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ABSTRACT

Application-level multicast networks overlaid over unicast IP
networks are increasingly gaining in importance. While there
have been several proposals for overlay multicast networks,
very few of them focus on the stringent requirements of real-
time applications such as streaming media. We propose an
efficient overlay application layer multicast infrastructure for
multimedia real-time applications based on a combination of
landmark clustering and RTT measurements. Our goal is
to balance the network-oriented goals of building an efficient
multicast tree with the application-oriented goals of providing
good QoS with minimal disruptions. Using accurate global
soft state information tables, our approach promptly con-
structs and reconfigures high quality trees. A distinguished
feature of our approach is that the tree reconfiguration is ini-
tiated just-in-time by the application client at the receiver
when the media quality falls below a specific threshold. The
goal is to achieve dynamic tree reconfiguration with very low
switching delay such that end users do not perceive any ap-
plication performance degradation.

1. MOTIVATION

We envision a future where a large fraction of applications
use multimedia objects and streams. The significant drivers
for this trend are the widespread proliferation of high qual-
ity digital cameras and multimedia authoring tools as well as
the availability of the necessary computing, storage and net-
working resources to create and deliver rich-media contents.
Internet users today can host web contents (primarily text
and small images) from their home. In the future, it will be
just as easy for anyone with a PC and a digital camera to
be a cinematographer, editor and director of his or her own
movie and then disseminate a high quality media stream to a
very large remote audience over the high speed Internet access
networks. An alternative futuristic scenario may be for fam-
ily members to “join” a Thanksgiving gathering in real time
from remote locations using similar media and networking
technologies. This vision is articulated in [3] with descrip-
tions of several other scenarios. An attractive possibility is
for these applications to function by setting up peer-to-peer
(P2P) communities, requiring minimal support from the un-
derlying infrastructure and thus be deployable very quickly.
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Scalable and efficient multicasting technology is essential
to enable the above vision. Multicasting provides significant
bandwidth savings and is particularly crucial for the dissemi-
nation of live as well as stored high fidelity multimedia content
because of the sheer size of the content, the relatively long
duration of the session, and the correspondingly high band-
width requirements. Moreover, multimedia applications have
very stringent delivery requirements without which the user
perceptual quality will suffer. Thus, in addition to scalable
multicasting, supporting some level of end-to-end quality of
service (QoS) is also a key requirement in this vision.

Due to a variety of deployment issues, including high man-
agement complexity and cost, either IP multicast or Internet
QoS are not widely supported today in the Internet infras-
tructure. However, spurred by the demand for exciting multi-
media applications, several application level overlay schemes
have been recently proposed. Most schemes primarily deal
with overlay multicasting (e.g., [6]), while some consider over-
lay QoS (e.g., [19]). Some schemes such as Host Multicast
Tree Protocol (HMTP) [22], leverage IP multicast if avail-
able. Very few overlay schemes consider both multicasting
and end-to-end multimedia QoS issues, which is the subject
of this work.

We propose an efficient application layer multicast infras-
tructure for multimedia real-time applications, which greatly
benefits from a global view of the system stored in a dis-
tributed hash table (DHT). The global view is generated from
landmark clustering [12]. Combining the landmark informa-
tion with a small number of round-trip time (RTT) measure-
ments to locate physically close-by neighbors, our approach
provides very fast, high quality tree construction and adap-
tation. There are three key differences between our approach
and that of prior work.

e None of the existing schemes addresses the problem of me-
dia quality disruption during the tree reconfiguration. Our
goal is to develop mechanisms that transparently reconfig-
ure the overlay tree in very short timescales such that the
user’s perceptual quality does not suffer during the recon-
figuration process. We focus on perceptual quality because
not all fluctuations in network quality negatively affect the
application perceived QoS.

e Unlike other schemes which advocate periodic tree recon-
figuration or event-triggered reconfiguration (e.g., RTT in-
creases), our approach performs just-in-time reconfigura-
tions driven by application/user perceived QoS. This ap-
proach provides a natural reconfiguration timescale and
avoids the overhead of unnecessary changes to the tree that
do not affect the end client’s perceived quality.



e Most of the schemes require several seconds to reconfigure
or complete a join to the tree. Utilizing the landmark infor-
mation stored in the DHT, our approach requires far fewer
network measurements with an aim to perform tree recon-
figurations under a second, while producing a tree that is
reasonably close to the optimal in terms of bandwidth ef-
ficiency. Compared with HMTP, our algorithm speeds up
the tree construction by a factor of up to eight, while pro-
ducing trees that are up to 50% more efficient.

The rest of the paper is organized as follows. We de-
scribe our approach with preliminary results in Section 2.
An overview of the related work is presented in Section 3.
We conclude the paper with a discussion on open issues and
future directions in Section 4.

2. OUR APPROACH

The quality of a multicast tree, to a great extent, depends
on how close its structure approximates that of the underly-
ing network. One simple way to construct efficient trees is
to measure the end-to-end latency between each pair of the
nodes and run a minimal spanning tree algorithm over the
resulted graph. This approach however, is not practical for
large trees due to the excessive measurements.

The fundamental idea of utilizing global information is still
crucial. To maintain global state, we propose to select tree
nodes to form a DHT to serve as a rendezvous plane to store
information of nodes in the tree. In particular, we use the
landmark vectors [12] of nodes as keys to store their infor-
mation in the DHT such that information of nodes that are
physically close to each other are stored near each other in
the DHT [21]. As a result, a node can find information of
close-by nodes in an efficient and scalable way.

Our experiments show that if a new node can find the clos-
est node in the tree and attach to it, the tree cost (defined
as the aggregated weight of tree edges) is comparable to that
of a minimal spanning tree with less than 30% overhead for
trees with up to 4,096 nodes. To find the closest node, we
propose a technique that combines landmark clustering and
actual RTT measurements [21]. In our model, a new node al-
ways attaches to the closest node that is identified using the
above technique.

Given these techniques, we describe a tree-adaptation algo-
rithm that quickly responds to changing network conditions.
The goal of this algorithm is to minimize the disruption to
the end users.

2.1 Locating the Closest Node

We use landmark clustering as a pre-selection process to
identify nodes that are possibly close, and use RT'T measure-
ments to locate the actual closest one [21]. The intuition
behind landmark clustering is that if two nodes have similar
latencies to a common set of landmark nodes, they are likely to
be close to each other. Suppose that a node’s distance to land-
mark ¢ is d; and there are [ landmarks. We use the landmark
vector < di,ds,..,d; > to approximates this node’s physical
position in the network. More sophisticated techniques to
produce landmark information are also possible [12].

Each node uses its landmark vector as the key to store its
profile in the DHT. This controlled placement of node profiles
has the effect that information of nodes that are physically
close are stored near in the DHT. To find a set of physically
close-by nodes, a node uses its landmark vector as the key

a r oot

0

Figure 1: Tree construction algorithm.

to look up the DHT. The node ranks the identified neighbors
according to the similarity in landmark vector, and measures
RTTs to top candidates to locate the closest one.

Our experiments show that, for a typical topology with
10,000 nodes, using 15 landmarks and 20-40 RTT measure-
ments can accurately locate a close-by node [21].

In reality, finding the right node to attach to in the tree is a
multi-faceted problem that is more complex than just finding
the closest node, especially when nodes are heterogeneous.
For example, the network access link speed of a node is one of
the deciding factors for the maximum media streaming rate
to that node. If the source streaming rate is higher than the
network access speed of a node, this node needs to attach to
a tree node that can transcode the media down to the desired
rate. To address this issue, each node includes rich informa-
tion about itself in the profile and periodically updates the
profile with its current state. The profile for a node may in-
clude its landmark vector, its network access type and speed
(e.g., 56 Kb/s dialup line, 1.5 Mb/s DSL or 100 Mb/s LAN),
current and maximum fan out in the multicast tree!, process-
ing power, current load, special capabilities such as transcod-
ing, and so forth. When searching for candidate nodes to
attach to, a node that is joining the tree considers not only
network proximity but also its special QoS requirements.

2.2 Basc Tree Construction Algorithm

Our tree construction algorithm is illustrated in Figure 1.
We select nodes that have good capacity and network con-
nectivity in the tree to form a DHT and store node profiles
in the DHT. When a new node n wants to join the multicast
tree, it computes its own landmark vector and carries out the
following steps:

1. Uses its own landmark vector as the key to look up the
DHT, obtaining information about a set of nodes X whose
landmark vectors are similar to its own. Based on this
information, it eliminates the nodes in X that do not satisfy
the QoS requirements (bandwidth, CPU load, etc.). The
remaining nodes form a set Y, which includes nodes d, e
and z in Figure 1.

2. Performs concurrent RTT measurements to each node in
Y and identify the node that is the closest. Let us denote
the closest node as x.

3. Attaches to x as its child.

!The maximum fanout may be set to zero if the node is inca-
pable of serving any other nodes (e.g., a node that has access
to only a low speed dial-up network connection, etc.).
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Figure 2: Tree quality and speedup with respect to
HMTP.

This simple algorithm offers the following advantages: (i)
Because RTT measurements to each node in Y are performed
concurrently, a new node can quickly locate the potentially
closest node without level-by-level tree traversal. (ii) We have
a global view of the system that enables us to find a good
neighboring node that satisfies the QoS constraints without
having to contact a significant number of nodes.

To evaluate the effectiveness of our algorithm, we compare
the quality of the trees constructed using our algorithm with
that of trees produced by protocols that probe the tree level-
by-level (e.g., HMTP). We define stretch as the ratio of tree
cost to that of a minimal spanning tree. We also compare the
time that it takes to construct the trees and define speedup
as the ratio of time taken by HMTP to that taken by our
algorithm.

In HMTP-like protocols, a new node wishing to join the
multicast traverses down the tree from the root to search for
the closest node to itself at each level until it reaches a leaf.
This process finds a low delay path starting from the root.
Among all nodes on this path, the new node attaches to the
closest one.

We have conducted preliminary experiments using a 10,000
node topology produced by GT-ITM [5]. Latencies in the
topologies are set according to the following rules: 100ms for
cross transit links, 20ms for links connecting nodes inside a
transit, 5ms for links connecting a transit and a stub node,
and 2ms for links connecting nodes inside a stub. We ran-
domly select 15 nodes as landmark nodes.

Figure 2 shows the results. We also compare the perfor-
mance of our trees with that of the cases where a new node
locates the actual closest node (the curve labeled attach-to-
actual-closest). We observe the following:

e In terms of tree construction time, our algorithm outper-
forms HMTP by a factor of up to eight.

e In terms of tree quality, our trees are up to 50% more effi-
cient than those of HMTP and close to the optimal attach-
to-actual-closest case. Comparing with the minimal span-
ning tree algorithm, our algorithm introduces less than 30%
overhead for trees with up to 4,096 overlay nodes.

2.3 TreeAdaptation Algorithm

Driven by the inherent dynamics in the underlying infras-
tructure, we propose two kinds of tree adaptations—a just-
in-time adaptation to address application quality issues, and
a long-term adaptation to address tree efficiency issues. The
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Figure 3: Tree adaptation algorithm.

long term adaptation has a relatively large period in the order
of several minutes or even hours, and it is actually carried out
only if doing so can result in significant bandwidth saving.

The just-in-time adaptation is driven by application per-
ceived QoS that is impacted by the fluctuations in the quality
of the links. To provide the end users with reasonable QoS,
the tree needs continuously adapt to these changing condi-
tions and minimize any service disruption to the end users.
This translates into finding the best place to perform the
adaptation and minimizing the time for each repair. We as-
sume that all nodes in the tree can monitor the quality of the
link and translate this to user-perceived QoS (see Section 4).

We illustrate our tree adaptation algorithm in Figure 3.
When a node n perceives a QoS degradation over its tolerance
threshold, it sends a complaint to its parent p in the tree
along with its own landmark vector. If p is not responsive,
n switches to a new parent by performing a new join process
initiated at the root. If p responses, we have two cases as
shown in Figure 3 (a) and 3 (b), respectively.

1. p is happy with its QoS, which indicates that the bot-
tleneck link lies on the path (p,n). p forwards the com-
plaint initiated by n directly to the rendezvous point R on
the DHT, which will provide n with a set of new candidate
parent nodes that are close to n judging from the landmark
vectors. In Figure 3 (a), this candidate set includes p’ and
b. Similar to the tree construction process, n chooses its
new parent, e.g., p’, based on the measured RTTs to can-
didates and the QoS they can provide. n then carries out
the switching with the handoff process we describe later.

2. pis also unhappy with its QoS, which indicates that the
bottleneck link exists on the upstream path, e.g., path (a, p)
in our example. In this case, p starts its own complaint
process by sending a message containing its own landmark
vector to its parent a. Note that by the time that the
complaint from n arrives at p, p may already have sent a
complaint to a based on its perceived QoS. In this case, p
will suppress n’s complaint. These concurrent complaints
may save significant time in adaptation.

In Figure 3 (b), because a is happy with the QoS it per-
ceives, it directs the complaint to the rendezvous point R on
the DHT, which will instruct p to switch to a new parent
with the candidate set including p’ and b. p then measures
the RTTs to these nodes and switches to p'. During this pro-
cess, n waits for the QoS to improve, or an instruction from R
to switch to a new parent. If it is still unhappy after a time-
out, i.e., there are multiple bottleneck links on its upstream
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Figure 4: Multi-homed handoff process.

path, it starts the complaint process again. Note that routing
loops are prevented in our scheme as each node records the
path from the root to itself.

Our tree-adaptation algorithm minimizes the overall dis-
ruption by trying to locate the problematic link and asking
the node incident to that link to adapt. For instance, when
the quality of a link close to the root degrades, instead of ask-
ing every downstream node of that link to find a new parent,
our local repair algorithm only requires the node incident to
that link to attach to a new parent.

As shown in the figure, it typically takes three steps to ob-
tain a set of parent candidates. Assume that the (n,p) and
(n,p’) distances are 20ms, and (p, R) and (n, R) are 100ms.
Considering that routing in the DHT typically doubles the
latency of IP routing [21], it takes approximately 320ms to
obtain the candidate sets. Assume that we do three rounds
of concurrent RTT measurements to all candidates and se-
lect the candidate that has the lowest RTT. This will take
additional 120ms. This leaves us with 560ms to complete the
entire switching under one second.

2.4 Smooth Application Handoff

One of our goals is to develop methods to ensure that the
application performance suffers minimally and the tree recon-
figuration is conducted transparently. Because switching to
a new parent may incur delay, it is essential to maintain the
performance levels during the parent handoff process. For
media applications, this is crucial as the user perceived me-
dia quality may suffer significantly, if there is a sudden high
loss or high delay period inflicted by the handoff. To mini-
mize disruption, we use multi-homing at the multicast overlay
layer during the handoff period, similar to [18]. The idea is to
have a child connected to both the new and the old parents,
and receive application packets from both until the handoff is
complete.

We illustrate the handoff process in Figure 4. When a node
n needs to switch from its current parent p to a new parent
p', it contacts p’ for connection establishment. The connec-
tion between m and p will be torn down after the two flows
from p and p’ are synchronized. It is possible to design more
sophisticated algorithms that reduce the amount of duplicate
traffic sent to n. It should be noted that during a short pe-
riod of time, certain links that lead to node n now may have
to carry traffics from both parents. If one of the links is a
bottleneck link, this can temporarily worsen the situation. If
the QoS degradation is caused by a bottleneck link that is on
the paths from all potential new parents, then no repair is
possible. The challenge is to promptly detect this scenario so
that unnecessary repair is halted.

3. RELATED WORK

Several application-level multicast schemes achieve data dis-
tribution by implicitly building a multicast structure. For in-
stance, Scribe [6] is a multicast infrastructure built on top
of Pastry [17]. In Scribe, the multicast tree is formed by
the union of the Pastry routes from multicast members to
the rendezvous point (RP). The Content-Addressable Net-
work (CAN) framework [15] is extended for multicast in [16].
In this work, the multicast group members establish a mini-
CAN and multicast data is distributed by flooding over the
mini-CAN, without explicitly building a tree. Bayeux [24] is
an architecture built on top of Tapestry [23] and supports
source-specific multicast. The NICE protocol [2] builds and
maintains hierarchical topology of multicast members. The
multicast routes are implicitly defined by the hierarchy struc-
ture. A protocol that uses a Delaunay triangulation as an
overlay network topology is proposed in [11]. With the dis-
tributed construction of a Delaunay triangulation, multicast
paths are embedded in the overlay without a routing proto-
col. Overlay Multicast Network Infrastructure (OMNI) [4]
proposes a two-tier architecture and builds a multicast tree
consisting of multicast service nodes (MSN) which in turn
connect to clients. This distributed scheme is adaptive with
changes in the client distribution and network conditions.

The following protocols ezplicitly form the multicast tree.
Targeting at content distribution applications, overcast [10]
builds a single source multicast tree rooted at the source.
The optimization goal of its “up/down” protocol is to provide
each node in the tree with a high bandwidth path to the root.
Yoid [9] forms a shared multicast spanning tree across the
end hosts. Yoid also builds a mesh structure among members
for routing stability. Similar to Yoid, Host Multicast Tree
Protocol (HMTP) [22] builds a shared tree. When a new node
joins, it probes the tree at each level, starting from the root,
to find the nearest member node as a parent. CoopNet [13]
focuses on using multiple description coding to handle flash
crowd while reducing disruption. They rely on a centralized
server for tree construction and maintenance. Application
Level Multicast Infrastructure (ALMI) [14] uses a centralized
approach to construct shared minimum spanning tree based
on network measurements.

Narada [8] and Scattercast [7] build a mesh topology of all
multicast members, and then compute a multicast spanning
tree for each source. Both protocols periodically refresh the
mesh to maintain the multicast topology.

Our scheme differs from existing approaches in that previ-
ous P2P multicast systems embed the multicast trees in the
overlay, and therefore are constrained by the logical struc-
ture of the P2P networks. In addition, with the exception
of OMNI [4], none of the existing approaches take QoS into
account in tree construction and maintenance. Unlike OMNI,
the tree reconfiguration in our scheme is initiated by the re-
ceiver based on the application perceived QoS.

4. DISCUSSION

This paper describes our first step towards building an ef-
ficient overlay infrastructure for real-time multimedia appli-
cations. Our goal is to balance the network-oriented goals
of building an efficient multicast tree with the application-
oriented goals of providing good QoS with minimal disrup-
tions. There are several open issues that need further inves-
tigation.



A cornerstone of our approach is that the tree reconfigu-
ration is primarily initiated by the application client at the
receiver when the perceptual media quality falls below a spe-
cific threshold. We realize that the translation between net-
work QoS metrics and subjective perceptual media quality
is non-trivial. We plan to leverage ongoing work (e.g., [1]) in
this regard. Another alternative albeit intrusive method is for
users to indicate their dissatisfaction with the deteriorating
audio/video quality by pressing a button on the keyboard.

The results in Figure 2 show the importance of locating the
closest node in multicast tree construction, and the effective-
ness of our “landmark clustering + RTT” scheme in finding
the closest node. Our study shows that the performance of
landmark clustering varies with topologies [21]. Consequently,
we suggest several techniques to improve the accuracy of land-
mark clustering. In particular, our initial results indicate that
using artificial neural network to estimate Internet distance
may produce good accuracy. Their effectiveness in the real
Internet remains to be seen, and their ultimate limits due
to the incomplete proximity information in landmark vectors
need to be explored.

In our tree construction algorithm, a new node simply at-
taches to the closest node in the tree. Better performance may
be achieved by replacing some links in the tree with links to
the new node. We have devised a tree maintenance algorithm
that utilizes local information to compute a local minimal
spanning tree [20]. We have yet to evaluate the effectiveness
of our algorithm using real topology, latency and dynamics of
the Internet.

Delivering real-time multimedia to clients is a complex pro-
cess involving many factors such as caching, buffering, and
transcoding. We are building a media delivery infrastructure
and will use real media applications to study the interplay of
these factors. For instance, depending on the network dynam-
ics, we may avoid frequent short-term overlay adaptation by
a small increase of the client buffer and startup delay. When
the network condition is degraded to the extent that adapta-
tion is futile, degrading the quality by including a transcoding
process (transparently) is perhaps the only option.
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