [0][3][3] = (1 V 000 + 3 V 011 + 2)/4
P [1][0][0] = (3 V 000 + 1 V 100 + 2)/4
P [1][0][1] = (3 V 000 + 1 V 101 + 2)/4
P [1][0][2] = (2 V 000 + 1 V 001 + V 101 + 2)/4
P [1][0][3] = (1 V 100 + 3 V 001 + 2)/4
P [1][1][0] = (3 V 000 + 1 V 110 + 2)/4
P [1][1][1] = (3 V 000 + 1 V 111 + 2)/4
P [1][1][2] = (1 V 100 + 1 V 010 + V 001 + 2)/4
P [1][1][3] = (1 V 110 + 3 V 001 + 2)/4
P [1][2][0] = (2 V 000 + 1 V 010 + V 110 + 2)/4
P [1][2][1] = (1 V 100 + 2 V 010 + V 001 + 2)/4
P [1][2][2] = (2 V 010 + 1 V 001 + V 101 + 2)/4
P [1][2][3] = (1 V 110 + 2 V 001 + V 011 + 2)/4
P [1][3][0] = (1 V 100 + 3 V 010 + 2)/4
P [1][3][1] = (3 V 010 + 1 V 101 + 2)/4
P [1][3][2] = (2 V 010 + 1 V 101 + V 011 + 2)/4
P [1][3][3] = (1 V 100 + 3 V 011 + 2)/4
P [2][0][0] = (2 V 000 + 2 V 100 + 2)/4
P [2][0][1] = (2 V 000 + 1 V 100 + V 101 + 2)/4
P [2][0][2] = (2 V 100 + 2 V 001 + 2)/4
P [2][0][3] = (1 V 100 + 2 V 001 + V 101 + 2)/4
P [2][1][0] = (2 V 000 + 1 V 100 + V 110 + 2)/4
P [2][1][1] = (2 V 100 + 1 V 010 + V 001 + 2)/4
P [2][1][2] = (2 V 100 + 1 V 001 + V 011 + 2)/4
P [2][1][3] = (1 V 110 + 2 V 001 + V 101 + 2)/4
P [2][2][0] = (2 V 100 + 2 V 010 + 2)/4
P [2][2][1] = (2 V 100 + 1 V 010 + V 011 + 2)/4
P [2][2][2] = (2 V 110 + 2 V 001 + 2)/4
P [2][2][3] = (1 V 110 + 2 V 001 + V 111 + 2)/4
P [2][3][0] = (1 V 100 + 2 V 010 + V 110 + 2)/4
P [2][3][1] = (2 V 010 + 1 V 110 + V 101 + 2)/4
P [2][3][2] = (2 V 110 + 1 V 001 + V 011 + 2)/4

For each possible point P it is possible to derive the weights and
lattice points, for each interpolation point. For N=2 there are 64
points in the sub-cube3, which can be addressed as P[x][y][z],
where x, y and z are between 0 and 3 inclusive. The interpolation
equations are derived using the tetrahedral areas and it is
convenient to write a program to generate the equation
coefficients but the efficiency of generating the equations is not
important: it is the execution efficiency that is important for n-
simplex interpolation. If the eight vertices of the cube (which are
coarse lattice points) are referred to as V000, V100, V010, V001, V110,
V101, V011, V111, then a computer program can be used to generate
the following interpolation equations for N=2:
In many cases more than one interpolation equation exists. For
example P[2][2][2] lies in the centre of the eight vertices and so it
lies on the midpoint of four diagonals:

[][][]

4
222

4
222

4
222

4
222

222

101010

000111

011100

001110

++
=

++
=

++
=

++
=

VV

VV

VV

VVP

The equations are equivalent since they all access only two
elements and the overall weighting is the same for each equation,
but each equation may yield different results if the volume
bounded by V000, V100, V010, V001, V110, V101, V011, V111 is not
linear (and the greater the non-linearity, the greater the disparity
between the above equations). In this example all the weights can
be simplified by dividing by two. In some cases it may be
preferable to use one equation over another. When interpolating
colour tables it is often more appropriate to average along the
neutral (grey) axis.

Figure 2. Interpolation Equations for N=2

3.2 Example Code
n-Simplex interpolation would be of little value if the saving from
the reduction in table lookups were offset by the overhead of
testing for simpler cases. Fortunately the algorithm can be written
so a single test determines which table entries need to be

3 The sub-cube does not include the points that lie on the faces

furthest from the reference point V000, since these are in the
adjacent sub-cubes.

 5

 case 1: p = 15*V000 + V001; break; accessed, for example by using a computed goto or case
statement4. case 2: p = 14*V000 + 2*V001; break;

 case 3: p = 13*V000 + 3*V001; break;
 The high order input bits are used to provide an offset into the

table, as is normally the case, but the low order bits are used
choose which case to execute. Each case corresponds to one of
the positions that lies between coarse lattice points, and so each
case need only access the necessary coarse lattice points. The
interpolation coefficients for the lattice points are known integers
between unity and (2N-1), with the sum of the coefficients being
2N. A program that uses the tetrahedral volume ratios described
earlier can generate the case statement automatically. The final
step (which can be performed outside the case statement) is to
round (by adding (2N)/2) and normalise (by dividing by 2N). For
example, mapping three input bytes to one output byte the table
size will be (28-N+1)3, and there will be (2N)3 cases.

 ...

 case 4077: p = 2*V100 + V010 + 13*V111; break;

 case 4078: p = 2*V100 + V011 + 13*V111; break;

 case 4079: p = V010 + 2*V101 + 13*V111; break;

 case 4080: p = V000 + 15*V110; break;

 case 4081: p = 15*V110 + V001; break;

 case 4082: p = 14*V110 + V101 + V011; break;

 case 4083: p = 13*V110 + V001 + 2*V111; break;

 case 4084: p = 12*V110 + V001 + 3*V111; break;

 case 4085: p = 11*V110 + V001 + 4*V111; break;

 case 4086: p = 10*V110 + V001 + 5*V111; break;
#define N 4

 case 4087: p = 9*V110 + V001 + 6*V111; break;
#define SIZE 16

 case 4088: p = 8*V110 + V001 + 7*V111; break;
#define STRIDE ((1<<(8-N))+1)

 case 4089: p = 7*V110 + V001 + 8*V111; break;
#define ROUND 8

 case 4090: p = 6*V110 + V001 + 9*V111; break;

 case 4091: p = 5*V110 + V001 + 10*V111; break;
unsigned char table[(STRIDE)*(STRIDE)*(STRIDE)];

 case 4092: p = 4*V110 + V001 + 11*V111; break;

 case 4093: p = 3*V110 + V001 + 12*V111; break;
/* define offsets from the reference element V000:

 case 4094: p = 2*V110 + V001 + 13*V111; break;
 an x offset adds the square of the stride, a

 case 4095: p = V000 + 15*V111; break;
 y offset adds the stride and a z offset adds 1

 };
*/

 p = (p + ROUND)/16;

 return p;
#define V000 offset[0]

};
#define V100 offset[STRIDE*STRIDE]

Figure 3. Example C Code #define V110 offset[STRIDE*STRIDE + STRIDE]

 #define V111 offset[STRIDE*STRIDE + STRIDE+1]

#define V101 offset[STRIDE*STRIDE + 1] The code can be made to execute slightly faster, at the
expense of increased code size, by performing the weighted
average and rounding in a single step. In this way the
separate rounding step is removed and some of the cases
can be simplified. For example, case 0 would become
p:=V000, and case 2 would become p:=(7*V000 + V001 +
4)/8. Although the overall code size becomes larger, the
overall execution is reduced, for example case 0 removes a
multiplication and addition and case 2 removes a
multiplication.

#define V010 offset[STRIDE]

#define V011 offset[STRIDE + 1]

#define V001 offset[1]

char interpolate(xin,yin,zin) int xin,yin,zin; {

 char p;

 int swvar = ((xin & (SIZE-1)) << (2*N))|
 ((yin & (SIZE-1)) << N) | (zin & (SIZE-1));

 4. ANALYSIS
 char *offset = &table[(xin>>N)*STRIDE*STRIDE) + As N increases, the case statements become larger (and so does

the code size for the case statement). The distances between the
coarse lattice points also increases with N as does interpolation
error (although the table size will decrease). For colour mapping,
the task of mapping three input bytes to three output bytes
(therefore having three assignment statements per line instead of
only one assignment per line in the above example) can be
achieved for various values of N. The code size in the following
chart is for a program compiled using cc with no flags on a

 (yin>>N)*STRIDE + (zin>>N)];

 switch(swvar){

 case 0: p = 16*V000; break;

4 The cases start from zero and are consecutive so the overhead of

a case statement is about 6 instructions.

 6

With k input values, each input value having B bits, then the
number of table entries is

Hewlett Packard model 735 Unix workstation, as reported by the
Unix size program, and although these values are representative,
there would be differences with different compilers or target
instruction sets. However it is reasonable to say, from Table 2
that for N=3 n-simplex interpolation will reduce the number of
table accesses from 4 for tetrahedral to 2.9238 (a reduction of
17%) and the interpolation expressions will also be implified by a
similar factor.

kNB)12(+−

with the number of case statements being

()kN2

 In practice, because the code required for a case statement
exceeds the storage for a table entry then the optimal solution
occurs when

To map three input bytes to three output bytes the table size will
be 3.(28-N+1)3 bytes and code will have (2N)3 cases5.

2
BN ≤

Increasing k (and increasing the complexity of the case statement
code) the optimal solution may have N much smaller than B/2.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 1 2 3 4 5 6 7 8
N

St
or

ag
e

(b
yt

es
)

Table Size Code Size Table+Code
Figure 4. Storage versus Lattice Spacing

5. CONCLUSION
A practical interpolation method has been presented that uses
fewer table lookups and uses fewer execution steps than existing
methods. The method is most advantageous when interpolating
over smaller ranges. Smaller interpolation ranges will become
more common as memory cost falls, and the cost of larger tables
will be more acceptable. These larger tables will naturally offer
greater precision.

The algorithm has been described for three dimensional
interpolation problems, and more specifically colour mapping. It
has been shown to be computationally more efficient than other
three dimensional interpolation algorithms, including tetrahedral
interpolation. The algorithm is not limited to colour mapping and
can be applied to other three dimensional problems. It is also not
limited to just three dimensions, and can be used to advantage to
interpolate in more than three dimensions.

6. ACKNOWLEDGMENTS
The author would like to thank Gary Vondran for sharing his
extensive knowledge of interpolation algorithms and for his
assessment of the algorithm presented here. The author is grateful
to Dave Grosvenor and Huw Oliver for commenting on earlier
drafts of this document.

For this example, the smallest overall storage (200k bytes) occurs
for N= 3 (and the distance between table elements is eight).
Increasing N above 3 would offer no advantage. Indeed, it would
present several disadvantages: the table would have fewer entries
(and probably less precise), the average number of lookups will
increase, so the interpolation will be slower and some compilers
may not be able to compile large switch statements.

7. REFERENCES
[1] Kasson, J. M., Nin, S. I., Plouffe, W., and Hafner, J. L.

“Performing color space conversions with three-dimensional
linear interpolation”, Journal of Electronic Imaging 4(3)
(July 1995), 226-250.

If more storage is available, reducing N will speed up the
interpolation and also tend to increase the precision of the results. [2] Kanamori, K., and Kotera, H., “Color correction technique

for hard copies by 4-neighbors interpolation method”, J.
Imaging Sci. Technol. 36(1), 73-80 (Jan./Feb. 1992).

[3] Vondran, Gary L., ”Non-symmetric Radial and Non-
symmetric Pruned Radial Interpolation”, U.S. Patent No.
5,966,474, 12 October 1999

5 The code size for N=5 and N=6 have been extrapolated from the

code size for N<=4 because the compiler needed more than 1Gb
memory when trying to compile such large switch statements.

 7

[4] Vondran, Gary L. et al., “Radial and Pruned Radial
Interpolation”, U.S. Patent No. 6,040,925, 21 March 2000.

[7] Kang, Henry R., “Color Technology for Electronic Imaging
Devices”, Chapter 4, pages 64-101, Spie Press, 1996.

[5] Katsuhiro Kanamori, Hideiko Kawakami, and Hiroaki
Kotera. “A novel color transformation algorithm and its
applications”. Image Processing Algorithms and Techniques,
1244:272-281, 1990.

[8] International Electrotechnical Commission, “Colour
Measurement and Management in Multimedia Systems and
Equipment – Part 2-1: Default RGB Colour Space – sRGB”,
IEC 61966-2-1, October 1999.

[6] Hemingway, P. “Method of Interpolation”, Patent
Application No. EP99302139, 27 September 2000.

Columns on Last Page Should Be Made Equal Length

 8

	INTRODUCTION
	BACKGROUND
	ALGORITHM
	Coefficients
	Example Code

	ANALYSIS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

