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Abstract 
A new method of visualising search spaces on a two-
dimensional surface is presented, and applied to real search 
spaces created by the artificial evolution of electronic 
circuits. The visualisation method is inspired by work on 
search space neutrality, and its links with evolvability, both 
of which are discussed. The search space is transformed into 
a connected graph. Vertices on the graph are connected if 
their Hamming distance from each other is one, and a 
clustering algorithm reveals important inter-cluster 
pathways that can be reached by single mutations.  

Introduction 
The parametric search spaces to which evolutionary 
algorithms (EAs) are applied are very often represented 
graphically as two- or three-dimensional lines or surfaces. 
These plots contain peaks and troughs of varying height 
that represent the suitability or ‘fitness’ of a set of 
particular parameter values for a given task (eg. [11]). This 
form of visualization is useful in that it aids the 
understanding of certain concepts in evolutionary 
computation, such as ‘ruggedness’ or ‘local optima’. 
However, it is often misleading for the real search spaces 
found in the majority of applications, which possess very 
high dimensionality.  Of course, it is impossible to map 
high-dimensional spaces – where each point may have 
several hundred adjacent neighbours – onto a 2-
dimensional page without losing much of its structure. 
Hence, in designing such a mapping, salient characteristics 
of the space must be carefully picked out, and the rest 
discarded.  
 This paper presents a technique for visualizing the 
pathways within a search space that an evolutionary search 
is likely to follow. It is inspired by the concept of 
neutrality – single-bit mutations that have no effect on 
fitness – and its links with evolvability. The technique 
transforms a set of points in a given search space into 
vertices in a connected graph, which is displayed on a two 
dimensional surface. A clustering algorithm is then applied 
to group together sets of highly connected vertices. This 
has the effect of revealing pathways away from medium-
fitness regions that may otherwise be considered as local 
optima. The more such pathways, the more amenable to 
evolutionary search the space can be expected to be. The 
technique was originally conceived to assist with the 

design of evolvable architectures for electronic circuitry, 
and will be applied here to two examples from 
evolutionary electronics. However, since it does not rely 
on any domain-specific knowledge, it should be applicable 
to virtually any evolutionary task. No grand claims are 
made regarding the validity of this visualisation technique 
as a new metric for evolvability – indeed its drawbacks 
will be highlighted in the text. It does however represent an 
original way of graphically revealing important aspects of 
search space structure. 
 The next section gives a brief description of search 
space neutrality, and why designing an evolutionary 
system with high neutrality is a useful alternative to relying 
on domain-specific knowledge to guide the search. An 
example is then given showing why visualising the search 
space as a connected graph can aid the understanding of its 
evolvability. Next the technique for producing the 
visualisation is described in detail, with particular 
emphasis on the clustering process. Finally, the technique 
is applied to electronic search spaces and some comments 
made about their respective evolvability.  

Rationale 
Search space neutrality is rapidly finding favour as a 
means by which an evolutionary search can progress 
beyond local regions of sub-optimal fitness [1][11][4][13]. 
Neutral mutations are changes to an individual genotype 
that have no effect on the fitness of the corresponding 
phenotype. Paths accessible by neutral mutations can 
percolate through vast volumes of high-dimensional 
genotype space. Hence, a population of individuals can 
undergo a neutral drift along such pathways unencumbered 
by local optima, until regions of higher fitness are 
encountered. Consequently, many authors consider the 
degree of neutrality a search space possesses as having a 
positive correlation with its evolvability, particularly for 
those types of EA for which mutation is the primary 
operator, such as Evolution Strategies (ES) [10] or 
Harvey’s SAGA [3].  
 Assessing the degree of neutrality inherent in a given 
search space is difficult, because there are many factors 
determining whether or not a mutation can be expected to 
be neutral. For example, neutral mutations can occur in 
‘junk DNA’ – parts of the genotype that do not form an 
active part of the evolving solution. (For example, in the 



  context of evolutionary robotics, the speed of a motor may 
be genetically specified. But if the motor is disabled 
elsewhere in the genotype then modifications to its speed 
will have no effect). However, the same part may be 
incorporated into the solution at a later stage, resulting in 
mutations of that part no longer being neutral. Mutations 
occurring in non-junk DNA can also be neutral if either the 
behaviour of the phenotype is unchanged, or if the 
evaluation method apportions equal fitness to different 
behaviours.   

Figure 1.  Hypothetical search space represented as a 
connected graph. Vertices on the graph represent individual 
genotypes, shaded according to their fitness (see text). Where 
two genotypes are separated by a Hamming-distance of one, 
their vertices are connected 

 The visualisation method documented here derives from 
a study of neutrality and near-neutrality inherent in the 
search spaces of electronic circuits. The original intention 
was to ascertain visually which of a number of 
interconnection architectures (the reconfigurable wiring 
between circuit primitives) was the most appropriate for 
circuit design by artificial evolution. In the field of HE, the 
question of interconnection architecture remains open. 
Usually such architectures are designed using conventional 
electronic engineering knowledge, (for example, limiting 
the connectivity between component pins, forbidding 
positive feedback etc.). But some authors feel that the use 
of such domain-specific knowledge can prejudice the 
search in ways incompatible with evolution, if its effect on 
the search space is not taken into account [12]. The 
visualisation method in this paper was therefore conceived 
as a starting point towards alternative metrics, in this case, 
those interconnection architectures promoting search 
spaces with high neutrality [8].  The basic interpretation for such a visualisation is as 

follows: If an evolutionary search contains an individual 
lying in a cluster, then other individuals in the same cluster 
should be easily located by the search due to their short 
Hamming distance. The cluster can hence be regarded as a 
single individual. We would like to determine the 
likelihood of evolution progressing to another cluster – one 
which contains individuals of higher fitness, but which are 
on average of large Hamming distance from the original 
one. Even though the average Hamming distance between 
individuals in one cluster and those in another is large, 
there may be one or more pairs (with one individual in 
each cluster) separated by a single unit, as shown in figure 
1. Where this is the case, the evolutionary search is likely 
to extend to the new cluster, but if it is not, a more 
fortuitous double mutation is required. The purpose of 
representing the search space in this way is therefore to 
render such inter-cluster pairs of individuals as apparent as 
possible, as they represent a path that the search can 
follow. Of course there are other factors affecting the 
search's direction, such as suboptimal individuals existing 
within a cluster of poor ones, but this does not hinder the 
exploration of new regions one or two mutations away; if 
new clusters accessible through inter-cluster paths contain 
similar suboptima, then the search is likely to find them.   

Visualising Evolutionary Pathways 

Illustrating the concept 
The method attempts to represent a portion of the search 
space graphically in a manner similar to figure 1, a 
hypothetical search space in which individuals above a 
certain fitness threshold are represented as vertices on a 
connected graph. Vertices are connected if the individuals 
they represent are genetically separated from each other by 
one unit of Hamming distance. The vertices are also 
shaded according to a pre-determined fitness range. In this 
example, low-fitness individuals are black, suboptimal 
ones are grey, and optimal ones are white. A clustering 
algorithm is then applied to the graph to create spatially 
distinct regions of highly connected vertex sets. The fitness 
threshold is necessary to ensure that the graph has 
structure. Clearly if all individuals in the search space were 
included in the graph, then each vertex would have an 
equal number of one-Hamming-distance neighbours, and 
the clustering algorithm would fail. The threshold is set 
low enough that individuals of that fitness or above should 
be found reasonably quickly by random walk.  Note that 
while this method is inspired by work on neutrality, it 
utilises ranges of fitness rather than individuals of  equal 
fitness, hence it does not attempt to reveal truly neutral 
networks.   

 To illustrate these points, consider a small evolutionary 
population lying on cluster A in figure 1. The target is the 
optimum individual labelled q, located in cluster D. There 
exist two inter-cluster paths by which members of the 
population can travel with a single-bit mutation either to 
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cluster B or cluster C. Clearly C is the preferred choice, 
from which the optimum is easily reachable. If the 
population migrates to B, a path still exists back to A, so 
all is not lost. However it may migrate further to the 
suboptimum p, lying in a cluster disconnected from A, C, 
or D. The probability of backtracking to A is now reduced, 
especially if p is of significantly higher fitness than any 
suboptima yet encountered. If this search space had 
contained more inter-cluster paths, D may have been 
reached by another route, implying a space more amenable 
to evolutionary search.  

where ∆ designates the symmetric difference (union minus 
intersection). 
 Initially, vertices and agents are laid out at random 
positions on the grid. Agents are able to move around the 
grid, pick up, carry, or drop vertices. However they are not 
permitted to move onto a grid position already occupied by 
another agent, nor are they allowed to drop a vertex onto a 
position occupied by another vertex. At the grid 
boundaries, agents are reflected. Each agent has a short-
term memory containing the last m vertices it has carried 
and their new positions at the time of dropping. 
 The algorithm then proceeds in discrete time steps, t. At 
each t, an agent is selected at random. If a vertex lies on its 
position the agent can pick it up, likewise it can drop a 
vertex at that position if it is currently carrying one. If the 
agent is not carrying a vertex, it then moves r grid 
positions in a random direction, otherwise it moves r grid 
positions in a probabilistic manner towards the position of 
the most similar vertex in its memory to the one it is 
carrying. The probability ppick(vi) that an agent will pick up 
a vertex vi increases the more vi is isolated, i.e. where the 
number of similar vertices in the immediate neighbourhood 
is small. By contrast, the probability pdrop(vi) that an agent 
will drop a vertex vi  increases with the number of similar 
vertices in the immediate neighbourhood. These 
probabilities are defined by 

Clustering the vertices to reveal structure 
Constructing the connected graph from a selection of 
individual points in the search space in the manner 
described above is unproblematic. The only difficult phase 
of the visualisation process is the clustering phase. The 
clustering algorithm used in this preliminary study is now 
described.  
 The clustering method used is a distributed algorithm, 
which originates from the findings of entomologists who, 
on observing societies of ants, have remarked that larvae 
and food are not scattered randomly about the nest, but are 
sorted into homogenous piles. Deneubourg et al. [2] 
proposed a behavioural model where the spatial structure 
of the nest emerges as a result of simple, local interactions 
without the need for any centralised control or global 
representation of the environment. In Deneubourg’s model, 
the environment is a two-dimensional grid upon which is 
scattered a set of objects, each having random initial 
positions, and comparable with each other by an 
equivalence relationship. Each ant is modelled as an agent 
which is able to move on the grid, and displace the objects 
according to probabilistic rules using only local 
environmental information. The combined actions of a set 
of these agents lead to the grouping of objects which are 
comparable according to a measure of dissimilarity [9]. It 
forms one or more spatial groups such that similar objects 
belong to the same group, and dissimilar ones belong to 
different groups, each group being spatially distant from 
each other. This approach was later extended to work with 
vertices of connected graphs by defining a graph 
dissimilarity measure such that vertices having a number of 
common neighbours and few distinct neighbours share the 
same group [5]. This measure is suitable for unweighted, 
connected graphs of the form G=(V,E) where V is the set of 
vertices and E the set of edges, such that each edge 
connects two vertices.   
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where kp and kd are constants. The local density function f 
represents an estimation of the density of similar vertices in 
the vi locality, defined here by an area Σ of σ×σ grid 
elements in which vi lies at the centre: 
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where α is a scaling factor chosen empirically for optimal 
cluster separation. The performance of this algorithm has 
been measured with standard classes of connected graphs 
with up to 500 vertices, and compared with other 
clustering algorithms [5][6]. It is robust to large value 
ranges in the parameters shown above – they affect 
clustering speed and in some cases, cluster size. For more 
details the reader is referred to the citations above.  

 Let ρ(vi) denote the set of vertices of V which are 
adjacent to the vertex vi , and include vi :  
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then the dissimilarity between two vertices vi and vj is 
given by: 
  When applied to search space visualisation, this 

algorithm has the advantage that the number of clusters 
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why the dissimilarity measure detailed here may not be 
adapted for use with other clustering algorithms.  

Application to real search spaces 
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The visualisation technique is now applied to two real 
search spaces created by prior work in Hardware Evolution 
(HE), in which both circuit simulators and physical, 
reconfigurable hardware were used to evolve electronic 
inverter circuits with bipolar transistors [8]. In general, this 
research requires search spaces of the order 2100 to 21000 in 
size, but by careful limitation of the interconnection 
architecture and minimal use of component primitives, 
they can be reduced to 28 to 216; sufficient to allow an 
exhaustive search. Note that although small, these are real 
electronic spaces and exhibit all the characteristics of the 
much larger spaces described above: The necessity of 
correct power configuration introduces epistasis into the 
genotype, and the circuit noise levels are not constant, but 
vary according to which parts are earthed (connected to 
0V).  
 

 
 
Figure 2 illustrates the evolvable architecture used for 
experiments with minimal search space size, and shows 
details of two different genetic encodings. The architecture 
is as follows: a matrix of wires is connected to electronic 
components such as transistors which are used as basic 
evolutionary primitives. The matrix is also supplied with 
input/output and power connections. Each row/column 
intersection within the matrix contains a programmable 
switch so that the connection between any row and any 
column may be controlled genetically. In previous 
examples of this system, switch matrices with up to 48 
rows and columns, and up to ten transistors have been 
reported (eg.[7]). In the highly constrained versions of 

figure 2, only one transistor is allowed, and only the 
highlighted areas (white squares) are under genetic control, 
the rest being fixed open or closed. Closed switches are 
indicated on figure 2 by a black dot. 
 It is important to note that in physical implementations 
of this evolvable hardware, the programmable switches 
possess characteristics such as resistance and capacitance 
which affect – and are often exploited by – the evolving 
circuit [8][12]. Even when software simulators are used, 
these characteristics are incorporated into the switch 
model; only more subtle characteristics such as inductance 
are generally ignored.  Hence, the range of circuit 
behaviours achievable is larger than might be expected 
from different wiring configurations of a single primitive. 
 The two genetic encodings of figure 2 are analogous to 
different physical interconnection architectures. In (a), 
each of the 12 possible switches in the white highlighted 
area is directly mapped to one bit of the genotype, with bit 
values 1 & 0 specifying the on/off state of that switch. This 
will be referred to as the directly-mapped encoding. In (b) 
one switch per row is always closed and the rest open at 
any one time. Hence the genotype is divided into 2-bit 
addresses specifying by column, the closed switch for each 
row. An electronic equivalent of this mapping could be 
realised with rotary switches, the programmable versions 
of which are known as multiplexers. Hence it will be 
referred to as the multiplex-mapped encoding.  

Input
Output
0V
+2.8V

row 0
1
2
3

col 0 1 2

r0,c0 r3,c2r0,c2r0,c1

Genotype (12 bits)

Input
Output
0V
+2.8V

row 0
1
2
3

col 0 1 2

row 0

Genotype (8 bits)

3

row 1 row 2 row 3

(a) (b)

Figure 2. Two different genetic encodings for the evolution of 
an electronic circuit. Each is equivalent to a particular
interconnection architecture. Architecture (a) allows any or
all  of the switches highlighted by a white square to be on at
any one time. In architecture (b), exactly one switch per row
must be on. Architecture (a)’s search space is the larger at 12
bits, but this has little effect on the system’s evolvability. 

The task 
The task was to evolve a digital inverter, or NOT gate. To 
evaluate candidate circuits, a series of 10 test inputs 
containing 5 1s and 5 0s (logical Highs (+5V) and Lows 
(+0V) respectively) was applied sequentially to the input in 
alternating order. For each test input, the output voltage 
was measured twice (immediately on applying the input, 
then after a delay of 1ms) and summed. Fitness was scored 
as follows: 
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where t signifies the test input number, SH and SL the set of 
High and Low test inputs respectively, and vt (t=1,2..10) 
the circuit’s summed output voltage for test number t. 
Fitness f is only ever positive when the circuit inverts, that 
is, when the output voltage for a Low input is higher than 
that for a High input. Circuits whose output is constant (for 
example, where the input is disconnected) score zero, and 
circuits which reflect the input state (for example, where 
input is connected directly to the output) yield negative 
scores.  
 An exhaustive search was conducted for both direct and 
multiplex mappings, using the above fitness function. 
Fitness evaluation was carried out using circuit simulators 
in preference to physical hardware so that the results would 
not be distorted by measurement or circuit noise. The 
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resulting search spaces can now be displayed visually. 
Note that search spaces very similar to the two featured 
here have been studied in depth with a number of different 
metrics for evolvability [11]. 

Results 
Figure 3 shows the search space for the direct mapping, 
and figure 4 the space for the multiplex mapping. The 
same shapes and colours are used in both of the figures to 
distinguish individuals of fitness fIND lying within a given 
range.  The fitness threshold in both cases is set at zero; 
only individuals of zero fitness (constant-output circuits) or 
better have been selected for display. The vertices shown 
as light circles represent exclusively individuals of zero 
fitness, hence sets of connected light circles are true neutral 
networks.    
 Referring to figure 3 (direct mapping), we see several 
isolated clusters and few inter-cluster pathways. Some 
vertices – a few of which are near-optimal – are  
completely isolated, meaning that they can only be reached 
by single mutations of individuals with fitness less than 
zero. The single optimum (square, fitness 1205) lies in a 

distinct cluster centre-right in the diagram, which has no 
inter-cluster pathways. We can therefore speculate that an 
evolutionary search is unlikely to find it, being prone to 
wander around the suboptima (triangles) that appear in a 
few connected clusters.  The search space created by 
multiplex mapping has an entirely different structure. Here 
we see two main clusters, predominantly individuals of 
zero fitness, with multiple inter-cluster paths. The optimum 
individual is at the top of the right-hand cluster (star, 
fitness 2274). Although the other cluster contains sub-
optima, the abundance of inter-cluster paths, and the lack 
of isolated vertices and clusters implies far less difficulty 
in locating the optimum.   

fIND = 0
0 < fIND ≤10

10 < fIND ≤1000

2000 < fIND ≤3000

1000 < fIND ≤2000

Figure 3. Connected graph visualisation of the directly-
mapped search space of inverters. Directly below the graph
are the parameter values used for the clustering algorithm
(see text) 

Figure 4. Visualisation of the multiplex-mapped inverter 
space 

Conclusion 
In this paper, I have shown how pathways in small 
evolutionary search spaces can be visualised by 
transforming a subset of the space into a connected graph 
and applying a clustering algorithm to reveal its structure. 
This technique has been applied to two different encodings 
for a real-world problem, and has revealed large 
differences in the nature of their corresponding search 
spaces. The results suggest that the multiplex-mapped 
encoding should be more evolvable than the directly-
mapped encoding, and this is indeed the case – multiplex 
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mapping has consistently proved much more evolvable 
than direct mapping for more typical large search spaces, 
as well as the tiny ones documented here [8]. However, as 
a sole indicator of evolvability, this visualisation technique 
has severe drawbacks: Applying the technique to the vast 
search spaces generated by more typical genotype lengths 
is currently impossible. It could be applied to sample 
portions, but one could never be sure that the samples 
would be representative of the whole space.  
 Future work is geared towards applying the visualisation 
technique to sample regions, centred perhaps around 
sticking points observed during evolutionary runs. This 
would involve exhaustively evaluating points of Hamming 
distance h and less from a given phenotype (one that the 
EA was stuck at). Practical values of h would depend on 
the genotype length, but in general h  would have to be 
larger than 2. Once again, these sample regions would 
probably be unrepresentative of the whole space, but given 
that they are specific regions where evolutionary search 
slows or fails, some visual insight into their nature would 
be especially valuable.  
 It is important to re-iterate that there are many factors 
that influence evolvability in addition to those highlighted 
here. Nonetheless, this approach is a promising means of 
revealing structure in real search spaces, and the routes an 
evolutionary search might take through them.  
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