

Jezabel: an RDF-driven web interface1

Tim Pierce
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-317
November 20th , 2002*

RDF,
semantic
web, HTML,
web interface
design

RDF is designed to provide machines with a way of understanding
information; it is not a human-readable format. As part of the
building of an RDF-driven application for supporting W3C working
group processes, we investigated how the information in the RDF
database is used to create a web interface. Further, we used RDF to
actually describe the appearance of the interface, providing a
declarative approach to interface design and maintenance.

* Internal Accession Date Only Approved for External Publication
1 Enquiries concerning this report should be directed to Andy Seaborne email: Andy_Seaborne@hpl.hp.com
 Copyright Hewlett-Packard Company 2002

��������	
��	������
��������	������

�������

���	�������	������
Tim Pierce

Tim Pierce Semantic web actions database project
Contents

0

���������	
������������	��
�������������

Contents ………………. 0
Background ………………. 1

Teleconferences ………………. 1
Actions, issues & agendas ………………. 1
Goals of the project ………………. 2
Opportunities for automation ………………. 2
The project ………………. 3

Jezabel ………………. 4
Background ………………. 4
Overview of Jezabel system ………………. 4
Jezrahel ………………. 4
Jsp’s ………………. 8
Post-analysis ………………. 11

SchemaExtension ………………. 14
Background to the approach ………………. 14
Automaticness ………………. 16
Concept of views ………………. 16
Where should the view info go? ………………. 17
Evolution of schema ………………. 18
Overview of schema ………………. 22
Post-analysis ………………. 22

RDFV ………………. 25
Background ………………. 25
Evolution of the RDFV schema ………………. 25
Overview of the RDFV schema ………………. 28
RDFV schema in depth ………………. 29
Future developments ………………. 31

Tim Pierce Semantic web actions database project
Background to the project

1

��������	
��������������

������	����	���

The w3c is a truly international organisation, with people working from all over
the world on projects together side-by-side. The great dispersion of people
means that traditional meetings are out of the question, so to keep personal
and group discussion going, teleconference meetings are used, where groups
all around the world ‘call-in’ at a certain time and all can speak to one another.
url: http://www.w3.org/Consortium/Process/

To make the meeting work, keep things on track and keep order, a chair is
required to chair the meeting. The chair will be responsible for a particular
group, and will check on how work in progress is going, will bring up issues
that need to be discussed and try to resolve problems etc., as well as keeping
meetings to the point and trying to get all important issues discussed in the
time period set aside for the meeting.

The chair therefore needs a way of knowing who is meant to be doing what,
problems that have arisen that need to be discussed and a way of keeping
track of resolution of problems and work finished. Other discussion usually
still goes on in a shared mailing list of the group.

In particular the group I was working with studied the w3c rdf-core working
group.

�����	�� ���	
����	
�������

In the w3c, things people are asked to do (or technically things people make a
promise to do) are known as ‘actions’. Actions are always assigned to a
person or persons, they represent an immediate generally short-term task to
be undertaken. Examples of actions could be things such as “Jon, write
document on DAML types”, “Aylene, review program submitted by Felix last
week” or “Chris, give Leo at the pet-shop a call”.

Problems, areas that are potentially the group’s concern and simply areas that
require group-discussion are usually referred to as ‘issues’. Issues may be
longstanding and very broad problems. They apply to the entire group, with no
clear individual or individuals tasked with solving them (unlike actions).
Examples of issues might be a question about whether the current work in
progress is in keeping with the original goals of the group, problems with old
parts of the group’s work, disagreements in approaches between individuals
in the group which need to be resolved and so on and so forth.

Actions are a useful tool for the chair or manager of a group to keep track of
things that people are doing or should be doing and things that have been
done. Actions generally go through some process of being created, being

Tim Pierce Semantic web actions database project
Background to the project

2

worked on, being said to be complete (by the assignee of the action) and
being accepted to be complete by the chair or manager. They often exist
purely on a sheet of paper on the chair’s desk or more professionally in simple
databases. It will often be up to people assigned actions to make note of them
for themselves, and actions are most often given out during a meeting –
where they can be discussed and accepted, and further discussion and
reports of completion etc. are usually then continued through email or at the
next meeting.

Issues are stored in a similar way to actions and are problems that the
manager or chair should address during a meeting. Issues like action have a
definite life cycle where they are created, are active issues, and from there
are reportedly fixed, decided not to be a problem, decided to not be in scope
for the group or to be a problem that is not going to be fixed now but should
probably be re-examined in future. A great number of issues exist at any one
point, and for a partiuclar meeting, the issues going on are usually snap-
shotted into an agenda.

An agenda is associated with a meeting and is an order of points that the
chair should cover during the meeting. It often starts off with a roll-call, and
after any other basics to starting the meeting will cover all of the currently
open issues. Generally an issue will either be dismissed in one of the many
ways described above, accpeted as solved, or will have an action created
designed to solve it and be kept open. Open issues that have not been
discussed before and are decided to be followed up therefore will often be
resolved with an action when confronted in the meeting. Open issues that
have already been discussed will often have actions assoctiated with them
that upon completion should solve the issue. Thefore the chair will initiate
discussion into ‘un-actioned’ issues and will check on progress of actions for
currently existing issues.

�������������������

The goals of the project were firstly to examine the application and use of rdf
and secondly to aid the process of group managing as regarding tele-
conferencing and the management processes of actions, issues and agendas.

�������	�������������������	

A number of areas that could quite obviously be improved with
computerasiton/ automation as regarding the working of workgroups were
found and briefly were as follows:

The action process:
Currently often existing only as a paper list and supported tenuously by emails
in the working groups mailing list, a more rigorous definition of an action
would be useful as well as tools to make records and management of them
more easy and more accessible would be useful. For example being able to

Tim Pierce Semantic web actions database project
Background to the project

3

quickly ‘find’ actions for any particular group or any particular person would be
useful and is currently not remotely possible.

The issue process:
Issues suffer much the same problems as actions. they follow a similar life-
cycle and are ultimately open to the same possibilites of aid by management
and global viewing tools etc.

Roll-call
Roll-call is a procedure to discover exactly who is present at a meeting, and
equally importantly who isn’t. It’s a simple procedure where names are simply
read out one after another with people responding appropriately, however
despite its simplicity it takes a long time – at least 5 minutes (and in an hour
meeting that is almost 10% of the time). Generally in meetings there will be a
few people who ‘phone-in’ to the teleconference with their own personal
telephones. There is obviously scope here for mapping incoming phone-
numbers to names, in helping automate the process to quicken the roll-call.
Unfortunately a large proportion of the attendees of the meeting call in a small
group from a group phone, with easily upwards of 8 people around any
particular phone ‘hub’. Another area here is what is known as ‘regrets’, where
a person will email the chair before a meeting to let them know that they will
be unable to attend. This is time-consuming and in terms of computerisation
could maybe even reach levels such as a person being able to email the
manager their regret and having an email bot automatically spot the regret
and cross them off the ‘automatically generated list’ for the meeting.

����������

My group decided to be concerned first and foremost with the management of
actions, and to worry about the other aspects if time allowed. For this we first
achieved a minimal action schema in rdf, based upon observations of their
use in w3c teleconference meetings(in particular the rdfcore and daml
ontology working groups), discussions with the working group members and
discussions amongst ourselves. A mind was kept open whilst designing them
of issues and agendas and the possibilities in future of combining them.
After initial preliminary observation and definition had been completed, the
area that I was set to work on was an application to allow the easy viewing
and management of actions. The application was to be web-based so as to
allow as much scope for easy access from any part of the world as possible,
which meant that a large part of what I had to do was approaching the
problem of the manipulation and display of rdf action ‘objects’ through the
medium of the internet. An rdf database was to be used as the basis of this
front-end application in order to store and retrieve action objects in rdf, and
this was designed by another member of the group, Alex Barnell. My
application would build upon this technology.

Tim Pierce Semantic web actions database project
Jezabel

4

�������

��������	

Jezabel is a web-based graphical interface to a database of ‘actions’. It must be
a front-end allowing the user to create,observe and modify (i.e. manage) a
collection of actions. It will be completely internet based, and interaction will be
done through web-pages.

It will store data in rdf, will use JSP files to navigate and will utilise
SchemaExtension (described in the next section of this report) interpretted by
the FormProducer java class, which is a simple SchemaExtension interpretter
in generating HTML representations of the rdf data

������������������������

All database access by
the jsp’s is done
indirectly through the
Jezrahel java class.
This is to force all
Jezabel database
access through a
single point – which
makes it much easier
to maintain the system
and also allows
complex code to be
hidden away from the
JSP’s which generally
need to be maintained
and modified
frequently.

Browsers interact with the JSP’s through the JSP Server (Jetty4.0.4). The JSP
files were kept simple, and generally any ‘complex’ series of instructions that
were required for a particular JSP were concentrated into a single method in
the Jezrahel java class. No JSP was allowed direct access to the database, in
order to force all access through a single database instance in the jezrahel java
class, and thus keep tighter control over the program (and make maintainability
issues such as changing databases etc. less of an issue (see page 11 –
‘maintainability’)).

For example code to search for objects in the database of a partiuclar type and
return them as an HTML table with each entry hyperlinked to another JSP,
passing the URI of the object as a hidden field is encapsulated in a single
Jezrahel method.

Jezrahel (Java Class)

Actions database

Jezabel JSP’s

access heirachy in the Jezabel system

browser

Tim Pierce Semantic web actions database project
Jezabel

5

Style-sheets were used throughout in order to boost maintainability of the
system.

������

overview
The Jezrahel class provides support methods and database access for the
Jezabel JSP files. The RDFObjectDatabase class by Alex Barnell was used to
store and retrieve all database records.

The JSP’s also depended on jezrahel for maintaining their state, which is rather
awkward using JSP’s. A specially written class called ObjectIndex which
basically acts as an index, registering Objects with an integer identifier, was
used in maintaining the state of different transactions going on at a particular
time – since an integer is easy to pass over the get/post method of an HTML
file (whereas the Jena Model Object that represents the state is not) whereupon
the state Model Object could be retrieved.

Special methods that would return lists of RDFObjects fitting a certain
description, with url links that would automatically go to the next correct JSP
were used. For example: here using a list command in Jezrahel, the
ListActions.JSP file asks that all RDFObjects with rdf:type action be drawn, with
URL links to DisplayAction.JSP, with the uri of the RDFObject passed over as a
hidden field.

RDFObjects
RDFObjects as implemented by the RDFObjectDatabase class mentioned
above correspond roughly to the concept a unit of information describing an
individual of some description. It is a subsection of an rdf-graph, and will have
one resource as a principle ‘identifier’. An action, a person, a meeting, an
agenda are all examples RDFObjects that appear in the rdf-graph of the action
database. Qualitatively, an RDFObject can be fairly well imagined as an
instance of an rdf-schema, e.g. an instance of a v-card. Most accurately an

Tim Pierce Semantic web actions database project
Jezabel

6

RDFObject is a sub-graph of an original graph that starts with a principle
resource in the original graph and has all the same properties and resources
that the original resource has, but in this sub-graph the properties and objects
connected to these ‘second generation’ resources will not be included. I.e. only
one level of properties and objects from the principle resource in the original
graph will be included in the RDFObject sub-graph. One exception is made,
when one of the non-principal resources of the RDFObject is a blank resource,
the properties and associated objects of the blank resource will be included in
the RDFObject sub-graph. since 2 distinct statements with the same subject
and property both going to a blank-node will be indistinguishable except for the
further properties and objects attached to these blank-nodes.

In the RDFObjectDatabase, RDFObjects correspond roughly to records in a
traditional database. The Jezabel system uses an RDFObjectDatabase for its
data store.

Listing
The process of listing resources by rdf:type (or other property) became a very
common problem. Because of this many listing methods were created within
Jezrahel. Because of the ungracefulness of a uri and because indeed
resources do not necessarily need to have a uri associated with themselves
whatsoever, it is generally impractical to identify the entry of an rdf object in a
list by the resource uri of the resource that represents it. Where no other
possibility exists (as in the above picture), it is viable to use this method but
ideally there will be some property such as ‘Title’ or ‘Name’ or ‘Identifier’ that
can be used. Unfortunately no standard identifier property as such exists
(although rdfv does suggest such a property (the describeBy property), I did not
get a chance to introduce rdfv into the Jezabel system). Generally a ‘match’
resource would be passed, with properties from that resource and their
associated objects corresponding to desired properties and objects of the target
resources in the database. E.g searching for all actions for Bilbo Baggins a
resource along the lines of the following blank resource would be passed:

Generally arrays of ‘frogger’s would be passed to a list instruction as one
parameter, from which each array element would then be tried in order and the
parts of the listing entry constructed (such as [action-name, assignee-name,
date] might generate a listing entry “Rewrite document xyz, Roger, 6/4/2002”),

Frogger class
The Frogger class provided a simple self-contained object and associated set
of methods that could record a ‘path’ of property-names of an rdf-graph and
which could attempt to traverse a section of rdf-graph following these properties
given a specific resource. So-called frogger as it would hop from one resource
to the next and so-on.

rdf:type

action:assignee
urn:people/BilboBaggins

action:Action

Tim Pierce Semantic web actions database project
Jezabel

7

Quite often you will want to get the family name of the person who is assigned
to a particular action. A frogger instance representing the path [‘AssignedTo’,
’FamillyName’] can be quickly and easily constructed with the frogger class and
then a method within the class called with a specific resource as a paramter
can return the appropriate resources/literals as an iterator. In this example the
name of someone assigned to a particular action can be quickly found. This rdf-
path object can of course be easily passed between java methods and classes
and thus very general methods requiring only ‘Frogger’s to be passed can be
quickly and easily used. When designing menu’s, or creating lists of actions
with the action title, and then the name of the assignee to the action next to it,
this class was extremely useful.

RDFDatabaseFrogger
When it turned out that each rdf object stored in the database would require a
separate ‘getObject’ call, it was quick and painless to extend the Frogger class
into RDFDatabaseFrogger, which simply had the getObject call added into one
or 2 extended methods.

ObjectIndex Class
The ObjectIndex class was a class specially written to allow objects of any type
to be freely passed from one JSP to another via a browser, which proves more
difficult than one might think. especially when faced with issues of multiple
users using the same pages etc.

The principle is simply that the ObjectIndex resides in Jezrahel – of which only
one instance on the server is ever running, and that the singleton pattern was
then applied to the ObjectIndex class so that only one ObjectIndex within this
Jezrahel class will exist, and thus one ObjectIndex will be shared by every
program interfacing with Jezrahel. If an object is wanted to be added to the
index it is simply added using the ‘Add’ method in the class, upon which an
integer id value will be returned. If an integer id is passed to ObjectIndex, it will
return the java Object corresponding to that id. It is then up to the JSP or other
method that requested the Object to check its type etc. and handle it
appropriately.

Using this method it is very easy therefore to create a new Action in the index,
and return its indexed id to the JSP that called the jezrahel function to create a
new action in the first place. This id is then passed on as a hidden field to any
other JSP’s, which can then simply request its number from the index and
retrieve the action, thus maintaining state of complex java objects through a
browser.

Tim Pierce Semantic web actions database project
Jezabel

8

�����

overview
All of the JSP’s reside in the jetty/webapps/jezabel directory. Any particular
page in the browser generally corresponds to a jsp – for example the ‘main’
front page corresponds to index.jsp, the ‘list actions’ button in this page then
corresponds to the ListActions.jsp file. Where pages perform very similar
operations in the underlying system – for example ‘edit action’ and ‘create new
action’ for example, sometimes a new JSP was made called something like
‘modifyAction.jsp’ – and JSP’s such as NewAction.jsp and EditAction.jsp will
barely consist of anything more than defining a String to say “new” or “edit” and
then ‘including’ the modifyAction.jsp. (it is worth perhaps briefly mentioning
before the detailed JSP section that every jsp file which is intended to be
viewed as a standalone file will firstly have a captilised first-letter, and more
importantly always include header and footer files, which are shared across all
Jezabel JSP’s).

In detail
The layout and interactions of the various JSP files were as follows:

Start

menu
bar
(always
visible)

header.html
is included at
the top and
footer.html at
the bottom of
every jsp file
and thus the
menu bar
contained
within header
is always
visible to a
user.

Tim Pierce Semantic web actions database project
Jezabel

9

NewAction, EditAction & Search and the modifyAction.jsp

NewAction.jsp EditAction.jsp Search.jsp

Because they were so similar in function and implementation, the Search,
NewAction and EditAction .JSP files are actually all inheritants of another file
called modifyActions.jsp. Basically each file simply defines a String identifying
which mode it is in and then includes the modifyActions.jsp file which will be
able to act correctly according to the desired mode. The following is the entire
contents of EditAction.jsp

NewAction and Search are the same format just with the String mode set to
different identifying strings.

Each of them after any modification to the initial form has been made allow the
user to submit the modified form compeltely.

When a fast addition of being able to apply the same functions as existed for
actions on workgroups was required, modifyAction.jsp was copied to
modifyWorkgroup.jsp and some equivalent files to the above called
EditWorkgroup.jsp and NewWorkgroup.jsp were created in much the same way
as above, with minimal modifications to replace references to action types to
workgroup types.

<%String mode="edit";%>
<%@include file="modifyAction.jsp"%>

EditAction.jsp

Tim Pierce Semantic web actions database project
Jezabel

10

ListActions

The ListActions.jsp file would use a call to jezrahel to list objects of type action,
representing them by their shortID and the assignee of the action (If neither is
present the uri of the action is used as a last resort), each with a hyperlink to
DisplayActions.jsp with the uri of the action to display passed over the address
line (e.g.“http://jezabel/DisplayActions.jsp?uri=uri:id1000234”).

ListWorkgroups was created as an almost exact copy of this file, changing a
few things such as ‘action’ to ‘workgroup’ etc. so that workgroups would be
listed and could be displayed with DisplayWorkgroups.

AddAction
It soon became apparent that task involved upon completing the NewAction.jsp
or the EditAction.jsp was being able to create or replace an action in the
database, and that these two tasks were not inherently that different. Therefore,
the AddAction.jsp was created which would take as parameters, a parameter
command, which would be set to either ‘create’ or ‘replace’ and a parameter
called id, which would be the id of the action to add or replace in Jezrahel’s
ObjectIndex.

Index
The index.jsp file was a simple front-page jsp for the system, simply to welcome
the user to the site, and provide a few useful links (most of which are also
present in the side-menu), and have a common place to return to after
compelting other tasks. Things such as ‘news’ and an introduction to the
site/system could be provided here.

A nice feature which appears here which doesn’t appear on the side-menu is
the ability to look for actions for a particular person. This was done very simply
by first using a jezrahel list function to generate a list of all people in the
database (by doing a database search on all nodes with rdf:type person (as
defined in the PersonSchema java file) and generating a drop-down menu from
which a person can be picked. Upon initiating the requqest for a list of actions
for a person and going to ListActions.jsp, the ListActions.jsp will check if the
parameter person has been passed to it, and will create an appropriate listing

Tim Pierce Semantic web actions database project
Jezabel

11

of actions if it has. If no people are in the database, or more importantly if the
people in the database’s resources have not been given rdf:type person(the
only sure way of knowing a resource represents a person), then the program
will miss them. Actions that have had no people assigned to them will not be
accessible through this particular feature.

WorkingGroups
A simple menu, similar in appearance to the Index.jsp, and basically acting as
the menu for the WorkingGroup functions (create new WorkingGroup,
EditWorkingGroup etc.). These functions are not accessible from the side-
menu, although this page is. Since WorkingGroup modifications, viewing etc.
are unlikely to be used particularly regularly.

IteratorSponge
Very often it is useful to combine the results of two iterators. This class
implements iterator, but also has an add method that takes an iterator as a
parameter. When another iterator is passed to add, the add method will simply
get all of its .next() entries until .hasNext() becomes false, absorbing its Objects
like a sponge. Seems simple, but it turns out to be extremely useful when
combining the results of multiple queries (resulting in multiple result iterators)
whose results are to be processed in exactly the same way.

������	������

Maintainability and re-useability of the system
At one stage, with very short notice I needed to add functionality to allow the
same manipulation tools as existed for actions already for workgroups, and
couldn’t afford to spend too long on this area. Thankfully very little work was
needed to add this extra functionality, and the majority of work involved was in
changing url’s to point to new areas. In the space of just over an hour and a half
a fully operational workgroups management section was in place in the site.
This was largely thanks to the fact that things had been written to be supported
almost completely by rdf-schema’s.

Problems with workgroup management
The schema for workgroups (written a few months before) included much use
of rdf:bag’s, which unfortunately were not directly supported by the the
SchemaExtension interpreter. The result was that to truly use bags they would
have to be added into the database by an application other than jezabel, or by
hand. The rdfv interpreter which was to supersede the SchemaExtension
interpreter in the system was to take bags into account, but this stage was
never reached. An application to handle bags should be simple and quick to
implement.

Bug in search
The search function in the jezrahel contained a bug somewhere that I had to
leave to attend to more pressing matters without having a chance to come back
and correct it.

Tim Pierce Semantic web actions database project
Jezabel

12

People management
A series of forms to allow the easy creation and modification of people would
have added much to the value of the system. It was somewhat out of scope for
this stage of the project however.

Browser ‘back’ button vs. ObjectIndex
The ObjectIndex class, which gave the impression of application state being
kept in the browser was actually keeping the state in the server and getting the
browser to pass an integer as an http-parameter across jsp’s which would then
be used by the server to generate html using the state informtation it had for the
particular integer id.
A slight problem occurred however regarding the browser’s back-button.
Internet users become very used to being able to just click ‘back’ and go back
to the page they were on just before the current one. The implication to the
user, and one that usually does not cause a problem is that the state of the
page they are looking at is controlled by the browser. Unfortunately, in reality
the browser is in fact simply plucking the previous web-page out of its cache,
not truly getting it from the server.
The problem arises then that the user could for example add resources a,b,c,d
and e in that order to a newly created action in the browser. The user might
then press back twice and the browser will happily display html depicting an
action with the newly added resources minus the last two, i.e. after pushing
back twice it will seem as though only a,b,c are currently attached to the action.
The user can then add another resource, z to the action expecting the next
screen to display an action with a,b,c,z. instead however an action with
a,b,c,d,e,z will appear, since clicking back does nothing to the actual action
object being stored in the server.

Solution?
One solution would simply be to record an enumerated index of transactions
performed on a particular action as the state, and then ‘render’ the transactions
each time the object is needed to be displayed. Then as well as an integer id to
identify the state, a second id could be passed with each page to indicate the
last transaction performed.
Then the stages gone through when adding a,b,c,d,e might be something like:

primary id secondary id operation
3 1 add a
3 2 add b
3 3 add c
3 4 add d
3 5 add e

now if the user clicks back twice they will go back to the page with secondary id
number 3. Then when they try to add resource z, the browser will pass the
secondary id ‘3’ on and the server would be able to render the action as the
user expects, looking only at the first 3 operations and then adding ‘z’ and
letting it become the new entry with id ‘4’. This would make the system behave
as the user would expect.

Tim Pierce Semantic web actions database project
Jezabel

13

Timeout in ObjectIndex
Since browser windows can simply be shut etc. it is very easy to be storing
action states etc in the server that simply have no-one using them. The system
has no way of knowing for example whether someone is simply taking their
time filling in a form or whether the form along with its id has been closed and
forgotten about. Small-scale this is not a problem, however potentially over time
or with much use eventually these redundant states would put a strain on the
server’s resources. Therefore a simple timeout procedure such as every hour
the ObjectIndex wiping any indexed items that have not been modified in the
last 5 hours for example would be a simple fix.

Tim Pierce Semantic web actions database project
Schema Extension

14

��������	�
��

namespace: http://www.hpl.hp.com/rdfs/schemaExtension#

�������
��	�	����������

It soon became obvious writing applications to display rdf that rdfs rdf schema
associated with the type of a particular instance is of great importance when trying
to display the instance in a meaningful form. Properties of the schema such as the
rdfs:label (abbreviated simply to ‘label’ in the diagram) become indispensible in
reconstructing an understandble rdf-encoded rendition of a data instance. For
example “http://www.hpl.hp.com/2002/08/example#completeAddress : HP, Walls
Court Farm” can become “Address : HP, Walls Court Farm” – instantly more useful
to the user. Using the types property, it is also possible to for example when
creating an application which allows the user to create instance data to
automatically be able to see if the data input should be added to the instance as a
resource or literal, or if a choice should be given – such as when no type is defined
(taken to mean both resource and literal) without the need for recourse to ‘hard-
coded’ knowledge in the application.

Useful as these are, RDFS gives nowhere near information by itself to create
useful or consistent forms. When displaying one implementation of a vcard for
example, in excess of 30 fields appear that need to be displayed such as: given
name, family name, photo-link, addressline1, addressline2, country, company, etc.
A problem quickly arises however in that, there is deliberately no notion of ordering
of a resources properties in rdf. This means that the order fields appear in is
essentially random, and examples literally occurred where upon redrawing a form,
the order of the fields would change. Since there is no notion of ordering this is
completely accpetable and correct by rdf standards. A much greater problem than

c

domain

b

domain
type

person

Address

label

range

literal

a

domain

b
a

c

jon_jonson

person instance

person schema

Tim Pierce Semantic web actions database project
Schema Extension

15

the order changing between one form and the next is simply the ordering of the
fields. For example:

is typical example of the kinds of renditions of data that would be created by the
‘vcards database’ web-application ###. Simplistic ordering strategies such as
listing in alphabetical order obviously do not solve this problem either. Some scope
existed – and had been half-heartedly implemented in the vcard schema I am
using, by (perhaps incorrectly) subclassing - for example making streetname,
state, country, zip etc. all subproperties of the resource ‘ADDRESS’ – which
allowed the application to intelligently group certain properties. However the issue
of ordering quickly re-emerges in this group, where there is no way to express
using rdfs for example that conventially with western addresses we display the
street-name before the town before the country, or simply (again by western
convention) the ‘given name’ is written before the ‘family name’.

There are many more issues connected with the representation of the rdf, and
many features which would be extremely useful to have which are not represented
in traditional rdf and rdfs terminology.

One solution is once again to hard-code the application with extra knowledge
about the rdf data, such as the application knows to look for the
‘http://www.randomSystem#title’ property and to draw this at the top of its rdf
display window. This is a quick fix solution, and keeps extra information locally
which is quite at odds with the ‘globalised’ and ‘interconnected’ perspective of the
semantic web for which rdf was created, as well as turning up a plethora of
maintainability and re-usability issues.

Another solution is to add extra information into the rdf-graph – in such a way as
will naturally be ignored by any system that does not understand how to interpret it
(in the same way that an internet-browser ignores html-tags it doesn’t recognise)
and have your application understand how to interpret this extra information. This
is a much better solution, as it avoids many of the maintainability and re-usability
(at least for your local system) issues of the previous solution, with the main
problem simply being that anyone unfamiliar with the conventions and
namespaces that you have added will be unable to glean the benefits of the
additions.

Ideally the graphical representation or layout of the rdf data could be generated
completely automatically from the rdf graph.

Therefore I will create a new schema underwhich useful layout information can be
represented particularly as relating to the action database (Jezabel) project,

addressline2: Filton Road
familyname : Smith
company : Hewlett-Packard
adressline1 : Walls Court Farm
given name : John

Tim Pierce Semantic web actions database project
Schema Extension

16

although I will certainly not be trying to create a complete system to fully solve the
problem, but examining an approach.

��	��	��
���

A desire in this project was to have automatically generating forms, that is forms
that can be generated from an application with minimum human intervention.
Ideally if set-up correctly, things could be as simply as a command such as

DrawForm (Resource r, “uri:ViewX”);

with all the information necessary to construct a pleasant, meaningful and clear
representation of the data on-screen. I’ll commonly refer to this as the ‘layout’
throughout.

This should not replace existing conventions such as rdfs, but instead augment it.

Also, the view or layout information should be encoded in rdf in such a way that it
will not affect applications that do not recognise its schema, and also that if a
particular graph has no information for the layout schema at all, then an
acceptable representation of the graph will still be constructed.

�����
���	��������

It seemed from studying the problem that basically what would be extremeley
useful would not be a way of saying ‘this is how this data is represented’ but rather
‘this is one way the data can be represented’ – and that really many different ways
of representing the same data would be useful, or in fact necessary in order for the
system(?) to be of any use. To allow this approach to work the idea of a ‘view’ was
coined, which can be thought of as a ‘schema’ in say an SQL database – but
obviously the word ‘schema’ couldn’t really be used.

For example you may want for your ‘CD collection rdf database’ to have a view
called ‘simpleView’ – which would perhaps just display the CD name and author.
You could then have ‘advancedView’ which would add the date released and
perhaps style and other information etc. to the simpleView ‘fields’. Now from a
slightly different perspective, we may want another view called ‘editView’ which
would automatically mark that all of the fields in our simple CD collection example
can be edited.

In a slightly more advanced system, we may wish for example that there is a view
for employee data called ‘managerEditView’ – underwhich the name and address,
‘project working on’ etc. fields are marked as being modifiable, but the employee’s
salary is not.

In a more global system, we may wish that for some project information data there
is a ‘projectWorkerView’ view in which it is marked that the ‘comment’ field should
have means of adding information to it, but that no capability for removing existing
‘comments’ should be there so that people working on the project can easily add

Tim Pierce Semantic web actions database project
Schema Extension

17

new comments to the rdf of the project, but can’t remove existing comments - i.e.
more advanced than simply marking something ‘editable’ or ‘uneditable’.

Now that the concept of a ‘view’ has been put in place, it would seem sensible that
since the basis is in rdf that each ‘view’ be identified by a uri, and that a rdf-type to
identify a view be created.

��������	��������	���������
����	�
���

Now it is obvious that this extra layout information will be stored in rdf, it is
necessary to decide where and how it will link to the information in the original
graph. Logically and from the point of view of the other projects I’m working on it
would seem that it is not practical or sensible to link it to actual instances of rdf
data since inherently, rdf data of the same type is generally displayed in the same
way. Thus the most sensible option would seem to be to link the extra information
to the rdf-schema of the data and with the type resource itself, the connection to
the actual data being the rdf:type property itself.

So in particular the rdf:type resource object connected to an instance of data, and
the resources of type property connected to this resource. i.e:

Another benefit of this approach is that the layout information is not attached to an
instance of rdf-data directly, but implicitely through its type. Which means that the
information becomes practically invisible to an onlooker. i.e. when viewing
someone’s vcard, there wont be any schema view information properties nestling
alongside name and address properties. Whereas obvserving the schema
associated with the data through the rdf:type property, these properties will be
visible and seem quite appropriate there.

rdf:type

http://example#greed

http://example#DeadlySin

http://example#sloth rdf:type

rdfs:range

…

don’ t attach layout information here

attach the layout information in here

[schema]

Tim Pierce Semantic web actions database project
Schema Extension

18

����	�
���	�����������	�
��
�������

The first schema devised was called SchemaExtension since it seemed to be
simply extending and augmenting the rdf-schema of objects. Under this system
any particular ‘view‘ would be given a uri and properties with these uri’s would then
act as ‘gates’ to the view’s information.

The gates approach

The gates approach was simply that properties would act as gates in connecting
information to nodes. It works on the principle that the application firstly has an
idea which ‘view’ mode it is currently in (represented by a uri). It then starts at a
resource describing say a property, and then looks for any properties connected to
this resource with the same uri as the uri of the current view, and recursively goes
down any and all of the branches it comes across, but the application will not go
down properties that are not of the same uri-name as the current view mode.
hence the notion of a gate. The nodes on the other end of the gate property will
(may) then have extra information describing the layout.

In this example, some of these gate properties can be seen in action, taken
from the original jezabel system:

http://www.hpl.hp.com/semweb/2002/05/action/extension#FormEdit
And http://www.hpl.hp.com/semweb/2002/05/action/extension#FormView

There is then one special ‘gate’ property:

http://www.hpl.hp.com/rdfs/schemaExtension#All

a sort of ‘default’ or ‘open to all’ gate. The idea being that regardless of view-mode
this will be traversed by the application. Hence if you want a field to by default
appear hidden, then you can simply send a schemaExtension#All property off to a
piece of ‘hidden field’ rdf. It is also the principle connecting property throughout
schemaExtension.

I deliberately tried to make the SchemaExtension schema extremely versatile and
flexible, but also efficient when being processed by an application or modified by a
person. For this reason I decided that firstly there would not be properties such as

but instead:

property x Trueis_a_hidden_field

property x Hiddense#All

Tim Pierce Semantic web actions database project
Schema Extension

19

Thus an application now only needs to search any properties of uri SE#All and the
current view uri, and does not need to check in turn each possible attribute such
as ‘is_a_hidden_field’, ‘is_an_editable_field’, ‘is_a_persistant_field’ etc. through
every other property in the schema (although it turns out that this application
oriented approach is in fact a bad approach – this is discussed more fully at the
end of this chapter).
The other important factor in this apporach was maintainability. It seemed that by
attempting to group all of the information off these stalk-like gate properties that in
order to say completely remove the SchemaExtension information, potentially one
single property could be removed or changed to do so, as opposed to having to
scan for every instance of every possible property in the schema (See diagram
below)

So:

becomes:

The understanding is that attaching ‘false’ or ‘true’ linked to something makes it
false or true, but that without attaching anything, the implication is that its true.

Note that there is no difference in the result of the application’s interpretation of the
following:

All

a

Property X

True

False

b

c

d

e

f

xyz
g

Property X

All
All

All
b

a

cAll

dAll

eAll

All

False

All

g

xyz
f

All
aProperty X All

b

All
Property X

All
a

All

b

Tim Pierce Semantic web actions database project
Schema Extension

20

Or indeed:

The versatility of this approach allows the programmer to create some very nice
designs and structures in RDF. It is very common for example to want different
fields in a structure to have the same SchemaExtension attributes set. For
example in a standard ‘EditMode’ you will want all of the fields in a normal schema
to be editable.

instead of representing them like this: they can be modularised like this:

or better as:

Now say for example Property_X also needs the standard ‘EditMode’ properties
that all the others take, but also requires say ‘b’ when in ‘EditMode’. Then it is easy
and painless to add in:

All
Property X a

All
Property X

All
a

All

EditMode
Property_X a

EditMode
Property_Y a

EditMode
Property_Z a

EditMode

EditMode

EditMode
a

Property_X

Property_Y

Property_Z

EditMode

EditMode

EditMode

Property_X

Property_Y

Property_Z

a
All

EditMode

b

EditMode

EditMode

EditMode

Property_X

Property_Y

Property_Z

a
All

Tim Pierce Semantic web actions database project
Schema Extension

21

Note in the above two examples how the EditMode gate properties ensure that a
can only be reached when in EditMode. Once passed the first ‘gates’ it is
unneccasary, and in fact un-useful to use gates when they arent needed and best
to use the ‘All’ property as frequently as possible.

In this SchemaExtension rdf, this structure as described in the last 2 examples has
been used extensively. Each of the resources on the left is a property of the Action
schema###, and each has a gate property:
http://www.hpl.hp.com/semweb/2002/05/action/extension#FormEdit and
http://www.hpl.hp.com/semweb/2002/05/action/extension#FormView, each linking to a
resource called …#FormEditNode and …#FormViewNode – although the uri’s of
these resources aren’t necessary and should be ignored by any application, they
aid human understanding when looking at the graph – these two resources have
been highlighted with a bounding box.

Where does SchemaExtension apply?

Generally SchemaExtension properties are attached to resources of type property
in the schema and to other SchemaExtension nodes. As mentioned in the post-
analysis of SchemaExtension,

Tim Pierce Semantic web actions database project
Schema Extension

22

�����������	�����������	�
��
�������

Properties:

Where no namespace is indicated, the ‘SE:’ namespace as defined by the URI
http://www.hpl.hp.com/rdfs/SchemaExtension# can be assumed.

Property(predicate)
name

Domain Range

rdfs:Label rdfs:Class Literal
Help rdfs:Property Literal
SchemaExtension
All
Any

rdfs:Resource rdfs:Resource

Type Resources:
I.e. resources that ultimately subclass rdfs:Class, and may be ‘rdf:type’-d to. Once
again, absence of a namespace indicates the ‘rdfv:’ namespace.

Resource URI rdf:type

Persistent rdfs:Resource
Editable rdfs:Resource
Hidden rdfs:Resource
False rdfs:Resource

Resources
Type resources are of course resources themselves, but it seems to make more
sense to describe them seperately above.

Resource URI rdf:type

true Boolean
false Boolean

 �	!�
��"��������������	�
��

Unrigorous typing system
SchemaExtension was originally written almost as a test, simply exploring the idea
of storing extra display information hidden in the schema of an rdf graph. It got
absorbed into the jezabel system early on since it was to hand. It is far from perfect
however. A particular problem is the rdf:type-ing of the schema, which is virtually
non-existant. This makes it hard to construct rigorous rdf structures and get a clear
view of how the SchemaExtension schema should be used.

Tim Pierce Semantic web actions database project
Schema Extension

23

For example, even though qualitatively it can be seen that SchemaExtension
properties get added to either resources of type rdf:property or to a node of the
SchemaExstension type, without an actual SchemaExtension type being defined
the best that can be said is that SchemaExtension properties get added to ‘a
resource’. Which is unnecassarily vague and dangerously general(open to
misinterpretation).
Then there is the concept of a view. A ‘view’ is very much an entity, or an
individual, and should really have its own type. Views should be able to be
described in rdf. Unfortunately, there is no view type, and they are not even
represented as actual resources (although it may be argued that properties are
resources). This makes saying anything about them or even detecting them in an
rdf-graph extremely difficult. What way is there of knowing if XYZ:former is a view
or merely a piece of unknown information?
Some withstraints in the form of rdf-types would have been very useful and
provided a much more descriptive schema, which in semantic terms is for all
practicalities, essential.

Extra information for bags etc.
A bag gives no restriction, and rdfs gives no way of stating what kind of types
should be allowed into a bag. This however is important information if wanting to
create forms to manipulate bags adequately. For example knowing that only
people should be added to a bag and not actions or any other resource or object in
the database. This problem was not addressed in SchemaExtension, but ought to
be in future systems/schemas.
More than this, really being able to describe a certain kind of object that is wanted,
perhaps by example, for example being able to say “only actions assigned to chris”
“rdf:type action”, “action:assigned urn:people:chris” would be useful.

Form element descriptions
Knowledge can be programmed into the interpretter of form-elements (drop-down
menu’s, checkboxes, pictures, graphs, etc.) to use when generating forms to allow
the manipulation of object properties. It would be more descriptive and allow for
greater control of form-appearance to be passed to the rdf-graph of the form’s
object to have a schema property and resources that allowed you to associate
certain ‘standard’ form controls, such as drop-down menu’s, multiple choice fields,
simple graphs etc. For example a property ‘score’ going to a literal 44 could
automatically draw a pie chart with 44% of the chart shaded in instead of writing
the integer 44, using extra knowledge attached to the score property in the rdf-
schema.

Colours
I tend to feel that colours of forms, form elements, fonts , styles and so on and so
forth are somewhat out of scope for the goals this area of the project is trying to
achieve, since these are things that ultimately do not make a vast amount of
difference to the usability of a form.

The editable attribute
Simply having a field editable which generates a form that allows instances of
properties to be added and removed is not nearly descriptive enough. Very quickly
examples where only adding functionality should be present on a form (for

Tim Pierce Semantic web actions database project
Schema Extension

24

example when adding comments to a message board – functionality to remove
messages is not especially helpful), and presumably only removing properties
similarly. As well as of course wanting both add and remove functionality (which is
most common). Therefore the ability to independently describe a property for a
particular view as having add capabilities and remove capabilities would be a
definite advantage.

Strings vs. writers
In the SchemaExtension interpretting class ‘SchemaFormer’, html was for
convinience passed around as ‘String’s. When an html form was generated for
example, it would be returned to the calling class as a String. This is fine for the
size of the generated html forms used in this project, but in greater scope, a String
can only store 50k of data. Therefore ideally a java Reader/Writer should have
strictly been used, and future projects should take note of this.

One instance
Examples soon occur where it becomes obvious that giving the user means to add
more than instance of a property in a particular object would be meaningless, even
though there is no restriciton in this (which SchemaExtension mirrors). One
example where more than one instance of a property would be unuseful is in the
example of an ‘id’ associated with an objbect. A stronger example is that of the
‘creation date’ of an object – where describing more than one creation date of
something renders both dates next to useless.
A means of letting the form creater know that the ability to create more than one
instance for a particular property should not be allowed would be very useful.

Problems in the gates approach
The gates approach of using a property as something of a bridge which only
allows applications of a current internal view-mode that corresponds to the uri of
the property is inherently flawed.
Firstly it is flawed because the property in keeping with the semantic web is
supposed to be describing a relationship between the subject and the object of the
property’s statement. The way that I used the property in SchemaExtension makes
sense only in a procedural context.
Secondly as mentioned before, it is not acceptable to describe a view simply as a
property. With no type associated the resulting graph becomes completely
confusing, with it being unclear whether a property is a gate or simply a property
from an unknown schema and with little formal way of making a distinction.
A re-think is needed in this area.

Tim Pierce Semantic web actions database project
Schema Extension

25

����� � ��	�
���������
http://www.hpl.hp.com/2002/08/rdf-view

����������

After creating and using SchemaExtension, it became obvious that there were lots
of things that would be useful to add and that different fundamental approaches
would have been much better, such change was needed that I decided to rewrite
SchemaExtension under a different name altogether (to prevent confusion, since
other components of the project were already depending on SchemaExtension).

Of particular consideration was taken the points and problems observed with
SchemaExtension – the precursor to rdfv, in summary these were an unrigorous
type system, the problems associated with the first ‘gates’ approach, the inability to
describe form elements to use with certain fields on a form, no way to suggest
whether one instance of a property is appropriate and lack of ability to describe
clearly enough how a property may be edited.

���	����������������������

Of classes:

Types were of minimal concern when SchemaExtension was being created. It was
only much later when things had gone too far to be easily altered that I wanted a
much stronger and rigourous type system. For this reason the resources that
provide the actual rdfv layout data can now be called of rdf:type rdfv:Rdfv.

The idea of a beholder class, was introduced, in which a beholder beholds a view,
which basically means that views can be represented by a resource, rather than by
the property of a uri.

A proper Boolean class was introduced, rather than just having a ‘false’ resource.
It includes both True and False.

A FormElement class was introduced which would allow the graphical designer to
indicate that a certain property in a class was particularly apt for being represented
by a certain FormElement, and with this, the DropDownMenu type was introduced
– a sub-class of FormElement.

Operation

Firstly I wanted to change the way the gates idea had been implemented
completely. the SchemaExtension notation was not in keeping with the style and
function of the semantic web - to have properties that act as corridors with
selective doors at the end controlling the flow of the applications interpretation is
not the way the semantic web was really envisaged and is very application-
oriented, and more importantly not meaningful. It also makes giving a ‘view’ a type
very difficult, and lastly the notion of a ‘view’ represented in a graph purely by the

Tim Pierce Semantic web actions database project
Schema Extension

26

actual uri of a property just does not make for a sound approach (much better to
be a resource). Better would be to have a property that indicates that this code is
applicable to a partiuclar view, which could then go to a resource which would
represent the particular view. This was exacted by adding the intendedBeholder
property to the schema, in conjunction with the Beholder class (which gives a
‘view’ a type).

Not unrelatedly I also added a single specific property called associatedRdfv –
which basically means that whatever is described by the Rdfv resource on the
other end of the associatedRdfv property can be taken to apply to the current
Object as well as whatever other rdfv information is described. ‘Rules’ for
describing what to do when 2 pieces of associated rdfv describe different things for
the same rdfv properties is discussed further below.

Being able to suggest when only one instance of a particular property should really
exist would have been very useful. I decided not to put in a ‘required’ type, since
firstly rdf does not naturally have required properties and secondly since I am only
really concerned with the layout here. The one-instance rule above for example is
only an indication to the interpretting application that the user should not be able to
add more than one instance of a property, it is not in any way suggesting that the
model might be ‘incorrect’ or inconsistent or wrong if more than one instance
already exists.

Lastly I wanted to get rid of the ‘hidden’, ‘editable’ and ‘persistent’ resources, and
replace them as properties that would go to a boolean value, and also add more
functionally useful boolean preoperties to be added to an Rdfv resource.

As with SchemaExtension, it quickly becomes possible with this system to say
things that don’t make sense, but do make valid rdf and fit valid rdfs schemas. For
example:

Hidden
All Rdfv

type

True
hidden

Would now be represented as

False

hidden

Rdfv
type

True
hidden

Tim Pierce Semantic web actions database project
Schema Extension

27

or

I decided to do things completely differently to the SchemaExtension approach,
and rather than having complex extra knowledge of things like whether something
that is declared Hidden can be made un-hidden, and to re-organise the idea of
‘priorities’ or castes again completely differently so that the proximity in terms of
levels of detachment from the original object or property that the Rdfv is describing
is what decides which description of an rdfv property such as ‘hidden’ or ‘add’ is
taken as the ‘true’ or perhaps ‘truest’ description. Thus in the above example from
resource A, the rdfv property ‘hidden’ would be taken to be false.

Equally when a case exists where two statements with equal ‘importance’ state
opposite things, such as an rdfv property is both true and false, to simply not
define what happens, and leave it up to the designer to not design graphs like this,
and leave it up to the interpretter to act in whatever way it deems appropriate.
From a human or ‘semantic’ point of view equally if something is said to be true
and false it is not clear what to do, and thus I feel able to justify this approach.

The one-instance property was added to solve the one instance problem of
SchemaExtension, the describeBy property was added in light of the fact that a
‘human’ name for an rdf object is often required, but that there is no ‘standard’
property for describing this. For example it would add info that an issue is best
described by its ‘title’. This is simply so that any application automatically has a
good idea how to gracefully represent an object. so that urn:people:Patrick can
become merely ‘Patrick’ (by adding a describeBy property from the people class
resource to the firstName property described in the schema.

True
hidden

False

Rdfv
type

hidden

Rdfv
type

A

associatedRdfv

Tim Pierce Semantic web actions database project
Schema Extension

28

��������������������������

Properties:
Where no namespace is indicated, the ‘rdfv:’ namespace as defined by the URI
above can be assumed.

Property(predicate)
name

Domain Range

associatedRDFV - Rdfv
intendedBeholder Rdfv Beholder
hidden Rdfv Boolean
persistant Rdfv Boolean
add Rdfv Boolean
remove Rdfv Boolean
representWith Rdfv FormElement
rdfs:label Rdfv rdf:Literal
help Rdfv rdf:Literal
describeBy rdf:Class rdf:Property
oneInstance rdf:Property Boolean
match DropDownList rdfs:Resource
order rdf:Class rdfs:seq

Type Resources:
I.e. resources that ultimately subclass rdfs:Class, and may be ‘rdf:type’-d to. Once
again, absence of a namespace indicates the ‘rdfv:’ namespace.

Resource URI rdf:type

Rdfv rdfs:Class
Boolean rdfs:Class
Beholder rdfs:Class
FormElement rdfs:Class
DropDownList FormElement

Resources
Type resources are of course resources themselves, but it seems to make more
sense to describe them seperately above.

Resource URI rdf:type

true Boolean
false Boolean

Tim Pierce Semantic web actions database project
Schema Extension

29

��������������

Types:

Rdfv
A resource with associated rdfv ‘code’.

Boolean
A simple class with two resource instances: true, and false

Beholder
A resource description of a ‘view’.

FormElement
A resource corresponding to a form-element such as a pie-chart, radio-buttons or
drop-down menu.

DropDownList (subClass of FormElement)
A resource corresponding to a formElement of type drop-down list – associated
with a drop down list form element.

Properties:

associatedRDFV
domain: any
range: rdfv:Rdfv
Currently only of any use when the domain is of type rdfv:Rdfv, rdfs:Class or
rdf:Property, although in light of expandability this has not been defined. Wherever
this property appears connected to any subject, and going to an object of type
rdrv:Rdfv, it is taken as an indication that the rdfv object is associated with the
subject (extraordinarily).

intendedBeholder
domain: Rdfv
range: Beholder
A Beholder is a resource whose uri identifies a particular view of the graph. Pieces
of rdfv information in a graph can only ever be accepted and ‘put into effect’ in
association with a particular Beholder. Thus if no beholders are defined in a graph,
then no rdfv should ever be activated. It is quite acceptable, and in fact
recommended to have more than one beholder associated with a piece of rdfv.

hidden
domain: Rdfv
range: Boolean
When true indicates that in this view this information should be hidden from the
viewer. A field can be assumed not to be hidden if no information is given.

persistant
domain: Rdfv

Tim Pierce Semantic web actions database project
Schema Extension

30

range: Boolean
When true indicates that in this view, if the property described in the schema has
no corresponding property in the instance of the Object described by the schema
then the property should still be displayed, simply with no field.

add
domain: Rdfv
range: Boolean
When true indicates that in this view, the form should include methods to add
instances for the described property.

remove
domain: Rdfv
range: Boolean
When true indicates that in this view, the form should include methods to allow
instances of this property in the relevant RDFObject to be removed.

representWith
domain: Rdfv
range: FormElement
Allows an object of type FormElement to be associated with a particular field. For
example could suggest a drop-down menu would be a very appropriate form
element to use.

rdfs:label
domain:
range: rdf:Literal
Imported from the rdf-schema schema. Suggests a better rdfs:label than any
described in the actual rdfs of the object, if any exists.

help
domain: Rdfv
range: rdf:Literal
This is ‘help’ associated with the property. For example it could be represented in
an html form as a little piece of text which appears when the mouse is held in the
same spot over a the associated property.

describeBy
domain: rdf:Class
range: rdf:Property
This is to suggest allow a meaningful name to be associated with an instance of a
class. It could automatically suggest for example that a person is best described by
their name, or that an action by its ‘short description’.

oneInstance
domain: Rdfv
range: Boolean
This is a recommendation that the form should not give facilities to add extra
instances of the property if any already exist.

Tim Pierce Semantic web actions database project
Schema Extension

31

match
domain: DropDownList
range: rdfs:Resource
For use by the DropDownList resource, the resource at the end of the ‘match’
resource will be an ‘object by example’ of elements to use in the drop-down list.

Type Resources:
I.e. resources that ultimately subclass rdfs:Class, and may be ‘rdf:type’-d to. Once
again, absence of a namespace indicates the ‘rdfv:’ namespace.

�����

Expand formElement classes
Many more elements than simply ‘DropDownList’ should be added for good
functionality, and the DropDownList class itself perhaps edited and refined
somewhat since its description is currently a little vague.

Order
The all-important ‘ordering’ problem was not resolved with this version of rdfv (or
SchemaExtension for that matter). The problem is that there is no suggestion in
rdfs of which order properties of an object should be displayed, and is discussed
early on in SchemaExtension. It is a very real issue and should be approached
and resolved if meaningful forms depictions of rdf-data are truly required.

