

Intrinsic References In Distributed Systems

Kave Eshghi
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-32
February 7th , 2002*

E-mail: kave@hpl.hp.com

distributed,
storage,
hash
function

The notion of intrinsic references, i.e. references based on the
hash digest of the referent, is introduced and contrasted with
that of physical references, where the referent is defined
relative to the state of a physical system. A retrieval
mechanism using intrinsic references, the Elephant Store, is
presented. The use of intrinsic references in hierarchical data
structures is discussed, and the advantages regarding version
management, consistency and distributed storage are argued.
Since intrinsic references are immutable, it is not possible to
manage change by modifying the referent. A mechanism for
handling change, the variable store, is described. Alternative
architectures for a number of applications, including a file
system and an email system, are discussed.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1. Physical References
References are ubiquitous in computing. Memory addresses,
URLs, file names are references. Every reference has a refer-
ent- the data that is referred to.

By the reference-referent relation we have in mind the rela-
tion between two pieces of data, where given the first piece
of data (reference) it is possible to retrieve the other piece
(referent) unambiguously, and in a way that was intended by
the designer of the system.

Commonly, the relationship between reference and referent
is defined relative to the state of some physical system.
Memory addresses refer to the contents of a particular sec-
tion of physical memory on a particular machine. URLs refer
to the contents of a file on a given web server. File names
refer to the contents of a particular section of a physical disk.
Consequently, if the state of the physical system changes, the
referent changes too.

We call these types of references, where the relationship
between the reference and referent is defined by the state of
a physical system, physical references.

Typically, physical references encode a location on the phys-
ical system where the referent is to be found. They are often
hierarchical, reflecting the structure of hierarchically orga-
nized storage systems.

In a distributed world, using the state of a physical system to
establish the relationship between a reference and its referent
means that all access to the referent has to be via the physical
system in question. This makes the physical system a bottle-
neck, and also a potential point of failure: if it loses its state,
the information is gone.

Attempting to overcome these problems by duplicating the
physical system creates consistency problem, because the
state of all the duplicate physical systems must be kept in
synchrony. The larger the physical system (data base, file
system etc.,) and the greater the physical distance between
the duplicates, the harder it is to keep them synchronized.

2. Intrinsic References
Data is immutable. The number 4 is data, it never changes to
any other number. The string of ascii characters “to be or not
to be, that is the question” is data, it does not change.

Data, which does not change, can be uniquely, succinctly
and universally represented by its (cryptographic) hash

digest1. Modulo the probabilistic collision free nature of the
hash function, a hash value used as reference has the follow-
ing properties:

• State independent: given the data block S, its reference is
uniquely determined by the sequence of bits in S. This

relationship only relies on the definition of the hash func-
tion, and not the state of any physical system.

• Unique: a given reference R can only refer to the input
block S from which it was obtained by applying the hash
function.

These two properties of hash based references ensure that
these references are immutable in a strong sense: nobody can
change the referent of a hash based reference. We call refer-
ences based on hash values intrinsic references because they
only depend on the data, and not on the state of any physical
system.

Why is this a useful thing to do? Because the hash digest is a
small, fixed size sequence of bytes that can for all intents and
purposes stand for the data it refers to. The data can be of
arbitrary size.

Of course, even with intrinsic references, we need a storage
mechanism for retrieving the referent of a given reference.
But the referent is not defined with respect to the state of the
storage device. It is defined as the data which, when the hash
function is applied to it, will yield the reference. Thus we
can duplicate the storage device at will, without fearing
inconsistency. Upon retrieval, we can check the referent for
correctness using the hash function. Having duplicated the
storage of referents, the problems of a centralized store go
away, without creating the consistency problems associated
with duplicating physically defined referents.

We call the storage and retrieval mechanism for the referents
of intrinsic references the Elephant store, discussed next.

1. A hash function is a function from a sequence of bytes, S, to a
short, fixed size sequence of bytes, H. We call S the input block
and H the hash of S.

• A hash function is Strongly Collision Resistant if it is computa-
tionally infeasible to find two different input blocks which have
the same hash.

• A hash function is Weakly Collision Resistant if for a given
input block S, it is computationally infeasible to find another
data block which has the same hash.

• A hash function is Probabilistically Collision Resistant if for a
given input block S1, the probability that a randomly chosen
input block S2 will have the same hash as S1 is extremely
small.

Cryptographic quality hash functions, such as MD5 [8] and SHA-1
[4], have been developed for use in authentication, digital signature
and other security applications. These functions are understood to
be collision resistant in all of the above senses, although no proof
exists and future research might find algorithms to generate colli-
sions for these functions.
2

3. The Elephant Store
The Elephant Store is the name we have given to a distrib-
uted mechanism that allows the storage and retrieval of data
blocks using intrinsic references (the hash digest of the data
data block). A data block is simply a sequence of bytes; the
store is completely oblivious to the semantics of the data it
stores.

T
he Elephant store is composed of a number of local stores.
Clients connect to one or more local stores. Conceptually,
the client API for the stores is very simple: it consists of the
two operations store(block) and retrieve(refer-
ence).

• store(block) stores the block of data in the store and
returns a reference

• retrieve(reference) searches the store for the data
block corresponding to reference. If it finds it, it
returns the block, otherwise it fails.

Each local store keeps a table of <reference, block>

pairs, indexed appropriately so that blocks can be retrieved
given the digest. When a client issues a retrieve request, the
local store first looks in its own table to see if the required
entry is there. If it is, it returns the corresponding block to
the client. If the entry is not in the local table, it tries to
locate another local stores that might have the entry. If it
finds such a store or stores, it contacts them to retrieve the
block, and upon success, returns the block to the client.

The mechanism used for locating other stores that might
have the required reference can be as flexible and heteroge-
neous as necessary. All that is required is to find a store that
has the reference.

When the client requests to store a data block in the local
store, the local store not only stores the data block in its own
table, but informs the other stores (through the store to store
protocol) that it has the corresponding reference.

Since the relationship between reference and referent is
immutable, there is no way to update or manipulate data in
the store, in the sense of changing the block referred to be a
reference. Instead of updating existing data, the Elephant

model only allows addition of new data. The fact that we
may want to consider a new piece of data as a new version of
an existing piece of data is purely up to the client, the Ele-
phant store itself does not support any such notion. Since
Elephant uses hash values as references, clients of the store
can check if they receive the correct data from the store. The
storage model removes any possibility of outdated (or stale)
references. In fact, using hash values as references also
implies that two identical pieces of data always will be
referred to by two identical references, regardless of who ini-
tially created and stored the data, or where the data is stored
and how it is retrieved. While the Elephant Store does not
allow the modification of the reference->referent relation-
ship, it is possible to remove data blocks from the Elephant
Store, using a garbage collection algorithm. We will discuss
this further in section 10.1.

4. Call by value semantics without the
cost
From a programming point of view, parameter passing has
had two possible semantics: value semantics and reference
semantics. Value semantics copies the whole data structure
across the (possibly remote) function call. Reference seman-
tics copies a pointer (physical reference) to the data that is
the value of the parameter. Value semantics is stateless, and
greatly simplifies the design of distributed algorithms. Its
use has been limited to small values (such as integers),
because of the cost of communicating or copying large data
values. Reference semantics is problematic from an algo-
rithm design point of view, because the semantics of the ref-
erence rely on the state of a physical system (physical
memory, or an equivalent surrogate), and can change (e.g. by
the action of another process). Reference semantics has been
used for all but the smallest data structures, due to the cost of
copying or transmitting the data structure with each function
call. Using intrinsic references allows us to have value
semantics in function calls without the copying/transmission
costs of reference semantics.

5. Storing data structures
So far we have treated data as a sequence of bytes, using the
hash digest of the sequence of bytes as the reference. The
next step is to build on this basic mechanism to extend the
notion of data to complex data structures, particularly hierar-
chical data structures.

In order to apply the intrinsic reference mechanism to data
structures, we need to map the data structure to a sequence of
bytes, and later re-construct the data structure from that
sequence of bytes. This is not a new idea in distributed com-
puting, and all distributed programming platforms support
serialization/deserialization or marshalling/unmarshalling.

In the context of intrinsic hash references, one point worth
mentioning is that if we want to extend the identity property

FIGURE 1. Architecture of the Elephant Store

References
Client Client Client

Store/Retrieve

Local
Store

Local
StoreStore to Store

Protocol
3

of intrinsic references (i.e. two references are equal if and
only if their referents are equal) to data structures, then the
serialization routine must be designed with this in mind, so
that data structures that are considered semantically equal
should always map to the same sequence of bytes. For exam-
ple, two sets are equal iff they have the same members. If we
want to detect the equality of two sets by comparing refer-
ences to the sets, then the serialization routine for sets must
ensure that equal sets are always serialized to the same byte
sequence. We can achieve this, for example, by defining an
order relation on the elements of the set, and making sure
that the elements of the sets are serialized in ascending order.

5.1 Hierarchical Data Structures
The real power of intrinsic references becomes apparent
with hierarchical data structures, i.e. when the referent itself
contains references to other data structures. An example of
such a data structure is the directory structure on a file sys-
tem. Every directory is represented by a structure that
includes references to the subdirectories and files it contains.
All the references in this hierarchical structure, of course, are
intrinsic or hash based references.

There are some points regarding hierarchical data structures
that have important consequences for handling change. The
first point is that two different trees can share a substantial
number of subtrees. The second point is that the top level
reference uniquely identifies the whole data structure, no
matter how big and complex the lower level structures are.
We will discuss the significance of these points in the section
on change management.

6. Change
But what about change? If all references are immutable and
intrinsic, how can we deal with change?

Physical references (such as memory addresses) have played
a dual role in computing: they are used for denoting and
retrieving the referent, and are also used for handling change
by changing the state of the physical system that is used to
define the referent. For example, a variable in a language

such as C is really a surrogate for a memory location; we can
use it to retrieve the referent of the variable, and also use
assignment to change the referent.

When the data structure is large, change is often effected by
modifying a part of the data structure, while keeping the rest
of it intact. For example, if the data structure is an array,
commonly only one part of it is modified by replacing one or
more elements in the array without changing the rest of the
elements.

This dual use of physical references is a source of many dif-
ficulties. For example, when concurrent processes can mod-
ify the referent of a physical reference, a great deal of care
must be taken to ensure the integrity of the data structure and
the other data structures that hold a reference to it.

We propose to deal with change using a dedicated mecha-
nism that is separate from the reference-referent retrieval
mechanism. We call this mechanism the variable store.

Simply put, the variable store is a table of associations
between references. An association is a tuple <V, R> where
V and R are intrinsic references. We call V the variable, and R
the value of the V. A variable store is a set of associations
such that for any variable V there is only one tuple <V,R>
occurring in the set.

The associations held in the variable store are not immuta-
ble; they can be changed by the clients of the variable store.
Thus the variable store needs to be implemented using tradi-
tional mutable store technology, e.g. a database.

The state of the variable store reflects the state of the appli-
cation. When the state of the application needs to be
changed, the value of one or more variables are changed to
references that represent the new state of the application.

It may seem that we have come back to square one on
change management, since the mutable store used for keep-
ing the variable-value associations is subject to the same
limitations as traditional storage mechanisms such as data
bases. But there is a crucial difference, and it concerns the
granularity of the data structure that is modified when the
state of the application is updated. We will illustrate this
point using an example.

Consider a possible architecture for an email system using
the Elephant store and the variable store. In this architecture,
the state of the entire mailbox for each subscriber is repre-
sented by the value of a variable in the variable store. This

FIGURE 2. Elephant representation of directory
structure

Top Level Reference

Directory

File

variable value
02005d0276aea5f3cf72ad4019048ae836caaec594d418a8e989e9900b6e118d

FIGURE 3. The Variable Store
4

value is the reference to the hierarchical structure represent-
ing the mailbox (Figure 4.)

In the tree diagram on the right of the picture above, all the
links in the tree are intrinsic references, using the hierarchi-
cal storage technique discussed previously. When a sub-
scriber, such as Vana, receives a new mail, the mail server
computes a new mail box structure from the old mailbox
structure plus the just received mail, and replaces the old
value of the Vana’s mailbox variable with the new value.
Figure 5 shows how the new mail box is computed from the
old mail box and the new mail.

The new mailbox and old mailbox data structures share all
the data and references relating to the folders other than the
inbox. In the data structure corresponding to the inbox, also,
all the old messages and their references are re-used. Thus
three new records are added to the Elephant store: that for
the new message, that for the new inbox, and that for the
new mailbox.

This example illustrates two crucial points about the way the
variable store is used for representing state. The first point is
that the variables in the variable store point to whole, inter-
nally consistent, data structures such as a mail box. At all the
levels lower than that, immutable references are used. When
there is a change, such as a new email in the inbox, we create

a whole data structure to replace the old data structure. The
second point is that by using hierarchical data structures, we
avoid the cost of copying the bulk of the new data structure,
since we can use structure sharing without loss of consis-
tency.

As far as synchronizing her mail is concerned, all that Vana
needs to do is to make sure that the value of the mailbox
variable she stores on her email client is the same as the one
stored in the variable store. Once this is achieved, for exam-
ple by querying the variable store periodically, or when she
wants to check her mail, she can have access to all the infor-
mation in her mailbox from the Elephant store. If she runs a
local Elephant store (as she should!) on her client machine,
all the messages and data structures except the three men-
tioned above will be on her machine already.

Now consider the situation where Vana has two machines:
one her desktop, and one a laptop. She can synchronize her
mail on either machine using this simple procedure, and
have a logically consistent mailbox accessible from both
machines. Now contrast this with what happens with exist-
ing mail servers. She have a choice, either of keeping all her
mail on the server, or keeping it on the client. If she keeps it
all on the server, it helps keep it synchronized when she has
multiple machines, but every time she wants to retrieve an
email (even an old one) she has to get it from the server. If
the server is remote (for example the laptop is connected
through a modem) this involves considerable cost and delay.
The other option, keeping it all on the client, avoids the cost
of retrieving the mail from the server all the time, but makes
it very hard to keep the laptop and desktop synchronized.
Keeping the mail on both the server and client creates com-
plex synchronizations problems.

Semantically speaking, when we copy the new value of the
mailbox variable from the variable store, we are copying the
whole mailbox, lock stock and barrel. Thus, from a semantic
point of view, it is as if we keep the mail on the server, and
every time we synchronize, we copy the whole mailbox.
Physically, however, we only copy the reference, and when
we retrieve the contents of the mailbox, only those bits of the
mailbox that have changed.

Thus, even though we have to keep a centrally managed
variable store, we still gain considerably by using the Ele-
phant Store and variable store combination. This advantage
is multiplied when, as is common, many mail messages in
the mail system have the same attachment. The attachment
will be stored in the Elephant store only once, and if it is
already cached on a client machine, will not be retrieved
again.

7. The client server architecture
In the client server architecture (and three tier architectures
that are based on it) the server plays a multitude of roles. It is

Vana’s account
Svend’s account Mailbox

Inbox Project Personal

Svend Jim

variable value

IGURE 4. The variable store for the mail system

Old Mailbox New Mailbox

Old inbox New inbox

Project Personal

New Message

FIGURE 5. Adding a new mail to the inbox
5

where the data is stored, where the state of the application is
kept, where the application logic resides, and the logical
entity that the outside world uses to access the service. We
discuss these roles in more detail below, and then consider
how these roles change using intrinsic references and vari-
able stores.

7.1 Server as the provider of service identity
Consider the role of the email server on the network. It is the
destination for all the incoming mail; the outside world uses
the email address of the recipient to determine the server
where the mail should be delivered. A similar role is played
by a web server: it is the network location that URLs refer
to. A file server, similarly, is a location on the network
referred to by the name of the server. Thus the server name
or network address acts as the server identity; the address
www.ebay.com, for example, as well as providing a net-
work address, identifies the service provided by EBay.

7.2 Server as the repository of data
In most traditional client server architectures, almost all
application data is kept on the server. File servers and web
servers are prime examples of this. With mail servers, as dis-
cussed previously, there is a choice to keep most of the data
on the client, but the leads to problems with synchronization.

7.3 Server as the maintainer of the (consistency
of) state
When the application has to deal with changes to the world,
the state of the server determines the state of the application.
We already discussed how the mail server keeps the state of
mail box. In a web server, the coherence of the site is main-
tained by the state of the server, for example links within
pages point to other pages within the site, which are kept
consistent by the server.

7.4 Server as the seat of application logic
In client server applications, application logic is invariably
executed on the server. This is largely a consequence of the
fact that all the data is kept on the server, and it is more effi-
cient to run the application logic close to where the data is.

8. Alternative architecture
The multiple roles played by the server in the client server
architecture make it very difficult to distribute the function-
ality of the server. Thus in the client server architecture,
while the clients can be distributed, the server is typically
centralized. Using the Elephant store and the variable store
as discussed previously, we can drastically reduce the role of
the server, and avoid most of the problems associated with
the centralization of the server.

We argue that providing service identity for the application
is in essence the same problem as maintaining application
state and providing access to this state using a well known
name or identifier. When a variable store is used to maintain
application state, service identity can be considered as the
state of the variable store and a well known name that allows
access to the variable store. Thus in our proposed architec-
ture, the server is a mechanism that can be accessed using
the service name and the existing network infrastructure, and
where the integrity of the variable store is maintained.

Using the Elephant store, the storage of data need not be on
the server. Data can be distributed and cached at will, with-
out loss of consistency.

Once the storage of data is distributed, application logic can
be distributed too. Application logic consists of two types of
operation: computation on existing data to create new data,
and, and updating the state of the application.

Computing new data from existing data can occur at any
point where the input data and is available. For example,
when a message is moved from one folder to another in the
mailbox, this can done by the email client. The client com-
putes the new mail box based on the old mailbox, and the
given user action.

The second aspect of running application logic, i.e. updating
the application state, boils down to updating the value of one
or more variables in the variable store.

Thus the only role that remains for the server is to provide an
access mechanism, based on a network name, for the vari-
able store, and to provide access control mechanisms to
ensure the integrity of the variable store on updates.

Let us look at an example other than the email system, for
this proposed new architecture. Consider a news oriented
web server, such as CNN or Yahoo. One possible way to
implement such a site using the Elephant store and the vari-
able store is to keep all the contents of all pages in the Ele-
phant store, and use the variable store to associate file names
(variables) with the Elephant reference to the contents of the
file. In this architecture, the HTTP daemons are distributed
and stateless. A client wishing to access a page in this archi-
tecture would go through the following steps:

• The client send its request to the HTTP daemon, specify-
ing the file name it wishes to retrieve (using the URL, in
the usual way)

• The HTTP daemon uses the first part of the URL (the
domain name, e.g. www.yahoo.com) to locate the vari-
able store. It uses the second part of the URL, the file
path, to compute the variable that corresponds to this
page. It does this by applying the hash algorithm to the
file path. This makes sense, since the variables are the
Elephant references of the file path. It then asks the vari-
able store for the value of this variable.
6

• The value of the variable is the reference to the contents
of the file. When the HTTP daemon receives the value of
the variable, it retrieves the contents of the file from the
Elephant store, and sends it back to the client.

When the contents of a file need to be changed (for example
when the news is updated) the server adds the new content to
the Elephant store, and updates the value of the variable
associated with the updated file.

Thus the role of the ‘server’ is reduced to updating the Ele-
phant store, updating the variable store, and providing an
access mechanism to the variable store. The HTTP daemons,
the ‘web servers’ of old, are not properly part of the server
any more. They could in fact be located on the client
machine, as proxies to enable standard web clients to work.

Notice that since all content is retrieved from the Elephant
store, caching is automatic, based on the distributed nature
of the Elephant store. Only requests for the value of vari-
ables need to go the ‘server’. Every request and response to
the variable store is less than a hundred bytes, thus greatly
reducing the bandwidth requirements to the (centralized, in
this example) variable server.

9. Other applications
We have already mentioned two applications: email, and a
distributed web server. Perhaps the most interesting applica-
tions of this idea are peer-to-peer. Here are a list of possibili-
ties: each one needs to be elaborated further.

1. Peer to peer streaming. In this application, multimedia
files (video, audio) are broken to a number of fragments,
each fragment relatively small (order of 10k bytes). Each
fragment is stored in the (distributed, peer to peer) Ele-
phant store, and the array of references is also stored in
the elephant store (Figure 6). When a client wants to lis-
ten to a piece of music (say) she first gets the reference to
the array from somewhere, maybe a search engine. Then
she retrieves the array of references to the parts from the
elephant store, and then starts retrieving each of the parts
in order from the Elephant store. Since all access to the

Elephant store is peer based, she would be able to
retrieve the data from one of the peers close by, if they
have it. At the same time, since the stream is broken into
may small parts, people can start listening at different
time without creating a consistency problem for re-
assembling the parts.

2. Distributed, versioned file system. The idea is to use the
hierarchical scheme in Figure 2 to represent the structure
of directories and files. All the contents of the files and
directory structures are kept in the Elephant store. When
a file is added to a directory, or an existing file is modi-
fied, we create a new tree (that shares most of the compo-
nents of the old tree) and store it in the Elephant store.
Thus every state of the file system is represented by a dif-
ferent reference. In one possible scheme, there is no cen-
tral variable store. Each user stores the reference to the
version of the file system he is using. If two users want to
share a version of the file store, they make sure they are
using the same top level reference, which they can do for
example by sending each other email. The advantage of
this file system is that a) it is distributed and duplicated,
but consistent (for each user) and b) old versions and new
versions can live side by side and be shared.

3. Decentralized discussion groups. The participants in the
discussion add their messages to the data structure repre-
senting the history of the group, and send other partici-
pants the reference. All messages include references to
the other messages that they are replying to. Thus the
context of every message is clear. This is an example of a
distributed application that does not need a variable store,
except maybe to hold the email addresses of the partici-
pants.

10. Research questions
What are the major research questions raised by the type of
approach discussed above? Here is a preliminary attempt at
formulating these questions. The questions have been parti-
tioned into the following segments: those relating to the Ele-
phant store itself, those relating to the variable store, and
those related to the architecture of applications built around
Elephant and variable stores.

10.1 Questions relating to the Elephant store
1. Efficiency and practicality of using hash digests as refer-

ences. Hash digests differ from physical references in
that they don’t have any structure, while almost all physi-
cal references have a hierarchical structure that helps
identify the location where the referent is stored. Thus we
will have to find new and efficient mechanisms to locate
Elephant stores that might have the referent for a refer-
ence that we are seeking. The scope for innovation here
is very large, going from centralized search engine type
mechanisms to gossip based peer to peer mechanisms. A

File fragments
FIGURE 6. Storing streaming files

Top level ref-
erence to the
file

Array of references to
fragments
7

lot of the issues raised by the Elephant store are shared
by the attempts to build a universal, non-location based
file store [2][3][6] and similar solutions would apply.

2. Garbage collection. In the Elephant store we never
change old data, just store new data. Thus there will be a
point that we run out of space if we don’t remove some of
the old data. The garbage collection algorithm can be
application dependent, or decided by the owner of each
local Elephant store.

3. Network topology and storage policies. How should dis-
tributed Elephant stores be organized, how should data
be deployed and migrated etc.

10.2 Questions relating to the variable store
The way the variable store was described above presents it
as a centralized, conventional store. Certainly that is one
way of implementing it. There are real advantages, and chal-
lenges, to distributing the variable store while keeping its
integrity and service identity. This would be a rich area to do
further research.

10.3 Application architecture questions
We have already sketched a few application architectures
that would benefit from the ideas presented here. Some of
the research question arising out of these examples are:

1. Using these ideas, to what extent is it possible to create a
distributed, peer to peer architecture for applications that
are traditionally considered client server applications.

2. Are there applications where application state can be
fragmented, in such a way that the state information for
one user (say) can be efficiently stored on the user’s
machine? We are used to thinking of application state as
a monolithic construct kept in a central server. This
assumption may not be true of all applications, and this
has important consequences for how we implement the
variable store.

3. How can we represent and execute application logic in a
distributed world based on these ideas? What are the
assumptions, and trade-offs?

11. Related Work
Using hash digests as a reference mechanism was first men-
tioned in the discussions on URI (Universal Resource Identi-
fier) mechanisms. However, it was never adopted as a way to
implement URIs.

In [5] a scheme is proposed for using hash digests as content
derived names (CDN) for software configuration manage-
ment. Under this scheme, software libraries would be identi-
fied using their CDN, and the programs that need to load
them would use the CDN instead of the file name. This, it is

argued, would overcome the version management and
library incompatibility problems that occur with modular-
ized software deployment.

Hash digests have been used extensively for file comparison,
for example in [1], where it is used for avoiding the duplicate
storage of identical files, and in backup systems. The use of
digests for file comparison is different, however, from their
use as a reference mechanism, used for retrieving docu-
ments.

There are many proposed systems for a location indepen-
dent, distributed file system, such as PAST[3], Ocean-
Store[6] and Freenet [2]. None of these systems use the hash
of the contents of the file as the reference. The architecture
and search mechanisms used by these systems, however, are
relevant to the implementation of the Elephant store since
they use opaque, location independent file identifiers.

12. References
1. W. J. Bolosky, S. Corbin, D. Goebel, J. R. Douceur,

“Single Instance Storage in Windows® 2000”,
Proceedings of the 4th USENIX Windows Systems
Symposium, 2000, pp. 13-24

2. I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong,
“Freenet: A Distributed Anonymous Information
Storage and Retrieval System”, Designing Privacy
Enhancing Technologies: International Workshop on
Design Issues in Anonymity and Unobservability,
LNCS 2009, ed. by H. Federrath. Springer: New York
(2001).

3. P. Druschel and A. Rowstron, "PAST: A large-scale,
persistent peer-to-peer storage utility", HotOS VIII,
Schoss Elmau, Germany, May 2001.�

4. FIPS 180-1, “Secure hash standard”, Federal
Information Processing Standards Publication 180-1,
U.S. Department of Commerce/N.I.S.T., National
Technical Information Service, Springfield, Virginia,
April 17 1995

5. Jeffrey K. Hollingsworth, and Ethan L. Miller , “Using
Content-Derived Names for Configuration
Management”, 997 ACM Symposium on Software
Reusibility (Boston, MA May 1997)

6. J. Kubiatowicz et. al. “OceanStore: An Architecture
for Global-Scale Persistent Storage’, Proceedings of
the Ninth international Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2000), November 2000.

7. A. Menezes, P. van Oorschot, S. Vanstone, “Handbook
of Applied Cryptography”, CRC press, 1996, Section
9.4.2, pp. 349-351

8. R. L. Rivest, “The MD5 Message digest algorithm”,
Request for Comments (RFC) 1320, Internet Activities
Board, Internet Privacy Task Force, April 1992
8

	1. Physical References
	2. Intrinsic References
	3. The Elephant Store
	4. Call by value semantics without the cost
	5. Storing data structures
	5.1 Hierarchical Data Structures

	6. Change
	7. The client server architecture
	7.1 Server as the provider of service identity
	7.2 Server as the repository of data
	7.3 Server as the maintainer of the (consistency of) state
	7.4 Server as the seat of application logic

	8. Alternative architecture
	9. Other applications
	10. Research questions
	10.1 Questions relating to the Elephant store
	10.2 Questions relating to the variable store
	10.3 Application architecture questions

	11. Related Work
	12. References
	Intrinsic References In Distributed Systems
	Hewlett Packard Laboratories
	kave@hpl.hp.com
	November 2001

