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lmbench3: measuring scalability

Carl Staelin
Hewlett-Packard Laboratories Israel

ABSTRACT

lmbench3 extends the lmbench2 system to measure a system’s performance under scal-
able load to make it possible to assess parallel and distributed computer performance with the
same power and flexibility that lmbench2 brought to uni-processor performance analysis.
There is a new timing harness, benchmp, designed to measure performance at specific levels of
parallel (simultaneous) load, and most existing benchmarks have been converted to use the new
harness.

lmbench is a micro-benchmark suite designed to focus attention on the basic building blocks of
many common system applications, such as databases, simulations, software development, and
networking. It is also designed to make it easy for users to create additional micro-benchmarks
that can measure features, algorithms, or subsystems of particular interest to the user.

1. Introduction
lmbench is a widely used suite of micro-benchmarks
that measures important aspects of computer system
performance, such as memory latency and bandwidth.
Crucially, the suite is written in portable ANSI-C
using POSIX interfaces and is intended to run on a
wide range of systems without modification.

The benchmarks included in the suite were chosen
because in the lmbench developer’s experience, they
each represent an aspect of system performance which
has been crucial to an application’s performance.
Using this multi-dimensional performance analysis
approach, it is possible to better predict and under-
stand application performance because key aspects of
application performance can often be understood as
linear combinations of the elements measured by
lmbench[4].

lmbench3 extends the lmbench suite to encompass
parallel and distributed system performance by mea-
suring system performance under scalable load. This
means that the user can specify the number of pro-
cesses that will be executing the benchmarked feature
in parallel during the measurements. It is possible to
utilize this framework to develop benchmarks to mea-
sure distributed application performance, but it is pri-
marily intended to measure the performance of multi-
ple processes using the same system resource at the
same time.

In general the benchmarks report either the latency or
bandwidth of an operation or data pathway. The
exceptions are generally those benchmarks that report
on a specific aspect of the hardware, such as the pro-
cessor clock rate, which is reported in MHz and
nanoseconds.

lmbench consists of three major components: a tim-
ing harness, the individual benchmarks built on top of
the timing harness, and the various scripts and glue
that build and run the benchmarks and process the
results.

1.1. lmbench history
lmbench1 was written by Larry McVoy while he
was at Sun Microsystems. It focussed on two mea-
sures of system performance: latency and bandwidth.
It measured a number of basic operating system func-
tions, such as file system read/write bandwidth or file
creation time. It also focussed a great deal of energy
on measuring data transfer operations, such as bcopy
and pipe latency and bandwidth as well as raw mem-
ory latency and bandwidth.

Shortly after the lmbench1 paper [12] was pub-
lished, Aaron Brown examined the lmbench bench-
mark suite and published a detailed critique of its
strengths and weaknesses[4]. Largely in response to
these remarks, development of lmbench2 began with
a focus on improving the experimental design and sta-
tistical data analysis. The primary change was the
development and adoption across all the benchmarks
of a timing harness that incorporated loop-autosizing
and clock resolution detection. In addition, each
experiment was typically repeated eleven times with
the median result reported to the user.

The lmbench2[21] timing harness was implemented
through a new macro, BENCH(), that automatically
manages nearly all aspects of accurately timing opera-
tions. For example, it automatically detects the mini-
mal timing interval necessary to provide timing results
within 1% accuracy, and it automatically repeats most
experiments eleven times and reports the median
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result.

lmbench3 focussed on extending lmbench’s func-
tionality along two dimensions: measuring multi-pro-
cessor scalability and measuring basic aspects of pro-
cessor micro-architecture.

An important feature of multi-processor systems is
their ability to scale their performance. While
lmbench1 and lmbench2 measure various impor-
tant aspects of system performance, they cannot mea-
sure performance with more than one client process
active at a time. Consequently, measuring perfor-
mance of multi-processor and clustered systems as a
function of scalable load was impossible using those
tools.

lmbench3 took the ideas and techniques developed
in the earlier versions and extended them to create a
new timing harness which can measure system perfor-
mance under parallel, scalable loads.

lmbench3 also includes a version of John
McCalpin’s STREAM benchmarks. Essentially the
STREAM kernels were placed in the new lmbench
timing harness. Since the new timing harness also
measures scalability under parallel load, the
lmbench3 STREAM benchmarks include this capa-
bility automatically.

Finally, lmbench3 includes a number of new bench-
marks which measure various aspects of the processor
architecture, such as basic operation latency and paral-
lelism, to provide developers with a better understand-
ing of system capabilities. The hope is that better
informed developers will be able to better design and
evaluate performance critical software in light of their
increased understanding of basic system performance.

2. Prior Work
Benchmarking is not a new field of endeavor. There
are a wide variety of approaches to benchmarking,
many of which differ greatly from that taken by
lmbench.

One common form of benchmark is to take an impor-
tant application or application and worklist, and to
measure the time required to complete the entire task.
This approach is particularly useful when evaluating
the utility of systems for a single and well-known task.

Other benchmarks, such as SPECint, use a variation
on this approach by measuring several applications
and combining the results to predict overall perfor-
mance. SPEChpc96 [22] extends this approach to the
parallel and distributed domain by measuring the per-
formance of a selected parallel applications built on
top of MPI and/or PVM.

Another variation takes the "kernel" of an important
application and measures its performance, where the
"kernel" is usually a simplification of the most expen-
sive portion of a program. Dhrystone [23] is an exam-
ple of this type of benchmark as it measures the per-
formance of important matrix operations and was

often used to predict system performance for numeri-
cal operations.

Banga dev eloped a benchmark to measure HTTP
server performance which can accurately measure
server performance under high load[1]. Due to the
idiosyncracies of the HTTP protocol and TCP design
and implementation, there are generally operating sys-
tem limits on the rate at which a single system can
generate independent HTTP requests. However,
Banga dev eloped a system which can scalably present
load to HTTP servers in spite of this limitation[2].

John McCalpin’s STREAM benchmark measures
memory bandwidth during four common vector opera-
tions[11]. It does not measure memory latency, and
strictly speaking it does not measure raw memory
bandwith although memory bandwidth is crucial to
STREAM performance. More recently, STREAM has
been extended to measure distributed application per-
formance using MPI to measure scalable memory sub-
system performance, particularly for multi-processor
machines.

Prestor[16] and Saavedra[17] have dev eloped bench-
marks which analyze memory subsystem perfor-
mance.

Micro-benchmarking extends the "kernel" approach,
by measuring the performance of operations or
resources in isolation. lmbench and many other
benchmarks, such as nfsstone[20], measure the perfor-
mance of key operations so users can predict perfor-
mance for certain workloads and applications by com-
bining the performance of these operations in the right
mixture.

Saavedra[18] takes the micro-benchmark approach
and applies it to the problem of predicting application
performance. They analyze applications or other
benchmarks in terms of their ‘‘narrow spectrum
benchmarks’’ to create a linear model of the applica-
tion’s computing requirements. They then measure
the computer system’s performance across this set of
micro-benchmarks and use a linear model to predict
the application’s performance on the computer system.
Seltzer[19] applied this technique using the features
measured by lmbench as the basis for application
prediction.

Benchmarking I/O systems has proven particularly
troublesome over the years, largely due to the strong
non-linearities exhibited by disk systems. Sequential
I/O provides much higher bandwidth than non-sequen-
tial I/O, so performance is highly dependent on the
workload characteristics as well as the file system’s
ability to capitalize on available sequentiality by lay-
ing out data contiguously on disk.

I/O benchmarks have a tendency to age poorly. For
example, IOStone[15], IOBench[24], and the Andrew
benchmark[8] used fixed size datasets, whose size was
significant at the time, but which no longer measure
I/O performance as the data can now fit in the
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processor cache of many modern machines.

The Andrew benchmark attempts to separately mea-
sure the time to create, write, re-read, and then delete
a large number of files in a hierarchical file system.

Bonnie[3] measures sequential, streaming I/O band-
width for a single process, and random I/O latency for
multiple processes.

Peter Chen developed an adaptive harness for I/O
benchmarking[6][5], which defines I/O load in terms
of five parameters, uniqueBytes, sizeMean, readFrac,
seqFrac, and processNum. The benchmark then
explores the parameter space to measure file system
performance in a scalable fashion.

Parkbench[14] is a benchmark suite that can analyze
parallel and distributed computer performance. It con-
tains a variety of benchmarks that measure both
aspects of system performance, such as communica-
tion overheads, and distributed application kernel per-
formance. Parkbench contains benchmarks from both
NAS[13] and Genesis[7].

3. Timing Harness
The first, and most crucial element in extending
lmbench2 so that it could measure scalable perfor-
mance, was to develop a new timing harness that
could accurately measure performance for any giv en
load. Once this was done, then each benchmark
would be migrated to the new timing harness.

The harness is designed to accomplish a number of
goals:

1. during any timing interval of any child it is guar-
anteed that all other child processes are also run-
ning the benchmark

2. the timing intervals are long enough to average out
most transient OS scheduler affects

3. the timing intervals are long enough to ensure that
error due to clock resolution is negligible

4. timing measurements can be postponed to allow
the OS scheduler to settle and adjust to the load

5. the reported results should be representative and
the data analysis should be robust

6. timing intervals should be as short as possible
while ensuring accurate results

Developing an accurate timing harness with a valid
experimental design is more difficult than is generally
supposed. Many programs incorporate elementary
timing harnesses which may suffer from one or more
defects, such as insufficient care taken to ensure that
the benchmarked operation is run long enough to
ensure that the error introduced by the clock resolution
is insignificant. The basic elements of a good timing
harness are discussed in Staelin[21].

The new timing harness must also collect and process
the timing results from all the child processes so that it
can report the representative performance. It currently

reports the median performance over all timing inter-
vals from all child processes. It might perhaps be
argued that it should report the median of the medians.

When running benchmarks with more than one child,
the harness must first get a baseline estimate of perfor-
mance by running the benchmark in only one process
using the standard lmbench timing interval, which is
often 5,000 microseconds. Using this information, the
harness can compute the average time per iteration for
a single process, and it uses this figure to compute the
number of iterations necessary to ensure that each
child runs for at least one second.

3.1. Clock resolution
lmbench uses the gettimeofday clock, whose
interface resolves time down to 1 microsecond. How-
ev er, many system clock’s resolution is only 10 milli-
seconds, and there is no portable way to query the sys-
tem to discover the true clock resolution.

The problem is that the timing intervals must be sub-
stantially larger than the clock resolution in order to
ensure that the timing error doesn’t impact the results.
For example, the true duration of an event measured
with a 10 milli-second clock can vary ±10 milli-sec-
onds from the true time, assuming that the reported
time is always a truncated version of the true time. If
the clock itself is not updated precisely, the true error
can be even larger. This implies that timing intervals
on these systems should be at least 1 second.

However, the gettimeofday clock resolution in
most modern systems is 1 microsecond, so timing
intervals can as small as a few milli-seconds without
incurring significant timing errors related to clock res-
olution.

Since there is no standard interface to query the oper-
ating system for the clock resolution, lmbench must
experimentally determine the appropriate timing inter-
val duration which provides results in a timely fashion
with a negligible clock resolution error.

3.2. Coordination
Developing a timing harness that correctly manages N
processes and accurately measures system perfor-
mance over those same N processes is significantly
more difficult than simply measuring system perfor-
mance with a single process because of the asyn-
chronous nature of parallel programming.

In essence, the new timing harness needs to create N
jobs, and measure the average performance of the tar-
get subsystem while all N jobs are running. This is a
standard problem for parallel and distributed program-
ming, and involves starting the child processes and
then stepping through a handshaking process to ensure
that all children have started executing the bench-
marked operation before any child starts taking mea-
surements.
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Parent Child
• start up P child
processes
• wait for P ready
signals

• run benchmark
operation for a little
while

↓ • send a ready sig-
nal

• on reciept of
ready signals, sleep
for warmup
micros

• run benchmark
operation while
polling for a go sig-
nal
↓• send go signal to

P children
• wait for P done
signals

• on receipt of go
signal, begin timing
benchmark opera-
tion

↓ • send a done signal
• one receipt of
done signals, iterate
through children
sending results sig-
nal and gathering
results

• run benchmark
operation while
polling for a results
signal

• collate results • on receipt of
results signal, send
timing results and
wait for exit signal
↓• send exit signal
• exit

Table 1. Timing harness sequencing

Table 1 shows how the parent and child processes
coordinate their activities to ensure that all children
are actively running the benchmark activity while any
child could be taking timing measurements.

The reason for the separate "exit" signal is to ensure
that all properly managed children are alive until the
parent allows them to die. This means that any
SIGCHLD events that occur before the "exit" signal
indicate a child failure.

3.3. Accuracy
The new timing harness also needs to ensure that the
timing intervals are long enough for the results to be
representative. The previous timing harness assumed
that only single process results were important, and it
was able to use timing intervals as short as possible
while ensuring that errors introduced by the clock res-
olution were negligible. In many instances this meant
that the timing intervals were smaller than a single
scheduler time slice. The new timing harness must
run benchmarked operations long enough to ensure
that timing intervals are longer than a single scheduler
time slice. Otherwise, you can get results which are
complete nonsense. For example, running several
copies of an lmbench2 benchmark on a uni-proces-
sor machine will often report that the per-process per-
formance with N jobs running in parallel is equivalent

to the performance with a single job running!1

In addition, since the timing intervals now hav e to be
longer than a single scheduler time slice, they also
need to be long enough so that a single scheduler time
slice is insignificant compared to the timing interval.
Otherwise the timing results can be dramatically
affected by small variations in the scheduler’s behav-
ior.

Currently lmbench does not measure the scheduler
timeslice; the design blithely assumes that timeslices
are generally on the order of 10-20ms, so one second
timing intervals are sufficient. Some schedulers may
utilize longer time slices, but this has not (yet) been a
problem.

3.4. Resource consumption
One important design goal was that resource con-
sumption be constant with respect to the number of
child processes. This is why the harness uses shared
pipes to communicate with the children, rather than
having a separate set of pipes to communicate with
each child. An early design of the system utilized a
pair of pipes per child for communication and syn-
chronization between the master and slave processes.
However, as the number of child processes grew, the
fraction of system resources consumed by the harness
grew and the additional system overhead could start to
interfere with the accuracy of the measurements.

Additionally, if the master has to poll (select) N
pipes, then the system overhead of that operation also
scales with the number of children.

3.5. Pipe atomicity
Since all communication between the master process
and the slave (child) processes is done via a set of
shared pipes, we have to ensure that we never hav e a
situation where the message can be garbled by the
intermingling of two separate messages from two sep-
arate children. This is ensured by either using pipe
operations that are guaranteed to be atomic on all
machines, or by coordinating between processes so
that at most one process is writing at a time.

The atomicity guarantees are provided by having each
client communicate synchronization states in one-byte
messages. For example, the signals from the master to
each child are one-byte messages, so each child only
reads a single byte from the pipe. Similarly, the
responses from the children back to the master are
also one-byte messages. In this way no child can
receive partial messages, and no message can be inter-
leaved with any other message.

However, using this design means that we need to
have a separate pipe for each barrier in the process, so

1 This was discovered by someone who naively
attempted to parallelize lmbench2 in this fashion, and I
received a note from the dismayed developer describing
the failed experiment.
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the master uses three pipes to send messages to the
children, namely: start_signal, result_signal, and
exit_signal. If a single pipe was used for all three bar-
rier events, then it is possible for a child to miss a sig-
nal, or if the signal is encoded into the message, then
it is possible for a child to infinite loop pulling a signal
off the pipe, recognizing that it has already received
that signal so that it needs to push it back into the
pipe, and then then re-receiving the same message it
just re-sent.

However, all children share a single pipe to send data
back to the master process. Usually the messages on
this pipe are single-byte signals, such as ready or
done. Howev er, the timing data results need to be sent
from the children to the master and they are (much)
larger than a single-byte message. In this case, the
timing harness sends a single-byte message on the
result_signal channel, which can be received by at
most one child process. This child then knows that it
has sole ownership of the response pipe, and it writes
its entire set of timing results to this pipe. Once the
master has received all of the timing results from a
single child, it sends the next one-byte message on the
result_signal channel to gather the next set of timing
results.

working
timing

parent

ready

done
results

timing results

child1

results

ready

done
go

exit

start

response
exit

result

child0

Figure 1. Control signals

The design of the signals is shown in Figure 1.

3.6. Benchmark initialization
By allowing the benchmark to specify an initialization
routine that is run in the child processes, the new tim-
ing harness allows benchmarks to do either or both
global initializations that are shared by all children
and specific per-child initializations that are done
independently by each child. Global initialization is
done in the master process before the benchmp har-
ness is called, so the state is preserved across the
fork operations. Per-child initialization is done
inside the benchmp harness by the optional initializa-
tion routine and is done after the fork operation.

Similarly, each benchmark is allowed to specify a
cleanup routine that is run by the child processes just
before exiting. This allows the benchmark routines to

release any resources that they may have used during
the benchmark. Most system resources would be
automatically released on process exit, such as file
descriptors and shared memory segments, but some
resources such as temporary files might need to be
explicitly released by the benchmark.

3.7. Scheduler transients
Particularly on multi-processor systems, side-effects
of process migration can dramatically affect program
runtimes. For example, if the processes are all ini-
tially assigned to the same processor as the parent pro-
cess, and the timing is done before the scheduler
migrates the processes to other available processors,
then the system performance will appear to be that of
a uniprocessor. Similarly, if the scheduler is over-
enthusiastic about re-assigning processes to proces-
sors, then performance will be worse than necessary
because the processes will keep encountering cold
caches and will pay exhorbitant memory access costs.

The first case is a scheduler transient, and users may
not want to measure such transient phenomena if their
primary interest is in predicting performance for long-
running programs. Conversely, that same user would
be extraordinarily interested in the second phenomena.
The harness was designed to allow users to specify
that the benchmarked processes are run for long
enough to (hopefully) get the scheduler past the tran-
sient startup phase, so it can measure the steady-state
behavior.

3.8. Data analysis
Analyzing the data to produce representative results is
a crucial step in the benchmarking process. lmbench
generally reports the median result for 11 measure-
ments. Most benchmarks report the results of a single
measurement[8], an average of several results[11], or a
trimmed mean[4].

Since lmbench is able to use timing intervals that are
often smaller than a scheduler time slice when mea-
suring single-process performance, the raw timing
results are often severely skewed. Often most results
cluster around a single value a small number of out-
liers with significantly larger values. The median is
preferable to the mean when the data can be very
skewed[9]. Since the timing intervals are significantly
longer when the desired load is larger than a single
process, the results tend not to be as badly skewed. In
these cases we could use the mean instead, but we
decide to use a uniform statistical framework, so we
usually use the median.

In some instances, however, lmbench internally uses
the minimum rather than the median, such as in mhz.
In those instances, we are not trying to find the repre-
sentative value, but rather the minimum value. There
are only a few sources of error which could cause a
the measured timing result to be shorter than the true
elapsed time: the system clock is adjusted, or round-
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off error in the clock resolution. The timing interval
duration is set to ensure that the round-off error is
bounded to 1% of the timing interval, and we blithely
assume that people don’t reset their system clocks
while benchmarking their systems.

lmbench does not currently report any statistics rep-
resenting measurement variation, such as the differ-
ence between the first and third quartiles. This is an
enhancement under active consideration.

4. Interface
Unfortunately we had to move away from the macro-
based timing harness used in lmbench2 and migrate
to a function-based system because the macros were
too large for some C pre-processors.

typedef void (*bench_f)(iter_t iters,
void* cookie);

typedef void (*support_f)(void* cookie);

extern void benchmp(support_f initialize,
bench_f benchmark,
support_f cleanup,
int enough,
int parallel,
int warmup,
int repetitions,
void* cookie);

extern uint64 gettime();
extern uint64 get_n();
extern void nano(char* s, uint64 n);
extern void micro(char* s, uint64 n);
extern void mb(uint64 bytes);

Figure 2. Programming interface

Figure 2 shows the key elements of the new timing
harness and result reporting interface. A brief descrip-
tion of the benchmp parameters:

enough
Enough can be used to ensure that a timing inter-
val is at least ’enough’ microseconds in duration.
For most benchmarks this should be zero, but
some benchmarks have to run for more time due to
startup effects or other transient behavior.

parallel
is simply the number of instances of the bench-
mark that will be run in parallel on the system.

warmup
can be used to force the benchmark to run for
warmup microseconds before the system starts
making timing measurements. Note that it is a
lower bound, not a fixed value, since it is simply
the time that the parent sleeps after receiving the
last "ready" signal from each child (and before it
sends the "go" signal to the children).

repetitions
is the number of times the experiment should be
repeated. The default is eleven.

cookie
is a pointer that can be used by the benchmark
writer to pass in configuration information, such as
buffer size or other parameters needed by the inner
loop. In lmbench3 it is generally used to point
to a structure containing the relevant configuration
information.

gettime returns the median timing interval duration,
while get_n returns the number of iterations
executed during that timing interval.

nano and micro print the passed string latency fol-
lowed by the latency in terms of nanoseconds and
microseconds respectively. The latency is computed
as gettime()/n, where n is the passed parameter. The
reason n is passed as a parameter is because the
benchmark can actually execute the operation of inter-
est multiple times during a single iteration. For exam-
ple, the memory latency benchmarks typically repeat
the memory load operation a hundred times inside the
loop, so the actual number of operations is
100 × get_n(), and it is this value that should be
passed to nano or micro.

mb reports the bandwidth in MB/s when given the
total number of bytes processed during the timing
interval. Note that for scalable benchmarks that pro-
cess size bytes per iteration, the total number of bytes
processed is get_n() × parallel × size.

#include "bench.h"

void
bench(iter_t iters, void* cookie)
{

while (iters-- > 0) {
getppid();

}
}

int
main(int argc, char* argv[])
{

benchmp(NULL, bench, NULL,
0, 1, 0, TRIES, NULL);

nano("getppid", get_n());
return(0);

}

Figure 3. A sample benchmark

Figure 3 shows a sample benchmark that measures the
latency of the getppid system call using this timing
harness. Since there is no setup or cleanup needed for
this benchmark, the initialize and cleanup parameters
are NULL. The bench routine simply calls getppid
as many times as requested, and the rest of the
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parameters, enough, parallel, warmup, repetitions, and
cookie are given with the default values.

5. Benchmarks
lmbench contains a large number of micro-bench-
marks that measure various aspects of hardware and
operating system performance. The benchmarks gen-
erally measure latency or bandwidth, but some new
benchmarks also measure instruction-level paral-
lelism.

Table 2 contains the full list of micro-benchmarks in
lmbench3. Benchmarks that were converted to mea-
sure performance under scalable load are shown in
italics, while the remaining benchmarks are shown
with normal typeface. A detailed description of most
benchmarks can be found in[12].

6. Scaling Benchmarks
There are a number of issues associated with convert-
ing single-process benchmarks with a single process
to scalable benchmarks with several independent pro-
cesses, in addition to the various issues addressed by
the timing harness. Many of the benchmarks consume
or utilize system resources, such as memory or net-
work bandwidth, and a careful assessment of the likely
resource contention issues is necessary to ensure that
the benchmarks measure important aspects of system
performance and not artifacts of artificial resource
contention.

For example, the Linux 2.2 and 2.4 kernels use a sin-
gle lock to control access to the kernel data structures
for a file. This means that multiple processes access-
ing that file will have their operations serialized by
that lock. If one is interested in how well a system can
handle multiple independent accesses to separate files
and if the child processes all access the same file, then
this file sharing is an artificial source of contention
with potentially dramatic effects on the benchmark
results.

6.1. File System
A number of the benchmarks measure aspects of file
system performance, such as bw_file_rd,
bw_mmap_rd, lat_mmap, and lat_pagefault.
It is not immediately apparent how these benchmarks
should be extended to the parallel domain. For exam-
ple, it may be important to know how file system per-
formance scales when multiple processes are reading
the same file, or when multiple processes are reading
different files. The first case might be important for
large, distributed scientific calculations, while the sec-
ond might be more important for a web server.

However, for the operating system, the two cases are
significantly different. When multiple processes
access the same file, access to the kernel data struc-
tures for that file must be coordinated and so con-
tention and locking of those structures can impact per-
formance, while this is less true when multiple

Name Measures
Bandwidth

bw_file_rd read and then load into proces-
sor

bw_mem read, write, and copy data to/from
memory

bw_mmap_rd read from mmap’ed memory
bw_pipe pipe inter-process data copy
bw_tcp TCP inter-process data copy
bw_unix UNIX inter-process

Latency
lat_connect TCP connection
lat_ctx context switch via pipe-based

‘‘hot-potato’’ token passing
lat_dram_page DRAM page open
lat_fcntl fcntl file locking ‘‘hot-potato’’

token passing
lat_fifo FIFO ‘‘hot-potato’’ token passing
lat_fs file creation and deletion
lat_http http GET request latency
lat_mem_rd memory read
lat_mmap mmap operation
lat_ops basic operations (xor, add, mul,

div, mod) on (relevant) basic data
types (int, int64, float, double)

lat_pagefault page fault handler
lat_pipe pipe ‘‘hot-potato’’ token passing
lat_pmake time to complete N parallel jobs

that do usecs-worth of work
lat_proc procedure call overhead and pro-

cess creation using fork, fork
and execve, and fork and
/bin/sh

lat_rpc SUN RPC procedure call
lat_select select operation
lat_sem semaphore ‘‘hot-potato’’ token

passing
lat_sig signal handle installation and han-

dling
lat_syscall open, close, getppid,

write, stat, fstat
lat_tcp TCP ‘‘hot-potato’’ token passing
lat_udp UDP ‘‘hot-potato’’ token passing
lat_unix UNIX ‘‘hot-potato’’ token passing
lat_unix_connect UNIX socket connection
lat_usleep usleep, select, pselect,

nanosleep, setitimer timer
resolution
Other

disk zone bandwidths and seek times
line cache line size
lmdd dd clone
par_mem memory subsystem ILP
par_ops basic operation ILP
stream STREAM clones
tlb TLB size

Table 2. lmbench micro-benchmarks

processes access different files.

In addition, there are any number of issues associated
with ensuring that the benchmarks are either measur-
ing operating system overhead (e.g., that no I/O is
actually done to disk), or actually measuring the
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system’s I/O performance (e.g., that the data cannot be
resident in the buffer cache). Especially with file sys-
tem related benchmarks, it is very easy to develop
benchmarks that compare apples and oranges (e.g., the
benchmark includes the time to flush data to disk on
one system, but only includes the time to flush a por-
tion of data to disk on another system).

lmbench3 allows the user to measure either case as
controlled by a command-line switch. When measur-
ing accesses to independent files, the benchmarks first
create their own private copies of the file, one for each
child process. Then each process accesses its private
file. When measuring accesses to a single file, each
child simply uses the designated file directly.

6.2. Context Switching
Measuring context switching accurately is a difficult
task. lmbench1 and lmbench2 measured context
switch times via a "hot-potato" approach using pipes
connected in a ring. However, this experimental
design heavily favors schedulers that do "hand-off"
scheduling, since at most one process is active at a
time. Consequently, it is not really a good benchmark
for measuring scheduler overhead in multi-processor
machines.

The design currently used in lmbench3 is to create
N lmbench2-style process rings and to measure the
context switch times with all N rings running in paral-
lel. This does extend the lmbench2 context switch
benchmark to a scalable form, but it still suffers from
the same weaknesses.

One approach that was considered was to replace the
ring with a star formation, so the master process
would send tokens to each child and then wait for
them all to be returned. This has the advantage that
more than one process is active at a time, reducing the
sensitivity to "hand-off" scheduling. However, this
same feature can cause problems on a multi-processor
system because several of the context switches and
working set accesses can occur in parallel.

The design and methodology for measuring context
switching and scheduler overhead need to be revisited
so that it can more accurately measure performance
for multi-processor machines.

7. Stream
lmbench3 includes a new micro-benchmark,
stream which measures the performance of John
McCalpin’s STREAM benchmark kernels for both
STREAM version 1 [11] and version 2[10]. This
benchmark faithfully recreates each of the kernel oper-
ations from both STREAM benchmarks, and because
of the powerful new timing harness it can easily mea-
sure memory system scalability.

Table 3 is based on McCalpin’s tables[11][10] and
shows the four kernels for each version of the
stream benchmark. Note that the read columns

Stream
Kernel Code Bytes FL

rd wr OPS
COPY a[i] = b[i] 8(+8) 8 0
SCALE a[i] = q × b[i] 8(+8) 8 1
ADD a[i] = b[i] + c[i] 16(+8) 8 1
TRIAD a[i] = b[i] + q × c[i] 16(+8) 8 2(-1)

Stream2
Kernel Code Bytes FL

rd wr OPS
FILL a[i] = q 0(+8) 8 0
COPY a[i] = b[i] 8(+8) 8 0
DAXPY a[i] = a[i] + q × b[i] 16 8 2(-1)
SUM sum = sum + a[i] 8  0 1

Table 3. Stream operations

include numbers in parentheses, which represent the
av erage number of bytes read into the cache as a result
of the write to that variable2. Cache lines are almost
invariably bigger than a single double, and so when a
write miss occurs the cache will read the line from
memory and then modify the selected bytes. Some-
times vector instructions such as SSE and 3DNow can
avoid this load by writing an entire cache line at once.

In addition, some architectures support multiply-add
instructions which can do both the multiply and add
operations for TRIAD and DAXPY in a single opera-
tion, so the physical FLOPS count would be 1 for
these architectures on these instructions. The numbers
in parenthesis in the FLOPS column reflect this reduc-
tion in FLOPS count.

Following the STREAM bandwidth reporting conven-
tions, the lmbench STREAM benchmarks report
their results as bandwidth results (MB/s) computed as
a function of the amount of data explicitly read or
written by the benchmark. For example, copy and
scale copy data from one array to the other, so the
bandwidth is measured as a function of the amount of
data read plus the amount of data written, or the sum
of the two array sizes. Similarly, sum, triad, and
daxpy operate on three arrays, so the amount of data
transferred is the sum of the sizes of the three arrays.
Note that the actual amount of data that is transferred
by the system may be larger because in the write path
the cache may need to fetch (read) the cache line
before a portion of it is overwritten by dirty data.

8. Unscalable benchmarks
There are a number of benchmarks which either did
not make sense for scalable load, such as mhz, or
which could not be extended to measure scalable load
due to other constraints, such as lat_connect.

2 This number is independent of the cache line size
because the STREAM uses dense arrays, so the cost is
amortized over the subsequent operations on the rest of
the line.
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mhz measures the processor clock speed, which is not
a scalable feature of the system, so it doesn’t make
any sense to create a version of it that measures scal-
able performance.

More specifically, lat_connect measures the
latency of connecting to a TCP socket. TCP imple-
mentations have a timeout on sockets and there is gen-
erally a fixed size queue for sockets in the TIMEOUT
state. This means that once the queue has been filled
by a program connecting and closing sockets as fast as
possible, then all new socket connections have to wait
TIMEOUT seconds. Needless to say, this gives no
insight into the latency of socket creation per se, but is
rather a boring artifact. Since the lmbench2 version
of the benchmark can run for very short periods of
time, it generally does not run into this problem and is
able to correctly measure TCP connection latency.

Any scalable version of the benchmark needs each
copy to run for at least a second, and there are N
copies creating connections as fast as possible, so it
would essentially be guaranteed to run into the TIME-
OUT problem. Consequently, lat_connect was
not enhanced to measure scalable performance.

9. Results
The results presented here were obtained using
lmbench version 3.0-a2 under Linux 2.4.18-6mdk on
a two processor 450MHz PIII running a stock Man-
drake 8.2 Linux 2.4.18 kernel.

Benchmark Latency (µs)
1 process 2 processes

null call 0.79 0.81
null I/O 1.39 2.39
stat 9.26 25.9
open/close 11.7 27.1
select (TCP) 55.3 58.6
signal install 1.89 1.95
signal handler 6.34 7.21
fork process 793. 868.
exec process 2474 2622
sh process 24.K 25.K
pipe 17.7 23.3
unix socket 51.6 37.6
UDP 70.2 70.6
TCP 91.2 92.3
rpc (UDP) 120.0 120.4
rpc (TCP) 157.1 159.1

Table 4. Latency results

Benchmark Load
1 2 2clone

bw_file_rd 151.04 266.74 273.51
bw_mmap_rd 316.08 480.02 482.57
lat_mmap 615 878 786
lat_pagefault 2.9802 3.9159 3.4589

Table 6. File bandwidth results

Benchmark Bandwidth (MB/s)
1 process 2 processes

pipe 155 268
unix socket 142 179
TCP 57.5 57.8
bcopy(libc) 134 175
bcopy(hand) 144 174
memory read 319 486
memory write 199 202
STREAM copy 288.68 367.99
STREAM scale 290.39 369.08
STREAM sum 337.75 415.54
STREAM triad 246.90 380.09
STREAM2 fill 198.96 276.28
STREAM2 copy 288.55 359.93
STREAM2 daxpy 318.98 493.79
STREAM2 sum 354.03 512.05

Table 5. Bandwidth results

Table 4 shows the latency of various system and com-
munication operations for both 1 and 2 process loads,
while Table 5 shows the bandwidth of various data
operations and Table 6 shows how various file system
operations scale. Table 6 shows system performance
with one process, two processes sharing the same file,
and two processes accessing their own files.
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Figure 4. Memory subsystem performance

Figure 4 shows the memory latency curves with 32
byte strides for one and two process loads versus
memory size.

10. Conclusion
lmbench is a useful, portable micro-benchmark suite
designed to measure important aspects of system per-
formance. lmbench3 adds a number of important
extensions, such as the ability to measure system
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scalability.

The benchmarks are available via ftp from:

http://ftp.bitmover.com/lmbench
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