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This paper builds on previous papers describing our ongoing research in automated 
market-mechanism design: using a genetic algorithm (GA) to find optimal parameter-
settings for software-agent traders that operate in virtual “e-marketplaces”, where the rules 
of the marketplaces are also under simultaneous control of the GA. The aim is that the GA 
automatically designs new agent-based e-marketplaces that are more efficient than existing 
markets designed by (or populated by) humans. Das et al. recently demonstrated that ZIP 
software-agent traders consistently out-perform human traders in Continuous Double 
Auction (CDA) marketplaces similar to those used in the international financial markets. 
Cliff used a GA to explore a continuous space of ZIP-trader auction-market mechanisms, 
where the space of possible auction-types explored included the CDA and also two purely 
one-sided mechanisms. Surprisingly, the GA would sometimes settle on novel hybrid 
auction mechanisms partway between the CDA and a one-sided auction. Such results 
occurred when the market's supply and demand schedules were unchanging, and also when 
the schedules undergo a single sudden “shock” change halfway through the evaluation 
process. These results could prima facie  support the hypothesis that hybrid auctions are in 
general preferable to the well-known CDA mechanism. In this paper we present new 
results that clarify that hypothesis. In our new experiments, more than one shock-change in 
supply/demand occurs during the mechanism-evaluation process; under this regimen, CDA 
auction-mechanisms are identified by the GA as optimal in three of the four experiments 
reported here, and in the fourth experiment a near-CDA hybrid mechanism was evolved. 
From these results we conclude that, while evolved hybrid market-mechanisms may be 
useful in niches where the marketplace's supply and demand dynamics are known a priori 
to be relatively stable or regular, the CDA remains the mechanism of choice when it is 
difficult or impossible to make accurate predictions concerning the dynamic stability of the 
supply and demand schedules. 
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ABSTRACT 
This paper builds on previous papers describing our ongoing 
research in automated market-mechanism design: using a genetic 
algorithm (GA) to find optimal parameter-settings for software-
agent traders that operate in virtual “e-marketplaces”, where the 
rules of the marketplaces are also under simultaneous control of 
the GA. The aim is that the GA automatically designs new agent-
based e-marketplaces that are more efficient than existing markets 
designed by (or populated by) humans. Das et al. [8] recently 
demonstrated that ZIP software-agent traders consistently out-
perform human traders in Continuous Double Auction (CDA) 
marketplaces similar to those used in the international financial 
markets. Cliff [4,5] used a GA to explore a continuous space of 
ZIP-trader auction-market mechanisms, where the space of 
possible auction-types explored included the CDA and also two 
purely one-sided mechanisms. Surprisingly, the GA would 
sometimes settle on novel hybrid auction mechanisms partway 
between the CDA and a one-sided auction. Such results occurred 
when the market’s supply and demand schedules were 
unchanging, and also when the schedules undergo a single sudden 
“shock” change halfway through the evaluation process. These 
results could prima facie support the hypothesis that hybrid 
auctions are in general preferable to the well-known CDA 
mechanism. In this paper we present new results that clarify that 
hypothesis. In our new experiments, more than one shock-change 
in supply/demand occurs during the mechanism-evaluation 
process; under this regimen, CDA auction-mechanisms are 
identified by the GA as optimal in three of the four experiments 
reported here, and in the fourth experiment a near-CDA hybrid 
mechanism was evolved. From these results we conclude that, 
while evolved hybrid market-mechanisms may be useful in niches 
where the marketplace’s supply and demand dynamics are known 
a priori to be relatively stable or regular, the CDA remains the 
mechanism of choice when it is difficult or impossible to make 
accurate predictions concerning the dynamic stability of the 
supply and demand schedules.  
 
Keywords: Algorithmic Mechanism Design; Auction and 
Negotiation Technology; Automated Trading; ZIP Traders; 
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1. INTRODUCTION 
ZIP (Zero-Intelligence-Plus) artificial trading agents, introduced 
in 1997 [1], are software agents (or “robots”) that use simple 
machine learning techniques to adapt to operating as buyers or 
sellers in online open-outcry auction-market environments similar 
to those used in the seminal experimental economics work of 
Smith [16]. ZIP traders were originally developed as a solution to 
the pathological failures of Gode & Sunder’s “ZI” (Zero-
Intelligence) traders [10], but recent work by Das et al. at IBM [8] 
has shown that ZIP traders (unlike ZI traders) consistently out-
perform human traders in human-against-robot experimental 
economics online e-marketplaces. 
The operation of ZIP traders has been successfully demonstrated 
in experimental versions of continuous double auction (CDA) 
markets similar to those found in the international markets for 
commodities, equities, capital, and derivatives; and in posted-
offer auction markets similar to those seen in domestic high-street 
retail outlets [1]. In any such market, there are a number of 
parameters that govern the adaptation and trading processes of the 
ZIP traders. In the original 1997 version of ZIP traders, the values 
of these parameters were set by hand, using “educated guesses”.  
However, Cliff subsequently [2,3] presented the first results from 
using a standard genetic algorithm (GA) to automatically optimise 
these parameter values, thereby eliminating the need for skilled 
human input in deciding the values. 
Prior to the research described in [4], in all previous work using 
artificial trading agents, ZIP or otherwise, the market mechanism 
(i.e., the type of auction the agents are interacting within) had 
been fixed in advance. Well-known market mechanisms from 
human economic affairs include: the English auction (where 
sellers stay silent and buyers quote increasing bid-prices), the 
Dutch Flower auction (where buyers stay silent and sellers quote 
decreasing offer-prices); the Vickery or second-price sealed-bid 
auction (where sealed bids are submitted by buyers, and the 
highest bidder is allowed to buy, but at the price of the second-
highest bid); and the CDA (where sellers announce decreasing 
offer prices while simultaneously and asynchronously the buyers 
announce increasing bid prices, with the sellers being free to 
accept any buyer’s bid at any time and the buyers being free to 
accept any seller’s offer at any time). The CDA is of particular 
interest because it is the basis of most major national and 
international financial markets, and hence has been the subject of 
much academic study  (see e.g., [9]).  

 

Submitted in abridged form to the 2003 ACM Conference on Electronic 
Commerce (EC03), June 2003. 
 

- 1 - 



Cliff [4] presented the first results from experiments where a 
genetic algorithm (GA) optimises not only the parameter values 
for the trading agents, but also the style of market mechanism in 
which those traders operate. To do this, a space of possible market 
mechanisms was created for evolutionary exploration. The space 
includes the CDA and also one-sided auctions similar (but not 
actually identical to) the English Auction (EA) and the Dutch 
Flower Auction (DFA). Significantly, this space is continuously 
variable, allowing for any of an infinite number of peculiar 
hybrids of these auction types to be evolved, which have no 
known correlate in naturally occurring (i.e., human-designed) 
market mechanisms. While there is nothing to prevent the GA 
from settling on solutions that correspond to the known CDA 
auction type or the EA-like and DFA-like one-sided mechanisms, 
it was found that hybrid solutions could lead to the most desirable 
market dynamics. Although the hybrid market mechanisms can 
easily be implemented in online electronic marketplaces, they 
have not been designed by humans: rather they are the product of 
evolutionary search through a continuous space of possible 
auction-types. Thus, the results in [4] were the first demonstration 
that radically new market mechanisms for artificial traders may be 
designed by automatic means.   
This is not a trivial academic point: although the efficiency of the 
evolved market mechanisms are typically only a few percentage 
points better than those of the established human-designed 
mechanisms, the economic consequences could be highly 
significant. According to figures released by the New York Stock 
Exchange (NYSE), the total value of trades on the CDA-based 
NYSE for the year 2000 was $11060bn (i.e., a little over 11 
trillion dollars). If only 0.1% of that liquidity could be eliminated 
or captured by a more efficient evolved market mechanism, the 
value saved (or profit generated) would still be in excess of 
$10bn. But that is just for one market: similar savings could be 
made at NASDAQ, at European exchanges such as LSE and 
LIFFE, and at similar exchanges elsewhere around the globe. 
The key results in [4] have since been replicated [13,14] and 
qualitatively similar results have been demonstrated in non-ZIP 
trader e-marketplaces [17,6]. Results from a similar research 
project, using another evolutionary algorithm (i.e., genetic 
programming) for mechanism design in a different context, have 
also recently been published [12]. 
Section 2 gives a background overview of ZIP traders and of the 
experimental methods used, including a description of the 
continuously-variable space of auction types; it gives a brief 
review of our previous results and concludes with discussion of 
the rationale for the new experiments whose results are presented 
for the first time in this paper. Much of Section 2 is largely 
identical to the accounts given in previous papers, but is necessary 
here for completeness and comprehensibility. Our new results are 
presented in Section 3 and are discussed in Section 4.  

 

2. BACKGROUND  
2.1 Zero-Intelligence Plus (ZIP) Traders 
ZIP traders are described fully in [1], which includes sample 
source-code in the C programming language. For the purposes of 
this paper a high-level description of the key parameters is 
sufficient. Each ZIP trader i is given a private (secret) limit-price, 
λi, which for a seller is the price below which it must not sell and 

for a buyer is the price above which it must not buy. If a ZIP 
trader completes a transaction at its λi price then it generates zero 
utility (“profit” for the sellers or “saving” for the buyers). For this 
reason, each ZIP trader i maintains a time-varying margin µi(t) 
and generates quote-prices pi(t) at time t according to 
pi(t)=λi(1+µi(t)) for sellers and pi(t)=λi(1-µi(t)) for buyers. The 
“aim” of traders is to maximise their utility over all trades, where 
utility is the difference between the accepted quote-price and the 
trader’s λi value. Trader i is given an initial value µi(0) (i.e., µi(t) 
for t=0) which is subsequently adapted over time using a simple 
machine learning technique known as the Widrow-Hoff rule 
which is also used in back-propagation neural networks. This rule 
has a “learning rate” parameter βi that governs the speed of 
convergence between trader i’s quoted price pi(t) and the trader’s 
idealised “target” price τi(t). When calculating τi(t), traders 
introduce a small random absolute perturbation generated from 
U[0,ca],1 and also a small random relative perturbation coefficient 
generated from U[1-cr,1] (when a trader is reducing its pi(t)) or 
U[1,1+cr] (when increasing  pi(t)) where ca and cr are global 
system constants. To smooth over noise in the learning system, 
there is an additional “momentum” parameter γi for each trader 
(such momentum terms are also commonly used in back-
propagation neural networks).  
Thus, adaptation in each ZIP trader i has the following 
parameters: initial margin µi(0); learning rate βi; and momentum 
term γi.  In an entire market populated by ZIP traders, these three 
parameters are assigned to each trader from uniform random 
distributions each of which is defined via “minimum” and “delta” 
values in the following fashion: µi(0)=U(µmin,µmin+µ∆); 
βi=U(βmin, βmin+β∆); and γi=U(γmin,γmin+γ∆); ∀i. 
Consequently, to initialise an entire ZIP-trader market it is 
necessary to specify values for the six market-initialisation 
parameters µmin, µ∆, βmin, β∆, γmin, and γ∆; and also for the two 
system constants ca and cr. And so it can be seen that any set of 
initialisation parameters for a ZIP-trader market exists within an 
eight-dimensional real space, conventionally denoted by R8. 
Vectors in this 8-space can be considered as genotypes, and from 
an initial population of such genotypes it is possible to allow a 
GA to find new genotypes that best satisfy an appropriate 
evaluation function. This is exactly the process that was 
introduced in [2], as described in Section 2.3 below. Before that, 
we discuss the issue of simulating the passage of time. 
The same discrete time-slicing approach was used here as was 
used in previous ZIP work [1,2,3,4,5,6,7]. In each time-slice, the 
atomic “significant event” is one quote being issued by one trader 
and the other traders then responding either by ignoring the quote 
or by one of the traders accepting the quote. (NB [8] used a 
continuous-time formulation of the ZIP-trader algorithm).  
In the markets described here and in [1,2,3,4,5,6,7,13,14], on each 
time-slice a ZIP trader i is chosen at random from those currently 
able to quote (i.e. those who hold appropriate stock or currency), 
and trader i’s quote price pi(t) then becomes the “current quote” 
q(t) for time t. Next, all traders j on the contraside (i.e. all buyers j 
if i is a seller, or all sellers j if i is a buyer) compare q(t) to their 
own current quote price pj(t) and if the quotes cross (i.e. if 

                                                                 
1 Note that in this paper v=U[x,y] denotes a random real value v generated 

from a uniform distribution over the range [x,y]. 
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2.3 The Genetic Algorithm pj(t)<=q(t) for sellers, or if pj(t)>=q(t) for buyers) then the trader 
j is able to accept the quote. If more than one trader is able to 
accept, one is chosen equiprobably at random to make the 
transaction. If no traders are able to accept, the quote is regarded 
as “ignored”. Once the trade is either accepted or ignored, the 
traders update their µ(t) values using the learning algorithm 
outlined above, and the current time-slice ends. This process 
repeats for each time-slice in a trading period, with occasional 
injections of fresh currency and stock, or redistribution of λi limit 
prices, until either a maximum number of transactions have 
occurred, or until either no seller or no buyer is able to quote, or 
until a maximum number of time-slices have passed since the last 
accepted quote (i.e., a until a protracted sequence – typically 100 
– of successive ignored quotes occurs).  

A simple genetic algorithm was used (see e.g. [11] for an 
introduction to genetic algorithms). As with each experiment 
reported in [2,3,4,5,6,7] a population of size 30 was used, and 
evolution was allowed to progress for some number of 
generations ng. In each generation, all individuals were evaluated 
and assigned a “fitness” value (reflecting how good that 
genotype’s market dynamics were); and the next generation’s 
population was then generated via mutation and crossover on 
parents identified using rank-based tournament selection. Elitism 
(where an unaltered copy of the fittest individual from generation 
g is inserted into the population of g+1) was also used.    
The genome of each individual was simply a vector of nine real 
values. In each experiment, the initial random population was 
created by generating random values from U[0,1] for each locus 
on each individual’s genotype. Crossover points were between the 
real values, and crossover was governed by a Poisson random 
process with an average of between one and two crosses per 
reproduction event. Mutation was implemented by adding random 
values from U[-m(g),+m(g)] where m(g) is the mutation limit at 
generation g (starting the count at g=0). Mutation was applied to 
each locus in each genotype on each individual generated from a 
reproduction event, but the mutation limit m(g) was gradually 
reduced via an exponential-decay annealing function of the form: 
log10(m(g))=-(log10(ms)-(g/(Ng-1))log10(ms/me)) where Ng is the 
maximum number of generations and ms is the “start” mutation 
limit (i.e., for m(0)) and me is the “end” mutation limit (i.e., for 
m(ng-1)). In all the experiments reported here and in earlier papers 
[7,8], Ng=103, ms=0.05, and me=0.0005.    

  
2.2 A Space of Possible Auctions 
Now consider the case where we implement a ZIP-trader CDA 
market. In any one time-slice in a CDA either a buyer or a seller 
may quote, and in the definition of a CDA a quote is equally 
likely from each side.  One way of implementing a CDA is, at the 
start of each time-slice, to generate a 50/50 random binary 
variable to determine whether the quote will come from a buyer 
or a seller, and then to randomly choose one individual as the 
quoter from whichever side the binary value points to.  
Let Q=b denote the event that a buyer quotes on any one time-
slice and let Q=s denote the event that a seller quotes, then for the 
CDA we can write Pr(Q=s)=0.5 and note that because 
Pr(Q=b)=1.0-Pr(Q=s) it is only necessary to specify Pr(Q=s), 
which we will abbreviate to Qs hereafter. Note additionally that in 
an EA we have Qs=0.0, and in the DFA we have Qs=1.0. Thus, 
there are at least three values of Qs  (i.e. 0.0, 0.5, and 1.0) that 
correspond to three types of auction familiar from centuries of 
human economic affairs.  

If ever mutation caused the value at a locus to fall outside 
[0.0,1.0] it was simply clipped to stay within that range. This 
clip-to-fit approach to dealing with out-of-range mutations biases 
evolution toward extreme values (i.e. the upper and lower bounds 
of the clipping), and so Qs values of 0.0 or 1.0 are, if anything, 
more likely to be evolved. Initial and mutated genome values of 
µ∆, β∆, and γ∆  were also clipped to satisfy (µmin+µ∆)<=1.0, 
(βmin+β∆)<1.0, & (γmin+γ∆)<1.0. 

However, although the ZIP-trader case of Qs=0.5 is indeed a good 
approximation to the CDA, the fact that any ZIP trader j will 
accept a quote whenever q(t) and pj(t) cross means that the one-
sided extreme cases Qs=0.0 and Qs=1.0 are not exact analogues 
of the EA and DFA.  Nevertheless, consider the implications of 
considering values of Qs of 0.0, 0.5, and 1.0 not as three distinct 
market mechanisms, but rather as three points on a continuum. 
How do we interpret, for example, Qs=0.1?  Certainly there is a 
straightforward implementation: on the average, for every nine 
quotes by buyers, there will be one quote from a seller. Yet the 
history of human economic affairs offers no examples (as far as 
we are aware) of such markets: why would anyone suggest such a 
bizarre way of operating, and who would go to the trouble of 
arbitrating (i.e., acting as an auctioneer for) such a mechanism? 
Nevertheless, there is no a priori reason to argue that the three 
known points on this Qs continuum are the only loci of useful 
auction types. Maybe there are circumstances in which values 
such as Qs=0.1 are preferred. Given the infinite nature of a real 
continuum, it seems appealing to use an automatic exploration 
process, such as a GA, to identify useful Qs values.   

The fitness of genotypes was evaluated using the same methods as 
described in [2,3,4,5,6,7]. One trial of a particular genome was 
performed by initialising a ZIP-trader market from the genome, 
and then allowing the traders to operate within the market for a 
fixed number of trading periods, with allocations of stock and 
currency being replenished between trading periods. Each trading 
period was ended in the manner described above.  

During each trading period, Smith’s α measure [16] of deviation 
of transaction prices from the theoretical market equilibrium price 
was monitored, and a weighted average was calculated across the 
trading periods in the trial. As the outcome of any one such trial is 
influenced by stochasticity in the system, the final fitness value 
for an individual was calculated as the arithmetic mean of 100 
such trials. Note that as minimal deviation of transaction prices 
from the theoretical equilibrium price is desirable, lower scores 
are better: the intention here is to minimise the fitness value.  
In [4] the number of generations ng for each experiment was set to 
equal Ng (i.e., 1000), but all the significant evolutionary activity 
was found to occur in the first 500 generations; hence ng=500 was 
used in subsequent work [5,6,7] and here also. Thus, in any one 
experiment, there are 30 individuals evaluated over 500 

Thus, a ninth dimension was added to the search space, and the 
genotype in the GA is now the eight real values for ZIP-trader 
initialisation, plus a real value for Qs, so the GA is searching for 
points in R9 that give the best market dynamics.  
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All of the results in [4] came from experiments in which the same 
static supply/demand schedule was used for the duration of each 
evaluation of every genotype. This is a somewhat unrealistic 
simplification, for two reasons. First, a primary reason why 
auction mechanisms such as the CDA are of interest is their 
ability to adapt to changes in the market’s supply and demand 
curves. Second, it is likely that the GA exploited this regularity 
and over-fitted the ZIP-trader parameters to the particular market 
schedules used (e.g. a genome that does well in M1 might 
perform  poorly in M2). Thus, in a subsequent paper [5], similar 
experiments were run but in these new studies the evaluation of a 
genotype involved six trading periods on one market schedule, 
followed by a shock-change to another schedule, and then another 
six trading periods on the new schedule; with the fitness of the 
genotype being calculated over the entire 12 periods of trading. 

generations where each evaluation involves calculating the mean 
of 100 trials, so a total of 1.5 million market trials would be 
executed in any one GA experiment. Nevertheless, the progress of 
each GA experiment is itself affected by stochasticity (e.g. the 
GA may become trapped on local optima) and so to generate 
reliable results each experiment was repeated 50 times, requiring 
a total of 75 million market trials. On a current single-CPU PC, 
50 repetitions of the multi-shock experiments described in Section 
3 take around twelve days to complete, so the results presented in 
Section 3 would have required a total of 96 days of continuous 
computation time had a single-CPU PC been used. As shown by 
Walia [17], much of this consumption of compute time is due to 
our choice of a computationally expensive (but statistically 
rigorous) random number generator function.  
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2.4 Previous Results 
In our first evolving-mechanism paper [4], three differing market 
supply and demand schedules were used, referred to as markets 
M1, M2, and M3 respectively. Figures 1 and 2 show markets M1 
and M2. Market M3 is very similar to M1, having the same 
equilibrium point and the same number of traders; the only 
difference being that in M1 the difference between successive 
limit prices for the traders is 0.25, while in M3 it is 0.30: see [4].  
Figures 1 and 2 both show a supply and demand schedule for a 
marketplace with 11 buyers and 11 sellers, each empowered to 
buy/sell one unit of commodity, and both are similar (or identical) 
to the schedules used by Smith [16]. Figure 3 shows results from 
50 repetitions of an experiment where the GA explores the R9 

subspace in an attempt to optimize the ZIP-trader market 
parameters for operating in M1: for each experiment, the fitness 
of the best (elite) member of the population is recorded.  

Figure 1: Supply and demand schedules for market M1. 
Vertical axis is Price; horizontal axis is Quantity. 
 The results are clearly tri-modal. Of the 50 repetitions, in five the 

elite ends up on fitness minima of about 3.2, while the other two 
elite fitness modes are on less-good minima of around 4.0 and 
4.75. For comparison, Figure 5 shows the results of 50 repeats of 
the same experiment, where the value of Qs was not evolved, 
being instead clamped at 0.5: i.e. the CDA value. The CDA 
mechanism is often applauded as an auction mechanism in which 
equilibration is rapid and stable, so we could expect the best 
fitness from using this market type. With the fixed CDA auction 
style, an average elite fitness of around 4.5 is settled on by the 
majority of experiments (48 repetitions) while a small minority (2 
repetitions) settle on a less good mode of around 5.1. Clearly 
then, the evolved-mechanism results are better than the fixed-
mechanism CDA results; that is, when the GA is allowed to find 
its own value of Qs rather than have the CDA Qs value of 0.5 
imposed on it, it finds fitter solutions – solutions with less 
deviation of transaction prices from the equilibrium price.  As it 
happens, the Qs value found in the best elite mode for the 
evolving-mechanism M1 experiments is zero [4], and for M2 the 
best Qs was also zero [4]. But, surprisingly and significantly, for 
M3 the best Qs was neither zero, nor 0.5, nor 1.0 – i.e. none of the 
Qs values corresponding to traditional human-designed auction 
mechanisms; rather, the best Qs for M3 was found to be around 
0.16 [4]. The fact that schedules M1 and M3 are superficially 
very similar, while their optimal Qs values are significantly 
different, is explored in depth in [7], where detailed visualizations 
of the underlying GA fitness landscapes are shown.   
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Figure 2:  Supply and demand schedules for market M2. 

 
 
Hence in these experiments the genotypes had to optimize not 
only the ZIP-trader’s ab initio adaptation to the first schedule but 
also their re-adaptation to the new schedule introduced half-way 
through the evaluation process. Two sets of experiments were 
performed: one in which the ZIP traders operated in M1 for the 
first six periods followed by a shock-change to M2 for the final 
six periods (referred to as the M1M2 experiments); and another in 
which the order was M2 followed by M1 (referred to as M2M1). 
The order was significant: the M1M2 results differed significantly 
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Results from four sets of experiments are reported in the next 
section: one set is referred to as “M121” to denote the fact that 
market M1 was used for the first six periods followed by M2 for 
the second six periods followed by M1 again for the final six 
periods.  The second set of experiments, where six periods of M2 
were followed by six periods of M1 followed by a final six 
periods of M2, is referred to as M212. It should be noted that in 
both the M121 experiments and the M212 experiments the 
genotype has to be adapted to both the transition from M1 to M2 
and the transition from M2 to M1. Having established in [7] that 
M1 and M3 can yield different evolved solutions despite their 
very close similarity, two further sets of experiments were 
conducted in which M3 was substituted for M1. These are 
referred to as the M123 and M321 experiments.  

from the M2M1 results. Although in the single-schedule 
experiments both M1 and M2 were found to have optima at Qs=0, 
when the two schedules were both used in one trial then non-zero 
values of Qs evolved: for M1M2 the best-mode value was a 
“hybrid” of around 0.25; while for M2M1 the best value was 
0.45, which did not yield statistically significant differences in 
performance from the CDA value of 0.5.  For full details, see [5]. 

 

In [2,3,4] the evaluation function was a weighted average of 
Smith’s α measure of root mean square deviation of transaction 
prices from the theoretical equilibrium price: in each trading 
period p the value αp was calculated, and the fitness score was 
computed as (1/ws).Σ(αp.wp) for p=1…6 with weights w1=1.75, 
w2=1.5, w3=1.25, and w4=w5=w6=1.0; and ws=Σwp. In the M1M2 
and M2M1 dual-schedule experiments reported in [5], this was 
simply extended so that p=1…12 and wp>6=wp-6. Similarly, in the 
triple-schedule experiments reported here, the extension was 
simply that p=1…18 and  wp>12=wp-12. 

Figure 3: Elite fitness values from 50 repetitions of a 500-
generation evolving-mechanism (EM) experiment operating 
with M1. Horizontal axis is generation-number; vertical axis 
is fitness. Lower fitness values are better solutions (less 
deviation from equilibrium). Results are tri-modal, with five 
of the repetitions (10%) settling to values around 3.2.  

 

3. MULTI-SHOCK RESULTS  
 

Figure 4: Elite fitness values from 50 repetitions of a 500-
generation experiment operating with M1, but with a fixed-
mechanism (FM) CDA of Qs=0.5: bimodal results, with 96% 
of the repetitions settling to fitness values around 4.5 and the 
remaining 4% at around 5.2.  

Figure 5 shows results from 50 repetitions of the M121 evolving-
mechanism (EM) experiment: as before, for each repetition the 
fitness of the best (elite) member of the population is recorded at 
each generation. The results are bimodal: At g=500 the majority 
(n=48) mode has mean fitness of 4.41 and a standard deviation 
(s.d.) of 0.265. Figure 6 shows the evolutionary trajectory of the 
elite genotype’s value of Qs at each generation: clearly, the best 
elite mode uses an auction mechanism indistinguishable from the 
Qs=0.5 CDA. When the M121 experiments are re-run with a 
fixed-mechanism (FM) of Qs=0.5, at g=500 the best (n=49) mode 
has a mean fitness of 4.33 and a s.d. of 0.786. 

 

 

2.5 Rationale for multi-shock evaluation 
The M1M2 and M2M1 results in [5] indicate that the genotype 
(market mechanism and trader parameters) best suited to dealing 
with a single shock-change from M1 to M2 differs from the 
genotype best suited to dealing with the single shock-change from 
M2 to M1. These results raise the possibility that the GA had 
over-fitted the genotypes to the particular single market shock 
imposed during the evaluation process. To explore this 
possibility, new experiments were conducted where multiple 
shocks occur during evaluation. For ease of comparison to the 
previous results, we continue to work with M1, M2, and M3.  

Figure 5: Elite fitness values from 50 repetitions of the 500-
generation M121 EM experiment. Format as for Figure 3. 
 
Figure 7 shows results from 50 repetitions of the M212 EM 
experiment. The results are unimodal. At g=500 the mean fitness 
is 3.92 with s.d.=0.0734. Figure 8 shows the evolutionary 
trajectory of the elite-genotype Qs values: clearly, the best elite 
mode again uses an auction mechanism indistinguishable from the 
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Qs=0.5 CDA. When the M212 experiments are re-run with a 
fixed-market (FM) of Qs=0.5 the best (n=49) mode has a mean 
fitness of 3.83 and an s.d. of 0.109 at g=500. 

The Wilcoxon-Mann-Whitney test [15] was used to investigate 
the null hypothesis H0 that the distribution of elite fitness values 
at generation 500 is not statistically different between the 50 
values for the evolving-market (EM) case and the 50 values for 
the CDA fixed-marked (FM) case for both the M121 data and the 
M212 data; for both cases, the H1 hypothesis was that the EM 
data were stochastically smaller than the FM data (i.e. that the 
evolving-mechanism genotypes gave better market dynamics). 

 

 

For M121 the value of z was -1.9544, for which p=~0.0253 and so 
this is not significant at the 1% level, while for M212 the value of 
z was -0.0517, which is manifestly not significant. And so for 
both M121 and M212 we accept H0: the elite fitness results from 
the EM experiments are not statistically different from the FM 
Qs=0.5 data. 
Figure 9 shows the elite fitness values from 50 M321 EM 
experiments, where at g=500 the best (and only) elite-mode has 
mean fitness of 3.98 and a s.d. of 0.0501. Figure 10 shows the 
corresponding elite-Qs plot, where at g=500 the 50 elite genotype 
Qs values have a mean of 0.473 and a s.d. of 0.0218. Again, these 
evolved values of Qs are so close to the CDA value of Qs=0.5 that 
it is no surprise to learn that the FM results were also uni-modal 
with the g=500 mean fitness also being 3.98 (s.d.=0.0673). For 
completeness, the Wilcoxon-Mann-Whitney z value was –0.169 
which is again not significant at the 1% level, so there is no 
statistically significant difference between the final EM and FM 
results for M321.   

Figure 6: Evolutionary trajectory of elite Qs values from the 
50 M121 EM experiments shown in Fig. 5. Horizontal axis is 
gen-eration number; vertical axis is elite-genotype Qs value. 
At g=500 the mean Qs in the n=48 best elite mode is 0.509 with 
s.d.=0.0227.   

 

 

Figure 7: Elite fitness values from n=50 repetitions of the 500-
generation  M212 EM experiment. Format as for Figure 3. 
 

Figure 9: Elite fitness values from n=50 repetitions of the 500-
generation M321 EM experiment. Format as for Figure 3. 

 

 

 

Figure 8: Evolutionary trajectory of Qs values from the 50 
M212 EM experiments shown in Fig. 7. Format as for Fig. 6. 
At g=500 the mean Qs in the n=50 best elite mode is 0.497, 
with s.d.=0.0263. Figure 10: Evolutionary trajectory of Qs values from the 50 

M321 EM experiments shown in Fig.9. Format as for Fig.6. 
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Thus, the results for M121, M212, and for M321 all indicate that 
the CDA cannot be improved upon: when the market mechanism 
is placed under evolutionary control, the final evolved mechanism 
is statistically indistinguishable from the CDA. Curiously though, 
the results from M123 are qualitatively different. 

Figure 11 shows the elite fitness values from 50 M123 EM 
experiments, where at g=500 the best (and only) elite-mode has 
mean fitness of 4.24 and a s.d. of 0.0664. Figure 12 shows the 
corresponding elite-Qs plot, where at g=500 the 50 elite genotype 
Qs values have a mean of 0.564 and a s.d. of 0.0238. Superficially 
these evolved values of Qs appear to be close to the CDA value of 
Qs=0.5, but it is worth noting that there are 2.5 standard 
deviations between 0.5 and 0.564. The M123 FM fitness results 
were also uni-modal with the g=500 mean being 4.28 
(s.d.=0.0763). Intriguingly, the Wilcoxon-Mann-Whitney z value 
was –3.209, for which p=~0.0007, and that is clearly significant at 
the 1% level, so there is a statistically significant difference 
between the final EM and FM results for M123: that is, the 
evolving-mechanism results are statistically smaller (i.e., better) 
than the fixed-mechanism CDA results.   

 
Figure 11: Elite fitness values from n=50 repetitions of the 
500-generation M123 EM experiment. Format as for Fig. 3. 
 

 
Figure 12: Evolutionary trajectory of Qs values from the 50 
M123 EM experiments shown in Fig.11. Format as for Fig. 6. 

The nature of the difference between the M123 EM and FM 
results is made more clear in Figure 13, which shows a scatter 
plot of the fitness of the elite genotype at g=500 as a function of 
the elite genome’s Qs value for the 50 M123 EM experiments and 
the 50 M123 FM experiments. While the FM data are roughly 
symmetric about their mean fitness, the EM data has a skew 

distribution. By visual examination it is clear that in the fitness 
range [4.10,4.20], there are 6 FM data points and 14 EM data 
points; in the fitness range [4.20,4.30] there are 25 FM data points 
and 31 EM data points; in the range [4.30,4.40] there are 16 FM 
points and 3 EM points; while in the range [4.40,4.50] there are 3 
FM data points and 2 EM data points.    

 
Figure 13: Scatter-plot of g=500 elite-genotype Qs values 
(horizontal axis) against fitness (vertical axis) scores from the 
50 M123 EM experiments (Fig.11) and the 50 M123 FM 
experiments (Fig.12). The 50 FM data are the vertical line at 
Qs=0.50; the EM data are the cloud of points for which 
Qs≠0.50. The regression line shows a weak (r2=0.122) negative 
correlation between the EM Qs values and fitness scores.  

4. DISCUSSION AND CONCLUSION 
This paper is the third in a series that explores the use of 
evolutionary algorithms for the automated design of auction-
market mechanisms. In [4] it was established that values of 
Qs=0.0, corresponding to one-sided auctions, were optimal for M1 
and M2 individually, and in [5] it was demonstrated that when the 
evolving ZIP traders have to deal with a single “shock” transition 
from M1 to M2, or from M2 to M1, two-sided mechanisms are 
found by the GA to give the most efficient markets:  for M1M2 
the hybrid Qs=~0.25 market gives significantly better results than 
the CDA, while for M2M1 the evolved solution of Qs=~0.45 was 
no better but also no worse than the CDA. 
This paper has presented results from four new pairs of 
experiments (requiring 96 days of continuous CPU time) in which 
the GA is used to discover genotypes that are well-adapted to 
dealing with multiple shocks in the evaluation process. The new 
M121 and M212 results presented here have demonstrated that, 
when the evaluation process involves “shock” jumps from M1 to 
M2 and from M2 to M1, the CDA of Qs=0.5 cannot be improved 
upon by the GA. The M321 results similarly indicated that the 
CDA is the mechanism that gives the best market dynamics in the 
presence of multiple shocks.   
But the M123 results demonstrate that, even in the presence of 
multiple market shocks, hybrid auction mechanisms can be 
optimal. It is notable that in this case the evolved optimal value of 
Qs differs from the CDA value of 0.50 by only a small amount: 
the mean elite Qs value is 0.56, although Figure 13 indicates that 
the distribution is skew with respect to this mean, and the slight 
negative correlation between fitness and Qs implies that the upper 
percentiles of the elite evolved genomes will have values of 
Qs>0.56. The precise reason why such a small bias or deviation 
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away from the CDA can give slightly better market dynamics 
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between the GA-evolved optimal Qs and the CDA value of 
Qs=0.5. That is, as more shocks are introduced there is a 
convergence toward the CDA. It is tempting to hypothesize that, 
in the limit where any number/type of shocks can occur during 
evaluation/trading, the CDA is the optimal market mechanism. 
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6. APPENDIX 
 
Eight figures excluded from Section 3 for reasons of brevity are 
presented here. Figures 14 to 18 show the evolutionary 
trajectories of the elite fitness values for the CDA Qs=0.5 fixed-
market (FM) experiments for M121, M212, M321, and M123 
respectively. The format for all four is the same as for Figure 3. 
 

 

Figure 16: Elite fitness values from n=50 repetitions of the 
500-generation M321 FM Qs=0.5 experiment.   
 

 

Figure 14: Elite fitness values from n=50 repetitions of the 
500-generation M121 FM Qs=0.5 experiment.  
 

 

Figure 17: Elite fitness values from n=50 repetitions of the 
500-generation M123 FM Qs=0.5 experiment. 
 

Figure 15: Elite fitness values from n=50 repetitions of the 
500-generation M212 FM Qs=0.5 experiment. 
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Figures 18, 19, 20 and 21 show the evolutionary trajectory of the 
mean (plus and minus one s.d.) Qs value in the best elite fitness 
mode from the EM experiments for M121, M212, M321, and 
M123 respectively. 

 

 

 

Figure 20: Evolutionary trajectory of the mean (plus and 
minus one s.d.) best elite-mode Qs value in the M321 EM 
experiment (cf. Figure 10).  
 

 

Figure 18: Evolutionary trajectory of the mean (plus and 
minus one s.d.) best elite-mode Qs value in the M121 EM 
experiment (cf. Figure 6). 
 

 

Figure 21: Evolutionary trajectory of the mean (plus and 
minus one s.d.) best elite-mode Qs value in the M123 EM 
experiment (cf. Figure 12). 
 
 

Figure 19: Evolutionary trajectory of the mean (plus and 
minus one s.d.) best elite-mode Qs value in the M212 EM 
experiment (cf. Figure 8). 
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