

Clique: A transparent, Peer-to-Peer
collaborative file sharing system

Bruno Richard, Donal Mac Nioclais, Denis Chalon
HP Laboratories Grenoble
HPL-2002-307
October 28th , 2002*

E-mail: Bruno.richard@hp.com, donal_mac-nioclais@hp.com, denis.chalon@hp.com

peer-to-peer,
groupware,
file system,
replication,
optimistic
reconciliation

Clique is a HP Labs Grenoble project. The goal is to develop a novel
peer-to-peer, server-less distributed file system based on optimistic
replication algorithms, which transparently integrates into users’ native
file systems. Some properties of the Clique system are epidemic
replication, a no lost updates consistency model and conflict
management, as well as disconnected operation and replica convergence.
These properties ensure that updates done by any peer of the group will
never be lost, and also that they will converge on all the group member
machines. The system is well adapted to highly disconnected
environments, network partitions, and variable join/leave rates. Even
under adverse connectivity conditions, over time, assuming intermittent
point-to-point connectivity between each peer and at least one other peer
in the group, the local file system view at each node converges towards a
consistent global view. The reconciliation protocol used is stateless and
has no notion of group membership, in order to achieve a linear worst-
case scalability in the order of N, the number of peers in the network. A
lower layer protocol has been developed, which enables one-to-all
communications by taking advantage of IP Multicast augmented with
network load management and a priority mechanism ensuring liveness of
the higher layers of the protocol.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Clique: A transparent, Peer-to-Peer collaborative file sharing system

Bruno Richard
Bruno.richard@hp.com

Donal Mac Nioclais
donal_mac-nioclais@hp.com

Denis Chalon
denis .chalon@hp.com

hp Laboratories

38053 Grenoble CEDEX 9
France

Abstract

Clique is a HP Labs Grenoble project. The goal is to de-
velop a novel peer-to-peer, server-less distributed file
system based on optimistic replication algorithms, which
transparently integrates into users’ native file systems.
Some properties of the Clique system are epidemic repli-
cation, a no lost updates consistency model and conflict
management, as well as disconnected operation and rep-
lica convergence. These properties ensure that updates
done by any peer of the group will never be lost, and also
that they will converge on all the group member ma-
chines. The system is well adapted to highly disconnected
environments, network partitions, and variable join/leave
rates. Even under adverse connectivity conditions, over
time, assuming intermittent point-to-point connectivity
between each peer and at least one other peer in the
group, the local file system view at each node converges
towards a consistent global view. The reconciliation pro-
tocol used is stateless and has no notion of group me m-
bership, in order to achieve a linear worst-case scalabil-
ity in the order of N, the number of peers in the network.
A lower layer protocol has been developed, which en-
ables one-to-all communications by taking advantage of
IP Multicast augmented with network load management
and a priority mechanism ensuring liveness of the higher
layers of the protocol.

1. Problem statement
The development of Clique was motivated by our per-

ceived need for a new file sharing technology which sup-
ports collaboration and synchronization in a simple,
transparent, reliable manner.

Scenario 1
In the first case, individuals are beginning to use a

range of increasingly powerful computing devices with
highly varying connectivity patterns. These range from
desktop PCs with a permanent, high bandwidth connec-
tion to the Internet via the corporate LAN and firewall,
through laptops with 802.11 cards that offer good connec-
tivity at medium speeds, but only within certain limited
areas, to powerful PDA devices with low bandwidth and
sporadic connectivity. A user, then, will soon have a sort
of ‘personal network’ of intermittently connected clients

which will increasingly be differentiated less by storage
and processing capacity and more by physical mobility,
network connectivity and bandwidth.

The user would increasingly like to be able to access a
given portfolio of files on any one of this wide range of
devices. He will expect modifications made to any of
these files on one device to be automatically reflected on
another, even when devices are geographically far apart
and connected to physically separate networks. He will
want all files to be immediately accessible from all de-
vices, even when operating in disconnected mode. Ide-
ally, the system should scale to an arbitrary number of
nodes, of shared files and versions.

Scenario 2
In the second case, users will want to share their port-

folio of files with groups of other people on other devices.
Each of the users would like to have read access to the
group files, but also to be able to modify them, to add
new files and delete other ones, and they would like to
have their changes shared with other users of the group.
Typically, Adam, an HP employee using Clique, might
wish to share files between 6 machines:

- A desktop PC connected via the HP intranet to the
desktop PC of his team colleagues, Bill and Christiana,
and separated from the Internet by a corporate firewall.

- A home 802.11 network of two desktop PCs which
are connected to an ISP via an ADSL link and have dy-
namically assigned IP addresses.

- A laptop on which he works while commuting be-
tween work and home. This computer is intermittently
connected to both the HP internal network and the home
office network.

During work hours, Adam’s laptop is connected to the
HP intranet. Modifications made to any of the files or
sub-directories in the Clique shared directory on one de-
vice, for example, Adam’s desktop PC, are automatically
propagated in the background to other connected me m-
bers of the Clique group, in this case his laptop and his
colleagues’ desktop PCs. At the end of the working day,
Adam may disconnect his laptop and continue to work on
some of the shared files as he commutes. On connecting
his laptop to the home network, the modifications he and
his colleagues made during the working day are auto-
matically reflected on the home network PCs, and any
modifications made, for example, by his wife Diana to the

files on the local network are uploaded to the laptop (and
hence may be uploaded to the HP desktop PCs, along
with Adam’s own modifications, when Adam reconnects
to the HP intranet the following morning). As we will
show, this epidemic-style replication pattern guarantees
that all nodes in the Clique group will eventually achieve
a consistent view of the file system state.

For maximum performance in the mobile environment,
Clique employs a weakly consistent update policy, which
does not place any limits on file modification permissions
even when network access is unavailable. This introduces
the likelihood of update conflicts, whereby mult iple users
independently modify a particular file. In this case, mult i-
ple distinct, but equally valid, versions of the file temp o-
rarily exist in the system. Current groupware solutions
often blindly overwrite some of these versions with others
according to a simplistic metric such as, for exa mple, a
comparison of version timestamps. This technique,
known as the Thomas write rule [1], can have disastrous
consequences from an end-user perspective. To avoid
this, Clique uses a ‘no lost updates’ reconciliation policy,
which guarantees that every update made at any node in
the group will always eventually be ‘seen’ by all other
nodes in the group, and no file modifications are ever
irretrievably lost by the system.

Motivations
Our design motivations can be split into three catego-

ries; ease of use, support for real world conditions and
some additional desirable system properties.

Ease of use
- Transparency: Integration into the user file system.

All nodes should ideally have a local copy of every file in
the system. From the end-user perspective, the shared
files should not appear to be any different from the stan-
dard files available on the user's hard disk. File access
latency times should not be noticeably different from or-
dinary files.

- Self-organization and full decentralization: No server
is required, and there is no primary (master) repository
for particular files. All nodes ‘own’ all files, and all share
the administrative tasks such as setup.

- Stability: At any moment, all files in the local file
system should be in a valid, usable state.

- Mutability: The files are fully mutable on all nodes,
i.e. writeable everywhere.

- Platform independence: Files may be shared between
disparate platforms.

Support for real world conditions
- Tolerance of network partitions. Long-term network

partitions are a feature of today’s Internet, where NAT
boxes, firewalls and wireless radio shadows are commo n-
place, and short-term partitions can occur when using
unreliable IP multicast. Certain highly mobile nodes (e.g.
Adam’s laptop in the scenario above) intermittently move

between network ‘islands’ and act as a ‘bridge’ between
network partitions.

- Resilience: Very high tolerance to node crashes and a
dynamically changing group membership, which is an
intrinsic characteristic of ad-hoc wireless networking
environments.

-Disconnected operation: All files should remain ac-
cessible while disconnected from the network.

- Scalability: Ideally, the Clique system should scale to
1,000 nodes, as well as large file sizes (1 GB) and large
numbers of files in the system (up to 10,000).

Additional desirable properties
- No lost updates semantics: This prevents the system

from losing a modification done on any node. In the worst
case, conflicting modifications are saved in alternate loca-
tions and notifications are sent to the appropriate node for
manual user correction.

- Any-to-any update transfer: Each peer must receive
all the updates issued by other peers, even if the original
issuers are not directly reachable. In other words, we wish
to achieve epidemic replication of the volume contents
[2].

Convergence: If no updates occur in the system, and if
nodes are reasonably interconnected (i.e. there are no
partitions in the peer connectivity graph), then all peers
will converge to the same replicated state [3].

2. Earlier work
Collaboration tools
Clique belongs to a class of applications called col-

laboration tools. This term refers to software that en-
hances communication, collaboration and co-ordination
between people by enabling them to share information in
a real-time, dynamic fashion. The earliest commercial
effort in this area was Lotus Notes [4], a personal infor-
mation management utility which today offers group
messaging, calendar and scheduling facilities with ad-
vanced security and scalability features for enterprise use.
However, it has very limited support for update recon-
ciliation. As it is based on a client-server model, it gener-
ally requires dedicated support staff and currently offers
no support for client mobility.

The current market leader in collaboration software is
Groove Workspace, developed by Ray Ozzie, the former
designer of the Lotus Notes System. This supports an
intuitive notion of shared spaces, through which users
interact with one another, sharing and even co-editing
documents in real time. Groove leverages its tight integra-
tion with common Microsoft Office utilities to support
automatic resolution of conflicting updates and can be
deployed in a lightweight peer-to-peer mode. However, a
centralized server is required to support advanced func-
tionality such as offline operation and security manage-
ment, and there is no support for network partitioning.

Collaborative interactions can only be conducted through
the Windows-only Groove application interface.

Distributed file systems
Clique can alternatively be seen as a lightweight dis-

tributed file system. The first such system, the Network
File System [5], [6] developed at Sun Microsystems al-
lows hosts to share files across a network using a pessi-
mistic replication model. A single replica is stored on a
central server and other devices access the file remotely
as required. NFS is unsuited to mobile environments as it
assumes permanent LAN connections between the server
and client nodes. The server represents a single point of
failure and a performance bottleneck in the system.

The Coda file system [7] was designed with the pri-
mary goal of providing high availability of shared infor-
mation by replacing the single central server with a group
of optimistically replicated servers. The drawback of this
client-server approach is that individual nodes cannot
synchronize in a pair-wise manner. Rather, all inter-node
communications must pass through a central server. Us-
ing Clique, two PDAs could synchronize automatically
on coming into range of a short-range wireless link such
as 802.11. This is not possible with a client-server model.

The ROAM file system [8] was the first to tackle the
problem of geographic mobility of users. Each ROAM
node is a peer in a specific ward (which may overlap),
similar to a Clique group. Wards elect a ward master and
are connected in an adaptive ring topology using point-to-
point links. In turn, ward masters form a ‘super-ward’.
All nodes are permitted to issue updates at any moment.
Updates are propagated to other ward me mbers, and
through the ward master to achieve eventual reconcilia-
tion across all wards. However, because the reconciliation
mechanism used is based on the standard version vector
mechanism introduced by Parker et al. [9], all ward me m-
bers are required to keep a list of peer nodes who are also
members of the ward, which potentially limits the
scalability of the system. Additionally, the mechanism by
which peers dynamically discover and join a particular
ward is not described.

A recent trend has been the emergence of a second
generation of fully peer-to-peer platforms. These systems
such as Freenet [10], Chord [11], Pastry [12], Tapestry
[13], CAN [14], Hypercast [15] typically construct a
server-less overlay network at the application level that
implements a distributed hash table . For each file to be
stored, a unique key is produced by, for exa mple, hashing
the file contents. Each node in the overlay stores files
relating to a particu lar range of key values. The system
supports put and get operations, which store and retrieve
files at the corresponding node. These overlay networks
exhibit very high levels of fault -tolerance and generally
scale well, with O(logN).

A number of file systems, such as CFS [16], PAST
[17] and Oceanstore [18] have been implemented on top
of these systems . PAST and CFS are designed for use as
read-only archival and publishing platforms. Oceanstore
adds a client-server layer with strong security and scal-
ability features in order to provide a global storage reposi-
tory distributed across a vast number of untrusted net-
work nodes. However, these systems do not support tradi-
tional file system semantics, such as delete and rename
operations.

Other efforts [19], [20], [21], [22], [23] have focused
on replication policies, such as gossiping, rumoring and
anti-entropy algorithms. In the Clique case, we took an
approach relying on a one-to-all communication channel.

Reconciliation
As optimistic replication systems allow replica con-

tents to diverge in the short term, they require a method
for reconciling conflicting updates which may be gener-
ated concurrently by different users. Reconciliation pro-
tocols have been categorized [24] into two general
classes, namely state transfer and operation transfer pro-
tocols.

State transfer protocols involve the transfer of the cur-
rent object state from the node with the most recent object
version to other objects. In the case of a file system appli-
cation such as Clique, the objects to be transferred are
files. As such, the entire file is transferred from the node
with the most recently updated file to other nodes, which
reconcile their states by overwriting their local file copy
with the newer version. Several methods have been de-
vised to synchronize replicas, such as the Thomas' write
rule [1], the two-timestamp algorithm [25], version vec-
tors [9] and version histories [26], as used in Clique.

Operation transfer protocols such as those used by
Bayou [27], Icecube [28], or Ficus [29] potentially offer
significant gains in bandwidth usage by transferring only
the semantic operations performed on an object since a
previous reconciliation, rather than the object itself. Ob-
jects are assumed to be synchronized (or null) across all
replicas at a given time, T0, and each node maintains an
ordered log of all operations performed on a particular
object since T0. As operations performed on an object are
application-specific, operation transfer protocols gener-
ally require knowledge of the semantics of the application
performing each update. In the case of a distributed file
system, each node in the system would also require a
consistent profile of applications.

Bayou [27] is a framework for asynchronous collabo-
ration applications which uses an operation transfer rec-
onciliation system. Each replicable object is associated
with a primary node, which is uniquely responsible for
assigning total ordering between operations. Updates are
propagated in an epidemic fashion between nodes. Pri-
mary nodes are defined to be well-connected, stable

nodes, which function as a cluster of servers for less well-
connected non-primary devices as in the Coda [7] model.

3. Approach
Terminology
We first define some terms used in the remainder of

this paper. We distinguish between a peer, a physical de-
vice on which Clique is installed, and an agent, a particu-
lar instance of the Clique application running in a sepa-
rate Java Virtual Machine on a peer. When launching the
Clique agent, the user supplies a pathname which points
to the root of the local Clique volume . Over time, the con-
tents of this directory will converge towards a global view
of the volume in a particular Clique group (i.e. among all
nodes that share a commo n communication channel). As
a single peer may simultaneously be running a number of
agents, it may consequently be a me mber of a number of
Clique groups.

Any file or sub-directory of an active volume is repli-
cated automatically across all currently active agents in
the group. A version of a local file is an object which
represents the state of the file’s contents (expressed in
terms of a unique hash of its contents) at a particular mo-
ment in time, namely the time of its last modification. A
given copy of a file corresponding to a particular version
on a given machine is called a replica of the file. Clique
does not currently have any notion of file ownership of a
particular file; all replicas are equal and an update made
to any replica will have the same ‘weight’ as an update
made at any other replica.

Network partitions can be of a temporary or a long-
term nature. Temporary partitions, commonly caused by
crashes or congestion at the network layer, generally heal
quickly, although in a wireless environment temporary
partitions should be considered more the rule than the
exception. Long-term partitions, on the other hand, never
heal. They may be the result of physical disconnections in
the network or network management tools that disrupt IP
routing such as NAT boxes and firewalls. The epidemic
replication protocol used by Clique can exploit physical
device mobility to allow convergence of volume state
even across long-term partitions.

Local agent system
The Clique system is implemented using agents run-

ning on each peer of a group. An agent has the following
responsibilities:

- Implementing the protocol for communication with
the other peers from the group.

- Scanning the local volume for any local modifica-
tions such as file addition, deletion, update or renaming.

- Communicating any performed modifications,
whether locally or remotely, to the other peers in the
group.

- Resolving update conflicts.

- Updating the local storage device with the appropri-
ate global modifications.

Architecture
Clique relies on a one-to-all group communication

channel. In our initial implementation, we use IP mult i-
cast as the transport layer. The channel protocol builds a
communication channel on top of this layer (See Figure
1). This protocol tolerates the three types of channel unre-
liability – (limited) loss, (finite) duplication, and reorder-
ing – which are inherent to IP multicast.

Figure 1: The Clique architecture

Additionally, IP multicast effectively limits the maxi-
mum packet size to 1472 data bytes over Ethernet links.
To handle these limitations conveniently, our channel
protocol masks message buffering, chunking and recon-
struction as well as low-level packet duplication and re-
ordering. This layer is also responsible for encryption of
the network traffic. A flow control mechanism based on
carrier-sensing and random back-off times has been im-
plemented to reduce the probability of broadcast colli-
sions and prevent saturation of the multicast channel. The
replication layer sees a (lossy) messaging channel offe r-
ing one-to-all communication with client-side buffering
in the form of input and output queues. It is responsible
for advertising the available local files and directories as
well as their properties, and for file transfer. Some details
are given below. The reconciliation layer ensures that
proper file versions are kept during synchronization be-
tween peers. Finally, the resolver layer handles conflict-
ing updates made by different peers.

Channel protocol
The lower-level channel protocol is an optimistic

variation on the Stenning protocol [30]. Stenning defined
a protocol whereby a high-level message is divided into
blocks. These blocks are sent indefinitely, until a message
receipt acknowledgement is received from a higher layer.
In our case, the blocks are sent only once. If blocks are
lost during transmission, a resend command will implic-
itly be issued at the higher layer.

Let there be two processes, P1 and P2, where P1 is con-
sidered the emitter of a message M, and P2 is the recipient
for M . Note that as we are using multicast in the Clique
case, there may be multiple P2 entities receiving the same
message at once. On receipt of a high-level message with
identifier IDM, P1 d ivides the message M into equally
sized chunks {m1, m2,…mN}, each of which is tagged with
a 0-based sequence number and the high-level identifier
IDM. P1 sends the chunks in sequence to P2. P2 receives
the chunks and places them in a buffer corresponding to
their message identifier IDM at the correct insertion point
indicated by its sequence number. The last chunk mN con-
tains an end-of-message tag to inform P2 that the message
is complete. Once all the chunks have been received by
P2, the received message M is exposed by placing it in the
higher layer incoming message queue. A garbage collec-
tor process periodically executes to detect corrupted or
incomplete messages. If P2 has received at least one
chunk of a particular message and has not received any
new chunks within x seconds (typically 5 seconds), the
message M is considered corrupted and all the buffered
chunks are discarded.

Replication protocol
The replication protocol has the following properties:
- Individual nodes have no knowledge of group me m-

bership. All messages broadcast by any group participant
are received by all currently reachable group members at
no additional cost in network bandwidth. Nodes are not
required to maintain tables of current or past neighbors,
removing a significant barrier to scalability inherent to
traditional distributed file systems.

- In order to guarantee high tolerance to the lossy na-
ture of the communication channel and the variable rate
of node disconnections, the higher-layer messaging pro-
tocol is entirely asynchronous and sessionless. Nodes
make no assumptions as to which other nodes may or
may not respond to a given message and as no acknowl-
edgements are required, message implosion is avoided. At
any moment, participants may disconnect from the group,
without any formal sign-off procedure.

- The broadcast nature of all inter-node communica-
tions permits efficient use of the network bandwidth.
When a file is updated at one node, another random group
member node will initiate the update transfer sequence.
Other currently connected nodes may take advantage of
these broadcasts to update the contents of their local vol-
ume at no cost in network bandwidth terms.

- Updates are propagated through the system in an epi-
demic fashion, i.e. two nodes do not have to be directly
connected in order to achieve eventual synchronization.
In particular, this allows updates to jump across islands of
nodes that are physically disconnected from one another,
using a bridge node which is intermittently connected to

both partitions, so that global consistency can be achieved
through strictly local operations.

Figure 2: The messaging protocol

The following describes a typical Clique replica recon-
ciliation process;
1. A file, F, is updated at node A.
2. Node A periodically broadcasts a Journal message,

which contains a description of the version history of
all files in the local volume.

3. Nodes B and C run the version history check proce-
dure locally and independently establish that A has a
more recent version of F.

4. Node B broadcasts a GetFileMetaData(fileHash)
message for F. Node C notes that Node B has made a
GetFileMetaData request and suppresses its own
such message.

5. Node A divides F into a number of chunks and com-
putes an SHA-1 hash of the contents of each chunk.
It then broadcasts a FileMetaData message which
lists each chunk’s hash along with a chunk ID.

6. Node B (or C) issues a sequence of
GetChunk(fileHash, startChunk, endChunk) mes-
sages.

7. Node A issues a sequence of Chunk(fileHash,
chunkID) messages containing the chunk contents.

Intelligent file transfer
The messaging protocol used in Clique is efficient for

transfer of large files whose contents have changed only
slightly, as only chunks which have changed are re-
quested by the receiving node. The chunk sizes are cur-
rently fixed, although we expect that further network
bandwidth gains could be achieved by employing a more
intelligent, variable chunk size algorithm such as that
used in LBFS [38].

Additionally, ‘rename’ operations are treated as a ‘cre-
ate/delete’ combination at the operation level, but the
agent can establish, based on a comparison of the hash
value of the file, that the operation is merely a ‘rename’
and will retrieve the deleted file from the Trash folder,
again at no cost in terms of network bandwidth.

Replica reconciliation
To synchronize a given object F between two sites a

and b, Clique uses a mechanism derived from the light-
weight version comparison protocol used by Reconcile
[26]. This relies on the knowledge of the past history of
the file at each of the sites. For each version of a given
file, a signature (based on an SHA-1 hash of the file con-
tents, and a local creation timestamp) is kept. This signa-
ture uniquely identifies the file. Let Fa

n be the signature
of the nth version of the file seen on site a. Each site
knows a list of past versions of the file; site a knows the
history {Fa

1, Fa
2,…Fa

n} and site b knows the history {Fb
1,

Fb
2,…Fb

m}. Note that it is not necessary to keep the actual
previous contents of the file, merely a history of file sig-
natures, which requires very little space.

To synchronize, b sends a its version history {Fb
1, Fb

2,
Fb

3,… Fb
m}. a will compare its latest version's signature

Fa
n with b's latest version signature Fb

m. If both signatures
are equal, the files are identical and do not need synchro-
nization. If signatures are different, a will check for
equality between his latest version and one of the past
versions of b. In other words, it will compare Fa

n with
each element in {Fb

1, Fb
2, Fb

3,… Fb
m-1}. If a match is

found, i.e. ∃ k∈ {1,… m-1}, Fa
n = Fb

k., this means that b's
version of the file is a direct descendant of a's latest ver-
sion, which implies that a's version of F may be safely
overwritten with b's. A similar mechanism applies in the
opposite order when b's version of F needs to be re-
freshed with a's. When both comparisons fail, this means

that there is no direct ancestral link between the versions,
and an update conflict is detected.

Deletion detection
Delete operations: These must be treated explicitly in a

file reconciliation system. To see why this is so, imagine
the following scenario; two users, A and B, set up a
Clique network and synchronize their volume contents. B
subsequently disconnects from the network and deletes a
file F while offline. Upon B’s reconnection, B would
falsely establish that A had a new file, F, which was not
in B’s volume and would initiate a file transfer, when in
fact the correct behavior would be for A to delete its copy
of F.
To avoid this, a deletion operation is recorded in the ver-
sion history for a file as a new version, with a hash value
of 0, and the version history for the deleted file is kept in
the local Journal for a long time (see “Garbage collec-
tion” below). This allows update/delete and create/delete
conflicts to be detected, triggering a warning to the user.

Garbage collection
Version history-based reconciliation algorithms tradi-

tionally suffer from garbage collection problems. In a
stateless system such as Clique, where nodes have no
knowledge of group membership and so cannot establish
at any given moment whether they have successfully rec-
onciled with all other nodes in the group, it can be diff i-
cult to detect when a version can be safely deleted from a
node’s version history table. Clique applies a pragmatic
localized approach to this problem – we simply delete any
version in the local version history at each node that is
more than x days old. This will potentially cause ‘false
positive’ conflicts to be detected when nodes which have
been completely disconnected from the group for more
than x days rejoin, but does not violate the ‘no lost up-
dates’ policy. We anticipate that such problems will be
rarely if ever seen in real-life scenarios, if the x value is
set to a sufficiently large value such as 30 days.

Conflict resolution
It has been shown [31] after analysis of typical usage

patterns that write sharing conflicts occur on a very sel-
dom basis (about 1 conflict for 10000 file operations),
hence justifying an optimistic approach. Kistler [32] also
shows that concurrent file sharing in a distributed envi-
ronment is rare: 99% of file updates are made by the same
user that made the previous update, and the probability of
different users modifying the same file in the same week
is less than 0.4%. Huizinga [33] shows worse figures but
still confirms Kistler's main points.

A number of previous projects have focused on the
development of automatic resolvers [8], [34], which can
automatically handle conflicting updates on particular file
types. For instance, CVS is able to resolve update con-

flicts made to a given source code file provided that
changes have not been made on the same lines of code
within the file. More generally, it has been shown by Re i-
her et al. [35] that using automatic resolvers can reduce
the number of unrecoverable conflicts by several orders
of magnitude in a typical work environment.

In the Clique project, we did not focus on the auto-
matic resolution of conflicting updates. Instead, when an
update conflict between 2 machines is detected, the most
recent file (according to a simple timestamp comparison)
is stored in-place, while a new file is created in a desig-
nated Conflict directory containing the older file contents.
A notification (pop-up dialog or e-mail warning message)
is sent to the user who can proceed with a manual resolu-
tion of the problem.

Security
The Clique security model is currently very straight-

forward yet surprisingly useful in practice. Group me m-
ber candidates use an out-of-band mechanism to obtain a
password along with the group channel characteristics
such as IP address and port for entry to a particular Clique
group. All group communications are encrypted using
this password. Users who have the password hence have
full read/write permissions for all files in the Clique vol-
ume, although it is not possible to interpret any group
message for a potential attacker who does not know the
password.

Topological and routing issues
As the native communication channel used by Clique

is based on IP multicast, it suffers from routability limita-
tions. Multicast is disabled on most IP routers. Conse-
quently, we have extended Clique's messaging protocol to
allow communication between machines which are not
members of the same IP subnet.

We have designed a specific extension of Clique which
uses UDP as a transport layer. Although UDP is a one-to-
one communications channel, it is routable and permits
communication between machines which are separated
from each other by routers and possibly firewalls. In
Figure 3, we demonstrate the UDP link between machines
B and C which makes it possible to extend the Clique
community across both work subnets. Note that machine
B runs two instances of the Clique agent concurrently.
One of the agents communicates in multicast mode with
the other peers in subnet 1, and the other communicates in
direct point-to-point mode with machine C in subnet 2.
The roaming laptop E intermittently connects to the work
subnet 1 or to the home subnet. This intermittent multiply
connected machine makes it possible for machines from
different subnets which do not have any direct IP routing
capability between them (such as machines A and G) to
be members of the same Clique group.

Figure 3: Topological capabilities

By extension, we can show that machines from any
number of subnets can be added to the Clique group, pro-
vided that subnets linked by routable links or by intermit-
tent multiply-connected machines form a connected
graph.

Scalability
As described above, we are using carrier sensing and

backoff algorithms at the channel protocol level. This,
combined with the randomized periodic AdvertiseJournal
message broadcasts by each node, ensures that the overall
network bandwidth used remains constant regardless of
the number of agents in the Clique group or the number
of file versions in the volume. Note, however, that each
individual peer has a proportionately reduced opportunity
to communicate with the group and hence global conver-
gence times are a function of the number of agents in the
group.

4. Current Status and Future Work

We have developed a working prototype of Clique us-
ing Java. The abstraction offered by this language makes
it possible to share files between various architectures
such as PDAs, Windows or Linux PCs. There is more
research work to be done in order to refine the optimal
timer values for the channel protocol, wh ich should offer
good network load control, memory and CPU usage.

An additional step forward would be to improve our
file monitor. This component currently performs a file
examination periodically. We would like to replace it by a
kernel-level component that would react to file system
operations such as file creation, modification, move or
rename, and directly notify the local Clique agent. This
would reduce the CPU load and would also be more reac-
tive to user changes, as these would be immediately de-
tected rather than periodically. Such a low-level piece of

code would however break the platform independency
requirement.

We also envisage a number of additional features that
would greatly enhance the application functionality from
the user perspective. A quota system will be implemented
to eliminate the possibility of overflowing the maximum
local storage capacity. A manual ‘refresh’ option could
also be incorporated so that a user can guarantee that his
local volume contains the most recently modified files,
available on other currently connected peers.

In case of update conflict, our current resolver is only
able to keep copies of the conflicting versions of a file
and report the conflict to the user. A useful extension of
Clique would be to port these automatic resolver plat-
forms described earlier [8], [37] to our architecture in
order to limit the number of conflict instances that require
user intervention.

Our security model could be extended to provide file
ownership semantics as well as access control lists over
files, the goal being to relax the ‘all nodes own all files’
criterion and replace it with mechanisms for setting
read/write rights for files. This will allow the system to
prevent inadvertent deletions and introduce a level of
privacy control. Repudiation of group members is a secu-
rity issue that we did not handle in the current version of
Clique. Golding [35] shows that decentralized group
management in a scalable system is difficult, so we may
have to loosen our scalability constraints in order to pro-
vide a higher level of security.

5. Conclusion
We described our original work on Clique, a peer-to-

peer replicated file system. Essentially, Clique links to-
gether nodes within a group and facilitates file and direc-
tory sharing across group members. It offers a number of
interesting benefits at the user level. These include auto-
matic and transparent operation, and adaptation to real-
world conditions such as varying network capabilities and
support for disconnections through epidemic replication
and asynchronous messaging. The project also satisfies a
number of important technical constraints such as global
convergence of the system and a no lost update policy.
The Clique dis tributed algorithm is based on a one-to-all
communication paradigm, taking advantage of the IP
multicast transport layer.

Our paper describes the prior art in this field, and how
we designed the Clique system, its agent architecture and
its distributed algorithms. The protocols we developed are
session-less, providing good scalability in terms of the
number of peers in a group, while preserving the network
usage, processing and memory overhead necessary for the
system to operate. An initial prototype implementation
has been developed which demonstrates that the approach
we have taken is a practical one.

6. References
[1] R. Thomas, “A majority consensus approach to concur-
rency control for multiple copy databases”, ACM Trans. On
Database Sy stems (TODS), 1979.

[2] D. Agrawal, A. El Abbadi, and R.C. Steinke, “Epidemic
Algorithms in Replicated Databases”, Proceedings of PODS '97,
pp. 161-172

[3] N. Vidot, M. Cart, J. Ferrié, M. Suleiman, “Copies con-
vergence in a distributed real-time environment”, Proceedings
of the ACM Conference on Computer Supported Cooperative
Work, 2000.

[4] L. Kawell, S. Beckhardt, T. Halvorsen, R.R. Ozzie, I.
Greif, "Replicated Document Management in a Group Commu-
nication System", Proceedings of the Second Conference on
Computer Supported Cooperative Work, 1988.

[5] “RFC1094: NFS: Network File System Protocol Specifica-
tion”, http://www.faqs.org/rfcs/rfc1094.html

[6] “RFC1813: NFS Version 3 Protocol Specification”.
http://www.faqs.org/rfcs/rfc1813.html

[7] J. Kistler, M. Satyanarayanan et al. “Coda: A Highly-
Available File System for a Distributed Workstation Environ-
ment”. IEEE Transactions on Computers 39(4); 447-459, April
1990.

[8] David H. Ratner. "Roam: A Scalable Replication System
for Mobile and Distributed Computing", PhD thesis, UC Los
Angeles, 1998. UCLA-CSD-970044.

[9] D.S. Parker, G. Popek, G. Rudisin, A. Stoughton, B.
Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, C. Kline,
"Detection of mutual inconsistency in distributed systems",
IEEE Transactions on Software Engineering, 9(3):240-246,
1983.

[10] I. Clarke, O. Sandberg, B. Wiley, T.W. Hong, Freenet: A
Distributed Anonymous Information Storage and Retrieval Sy s-
tem in Designing Privacy Enhancing Technologies: Interna-
tional Workshop on Design Issues in Anonymity and Unob-
servability, LNCS 2009, Springer: New York, 2001.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for Internet applications”, Proceedings of ACM SIGCOMM’01,
San Diego, 2001.

[12] A. Rowstron, P. Druschel, “Pastry: Scalable, distributed
object location and routing for large scale peer-to-peer systems”,
Proceedings of IFIP/ACM Middleware 2001, Heidelberg, Ger-
many, 2001.

[13] B. Zhao, J. Kubiatowicz, A. Joseph, “Tapestry: An infra-
structure for fault-resilient wide-area location and routing”,
Technical Report UCB//CSD-01-1141, U.C. Berkeley, 2001.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shen-
ker, “A Scalable Content-Addressable Network”, Proceedings
of ACM SIGCOMM’01, San Diego, 2001.

[15] J. Liebeherr, M.Nahas, W. Si, “Application-layer Mult i-
casting with Delaunay Triangulation Overlays”, University of

Virginia Department of Computer Science, Technical Report
CS-2001-26, 2001.

[16] F. Dabek, M. F. Kaashoek et al, “Wide-area co-operative
storage with CFS”, Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP '01), 2001.

[17] A. Rowstron, P. Druschel, “Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility”, Proceedings of ACM Symposium on Operating Sy s-
tems Principles (SOSP'01), 2001.

[18] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W.
Weimer, C. Wells, B. Zhao, “OceanStore: An Architecture for
Global-Scale Persistent Storage”, Proceedings of the Ninth In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS 2000), 2000.

[19] B. Kantor, P. Rapsey, “RFC977: Network News Transfer
Protocol”, http://info.internet.isi.edu/in-notes/-
rfc/files/rfc977.txt

[20] A.J. Demers, D.H. Greene, C. Hauser, W. Irish, J. Larson,
"Epidemic algorithms for replicated database maintenance", 6th
Symposium on Principls of Distributed Computing (PODC),
Vancouver, Canada, 1987.

[21] M.J. Lin, K. Marzullo, "Directional gossip: Gossip in a
wide-area network:, 3rd European Dependable Computing Con-
ference, Prague, Czech, pp. 364-379 1987.

[22] Y. Saito, B.N. Bershad, H.M. Levy, "Manageability, avail-
ability and performance in Porcupine: a highly scalable, cluster-
based mail service", In 17th Symposium on Operating System
Principles (SOSP), Kiawah Island, SC, USA, 1999.

[23] J. Gray, P. Helland, P. O'Neil, D. Shasha, "Dangers of
replication and a solution", In International Conference on Man-
agement of Data, Montréal, Canada, 1996.

[24] Y. Saito, M. Shapiro. “Replication: Optimistic Ap-
proaches”. HP Labs Technical Report HPL-2002-33, 2002.

[25] L. Kawell, et al. "Replicated Document Management in a
Group Communication System", in Second IEEE Conference on
Computer-Supported Cooperative Work. Portland, Oregon,
1988.

[26] J. Howard, “Reconcile User’s Guide”, Technical Report
TR99-14, Mitsubishi Electric Research Laboratory, 1999.

[27] W.K. Edwards, E.D. Mynatt, K. Petersen, M.J. Spreitzer,
D.B. Terry, M.M. Theimer, " Designing and Implementing
Asynchronous Collaborative Applications with Bayou", In Proc.
of ACM Symp. on User Interface Software & Technology,
pages 119-128, 1997.

[28] A.-M. Kermarrec, A. Rowstron, M. Shapiro, P. Druschel,
"The IceCube approach to the reconciliation of diverging repli-
cas", 20th Symposium on Principles of Distributed Computing
(PODC), Newport, RI, USA, 2001.

[29] T.W. Page Jr., R.G. Guy, J.S. Heidemann, D.H. Ratner,
P.L. Reiher, A. Goel, G.H. Kuenning, G.J. Popek, "Perspectives
on Optimistically Replicated, Peer-to-Peer Filing", Software,
Practice and Experience, 28(2), pp. 155-180, 1998.

[30] N.V. Stenning, “A data transfer protocol”, Computer Net-
works, 1(2):99-110, 1976.

[31] A. Wang; P.L. Reiher; R. Bagrodia, "A simulation evalua-
tion of optimistic replicated filing in mobile environments,"
Proceedings of International Performance, Computing and
Communications Scottsdale, AZ, USA, 1999, pp.43-51.

[32] J.J. Kistler, M. Satyanarayanan, "Disconnected operation
in the Coda file system", ACM Transactions on Computer Sy s-
tems, 10(1), 3-25, 1992.

[33] D.M. Huizinga, K.A. Heflinger, " Experience with Con-
nected and Disconnected Operation of Portable Notebook Com-
puters in Distributed Systems" In Proceedings of The Workshop
on Mobile Computing Systems and Applications, 1994.

[34] P. Cederqvist et al, “Version management with CVS”,
http://www.cvshome.org/docs/manual, 2001.

[35] Reiher, P., Heidemann, J., Ratner, D., Skinner, G., and
Popek, G. Resolving File Conflicts in the Ficus File System. In
Proc. the Summer USENIX Conference, pp. 183--195, 1994.

[36] R.A. Golding, "Weak-consistency group communication
and membership", Ph. D. thesis, University of California Santa
Cruz Technical Report no. USCS-CRL-92-52, 1992.

[37] Reiher, P., Heidemann, J., Ratner, D., Skinner, G., and
Popek, G. Resolving File Conflicts in the Ficus File System. In
Proc. the Summer USENIX Conference, pp. 183--195, 1994.

[38] A. Muthitacharoen, B. Chen, D. Mazières, “A Low-
bandwidth Network File System”, In Proceedings of the. 18th
Symposium on Operating Systems Principles, Banff, Canada,
2001.

