
                                                                       
Debugging of Distributed Computation via 
Memory-Efficient Enumeration of Global States 
 
Artur Andrzejak, Komei Fukuda1 

Internet Systems and Storage Laboratory  
HP Laboratories Palo Alto 
HPL-2002-31 
February 6th , 2002* 
 
E-mail: artur_andrzejak@hp.com, fukuda@ifor.math.ethz.ch  
 
 
distributed 
computations, 
debugging, 
global states 
 

We develop a memory-efficient off-line algorithm for the 
enumeration of global states of a distributed computation. The 
algorithm allows the parameterization of its memory 
requirements against the running time. In the extreme case, 
only one global state of a distributed computation must be held 
in the memory of the enumerating system at a time. This is 
particularly useful for debugging of memory-intensive parallel 
computations, e.g. in image processing or data warehousing. We 
also show how to apply our technique to evaluate in a memory-
efficient way the predicate Definitely(Φ) defined by Cooper and 
Marzullo. The basis for these algorithms is Reverse Search, a 
paradigm successfully applied for enumeration of a variety of 
geometric objects.  

 

* Internal Accession Date Only    Approved for External Publication  
1   Institute for Operations Research, ETH Zurich, ETH Zentrum, CH-8092 Zurich, Switzerland 
 Copyright Hewlett-Packard Company 2002 



Debugging of Distributed Computations via

Memory-E�cient Enumeration of Global States

Artur Andrzejak Komei Fukuda

Hewlett-Packard Labolatories Institute for Operations Research

1501 Page Mill Road ETH Zurich, ETH Zentrum

Palo Alto, CA 94304, USA CH-8092 Zurich, Switzerland

artur_andrzejak@hp.com fukuda@ifor.math.ethz.ch

Abstract

We develop a memory-e�cient o�-line algo-
rithm for the enumeration of global states of
a distributed computation. The algorithm al-
lows the parameterization of its memory re-
quirements against the running time. In the
extreme case, only one global state of a dis-
tributed computation must be held in the mem-
ory of the enumerating system at a time. This
is particularly useful for debugging of memory-
intensive parallel computations, e.g. in im-
age processing or data warehousing. We also
show how to apply our technique to evaluate
in a memory-e�cient way the predicate De�-
nitely(�) de�ned by Cooper and Marzullo [7].
The basis for these algorithms is Reverse Search
[2], a paradigm successfully applied for enumer-
ation of a variety of geometric objects.

1 Introduction

Detecting certain conditions of a distributed
computation is fundamental to solving prob-
lems related to debugging and monitoring of
parallel programs, especially of the critical ones.
These problems include debugging, error re-
porting, process control, decentralized coordi-

nation or load balancing [11, 4].

The problem of detecting such conditions -
or equivalently, of evaluating a global predicate
of a distributed computation - is not trivial and
has received a considerable amount of attention
[3, 7, 8, 10]. Global predicates are evaluated
over global states, which are essentially unions
of local states of all processors.

There are several approaches for evaluating
of global predicates. For stable global predi-
cates, i.e., predicates that do not become false
once they are true, an algorithm by Chandy and
Lamport [6] is used. Another research direction
exploits the structure of a global predicate to
identify the global states for which it might be
true [9]. The major drawback of these meth-
ods is that they either apply to small classes of
predicates or are predicate-speci�c.

If the structure of the predicate is not known
a priori, which happens frequently during de-
bugging, the most general approach must be
taken - enumeration of all global states [7, 10].
Cooper and Marzullo propose in [7] o�-line al-
gorithms for predicates Possibly(�) and De�-
nitely(�) based on the enumeration of all global
states. The predicate Possibly(�) holds if the
system could have passed through a global
state satisfying the predicate �. De�nitely(�)

1



holds if the system de�nitively passed through
a global state with � being true.
Unfortunately, the known enumeration algo-

rithms are not memory-e�cient: it is possi-
ble that an exponential number of global states
must be hold simultaneously in the memory of
the machine evaluating the global predicates.
If the distributed computation is memory in-
tensive, e.g. in the case of image processing or
database applications, already few global states
might exceed the memory capacity of the enu-
merating system.
In this paper we propose a new algorithm for

memory-e�cient enumeration of global states
in a distributed computation. Speci�cally, our
contributions are following.

� We use the framework of Reverse Search
by Avis and Fukuda [2] to set up an algo-
rithm for enumeration of global states of a
distributed computation. This o�-line al-
gorithm is memory-e�cient and thus well
suitable for debugging of memory-intensive
distributed computations. In extreme case,
only one global state of the distributed
computation is hold in the memory of the
evaluating machine at a time.

� We look at the problem of reducing the
time overhead inherent to o�-line enumera-
tion algorithms and parameterize the enu-
meration time at a cost of the memory us-
age of our algorithm.

� Further, we show how to evaluate in a
memory-e�cient way the predicate De�-
nitely(�) using our technique (the evalu-
ation of Possibly(�) in a memory-e�cient
way is trivial by our approach).

The above-mentioned framework of Reverse
Search has been successfully used in both theo-
retical and practical sense for memory-e�cient
enumeration of a large variety of geometrical
objects [5, 1].

2 De�nitions

Informally, a distributed computation describes
the execution of a distributed program by a col-
lection of processes pi, i = 1; : : : ; n. The activ-
ity of each sequential process pi is modeled as
executing a sequence of events e1i ; e

2
i ; : : :. Each

event eki may be of the following type:

� an internal event, causing only a local state
change of a process,

� sending of a message m to another process,
denoted as send(m),

� receiving of a messagem from another pro-
cess, denoted as receive(m).

To cover the notion of "cause and e�ect" we
introduce the binary relation! [3] de�ned over
events, such that:

1. If eji , e
k
i are events of a process pi and j < k,

then e
j
i ! eki ,

2. If ei = send(m) and ej = receive(m), then
ei ! ej,

3. If e! e0 and e0 ! e00, then e! e00.

The only conclusion that can be drawn from
e ! e0 is that the occurrence of e0 may have
been in�uenced by event e.
Formally, a distributed computation is a par-

tially ordered set of events ordered by the re-
lation !. In an actual execution, all events
for all processes occur in some total order (if
events of two di�erent processes occur at the
same real-time, we may assume that the event
of the process with the smaller index occurs be-
fore the event of the process with larger event).
To be able to reason about executions in dis-
tributed systems, we introduce the notion of a
run. A run R is a total ordering of all events
of all processes that is consistent with the dis-
tributed computation (a linear extension of this
partially ordered set).

2



5
1

4
1

3
1

2
1

1
1 eeeee

5
2

4
2

3
2

2
2

1
2 eeeee

1

2p

00Σ
10Σ 01Σ

11Σ 02Σ
12Σ21Σ 03Σ

13Σ22Σ 04Σ31Σ
23Σ32Σ 14Σ41Σ

33Σ42Σ 24Σ
34Σ43Σ

44Σ 35Σ53Σ
54Σ 45Σ

55Σ

Figure 1: Example of a lattice

The local history hi of a process pi during
the computation is a sequence of events e1i e

2
i : : :

. Let hki = e1i e
2
i : : : e

k
i denote the pre�x of hi

with the �rst k events belonging to process pi.
The global history H of a computation is a set
h1 [ : : : [ hn containing all of its events. A
tuple (c1; : : : ; cn) of natural numbers speci�es
a cut C = hc11 [ : : : [ hcnn of the distributed
computation. A cut C is consistent if for all
events e and e0 we have

(e 2 C) ^ (e0 ! e)) e0 2 C:

In other words, a consistent cut is left-closed
under the causal precedence relation.
For process pi, 1 � i � n, and an integer

k � 0 let �k
i denote the local state of a pro-

cess immediately after having executed event
eki . The local state of a process may include
information such as the values of local vari-
ables and the sequences of messages sent and
received. The global state of a distributed com-
putation is an n-tuple � = (�1; : : : ; �n) of local
states of all processes. Obviously there is a cor-

respondence between the global states and cuts
in the sense that a global state is a "frontier"
of a cut. We also call a global state consistent,
if it corresponds to a consistent cut. It is not
hard to see that a run R = e1e2 : : : results in a
sequence of global states �0�1�2 : : :, where �0

is the initial global state. Each global state �i

of the run R is obtained from the previous state
�i�1 by some process executing the single event
ei. We say that �i�1 leads to �i in R.

The set of all consistent global states of a
computation along with the leads-to relation
de�nes a lattice L. Let �k1;:::;kn be a short-
hand for the global state (�k1

1 ; : : : ; �kn
n ) and let

` = k1+: : :+kn be its level. Figure 1 shows such
a lattice together with the original distributed
computation.

2.1 Nonstandard de�nitions

For a global state (�1; : : : ; �n), its signature is
the tuple (k1; : : : ; kn) of subscripts of the re-
cently executed events ek11 ; : : : ; e

kn
n leading to

the local states �1; : : : ; �n.

3 The Reverse Search

method

In this section we describe brie�y the frame-
work of the Reverse Search method by Avis

and Fukuda [2]. Assume that we are given a
graph G whose vertices are the objects to be
evaluated. In our case the objects are global
states and G is the lattice L. We could pos-
sibly enumerate the vertices of G by applying
the depth-search �rst algorithm to G. Such an
algorithm �nds eventually a spanning tree of G
by storing the encountered vertices. The criti-
cal problem of this approach is the requirement
of storing all vertices of G at the same time in
memory. On the other hand, for Reverse Search
it is su�cient to store only one vertex of G in
the computer memory at a time.

3



For the Reverse Search method to be applied,
we need to de�ne a rooted spanning tree of
G. (We will assume, that G has only one con-
nected component; if this is not the case, the
algorithm can be repeated for each connected
component.) Let v� be a distinguished vertex
of G (which later will be the root of the tree);
in our case it is the initial global state. The
spanning tree of G is implicitly de�ned via a
local search function f : V (G)nfv�g �! V (G)
(where V (G) denotes the vertex set of G).
For every v 2 V (G)nfv�g the pair (v; f(v))
must be an edge in G. Furthermore, for ev-
ery v 2 V (G)nfv�g there is a �nite folding
f(f(: : : f(v) : : :)) which yields v�. Intuitively,
every application of the function f brings us
closer to the distinguished vertex v�. It is not
hard to see that for each v 2 V (G)nfv�g the
function f de�nes a unique path from v to v�.
The union of these paths (regarded as sets of
directed edges) de�ne the (directed) spanning
tree ofG we are looking for. This graph is called
the trace graph or simply the trace of the local
search function f . Note that the trace graph is
completely determined by f .

Now an execution of an algorithm based on
Reverse Search resembles an execution of the
depth-�rst search on the trace graph of f . In or-
der to present it formally, we still need to spec-
ify how the graph G is given. In particular, we
assume the following:

� An integer Æ which bounds from above the
maximum degree of a vertex of G.

� An adjacency oracle Adj explained below.

For an integer i 2 f1; : : : ; Æg and a vertex v 2
V (G) the adjacency oracle Adj(v; i) gives the
i-th neighbor of v in G or null. The function
Adj is exhaustive and injective, that is if i goes
from 1 to Æ, then we obtain all neighbors of v
in G and each of them exactly once; see [2] for
the complete description.

These two functions are used in the following
procedure ReverseSearch2 taken from [2], which
is the core of the Reverse Search method.

procedure ReverseSearch2(Adj,Æ,v�,f);
(* j: neighbor counter *)
v := v�; j := 0;
visit vertex v�;
repeat
while j < Æ do
j := j + 1;
if f(Adj(v; j)) = v then
(* reverse traverse *)
v :=Adj(v; j); j := 0;
visit vertex v;

endif
endwhile;
if v 6= v� then
(* forward traverse *)
w := v; v := f(v); j := 0;
repeat j := j + 1
until Adj(v; j) = w (* restore j *)

endif
until v = v� and j = Æ.

The reader might test on some examples that
this procedure indeed traverses G in a depth-
�rst search manner.

4 Re-executing a dis-

tributed computation

As it will be become clear in the next section,
our application of Reverse Search requires to be
able to �compute backwards in time�, i.e. given
a global state �, we should be able to compute
a (certain) global state �0 which leads to �: In
this section we describe how to parameterize
the trade-o� between the time of such a com-
putation and the required memory (or storage)
size.
Assume that P is a path in a lattice L cor-

responding to a distributed computation, such

4



that each global state on P leads to the next
one. Given a node (global state) � in P , we
want to obtain its predecessor �0. Note that the
only di�erence between the both global states is
that in �0 one of the processes pj has not yet ex-

ecuted its next event e
kj
j for some j, 1 � j � n.

Thus, given �, our goal is to �set back in time�
pj to the state before its execution of e

kj
j .

Obviously the method with the highest mem-
ory usage is to store all global states on the
path P and then retrieve the required global
state from the memory or other storage as nec-
essary. Note that we can store the path in a
�di�erential� way, i.e. for the above-mentioned
global states �0 and � we store for � only the
local state of the processor pj after the execu-

tion of the event e
kj
j . The local states of all

other processes are respectively identical in �0

and �. Still, if � is the last global state in
P and has the signature (k1; : : : ; kn), then we
must store ki local states of the processor pi,
for each i = 1; : : : ; n, in total ` = k1 + : : :+ kn.

To lessen the memory usage, we can store
only some local states of each process. Let q > 0
be an integer which determines that for each
process we store every q-th local state only (be-
ginning with the initial one). For q = 1, the
retrieval of �0 from � is the same as above.
However, for q > 1, we retrieve the stored local
state of pj with index bkj�1

q
c from the mem-

ory and �load� this state into pj. Subsequently,
we recompute the local states of this process
just until the event e

kj
j by executing its pro-

gram code. Since the messages received by pj
are considered as a part of its local state [3],
we assume that we store for each process pi,
1 � i � n, every message sent to this process
(together with the index of the sender and the
event number causing this message). Thus, we
can retrieve them from the local state of pj in
�, if they should be necessary for executing the
code of this process.

For example in Figure 1 assume that the
above-mentioned path is �00, �10, �11, �21,

�22. For q = 2, the saved local states of the
processes are the two local states of p1before
the events e11 and e31 and the two local states of
p2 before the events e

1
2 and e32.

Assume that R is an upper bound on the time
to retrieve a local state (from memory or stor-
age) and to �load� it into a process pi, 1 � i � n.
Furthermore, we write E for an upper bound on
the time which a process pi, 1 � i � n, needs
to execute an event. For q > 1, in order to
compute �0 from � a process pj must execute
at most q � 1 events after retrieval of its last
stored local state. Therefore, the time for com-
putation of �0 from � no bigger than:

R + E(q � 1): (1)

Let S be the maximum storage size of a local
state of a single process. It is not hard to see
that if the level of the last global state � in
the path P is ` = k1 + : : : + kn, then the total
storage needed for P is at most

S
`

q
: (2)

5 Enumeration of Global

States

Our goal it to enumerate all (consistent) global
states of a distributed computation by travers-
ing the lattice L of global states. In this sec-
tion we describe how to achieve this by apply-
ing the procedure ReverseSearch2 from Section
3. In order to do this, we need to specify sev-
eral problem-dependent elements used by the
Reverse Search method. The main challenge
of this task is to �nd e�cient implementations
of these elements, especially of the local search
function f .

In the following, we consider L as a (directed)
graph, where the nodes are global states and
(�i;�j) is an edge, if �i leads to �j. Observe
that this graph is connected.

5



5.1 Problem-dependent elements

of the Reverse Search

For the Reverse Search method to be ap-
plied, we need to specify the following problem-
dependent elements:

� A local search function f and its implemen-
tation,

� An adjacency oracle Adj and its implemen-
tation,

� A distinguished vertex v� , the root of the
trace graph,

� The maximum out-degree of a global state
in the lattice L.

For technical reasons, we also provide the fol-
lowing element:

� An implementation of the test
f(Adj(v; j)) = v in the reverse tra-
verse step which does not use f nor
Adj.

All three the local search function, the adja-
cency oracle and the test f(Adj(v; j)) = v are
discussed below. As a distinguished vertex v�

we set the initial global state �0 of the com-
putation. Finally, the maximum degree in the
lattice is the number of processes n, as a global
state can lead to another global state only by
executing an event on one of them.

5.2 The Adjacency Oracle Adj

For a given global state � and an integer j, 1 �
j � n, we de�ne Adj(�; j) as follows. If there
exists a global state �0 such that � leads to �0

by executing the next event on the process j,
then Adj(�; j) is �0; otherwise Adj(�; j) is null.
It is not hard to see that Adj indeed determines
the lattice L of the distributed computation.
As for the implementation, we assume that

the current global state � is "loaded" on the n

00Σ
10Σ 01Σ

11Σ 02Σ
12Σ21Σ 03Σ

13Σ22Σ 04Σ31Σ
23Σ32Σ 14Σ41Σ

33Σ42Σ 24Σ
34Σ43Σ

44Σ 35Σ53Σ
54Σ 45Σ

55Σ

Figure 2: A trace of the lattice from Figure 1
induced by the local search f

processes p1; : : : ; pn. The value of Adj(�; j) is
computed as follows. First we test, whether the
process pj is waiting for a message and cannot
execute the next event (see also Section 7.2).
If this is the case, then Adj(�; j) returns null.
Otherwise, we let pj execute the next event. As
a consequence the new global state on the pro-
cess pi is exactly Adj(�; j).
Note that our de�nition of Adj implies that

its values are only the �outgoing� global states
in respect to the �rst argument of Adj (i.e.
global states with level one higher than the ar-
gument). However, it is not hard to see that
the correctness of the Reverse Search method
is not in�uenced by this fact.

5.3 The local search function f

A possible and quite natural realization of a
local search function is the following one. For
a global state � of level ` we de�ne f(�) to be
the global state of level ` � 1 which leads to
� and has lexicographically smallest signature.
For example, in Figure 1 we have f(�43) = �42

and f(�53) = �43. Figure 2 shows the trace of
the local search for the lattice in Figure 1.
The question is how to implement f , since

the computation of f(�) from � is a "time-

6



reversed� execution of an event of one of the
processes. We propose two approaches. The
�rst one is very memory-e�cient and can be
used for both the execution of f in the test
f(Adj(v; j)) = v and the execution of f in the
forward traverse step. However, it has a large
computational overhead. The second approach
works only for the forward traverse case, but it
allows us to trade the computational time at a
cost of additional memory usage.

Both approaches assume the case that the
current global state - the argument of f - is
"loaded" on the parallel machine which exe-
cutes the distributed computation.

5.3.1 Universal implementation of f

The following implementation has a very small
memory usage - in the order of memory require-
ment of one global state. It can be applied both
for the reverse traverse and the forward traverse
cases. On the other hand, it has a large com-
putational overhead.

Let (k1; : : : ; kn) be the signature of the cur-
rent global state �. Starting with j = 1, we
try to compute for the consecutive values of
j � n the local state �

kj�1

j of the process pj

after the event e
kj�1

j as follows. First we save
the current local state of the process pj. Then
we initialize pj with its initial local state and let

the process pj "replay" all events e1j : : : ; e
kj�1

j .
The constraint is that pj must not use the mes-
sages sent "after" the current global state, i.e.
if pj uses a message for "replaying" an event,
this message must be sent by an event eki with
k � ki for an 1 � i � n, i 6= j. If pj can-

not reach the local state �
kj�1

j , then there is no
global state with signature (k1; : : : ; kj � 1; : : :)
(or (kj � 1; : : :) for j = 1). In this case we
restore the local state of the process pj and re-
peat this procedure for the consecutive values
of j etc. until success. Because we are testing
for the existence of the appropriate global state
in the order of lexicographically increasing sig-

natures, the �rst such a global state found will
be the correct f(�). Note that we have simul-
taneously computed the global state f(�), not
only its signature.

5.3.2 Implementation of f with param-
eterized running time

For the current global state � let P (�) be the
(inverted) unique path induced by the local
search function f on the lattice L of the dis-
tributed computation. We maintain an ordered
list of signatures of the global states on P (�) in
the following way. Each time when the reverse
traverse step of the algorithm takes place (i.e.
the test f(Adj(v; j)) = v is successful), we store
the signature of the newly determined global
state in the list. Since the signatures have very
small memory usage compared to global states,
the additional memory requirement for the list
can be neglected.

Furthermore, we apply the technique from
Section 4 and store a subset of the local states of
each process on the path P (�). The size of the
subset is controlled by the parameter q de�ned
there.

Now it is not hard to see that if � is the
currently visited global state, then f(�) is the
before-last element of P (�). Thus, given the
information in our signature list and the stored
local states, we can compute f(�) as described
in Section 4. The maximum computation time
for f is then given by (1), and the maximum
memory usage for P (�) by (2).

Note that this approach cannot be used for
the test f(Adj(v; j)) = v in the reverse traverse
step, since Adj(�; j) is not in P (�). Thus, the
implementation of f presented above can be
only used in conjunction with the �atomic� im-
plementation of the test f(Adj(v; j)) = v from
Section 5.4.

7



5.4 Implementation of the test

f(Adj(v; j)) = v

For technical reasons we assume that the follow-
ing approach is used in conjunction with the
implementation of f from Section 5.3.2. We
�rst describe the conditions under which the
test f(Adj(v; j)) = v is true, and turn then our
attention to its implementation.
Assume that the current global state � has

the signature (k1; : : : ; kn). For an integer j,
1 � j � n, the global state Adj(�; j) (if ex-
ists) has the signature (k1; : : : ; kj + 1; kj+1; : : :)
(or (k1 + 1; k2; : : :) for j = 1). By the de�ni-
tion of f either j = 1 and so f(Adj(�; j)) = �,
or for j > 1 we �nd f(Adj(�; j)) by succes-
sively testing the existence of the global states
with the signatures (k1 � 1; k2; : : : ; kj + 1; : : :),
(k1; k2�1; k3; : : : ; kj+1; : : :) till (k1; : : : ; kj; : : :),
respectively. Thus, the test returns true if
Adj(�; j) exists and j = 1 or f(Adj(�; j))
has the signature (k1; : : : ; kj; : : :) (the last in-
spected).
In the actual implementation, we �rst check

whether Adj(�; j) exists as described in Sec-
tion 5.2; if not, the test fails. Otherwise the
test is immediately successful in case j = 1.
For j > 1, we have to check successively the
existence of the global states with signatures
(k1 � 1; k2; : : : ; kj + 1; : : :) until (k1; : : : ; kj�1 �
1; kj; : : :) by attempting to recompute these
global states. If one of them exists, the
test fails. Otherwise it is true since then
f(Adj(�; j)) has the signature (k1; : : : ; kj; : : :).
We recompute each of these global states by the
technique described in Section 4. This approach
can be applied since only one of the processes pi,
1 � i < j, needs to re-execute its computation.
We use for this aim the data of the local states
stored for the computation of f from Section
5.3.2.
In worst case, we need to compute n�1 global

states, and each computation needs at most the
time speci�ed by (1). Together with the upper
bound E on the time required to execute Adj,

the whole test needs no longer than

E + (n� 1)(R + E(q � 1)): (3)

5.5 Optimizing the forward tra-

verse part of Reverse Search

By taking a closer look at the Reverse Search
method we notice that for restoring the value
of j (in the forward traverse part) the adja-
cency oracle Adj does not need to compute a
new global state Adj(�; j) since only the signa-
ture of Adj(�; j) is needed. The computation of
such a signature is trivial, since if a global state
� has signature (k1; : : : ; kn), then Adj(�; j) has
signature (k1; : : : ; kj + 1; : : : ; kn). We can then
rewrite the forward traverse part of the proce-
dure ReverseSearch2 from Section 3 as follows.
Let Adjsig(�; j) be a function which computes
only the signature of Adj(�; j).

if v 6= v� then
(* forward traverse *)
w := signature of v;
v := f(v); j := 0;
repeat j := j + 1
until Adjsig(v; j) = w (* restore j *)

endif

By this change, the time for restoring the
value of j becomes constant.

5.6 Analysis of running time

In this section we bound from above the run-
ning time of the evaluation algorithm for the
case of the solution with parameterized running
time, i.e. if the implementations from Section
5.3.2 and Section 5.4 are used. If the imple-
mentation from Section 5.3.1 is used, no good
bound of the running time can be given, since
then the execution time of f depends strongly
on its argument.
Basically, we only need to apply the Theorem

2.4 from [2]. First we translate the symbols to

8



our application (using the notation from Sec-
tion 4) and supply their values:

� t(Adj), the execution time for Adj is at
most E (Section 5.2),

� Æ, the maximum (out-)degree in the lattice
L is n,

� tR(Adj; f), the worst-case time for the test
f(Adj(v; j)) = v is given by (3),

� t(f), the worst-case time for f is given by
(1),

� tF (Adj; f), the time needed to restore j is
constant (Section 5.5),

� jLj is the total number of global states in
the lattice.

Theorem [2, Theorem 2.4]. The time com-
plexity of ReverseSearch2 is

O((t(Adj)+ ÆtR(Adj; f)+ t(f)+ tF (Adj; f))jLj):

Using notation from Section 4 and assuming
that E, R and q are non-constant, we have then:

Corollary 1. Suppose that the implementa-
tions from Section 5.3.2 and from Section 5.4
is used. Then the running time of the enumer-
ation of all global states is

O(n2(Eq +R)jLj);

and the storage needed by the algorithm is at
most

S(n+
`max

q
);

where `max is the maximum level in the lattice.

6 Detecting De�nitely(�)
in a memory-e�cient way

As noted in the introduction, the algorithms
given in [7] for detecting of Possibly(�) and

De�nitely(�) are not memory-e�cient. In
worst case, each algorithm holds in memory all
global states of a single level of L. This number
is exponential in n.
We can apply our memory-e�cient algorithm

for detecting of Possibly(�) in a straightforward
way: just enumerate all global states until �
applies or the enumeration terminates.
For the detection of De�nitely(�) some more

e�ort is needed. Assume that we remove from
the lattice L all global states for which � ap-
plies, obtaining a graph L0. The idea is to run
our enumeration algorithm on L0 instead of L.
Note that De�nitely(�) does not hold exactly if
there is a path from the initial state to a termi-
nal global state in L0. Thus, our enumeration
will reach a terminal state exactly in this case.
Since we traverse L0 in a depth-�rst search man-
ner, the case that De�nitely(�) is not true is
detected relatively fast. On the other hand, we
might have to evaluate almost all global states
to reach the conclusion that De�nitely(�) is
true.
We need only slight changes of f and Adj

to enumerate the global states of L0 instead of
L. At each computation of Adj we evaluate �
for the new created global state; if � applies,
we simply return null. The local search f is
modi�ed in an analogous way.

7 Practical implementation

issues

7.1 The enumeration system

For the practical implementation of the enumer-
ation we suggest two models of the enumeration
system:

Model A The real system which runs the dis-
tributed computation is actively used in
the enumeration process. This is a suitable
option e.g. if the target system is heteroge-
neous. Furthermore, this approach simpli-

9



�es the programming of the enumeration
environment.

Model B The target system and its processes
are simulated on di�erent machine (which
might be itself a parallel computer). This
requires more programming overhead for
the enumeration environment. However,
the enumeration can be then parallelized
e�ciently, and also more powerful ma-
chines than the target system can be used.
This option is also useful, if the data redis-
tribution overhead on the target system is
large.

In case of Model A we assume that we use the
target system with n processes which carry out
the distributed computation and an external
process observer, which controls the program
execution of every other process, similar in ca-
pacities to a distributed debugger. In particu-
lar, for every process pj, 1 � j � n, the observer
is able to:

� Check, whether pj is waiting for a message
and cannot execute the next event,

� If possible, start the execution of the next
event on the process pj which stops after
this event is processed,

� Start an execution of a series of events
on pj, and provide pj with the (previously
recorded) messages necessary to carry out
this execution,

� Record the current local state of pj and
store it,

� Restore a previously stored local state on
pj.

In case of Model B the role of the observer will
be taken by the simulation environment. The
abilities listed above are also necessary, yet they
easily integrated into the simulation framework.

7.2 Detection of receive-events for

time-sensitive computations

A particular attention must be paid to the de-
tection of the receive-events. The occurrences
of these events might depend on the timing re-
lations between the processes and the message
transmission times. Since our enumeration is an
o�-line algorithm (as the algorithms by Cooper
and Marzullo [7]), the timing relations of the
processes are in general distorted, and so the oc-
currences of the receive-events might be shifted
in time or not detected at all.
Consider the situation that a process pi is

executing a job. At some moment in time it re-
ceives a message m from another process, stops
the current processing and starts another ac-
tion. This gives rise to a new event e

j
i . The

point is that if in such a distributed computa-
tions pi does not know a priori, when (and at
all) the message m will arrive, and so the event
e
j�1
i proceeding the new event is "dynamically"
changed by the arrival of m. As a consequence,
the lattice L of such a distributed computation
depends on the execution times of the processes
and communication times between them.
There are several remedies for this problem.

We assume in the following, that the internal
clock of each process is increased only when the
process is executed or simulated, i.e. it mea-
sures the time as in a real run.

1. One solution is to make a real run of the
distributed computation on the target sys-
tem, and store for each process the arrival
time of every message which gives rise to
a new event of this process (or the state of
the program counter of the process at the
arrival time etc.) During the enumeration,
the end of an event can be easily recon-
structed from this data.

2. Another solution is to arti�cially limit the
length of the execution of a single event.
This has the disadvantage that the total
number of global states might increase.

10



8 Acknowledgments

The �rst author would like to thank Professor
Friedemann Mattern, ETH Zurich, for valuable
suggestions.

References

[1] A. Andrzejak and K. Fukuda. Optimiza-
tion over k-set polytopes and e�cient k-
set enumeration. In Proc. 6th International
Workshop on Algorithms and Data Struc-
tures (WADS'99), LNCS 1663, pages 1-12,
Vancouver, August 1999.

[2] D. Avis and K. Fukuda. Reverse search for
enumeration. Disc. Applied Math., 65:21�
46, 1996.

[3] O. Babao�glu and K. Marzullo. Consistent
global states of distributed systems: fun-
damental concepts and mechanisms. In S.
J. Mullender, editor, Distributed Systems,
Chapter 4, ACM Press, 1993.

[4] O. Babao�glu and M. Raynal. Speci�cation
and Veri�cation of Behavioral Patterns
in Distributed Computations. In Proc.
Fourth IFIP Working Conference on De-
pendable Computing for Critical Applica-
tions, San Diego, 1994.

[5] A. Brüngger, A. Marzetta, K. Fukuda, and
J. Nievergelt. The parallel search bench
zram and its applications. Annals of Op-
erations Research, 90:45-63, 1999.

[6] K. M. Chandy and L. Lamport. Dis-
tributed Snapshots: Determining Global
States of Distributed Systems. ACM
Transactions on Computer Systems,
3(1):63-75, February 1985.

[7] R. Cooper and K. Marzullo. Consistent de-
tection of global predicates. In ACM/ONR

Workshop on Parallel and Distributed De-
bugging, pages 163-173, Santa Cruz, Cali-
fornia, May 1991.

[8] C. Diehl, C. Jard, and J. X. Rampon.
Reachability analysis on distributed exe-
cutions. In J.-P. Jouannaud M.-C. Gaudel,
editor, Proceedings of TAP-SOFT, LNCS
668, pages 629-643, Orsay, Paris, France,
April 1993.

[9] V. K. Garg and B. Waldecker. Detec-
tion of strong unstable predicates in dis-
tributed programs. IEEE Trans. on Par-
allel and Distributed Systems, 7(12):1323�
1333, 1996.

[10] K. Marzullo and G. Neiger. Detection of
global state predicates. In Proceedings of
the 5th International Workshop on Dis-
tributed Algorithms (WDAG-91), pages
254-272, Delphi, Greece, October 1991.

[11] N. Mittal and V. K. Garg. Debugging
distributed programs using controlled re-
execution. Symposium on Principles of
Distributed Computing , 239-248, 2000.

11


