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Interpolation has wide application, and in the field of  computer 
graphics is used for colour maps, sampling pixel images and 
generating points on surfaces. The performance of an interpolation 
algorithm is important for computer graphics because the 
computation is typically carried out repetitively over the typically 
large number of data points in an image with the modest resources 
of an appliance like a digital camera. The paper describes a new and 
practical method of interpolation that selects fewer points to 
interpolate between. Using fewer points for the interpolation is 
computationally more efficient because it reduces the number of 
table accesses and because there are fewer terms and operators in 
the interpolation equation. It is  particularly good when interpolating 
between values that are close together (i.e. large tables) and can be 
just as accurate as methods that use more points. The interpolation 
method is based on n-simplexes so that it can be applied to 
problems in any dimension. 
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ABSTRACT 

Interpolation has wide application, and in the field of computer 
graphics is used for colour maps, sampling pixel images and 
generating points on surfaces. The performance of an 
interpolation algorithm is important for computer graphics 
because the computation is typically carried out repetitively over 
the typically large number of data points in an image with the 
modest resources of an appliance like a digital camera. 
 
The paper describes a new and practical method of interpolation 
that selects fewer points to interpolate between. Using fewer 
points for the interpolation is computationally more efficient 
because it reduces the number of table accesses and because there 
are fewer terms and operators in the interpolation equation. It is 
particularly good when interpolating between values that are close 
together (i.e. large tables) and can be just as accurate as methods 
that use more points. The interpolation method is based on n-
simplexes so that it can be applied to problems in any dimension. 

 
Keywords 

Interpolation; Colour; Frame Buffer Algorithms; Halftoning and 
Dithering; Level of Detail Algorithms; Printing; Rendering; 
Texture Mapping. 
 

1. INTRODUCTION 
Look-up tables are a useful method of representing complex 
functions. If the function has a large number of parameters, or 
requires high precision, then the lookup table can become 
unacceptably large. A compromise is to reduce the number of 
entries in the lookup table and interpolate between a smaller 
number of data points. Interpolation has wide application and one 
of its applications in the field of computer graphics is for colour 
maps[1][2][7], sampling pixel images and generating points on 
surfaces. The performance of an interpolation algorithm is 
particularly important for computer graphics because the 
computation is typically carried out repetitively over a very large 
number of data points in an image. 
 
Consider the problem of colour mapping between a camera and a 
printer.  Each device has its own colour space, but the camera 
must convert to, and the printer must convert from, a common 
(shared) colour space. If the camera and printer are both 
connected to a device like a PC then the PC can mediate and 
perform the mapping from one colour space to another, but if a 
camera is to communicate directly with a printer, then each 

device needs to provide device specific colour mapping to a 
common interchange space like sRGB [8]. 
 
This paper describes a new method that interpolates between 
fewer points. Using fewer points for the interpolation is 
computationally more efficient and yet can be just as accurate as 
methods that use more points. The improved efficiency is 
achieved in two ways: because the algorithm uses fewer table 
accesses, and also because there are fewer terms and operators in 
the interpolation equation. The algorithm is particularly 
applicable to peer-to-peer systems where each device must take 
on its own share of computation when image data is transferred 
between peers. 
  

2. BACKGROUND 
There are many different methods of interpolation, but they all 
use the most significant part of the input values to address lookup 
table elements, and the least significant part of the input values 
for interpolation. Tri-linear interpolation is a well-known 
technique for three dimensions that uses eight entries from a 
sparse table (a coarse lattice) to estimate the required value, by 
calculating a weighted average of the eight points. 
 

Coarse lattice point

Third linear interpolation: weighted average of
or weighted average of

Second linear interpolation: weighted average of
Alternative second interpolations 

First linear interpolation: weighted average of 
Alternative first interpolations 

 
Figure 1. Tri-linear Interpolation 
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Tri-linear interpolation involves looking up eight table values and 
then calculating the weighted average that will involve eight 
multiplications and seven additions. 
 
Radial interpolation [3][4] reduces the number of table accesses 
from eight to five.  Tetrahedral interpolation [5] further reduces 
the number of table accesses to four.  This is an improvement 
over tri-linear and other methods that use eight coarse lattice 
points for interpolation because the speed of the interpolation can 
be improved by using fewer table entries in the averaging step 
(and keeping the table size the same). This has a twofold effect: 
the number of table memory accesses is reduced, and the 
averaging can be performed with fewer multiplications and 
additions. Table memory accesses can have significant overhead 
because the table may be packed.1 
 
When applied to a three dimensional problem, the n-simplex 
interpolation method [6] described here uses less than four table 
accesses, with corresponding simplification of the weighted 
averaging calculation. Although the interpolation is in three 
dimensions, interpolation within a solid (that must have a 
minimum of four vertices to exist in three dimensions) is not 
always necessary, for example when the interpolation is within a 
plane of the lookup table lattice. By detecting these special cases, 
without incurring an overhead, it is possible to use less than four 
values for the interpolation in three dimensions. 
 
 If the interpolation points lie within a plane rather than the 
volume of a solid, then only three points are required (and to 
minimize errors, these should be the nearest three points). Where 
the points lie on a face of the tetrahedron then could be treated as 
an interpolation between three points that make up that face of the 
tetrahedron. Some of these points will lie on an edge and so lie 
between two vertices of the tetrahedron and sometimes 
interpolation will not be required at all if the point coincides with 
one vertex of the tetrahedron.  By optimising tetrahedral 
interpolation for these cases then the interpolation needs, on 
average, fewer than four table accesses for each of the 
interpolations. Although this example uses three dimensions, 
because the interpolation method is based on n-simplexes, the 
optimisation applies equally to other dimensions of interpolation 
by detecting the  optimisation cases and treating them as lower 
dimension interpolations. 
 

3. ALGORITHM 
n-Simplex interpolation takes advantage of the fact that within a 
sparse lookup table, some interpolations can use fewer points. 
Some input values will fall precisely on the sparse lattice, in 
which case the result is known from the table entry and no 
averaging is required. If the table is large and the distance 
between lattice points is small, this will happen more frequently 
than when the table is smaller with a larger gap between coarse 
lattice points.  The distance between coarse lattice points, K, is 
conveniently represented as K = 2N so that N = log2(K). If N = 0, 
then the lattice distance is 20 and elements are adjacent (K = 1). In 

this case the sub-cube is the lattice point so there is no 
interpolation. If N = 3, then the distance between lattice points in 
any direction is 23, and the volume bounded by adjacent lattice 
points that make up a sub-cube is (23)3. 

                                                                 
1 Packed arrays use less storage but are more difficult to access. 

 
Of those input points that do not fall directly on the lattice, some 
will fall directly on a line between two lattice points, and here the 
result may be estimated as the weighted average of the two points, 
the weights being proportional to the distance of the input point 
from the lattice points.  
 
Of those input points that do not fall on a line, some will lie 
within a triangle described by three coarse lattice points, and the 
position of the input point on the triangle determines the weight 
given to each of the three points when interpolating between 
them. The remainder of the input points must lie within a 
tetrahedron of four lattice points. 
 
It will be shown that testing for these special optimisation cases 
can be performed without incurring any additional computational 
overhead. 
 

3.1 Coefficients 
Where an input point coincides with the table entry, no 
interpolation is required. 
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In two dimensions the length of a line AB with coordinates (xa,ya) 
and (xb, yb) is given by 
 

( ) ( )22
baba yyxxAB −+−=  

 
For a point with position P on a line length |AB| between two 
lattice points, position A and B, with values a and b respectively, 
then the interpolated value p is given by  
 

( )
AB

APbBPa ⋅+⋅
 

 
Note that this equation yields the value a if P coincides with A, 
and b if P coincides with B.  
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( )( )( )( )csbsass −−−=∆   
If, and only if, P lies on AB then,  

 where   

    ( )
2

cbas ++
=  ABPBAP ≡+  

  
in which case   and a, b and c are the lengths of the three sides. 

  

1=
+

AB
PBAP

 
Applying the same technique in three dimensions, where vol 
represents the volume, the interpolated value p is given by  
 

 ( ) ( ) ( ) ( )( )
( )DCBAvol

aPDCBolbPDCAvolcPDBAvoldPCBAvol
,,,

,,,,,,,,,,,, ⋅+⋅+⋅+⋅ ν

 
The distance between two points (xa,ya,za) and (xb, yb, zb) is 
 

( ) ( ) (( ) )222
bababa zzyyxx −+−+−  

If, and only if, P lies in the volume A,B,C,D, then this equation 
will yield unity. Otherwise the equation will yield greater than 
unity indicating that the point P lies outside the tetrahedron 
A,B,C,D. If the point P lies on a face of the tetrahedron, then the 
volume of one of the tetrahedrons becomes zero, and the equation 
becomes the same as that for a point on a triangle. If P lies on an 
edge then two volumes will be zero (and vice versa). If P lies on a 
vertex, then three volumes will be zero (and vice versa). 

 
For a point with position P within a triangle of three points 
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A,B,C, with values a, b and c respectively, the interpolated value 
p is given by  
 

( ) ( ) ( )( )
( )CB,A,area

aPC,B,areabPC,A,areacPB,A,areap ⋅+⋅+⋅
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If, and only if, P lies within the area A,B,C, then,  
 

( ) ( ) ( ) ( )CBAareaPCBareaPCAareaPBAarea ,,,,,,,, ≡++   
The volume of a tetrahedron with one vertex at the origin and the 
other vertices at (xa ya za), (xb yb zb), (xc yc zc) is given by : 

 
Note that if P lies on a side, then one of the triangles will have 
zero area, and the equation becomes the same as that for a point 
on the side. If P lies on a vertex then two areas are zero, and the 
result is the vertex that P lies on. 

 

( ) ( ) ( )( )
6

cbcbacbcbacbcba xyyxzxzzxyyzzyx −+−−−

 
 
The area of a triangle is given by Heron’s formula: 
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 This process of using n-simplexes can be extended to 
interpolation problems that have more than three input values by 
using the equation for the volume of an n-simplex. N Inter 

Lattice 
Distance 

2N 

Sub Cube 
Volume 

(2N)3 

On 
Point 

On 
Line 

Within 
Triangle

In Tetra-
hedron 

0 1 1 1 0 0 0 
1 2 8 1 7 0 0 
2 4 64 1 33 30 0 
3 8 512 1 85 378 48 
4 16 4096 1 189 2322 1584 
5 32 32768 1 397 11202 21168 
6 64 262144 1 813 48918 212418 
7 128 2097152 1 4579 188586 1903986

 
These equations can be used to determine whether a particular 
point lies on a coarse lattice point, on a line, within a triangle or 
inside a tetrahedron, and also the relative influences of each point 
(the ratio of the tetrahedral volumes). Some points will fall on 
several lines (triangles, tetrahedrons), and so some points within 
the sub-cube will have several equivalent n-simplex interpolation 
equations. For example the point in the middle of the cube lies at 
the midpoint of three diagonal lines. If the space within the sub-
cube is linear, then all equations should yield similar results2.  
 
There are eight vertices for a cube and for any point within the 
cube it is a simple matter of looking at all possible tetrahedral 
volumes by enumerating all choices of four vertices from the 
eight vertices that define the cubic volume and then finding out if 
the point of interest lies inside the tetrahedron. Once an enclosing 
tetrahedron is found, further tests can determine if the lies on a 
face (triangle), edge (line) or vertex (point) In this way the subset 
of the cube vertices that are involved are recorded and their 
coefficients derived from the ratios of volumes, areas or distance 
as appropriate. 

 
Table 1. Frequency 

 
Assuming an even distribution of the input values, the 
probabilities of needing: one table access (if the input value 
coincides with a lattice point), or two table accesses (if the input 
value lies on line), or three table accesses (if the input value lies 
on a triangle) or at most four accesses (since the point must lie 
within a tetrahedron), can be calculated by dividing each 
frequency by the volume of the sub cube. This is shown in Table 
2. 

The frequency with which input points fall on lines between two 
lattice points, within a triangle of three lattice points or within 
tetrahedron described by four lattice points, varies with the 
volume of the sub-cube which in turn is the cube of the distance 
between lattice points.  This is shown in Table 1.  

N P 
(Point) 

P 
(Line) 

P 
(Triangle) 

P 
(Tetra-
hedron) 

Av. 
Table 

Access

Best Max

0 1.000000    1.0000 1.00 1.00
1 0.125000 0.8750   1.8750 1.00 2.00
2 0.015625 0.5156 0.4688  2.4531 1.00 3.00
3 0.001953 0.1660 0.7383 0.0938 2.9238 1.00 4.00
4 0.000244 0.0461 0.5669 0.3867 3.3401 1.00 4.00
5 0.000030 0.0121 0.3419 0.6460 3.6338 1.00 4.00
6 0.000004 0.0031 0.1866 0.8103 3.8073 1.00 4.00

 
Table 2. Probability 

 
The worst case is never more than four accesses and, for small N, 
case is significantly the worst less than four. The best case is 
always one lookup, which occurs for input data that coincides 
with lattice points and so requires no interpolation. In some 
circumstances it may be useful to also perform a simple lookup 
with no interpolation when the input value is very close to a table 
lattice point. This may incur a small error but the result will be 
computed more quickly. If the interpolation is used for colour 
space mapping, snapping some values to lattice points (e.g. for 
background or colour business graphics) may even be 

                                                                 
2 In practice the results may differ, and the degree of difference is 
a measure of the distortion of a particular sub-cube. This can be 
useful in determining whether the lattice is too coarse to achieve 
an acceptable approximation, but is outside the scope of this 
paper. 
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 advantageous if it ignores small deviations that are due to noise in 
the data.  P [ 0 ][ 0 ][ 0 ] = ( 4 V 000  + 2 )/4

P [ 0 ][ 0 ][ 1 ] = ( 3 V 000  + 1 V 001  + 2 )/4
P [ 0 ][ 0 ][ 2 ] = ( 2 V 000  + 2 V 001  + 2 )/4
P [ 0 ][ 0 ][ 3 ] = ( 1 V 000  + 3 V 001  + 2 )/4
P [ 0 ][ 1 ][ 0 ] = ( 3 V 000  + 1 V 010  + 2 )/4
P [ 0 ][ 1 ][ 1 ] = ( 3 V 000  + 1 V 011  + 2 )/4
P [ 0 ][ 1 ][ 2 ] = ( 2 V 000  + 1 V 001  + V 011  + 2 )/4
P [ 0 ][ 1 ][ 3 ] = ( 1 V 010  + 3 V 001  + 2 )/4
P [ 0 ][ 2 ][ 0 ] = ( 2 V 000  + 2 V 010  + 2 )/4
P [ 0 ][ 2 ][ 1 ] = ( 2 V 000  + 1 V 010  + V 011  + 2 )/4
P [ 0 ][ 2 ][ 2 ] = ( 2 V 010  + 2 V 001  + 2 )/4
P [ 0 ][ 2 ][ 3 ] = ( 1 V 010  + 2 V 001  + V 011  + 2 )/4
P [ 0 ][ 3 ][ 0 ] = ( 1 V 000  + 3 V 010  + 2 )/4
P [ 0 ][ 3 ][ 1 ] = ( 3 V 010  + 1 V 001  + 2 )/4
P [ 0 ][ 3 ][ 2 ] = ( 2 V 010  + 1 V 001  + V 011  + 2 )/4
P [ 0 ][ 3 ][ 3 ] = ( 1 V 000  + 3 V 011  + 2 )/4
P [ 1 ][ 0 ][ 0 ] = ( 3 V 000  + 1 V 100  + 2 )/4
P [ 1 ][ 0 ][ 1 ] = ( 3 V 000  + 1 V 101  + 2 )/4
P [ 1 ][ 0 ][ 2 ] = ( 2 V 000  + 1 V 001  + V 101  + 2 )/4
P [ 1 ][ 0 ][ 3 ] = ( 1 V 100  + 3 V 001  + 2 )/4
P [ 1 ][ 1 ][ 0 ] = ( 3 V 000  + 1 V 110  + 2 )/4
P [ 1 ][ 1 ][ 1 ] = ( 3 V 000  + 1 V 111  + 2 )/4
P [ 1 ][ 1 ][ 2 ] = ( 1 V 100  + 1 V 010  + V 001  + 2 )/4
P [ 1 ][ 1 ][ 3 ] = ( 1 V 110  + 3 V 001  + 2 )/4
P [ 1 ][ 2 ][ 0 ] = ( 2 V 000  + 1 V 010  + V 110  + 2 )/4
P [ 1 ][ 2 ][ 1 ] = ( 1 V 100  + 2 V 010  + V 001  + 2 )/4
P [ 1 ][ 2 ][ 2 ] = ( 2 V 010  + 1 V 001  + V 101  + 2 )/4
P [ 1 ][ 2 ][ 3 ] = ( 1 V 110  + 2 V 001  + V 011  + 2 )/4
P [ 1 ][ 3 ][ 0 ] = ( 1 V 100  + 3 V 010  + 2 )/4
P [ 1 ][ 3 ][ 1 ] = ( 3 V 010  + 1 V 101  + 2 )/4
P [ 1 ][ 3 ][ 2 ] = ( 2 V 010  + 1 V 101  + V 011  + 2 )/4
P [ 1 ][ 3 ][ 3 ] = ( 1 V 100  + 3 V 011  + 2 )/4
P [ 2 ][ 0 ][ 0 ] = ( 2 V 000  + 2 V 100  + 2 )/4
P [ 2 ][ 0 ][ 1 ] = ( 2 V 000  + 1 V 100  + V 101  + 2 )/4
P [ 2 ][ 0 ][ 2 ] = ( 2 V 100  + 2 V 001  + 2 )/4
P [ 2 ][ 0 ][ 3 ] = ( 1 V 100  + 2 V 001  + V 101  + 2 )/4
P [ 2 ][ 1 ][ 0 ] = ( 2 V 000  + 1 V 100  + V 110  + 2 )/4
P [ 2 ][ 1 ][ 1 ] = ( 2 V 100  + 1 V 010  + V 001  + 2 )/4
P [ 2 ][ 1 ][ 2 ] = ( 2 V 100  + 1 V 001  + V 011  + 2 )/4
P [ 2 ][ 1 ][ 3 ] = ( 1 V 110  + 2 V 001  + V 101  + 2 )/4
P [ 2 ][ 2 ][ 0 ] = ( 2 V 100  + 2 V 010  + 2 )/4
P [ 2 ][ 2 ][ 1 ] = ( 2 V 100  + 1 V 010 + V 011  + 2 )/4
P [ 2 ][ 2 ][ 2 ] = ( 2 V 110  + 2 V 001  + 2 )/4
P [ 2 ][ 2 ][ 3 ] = ( 1 V 110  + 2 V 001  + V 111  + 2 )/4
P [ 2 ][ 3 ][ 0 ] = ( 1 V 100  + 2 V 010  + V 110  + 2 )/4
P [ 2 ][ 3 ][ 1 ] = ( 2 V 010  + 1 V 110  + V 101  + 2 )/4
P [ 2 ][ 3 ][ 2 ] = ( 2 V 110  + 1 V 001  + V 011  + 2 )/4
 

 
For each possible point P it is possible to derive the weights and 
lattice points, for each interpolation point. For N=2 there are 64 
points in the sub-cube3, which can be addressed as P[x][y][z], 
where x, y and z are between 0 and 3 inclusive. The interpolation 
equations are derived using the tetrahedral areas and it is 
convenient to write a program to generate the equation 
coefficients but the efficiency of generating the equations is not 
important: it is the execution efficiency that is important for n-
simplex interpolation. If the eight vertices of the cube (which are 
coarse lattice points) are referred to as V000, V100, V010, V001, V110, 
V101, V011, V111, then a computer program can be used to generate 
the following interpolation equations for N=2:  
In many cases more than one interpolation equation exists. For 
example P[2][2][2] lies in the centre of the eight vertices and so it 
lies on the midpoint of four diagonals: 
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The equations are equivalent since they all access only two 
elements and the overall weighting is the same for each equation, 
but each equation may yield different results if the volume 
bounded by V000, V100, V010, V001, V110, V101, V011, V111 is not 
linear (and the greater the non-linearity, the greater the disparity 
between the above equations). In this example all the weights can 
be simplified by dividing by two. In some cases it may be 
preferable to use one equation over another. When interpolating 
colour tables it is often more appropriate to average along the 
neutral (grey) axis. 

Figure 2. Interpolation Equations for N=2 
 

3.2 Example Code 
n-Simplex interpolation would be of little value if the saving from 
the reduction in table lookups were offset by the overhead of 
testing for simpler cases. Fortunately the algorithm can be written 
so a single test determines which table entries need to be 

                                                                 
3 The sub-cube does not include the points that lie on the faces 

furthest from the reference point V000, since these are in the 
adjacent sub-cubes. 
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    case 1: p = 15*V000 + V001; break;   accessed, for example by using a computed goto or case 
statement4.      case 2: p = 14*V000 + 2*V001; break; 

    case 3: p = 13*V000 + 3*V001; break;  
 The high order input bits are used to provide an offset into the 

table, as is normally the case, but the low order bits are used 
choose which case to execute. Each case corresponds to one of 
the positions that lies between coarse lattice points, and so each 
case need only access the necessary coarse lattice points. The 
interpolation coefficients for the lattice points are known integers 
between unity and (2N-1), with the sum of the coefficients being 
2N. A program that uses the tetrahedral volume ratios described 
earlier can generate the case statement automatically. The final 
step (which can be performed outside the case statement) is to 
round (by adding (2N)/2) and normalise (by dividing by 2N).  For 
example, mapping three input bytes to one output byte the table 
size will be (28-N+1)3, and there will be (2N)3 cases. 

    ... 

 

    case 4077: p = 2*V100 + V010 + 13*V111; break; 

    case 4078: p = 2*V100 + V011 + 13*V111; break; 

    case 4079: p = V010 + 2*V101 + 13*V111; break; 

    case 4080: p = V000 + 15*V110; break; 

    case 4081: p = 15*V110 + V001; break; 

    case 4082: p = 14*V110 + V101 + V011; break; 

    case 4083: p = 13*V110 + V001 + 2*V111; break; 

    case 4084: p = 12*V110 + V001 + 3*V111; break; 

    case 4085: p = 11*V110 + V001 + 4*V111; break; 
 

    case 4086: p = 10*V110 + V001 + 5*V111; break; 
#define N 4 

    case 4087: p = 9*V110 + V001 + 6*V111; break; 
#define SIZE 16 

    case 4088: p = 8*V110 + V001 + 7*V111; break; 
#define STRIDE ((1<<(8-N))+1) 

    case 4089: p = 7*V110 + V001 + 8*V111; break; 
#define ROUND 8 

    case 4090: p = 6*V110 + V001 + 9*V111; break; 
 

    case 4091: p = 5*V110 + V001 + 10*V111; break; 
unsigned char table[(STRIDE)*(STRIDE)*(STRIDE)]; 

    case 4092: p = 4*V110 + V001 + 11*V111; break; 
 

    case 4093: p = 3*V110 + V001 + 12*V111; break; 
/* define offsets from the reference element V000: 

    case 4094: p = 2*V110 + V001 + 13*V111; break; 
   an x offset adds the square of the stride, a 

    case 4095: p = V000 + 15*V111; break; 
   y offset adds the stride and a z offset adds 1 

  };  
*/ 

  p = (p + ROUND)/16; 
 

  return p; 
#define V000 offset[0]                  

};  
#define V100 offset[STRIDE*STRIDE]  

Figure 3. Example C Code #define V110 offset[STRIDE*STRIDE + STRIDE]  

 #define V111 offset[STRIDE*STRIDE + STRIDE+1]  

#define V101 offset[STRIDE*STRIDE + 1]  The code can be made to execute slightly faster, at the 
expense of increased code size, by performing the weighted 
average and rounding in a single step. In this way the 
separate rounding step is removed and some of the cases 
can be simplified. For example, case 0 would become 
p:=V000, and case 2 would become p:=(7*V000 + V001 + 
4)/8. Although the overall code size becomes larger, the 
overall execution is reduced, for example case 0 removes a 
multiplication and addition and case 2 removes a 
multiplication. 

#define V010 offset[STRIDE]  

#define V011 offset[STRIDE + 1]  

#define V001 offset[1] 

 

char interpolate(xin,yin,zin) int xin,yin,zin; {    

   

  char p; 

 

  int swvar = ((xin & (SIZE-1)) << (2*N))|  
      ((yin & (SIZE-1)) << N) | (zin & (SIZE-1)); 

 4. ANALYSIS 
  char *offset = &table[ (xin>>N)*STRIDE*STRIDE) + As N increases, the case statements become larger (and so does 

the code size for the case statement).  The distances between the 
coarse lattice points also increases with N as does interpolation 
error (although the table size will decrease).  For colour mapping, 
the task of mapping three input bytes to three output bytes 
(therefore having three assignment statements per line instead of 
only one assignment per line in the above example) can be 
achieved for various values of N. The code size in the following 
chart is for a program compiled using cc with no flags on a 

                      (yin>>N)*STRIDE + (zin>>N)];  

   

  switch(swvar){ 

    case 0: p = 16*V000; break; 

                                                                 
4 The cases start from zero and are consecutive so the overhead of 

a case statement is about 6 instructions. 
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With k input values, each input value having B bits, then the 
number of table entries is 

Hewlett Packard model 735 Unix workstation, as reported by the 
Unix size program, and although these values are representative, 
there would be differences with different compilers or target 
instruction sets.  However it is reasonable to say, from Table 2 
that for N=3 n-simplex  interpolation will reduce the number of 
table accesses from 4 for tetrahedral to  2.9238  (a reduction of 
17%) and the interpolation expressions will also be implified by a 
similar factor. 

kNB )12( +−  

with the number of case statements  being 

( )kN2  

 In practice, because the code required for a case statement 
exceeds the storage for a table entry then the optimal solution 
occurs when  

To map three input bytes to three output bytes the table size will 
be 3.(28-N+1)3 bytes and code will have  (2N)3 cases5.  

2
BN ≤  

Increasing k (and increasing the complexity of the case statement 
code) the optimal solution may have N much smaller than B/2.  
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Figure 4. Storage versus Lattice Spacing 

 

5. CONCLUSION 
A practical interpolation method has been presented that uses 
fewer table lookups and uses fewer execution steps than existing 
methods.  The method is most advantageous when interpolating 
over smaller ranges. Smaller interpolation ranges will become 
more common as memory cost falls, and the cost of larger tables 
will be more acceptable. These larger tables will naturally offer 
greater precision. 
 
The algorithm has been described for three dimensional 
interpolation problems, and more specifically colour mapping. It 
has been shown to be computationally more efficient than other 
three dimensional interpolation algorithms, including tetrahedral 
interpolation. The algorithm is not limited to colour mapping and 
can be applied to other three dimensional problems. It is also not 
limited to just three dimensions, and can be used to advantage to 
interpolate in more than three dimensions. 
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For this example, the smallest overall storage (200k bytes) occurs 
for N= 3 (and the distance between table elements is eight). 
Increasing N above 3 would offer no advantage. Indeed, it would 
present several disadvantages: the table would have fewer entries 
(and probably less precise), the average number of lookups will 
increase, so the interpolation will be slower and some compilers 
may not be able to compile large switch statements.  
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