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Abstract 

Clique is a HP Labs Grenoble project. The goal is to de-
velop a novel peer-to-peer, server-less distributed file 
system based on optimistic replication algorithms, which 
transparently integrates into users’ native file systems. 
Some properties of the Clique system are epidemic repli-
cation, a no lost updates consistency model and conflict 
management, as well as disconnected operation and rep-
lica convergence. These properties ensure that updates 
done by any peer of the group will never be lost, and also 
that they will converge on all the group member ma-
chines. The system is well adapted to highly disconnected 
environments, network partitions, and variable join/leave 
rates. Even under adverse connectivity conditions, over 
time, assuming intermittent point-to-point connectivity 
between each peer and at least one other peer in the 
group, the local file system view at each node converges 
towards a consistent global view. The reconciliation pro-
tocol used is stateless and has no notion of group me m-
bership, in order to achieve a linear worst-case scalabil-
ity in the order of N, the number of peers in the network. 
A lower layer protocol has been developed, which en-
ables one-to-all communications by taking advantage of 
IP Multicast augmented with network load management 
and a priority mechanism ensuring liveness of the higher 
layers of the protocol. 
 

1. Problem statement 
The development of Clique was motivated by our per-

ceived need for a new file sharing technology which sup-
ports collaboration and synchronization in a simple, 
transparent, reliable manner. 

 
Scenario 1 
In the first case, individuals are beginning to use a 

range of increasingly powerful computing devices with 
highly varying connectivity patterns. These range from 
desktop PCs with a permanent, high bandwidth connec-
tion to the Internet via the corporate LAN and firewall, 
through laptops with 802.11 cards that offer good connec-
tivity at medium speeds, but only within certain limited 
areas, to powerful PDA devices with low bandwidth and 
sporadic connectivity. A user, then, will soon have a sort 
of ‘personal network’ of intermittently connected clients 

which will increasingly be differentiated less by storage 
and processing capacity and more by physical mobility, 
network connectivity and bandwidth. 

The user would increasingly like to be able to access a 
given portfolio of files on any one of this wide range of 
devices. He will expect modifications made to any of 
these files on one device to be automatically reflected on 
another, even when devices are geographically far apart 
and connected to physically separate networks. He will 
want all files to be immediately accessible from all de-
vices, even when operating in disconnected mode. Ide-
ally, the system should scale to an arbitrary number of 
nodes, of shared files and versions. 

 
Scenario 2 
In the second case, users will want to share their port-

folio of files with groups of other people on other devices. 
Each of the users would like to have read access to the 
group files, but also to be able to modify them, to add 
new files and delete other ones, and they would like to 
have their changes shared with other users of the group. 
Typically, Adam, an HP employee using Clique, might 
wish to share files between 6 machines: 

- A desktop PC connected via the HP intranet to the 
desktop PC of his team colleagues, Bill and Christiana, 
and separated from the Internet by a corporate firewall. 

- A home 802.11 network of two desktop PCs which 
are connected to an ISP via an ADSL link and have dy-
namically assigned IP addresses. 

- A laptop on which he works while commuting be-
tween work and home. This computer is intermittently 
connected to both the HP internal network and the home 
office network. 

During work hours, Adam’s laptop is connected to the 
HP intranet. Modifications made to any of the files or 
sub-directories in the Clique shared directory on one de-
vice, for example, Adam’s desktop PC, are automatically 
propagated in the background to other connected me m-
bers of the Clique group, in this case his laptop and his 
colleagues’ desktop PCs. At the end of the working day, 
Adam may disconnect his laptop and continue to work on 
some of the shared files as he commutes. On connecting 
his laptop to the home network, the modifications he and 
his colleagues made during the working day are auto-
matically reflected on the home network PCs, and any 
modifications made, for example, by his wife Diana to the 



files on the local network are uploaded to the laptop (and 
hence may be uploaded to the HP desktop PCs, along 
with Adam’s own modifications, when Adam reconnects 
to the HP intranet the following morning). As we will 
show, this epidemic-style replication pattern guarantees 
that all nodes in the Clique group will eventually achieve 
a consistent view of the file system state. 

For maximum performance in the mobile environment, 
Clique employs a weakly consistent update policy, which 
does not place any limits on file modification permissions 
even when network access is unavailable. This introduces 
the likelihood of update conflicts, whereby mult iple users 
independently modify a particular file. In this case, mult i-
ple distinct, but equally valid, versions of the file temp o-
rarily exist in the system. Current groupware solutions 
often blindly overwrite some of these versions with others 
according to a simplistic metric such as, for exa mple, a 
comparison of version timestamps. This technique, 
known as the Thomas write rule [1], can have disastrous 
consequences from an end-user perspective. To avoid 
this, Clique uses a ‘no lost updates’ reconciliation policy, 
which guarantees that every update made at any node in 
the group will always eventually be ‘seen’ by all other 
nodes in the group, and no file modifications are ever 
irretrievably lost by the system. 

 
Motivations 
Our design motivations can be split into three catego-

ries; ease of use, support for real world conditions and 
some additional desirable system properties. 

Ease of use 
- Transparency: Integration into the user file system. 

All nodes should ideally have a local copy of every file in 
the system. From the end-user perspective, the shared 
files should not appear to be any different from the stan-
dard files available on the user's hard disk. File access 
latency times should not be noticeably different from or-
dinary files. 

- Self-organization and full decentralization: No server 
is required, and there is no primary (master) repository 
for particular files. All nodes ‘own’ all files, and all share 
the administrative tasks such as setup. 

- Stability: At any moment, all files in the local file 
system should be in a valid, usable state. 

- Mutability: The files are fully mutable on all nodes, 
i.e. writeable everywhere. 

- Platform independence: Files may be shared between 
disparate platforms. 

Support for real world conditions 
- Tolerance of network partitions. Long-term network 

partitions are a feature of today’s Internet, where NAT 
boxes, firewalls and wireless radio shadows are commo n-
place, and short-term partitions can occur when using 
unreliable IP multicast. Certain highly mobile nodes (e.g. 
Adam’s laptop in the scenario above) intermittently move 

between network ‘islands’ and act as a ‘bridge’ between 
network partitions. 

- Resilience: Very high tolerance to node crashes and a 
dynamically changing group membership, which is an 
intrinsic characteristic of ad-hoc wireless networking 
environments. 

-Disconnected operation: All files should remain ac-
cessible while disconnected from the network.  

- Scalability: Ideally, the Clique system should scale to 
1,000 nodes, as well as large file sizes (1 GB) and large 
numbers of files in the system (up to 10,000). 

Additional desirable properties 
- No lost updates semantics: This prevents the system 

from losing a modification done on any node. In the worst 
case, conflicting modifications are saved in alternate loca-
tions and notifications are sent to the appropriate node for 
manual user correction. 

- Any-to-any update transfer: Each peer must receive 
all the updates issued by other peers, even if the original 
issuers are not directly reachable. In other words, we wish 
to achieve epidemic replication of the volume contents 
[2]. 

Convergence: If no updates occur in the system, and if 
nodes are reasonably interconnected (i.e. there are no 
partitions in the peer connectivity graph), then all peers 
will converge to the same replicated state [3]. 

2. Earlier work 
Collaboration tools 
Clique belongs to a class of applications called col-

laboration tools. This term refers to software that en-
hances communication, collaboration and co-ordination 
between people by enabling them to share information in 
a real-time, dynamic fashion. The earliest commercial 
effort in this area was Lotus Notes [4], a personal infor-
mation management utility which today offers group 
messaging, calendar and scheduling facilities with ad-
vanced security and scalability features for enterprise use. 
However, it has very limited support for update recon-
ciliation. As it is based on a client-server model, it gener-
ally requires dedicated support staff and currently offers 
no support for client mobility. 

The current market leader in collaboration software is 
Groove Workspace, developed by Ray Ozzie, the former 
designer of the Lotus Notes System. This supports an 
intuitive notion of shared spaces, through which users 
interact with one another, sharing and even co-editing 
documents in real time. Groove leverages its tight integra-
tion with common Microsoft Office utilities to support 
automatic resolution of conflicting updates and can be 
deployed in a lightweight peer-to-peer mode. However, a 
centralized server is required to support advanced func-
tionality such as offline operation and security manage-
ment, and there is no support for network partitioning. 



Collaborative interactions can only be conducted through 
the Windows-only Groove application interface. 
 

Distributed file systems  
Clique can alternatively be seen as a lightweight dis-

tributed file system. The first such system, the Network 
File System [5], [6] developed at Sun Microsystems al-
lows hosts to share files across a network using a pessi-
mistic replication model. A single replica is stored on a 
central server and other devices access the file remotely 
as required. NFS is unsuited to mobile environments as it 
assumes permanent LAN connections between the server 
and client nodes. The server represents a single point of 
failure and a performance bottleneck in the system. 

The Coda file system [7] was designed with the pri-
mary goal of providing high availability of shared infor-
mation by replacing the single central server with a group 
of optimistically replicated servers. The drawback of this 
client-server approach is that individual nodes cannot 
synchronize in a pair-wise manner. Rather, all inter-node 
communications must pass through a central server. Us-
ing Clique, two PDAs could synchronize automatically 
on coming into range of a short-range wireless link such 
as 802.11. This is not possible with a client-server model. 

The ROAM file system [8] was the first to tackle the 
problem of geographic mobility of users. Each ROAM 
node is a peer in a specific ward  (which may overlap), 
similar to a Clique group. Wards elect a ward master and 
are connected in an adaptive ring topology using point-to-
point links. In turn, ward masters form a ‘super-ward’. 
All nodes are permitted to issue updates at any moment. 
Updates are propagated to other ward me mbers, and 
through the ward master to achieve eventual reconcilia-
tion across all wards. However, because the reconciliation 
mechanism used is based on the standard version vector 
mechanism introduced by Parker et al. [9], all ward me m-
bers are required to keep a list of peer nodes who are also 
members of the ward, which potentially limits the 
scalability of the system. Additionally, the mechanism by 
which peers dynamically discover and join a particular 
ward is not described. 

A recent trend has been the emergence of a second 
generation of fully peer-to-peer platforms. These systems 
such as Freenet [10], Chord [11], Pastry [12], Tapestry 
[13], CAN [14], Hypercast [15] typically construct a 
server-less overlay network  at the application level that 
implements a distributed hash table . For each file to be 
stored, a unique key is produced by, for exa mple, hashing 
the file contents. Each node in the overlay stores files 
relating to a particu lar range of key values. The system 
supports put and get operations, which store and retrieve 
files at the corresponding node. These overlay networks 
exhibit very high levels of fault -tolerance and generally 
scale well, with O(logN).  

A number of file systems, such as CFS [16], PAST 
[17] and Oceanstore [18] have been implemented on top 
of these systems . PAST and CFS are designed for use as 
read-only archival and publishing platforms. Oceanstore 
adds a client-server layer with strong security and scal-
ability features in order to provide a global storage reposi-
tory distributed across a vast number of untrusted net-
work nodes. However, these systems do not support tradi-
tional file system semantics, such as delete and rename 
operations. 

Other efforts [19], [20], [21], [22], [23] have focused 
on replication policies, such as gossiping, rumoring and 
anti-entropy algorithms. In the Clique case, we took an 
approach relying on a one-to-all communication channel. 

 
Reconciliation 
As optimistic replication systems allow replica con-

tents to diverge in the short term, they require a method 
for reconciling  conflicting updates which may be gener-
ated concurrently by different users. Reconciliation pro-
tocols have been categorized [24] into two general 
classes, namely state transfer and operation transfer pro-
tocols. 

State transfer protocols involve the transfer of the cur-
rent object state from the node with the most recent object 
version to other objects. In the case of a file system appli-
cation such as Clique, the objects to be transferred are 
files. As such, the entire file is transferred from the node 
with the most recently updated file to other nodes, which 
reconcile their states by overwriting their local file copy 
with the newer version. Several methods have been de-
vised to synchronize replicas, such as the Thomas' write 
rule [1], the two-timestamp  algorithm [25], version vec-
tors [9] and version histories [26], as used in Clique. 

Operation transfer protocols such as those used by 
Bayou [27], Icecube [28], or Ficus [29] potentially offer 
significant gains in bandwidth usage by transferring only 
the semantic operations performed on an object since a 
previous reconciliation, rather than the object itself. Ob-
jects are assumed to be synchronized (or null) across all 
replicas at a given time, T0, and each node maintains an 
ordered log of all operations performed on a particular 
object since T0. As operations performed on an object are 
application-specific, operation transfer protocols gener-
ally require knowledge of the semantics of the application 
performing each update. In the case of a distributed file 
system, each node in the system would also require a 
consistent profile of applications.  

Bayou [27] is a framework for asynchronous collabo-
ration applications which uses an operation transfer rec-
onciliation system. Each replicable object is associated 
with a primary node, which is uniquely responsible for 
assigning total ordering between operations. Updates are 
propagated in an epidemic fashion between nodes. Pri-
mary nodes are defined to be well-connected, stable 



nodes, which function as a cluster of servers for less well-
connected non-primary devices as in the Coda [7] model. 

3. Approach 
Terminology 
We first define some terms used in the remainder of 

this paper. We distinguish between a peer, a physical de-
vice on which Clique is installed, and an agent, a particu-
lar instance of the Clique application running in a sepa-
rate Java Virtual Machine on a peer. When launching the 
Clique agent, the user supplies a pathname which points 
to the root of the local Clique volume . Over time, the con-
tents of this directory will converge towards a global view 
of the volume in a particular Clique group  (i.e. among all 
nodes that share a commo n communication channel). As 
a single peer may simultaneously be running a number of 
agents, it may consequently be a me mber of a number of 
Clique groups. 

Any file or sub-directory of an active volume is repli-
cated automatically across all currently active agents in 
the group. A version of a local file is an object which 
represents the state of the file’s contents (expressed in 
terms of a unique hash of its contents) at a particular mo-
ment in time, namely the time of its last modification. A 
given copy of a file corresponding to a particular version 
on a given machine is called a replica of the file. Clique 
does not currently have any notion of file ownership of a 
particular file; all replicas are equal and an update made 
to any replica will have the same ‘weight’ as an update 
made at any other replica. 

Network partitions can be of a temporary or a long-
term nature. Temporary partitions, commonly caused by 
crashes or congestion at the network layer, generally heal 
quickly, although in a wireless environment temporary 
partitions should be considered more the rule than the 
exception. Long-term partitions, on the other hand, never 
heal. They may be the result of physical disconnections in 
the network or network management tools that disrupt IP 
routing such as NAT boxes and firewalls. The epidemic 
replication protocol used by Clique can exploit physical 
device mobility to allow convergence of volume state 
even across long-term partitions. 

 
Local agent system 
The Clique system is implemented using agents run-

ning on each peer of a group. An agent has the following 
responsibilities: 

- Implementing the protocol for communication with 
the other peers from the group. 

- Scanning the local volume for any local modifica-
tions such as file addition, deletion, update or renaming. 

- Communicating any performed modifications, 
whether locally or remotely, to the other peers in the 
group. 

- Resolving update conflicts. 

- Updating the local storage device with the appropri-
ate global modifications. 

 
Architecture 
Clique relies on a one-to-all group communication 

channel. In our initial implementation, we use IP mult i-
cast as the transport layer. The channel protocol builds a 
communication channel on top of this layer (See Figure 
1). This protocol tolerates the three types of channel unre-
liability – (limited) loss, (finite) duplication, and reorder-
ing – which are inherent to IP multicast. 

 

 

Figure 1: The Clique architecture 

Additionally, IP multicast effectively limits the maxi-
mum packet size to 1472 data bytes over Ethernet links. 
To handle these limitations conveniently, our channel 
protocol masks message buffering, chunking and recon-
struction as well as low-level packet duplication and re-
ordering. This layer is also responsible for encryption of 
the network traffic. A flow control mechanism based on 
carrier-sensing and random back-off times has been im-
plemented to reduce the probability of broadcast colli-
sions and prevent saturation of the multicast channel. The 
replication layer sees a (lossy) messaging channel offe r-
ing one-to-all communication with client-side buffering 
in the form of input and output queues. It is responsible 
for advertising the available local files and directories as 
well as their properties, and for file transfer. Some details 
are given below. The reconciliation layer ensures that 
proper file versions are kept during synchronization be-
tween peers. Finally, the resolver layer handles conflict-
ing updates made by different peers. 

 
Channel protocol 
The lower-level channel protocol is an optimistic 

variation on the Stenning protocol [30]. Stenning defined 
a protocol whereby a high-level message is divided into 
blocks. These blocks are sent indefinitely, until a message 
receipt acknowledgement is received from a higher layer. 
In our case, the blocks are sent only once. If blocks are 
lost during transmission, a resend command will implic-
itly be issued at the higher layer. 



Let there be two processes, P1 and P2, where P1 is con-
sidered the emitter of a message M, and P2 is the recipient 
for M . Note that as we are using multicast in the Clique 
case, there may be multiple P2 entities receiving the same 
message at once. On receipt of a high-level message with 
identifier IDM, P1 d ivides the message M into equally 
sized chunks {m1, m2,…mN}, each of which is tagged with 
a 0-based sequence number and the high-level identifier 
IDM. P1 sends the chunks in sequence to P2. P2 receives 
the chunks and places them in a buffer corresponding to 
their message identifier IDM at the correct insertion point 
indicated by its sequence number. The last chunk mN con-
tains an end-of-message tag to inform P2 that the message 
is complete. Once all the chunks have been received by 
P2, the received message M is exposed by placing it in the 
higher layer incoming message queue. A garbage collec-
tor process periodically executes to detect corrupted or 
incomplete messages. If P2 has received at least one 
chunk of a particular message and has not received any 
new chunks within x seconds (typically 5 seconds), the 
message M is considered corrupted and all the buffered 
chunks are discarded. 

 
Replication protocol 
The replication protocol has the following properties: 
- Individual nodes have no knowledge of group me m-

bership. All messages broadcast by any group participant 
are received by all currently reachable group members at 
no additional cost in network bandwidth. Nodes are not 
required to maintain tables of current or past neighbors, 
removing a significant barrier to scalability inherent to 
traditional distributed file systems. 

- In order to guarantee high tolerance to the lossy na-
ture of the communication channel and the variable rate 
of node disconnections, the higher-layer messaging pro-
tocol is entirely asynchronous and sessionless. Nodes 
make no assumptions as to which other nodes may or 
may not respond to a given message and as no acknowl-
edgements are required, message implosion is avoided. At 
any moment, participants may disconnect from the group, 
without any formal sign-off procedure.  

- The broadcast nature of all inter-node communica-
tions permits efficient use of the network bandwidth. 
When a file is updated at one node, another random group 
member node will initiate the update transfer sequence. 
Other currently connected nodes may take advantage of 
these broadcasts to update the contents of their local vol-
ume at no cost in network bandwidth terms. 

- Updates are propagated through the system in an epi-
demic fashion, i.e. two nodes do not have to be directly 
connected in order to achieve eventual synchronization. 
In particular, this allows updates to jump across islands of 
nodes that are physically disconnected from one another, 
using a bridge node which is intermittently connected to 

both partitions, so that global consistency can be achieved 
through strictly local operations. 
 

 

Figure 2: The messaging protocol 

The following describes a typical Clique replica recon-
ciliation process; 
1. A file, F, is updated at node A.  
2. Node A periodically broadcasts a Journal message, 

which contains a description of the version history of 
all files in the local volume. 

3. Nodes B and C run the version history check proce-
dure locally and independently establish that A has a 
more recent version of F. 

4. Node B broadcasts a GetFileMetaData(fileHash) 
message for F. Node C notes that Node B has made a 
GetFileMetaData request and suppresses its own 
such message. 



5. Node A divides F into a number of chunks and com-
putes an SHA-1 hash of the contents of each chunk. 
It then broadcasts a FileMetaData message which 
lists each chunk’s hash along with a chunk ID. 

6. Node B (or C) issues a sequence of 
GetChunk(fileHash, startChunk, endChunk) mes-
sages. 

7. Node A issues a sequence of Chunk(fileHash, 
chunkID)  messages containing the chunk contents. 

 
Intelligent file transfer 
The messaging protocol used in Clique is efficient for 

transfer of large files whose contents have changed only 
slightly, as only chunks which have changed are re-
quested by the receiving node. The chunk sizes are cur-
rently fixed, although we expect that further network 
bandwidth gains could be achieved by employing a more 
intelligent, variable chunk size algorithm such as that 
used in LBFS [38]. 

Additionally, ‘rename’ operations are treated as a ‘cre-
ate/delete’ combination at the operation level, but the 
agent can establish, based on a comparison of the hash 
value of the file, that the operation is merely a ‘rename’ 
and will retrieve the deleted file from the Trash folder, 
again at no cost in terms of network bandwidth. 

 
Replica reconciliation 
To synchronize a given object F between two sites a 

and b, Clique uses a mechanism derived from the light-
weight version comparison protocol used by Reconcile 
[26]. This relies on the knowledge of the past history of 
the file at each of the sites. For each version of a given 
file, a signature (based on an SHA-1 hash of the file con-
tents, and a local creation timestamp) is kept. This signa-
ture uniquely identifies the file. Let Fa

n be the signature 
of the nth version of the file seen on site a. Each site 
knows a list of past versions of the file; site a knows the 
history {Fa

1, Fa
2,…Fa

n} and site b knows the history {Fb
1, 

Fb
2,…Fb

m}. Note that it is not necessary to keep the actual 
previous contents of the file, merely a history of file sig-
natures, which requires very little space. 

To synchronize, b sends a its version history {Fb
1, Fb

2, 
Fb

3,… Fb
m}. a will compare its latest version's signature 

Fa
n with b's latest version signature Fb

m. If both signatures 
are equal, the files are identical and do not need synchro-
nization. If signatures are different, a will check for 
equality between his latest version and one of the past 
versions of b. In other words, it will compare Fa

n with 
each element in {Fb

1, Fb
2, Fb

3,… Fb
m-1}. If a match is 

found, i.e. ∃ k∈ {1,… m-1}, Fa
n = Fb

k., this means that b's 
version of the file is a direct descendant of a's latest ver-
sion, which implies that a's version of F may be safely 
overwritten with b's. A similar mechanism applies in the 
opposite order when b's version of F  needs to be re-
freshed with a's. When both comparisons fail, this means 

that there is no direct ancestral link between the versions, 
and an update conflict is detected. 

 
Deletion detection 
Delete operations: These must be treated explicitly in a 

file reconciliation system. To see why this is so, imagine 
the following scenario; two users, A and B, set up a 
Clique network and synchronize their volume contents. B 
subsequently disconnects from the network and deletes a 
file F while offline. Upon B’s reconnection, B would 
falsely establish that A had a new file, F, which was not 
in B’s volume and would initiate a file transfer, when in 
fact the correct behavior would be for A to delete its copy 
of F. 
To avoid this, a deletion operation is recorded in the ver-
sion history for a file as a new version, with a hash value 
of 0, and the version history for the deleted file is kept in 
the local Journal for a long time (see “Garbage collec-
tion” below). This allows update/delete and create/delete 
conflicts to be detected, triggering a warning to the user. 

 
Garbage collection 
Version history-based reconciliation algorithms tradi-

tionally suffer from garbage collection problems. In a 
stateless system such as Clique, where nodes have no 
knowledge of group membership and so cannot establish 
at any given moment whether they have successfully rec-
onciled with all other nodes in the group, it can be diff i-
cult to detect when a version can be safely deleted from a 
node’s version history table. Clique applies a pragmatic 
localized approach to this problem – we simply delete any 
version in the local version history at each node that is 
more than x days old. This will potentially cause ‘false 
positive’ conflicts to be detected when nodes which have 
been completely disconnected from the group for more 
than x days rejoin, but does not violate the ‘no lost up-
dates’ policy. We anticipate that such problems will be 
rarely if ever seen in real-life scenarios, if the x  value is 
set to a sufficiently large value such as 30 days.  

 
Conflict resolution 
It has been shown [31] after analysis of typical usage 

patterns that write sharing conflicts occur on a very sel-
dom basis (about 1 conflict for 10000 file operations), 
hence justifying an optimistic approach. Kistler [32] also 
shows that concurrent file sharing in a distributed envi-
ronment is rare: 99% of file updates are made by the same 
user that made the previous update, and the probability of 
different users modifying the same file in the same week 
is less than 0.4%. Huizinga [33] shows worse figures but 
still confirms Kistler's main points. 

A number of previous projects have focused on the 
development of automatic resolvers [8], [34], which can 
automatically handle conflicting updates on particular file 
types. For instance, CVS is able to resolve update con-



flicts made to a given source code file provided that 
changes have not been made on the same lines of code 
within the file. More generally, it has been shown by Re i-
her et al. [35] that using automatic resolvers can reduce 
the number of unrecoverable conflicts by several orders 
of magnitude in a typical work environment. 

In the Clique project, we did not focus on the auto-
matic resolution of conflicting updates. Instead, when an 
update conflict between 2 machines is detected, the most 
recent file (according to a simple timestamp comparison) 
is stored in-place, while a new file is created in a desig-
nated Conflict directory containing the older file contents. 
A notification (pop-up dialog or e-mail warning message) 
is sent to the user who can proceed with a manual resolu-
tion of the problem.  

 
Security 
The Clique security model is currently very straight-

forward yet surprisingly useful in practice. Group me m-
ber candidates use an out-of-band mechanism to obtain a 
password along with the group channel characteristics 
such as IP address and port for entry to a particular Clique 
group. All group communications are encrypted using 
this password. Users who have the password hence have 
full read/write permissions for all files in the Clique vol-
ume, although it is not possible to interpret any group 
message for a potential attacker who does not know the 
password. 

 
Topological and routing issues 
As the native communication channel used by Clique 

is based on IP multicast, it suffers from routability limita-
tions. Multicast is disabled on most IP routers. Conse-
quently, we have extended Clique's messaging protocol to 
allow communication between machines which are not 
members of the same IP subnet. 

We have designed a specific extension of Clique which 
uses UDP as a transport layer. Although UDP is a one-to-
one communications channel, it is routable and permits 
communication between machines which are separated 
from each other by routers and possibly firewalls. In 
Figure 3, we demonstrate the UDP link between machines 
B and C which makes it possible to extend the Clique 
community across both work subnets. Note that machine 
B runs two instances of the Clique agent concurrently. 
One of the agents communicates in multicast mode with 
the other peers in subnet 1, and the other communicates in 
direct point-to-point mode with machine C in subnet 2. 
The roaming laptop E intermittently connects to the work 
subnet 1 or to the home subnet. This intermittent multiply 
connected machine makes it possible for machines from 
different subnets which do not have any direct IP routing 
capability between them (such as machines A and G) to 
be members of the same Clique group. 

 

 

Figure 3: Topological capabilities 

By extension, we can show that machines from any 
number of subnets can be added to the Clique group, pro-
vided that subnets linked by routable links or by intermit-
tent multiply-connected machines form a connected 
graph. 

 
Scalability 
As described above, we are using carrier sensing and 

backoff algorithms at the channel protocol level. This, 
combined with the randomized periodic AdvertiseJournal 
message broadcasts by each node, ensures that the overall 
network bandwidth used remains constant regardless of 
the number of agents in the Clique group or the number 
of file versions in the volume. Note, however, that each 
individual peer has a proportionately reduced opportunity 
to communicate with the group and hence global conver-
gence times are a function of the number of agents in the 
group. 

4. Current Status and Future Work 

We have developed a working prototype of Clique us-
ing Java. The abstraction offered by this language makes 
it possible to share files between various architectures 
such as PDAs, Windows or Linux PCs. There is more 
research work to be done in order to refine the optimal 
timer values for the channel protocol, wh ich should offer 
good network load control, memory and CPU usage. 

An additional step forward would be to improve our 
file monitor. This component currently performs a file 
examination periodically. We would like to replace it by a 
kernel-level component that would react to file system 
operations such as file creation, modification, move or 
rename, and directly notify the local Clique agent. This 
would reduce the CPU load and would also be more reac-
tive to user changes, as these would be immediately de-
tected rather than periodically. Such a low-level piece of 



code would however break the platform independency 
requirement. 

We also envisage a number of additional features that 
would greatly enhance the application functionality from 
the user perspective. A quota system will be implemented 
to eliminate the possibility of overflowing the maximum 
local storage capacity. A manual ‘refresh’ option could 
also be incorporated so that a user can guarantee that his 
local volume contains the most recently modified files, 
available on other currently connected peers. 

In case of update conflict, our current resolver is only 
able to keep copies of the conflicting versions of a file 
and report the conflict to the user. A useful extension of 
Clique would be to port these automatic resolver plat-
forms described earlier [8], [37] to our architecture in 
order to limit the number of conflict instances that require 
user intervention. 

Our security model could be extended to provide file 
ownership semantics as well as access control lists over 
files, the goal being to relax the ‘all nodes own all files’ 
criterion and replace it with mechanisms for setting 
read/write rights for files. This will allow the system to 
prevent inadvertent deletions and introduce a level of 
privacy control. Repudiation of group members is a secu-
rity issue that we did not handle in the current version of 
Clique. Golding [35] shows that decentralized group 
management in a scalable system is difficult, so we may 
have to loosen our scalability constraints in order to pro-
vide a higher level of security. 

5. Conclusion 
We described our original work on Clique, a peer-to-

peer replicated file system. Essentially, Clique links to-
gether nodes within a group and facilitates file and direc-
tory sharing across group members. It offers a number of 
interesting benefits at the user level. These include auto-
matic and transparent operation, and adaptation to real-
world conditions such as varying network capabilities and 
support for disconnections through epidemic replication 
and asynchronous messaging. The project also satisfies a 
number of important technical constraints such as global 
convergence of the system and a no lost update policy. 
The Clique dis tributed algorithm is based on a one-to-all 
communication paradigm, taking advantage of the IP 
multicast transport layer. 

Our paper describes the prior art in this field, and how 
we designed the Clique system, its agent architecture and 
its distributed algorithms. The protocols we developed are 
session-less, providing good scalability in terms of the 
number of peers in a group, while preserving the network 
usage, processing and memory overhead necessary for the 
system to operate. An initial prototype implementation 
has been developed which demonstrates that the approach 
we have taken is a practical one. 
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