

pFilter: Global Information Filtering
and Dissemination

Chunqiang Tang1, Zhichen Xu
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-304
October 28th , 2002*

E-mail: sarrmor@cs.rochester.edu, zhichen@hpl.hp.com

 Due to the overwhelming amount of information on the Internet, it is

becoming increasingly difficult for people to find relevant information in
a timely fashion. Information filtering and dissemination systems allow
users to register persistent queries called user profiles. They detect new
contents, match them against the profiles, and continuously notify users
when relevant information becomes available. Existing systems, however,
either are not scalable; or do not support matching of unstructured
documents. Unstructured documents such as text, HTML or multimedia
files, account for a significant percentage of contents on the Internet.

To address the limits of the existing systems, we describe pFilter, a
global-scale decentralized information filtering and dissemination system
for unstructured documents. To handle potentially billions of documents
for millions of subscribers, pFilter connects potentially millions of
computers in national (and international) computing Grids or ordinary
desktops into a structured peer-to-peer overlay network. Nodes in the
overlay collectively publish/collect documents, build index, register
profiles, and filter and disseminate information. To enable efficient and
accurate match between profiles and documents without flooding either
documents or profiles, profiles in the overlay are organized around their
vector representations (based on modern information retrieval algorithms)
such that the searching space of a new document is organized around
related profiles. In pFilter, we introduce a new application-level multicast
algorithm that allows documents to be efficiently disseminated to a large
number of interested parties

* Internal Accession Date Only Approved for External Publication
1 Dept. of Computer Science, University of Rochester, Rochester, NY 14627-0226
 Copyright Hewlett-Packard Company 2002

pFilter: Global Information Filtering and Dissemination

Chunqiang Tang
�

Dept. of Computer Science
Univ. of Rochester

Rochester, NY 14627-0226

sarrmor@cs.rochester.edu

Zhichen Xu
HP Laboratories

1501 Page Mill Rd., MLS 1177
Palo Alto, CA 94304

zhichen@hpl.hp.com

ABSTRACT
Due to the overwhelming amount of information on the Internet, it
is becoming increasingly difficult for people to find relevant infor-
mation in a timely fashion. Information filtering and dissemination
systems allow user to register persistent queries called user pro-
files. They detect new contents, match them against the profiles,
and continuously notify users when relevant information becomes
available. Existing systems, however, either are not scalable; or
do not support matching of unstructured documents. Unstructured
documents such as text, HTML or multimedia files, account for a
significant percentage of contents on the Internet.

To address the limits of the existing systems, we describe pFilter, a
global-scale decentralized information filtering and dissemination
system for unstructured documents. To handle potentially billions
of documents for millions of subscribers, pFilter connects poten-
tially millions of computers in national (and international) comput-
ing Grids or ordinary desktops into a structured peer-to-peer over-
lay network. Nodes in the overlay collectively publish/collect doc-
uments, build index, register profiles, and filter and disseminate
information. To enable efficient and accurate match between pro-
files and documents without flooding either documents or profiles,
profiles in the overlay are organized around their vector representa-
tions (based on modern information retrieval algorithms) such that
the searching space of a new document is organized around related
profiles. In pFilter, we introduce a new application-level multicast
algorithm that allows documents to be efficiently disseminated to a
large number of interested parties.

1. INTRODUCTION
Today, Internet has become the single most important information
source that affects our everyday lives. With huge amount of in-
formation at our finger tips is certainly an advantage, but it also
poses a big challenge with respect to getting desired information in
a timely fashion.

Search engines such as Google only partially solve this problem
by collecting documents on the Internet and using information re-
trieval (IR) algorithms [10] to rank them. Search engines, however,
cannot guarantee timely access to relevant information. Because of
the size of the Internet and large quantity of Internet contents, it
usually takes search engines months to crawl the Web and update
indices, and they typically can index only

��� ���
or

��� ��� � �
of the

entire Internet contents [1]. Furthermore, users who concern about
latest information have to frequently revisit search engines for pos-
sible updates.
�
This work was done when the author worked at HP Labs in fall

2002.

Instead of requiring users constantly checking for new contents, in-
formation filtering and dissemination systems [16] take over this re-
sponsibility. These systems allow user to register persistent queries
called user profiles. They detect new contents, match them against
the profiles, and continuously notify users when relevant informa-
tion becomes available. We illustrate the use of such a system using
a science project as an example.

At the beginning of a project, scientists use search engines to find
related work and manually select out the most relevant papers. Be-
sides adding these papers to their bibliography, they also register
user profiles to have the system notify them when documents sim-
ilar to those papers show up. As a result, they are constantly in-
formed about relevant papers, discussions in news groups, etc., al-
ways staying at the cutting edge of the field. Later, after writing up
a paper, they can register another profile to ask the system to notify
them when their paper is cited.

The above ideal scenario, unfortunately, is still far from the reality.
The majority of existing event-notification systems support only
subject- or schema-based publish/subscribe model, thereby can-
not be used to filer unstructured documents such as text, HTML
or multimedia files. Unstructured documents account for a signif-
icant percentage of contents on the Internet. Several systems do
filter unstructured documents (e.g., SIFT [16]), but they run at a
centralized site, and are unable to filter or disseminate information
at a large scale.

To address these limitations, we are developing a planetary-scale
decentralized information filtering and dissemination system pFil-
ter, aiming to processing billions of documents for millions of users.
There are three major challenges for pFilter: (1) scalability—how
to keep pace with the astonishing growth rate of the Internet con-
tent; (2) matching—how to accurately match documents against
profiles without flooding potentially billions of documents or pro-
files to every node in the system; and (3) dissemination—how to
efficiently disseminate documents to a large number of subscribers.

To achieve good scalability in pFilter, computers in national (and
international) computing Grids or ordinary desktops are connected
into a structured peer-to-peer (P2P) overlay network [7]. Nodes
in the overlay collectively publish/collect documents, build index,
register profiles, and filter and disseminate information. The ad-
vantage of adopting a P2P model is that the capability of the system
scales when the user population increases.

To support accurate full-text searches, pFilter adopts state-of-the-
art IR algorithms such as vector space model (VSM) and latent se-

mantic indexing (LSI) [2]. These algorithms represent documents
and queries as vectors, and measure the similarity between a query
and a document as the cosine of the angle between their vector
representations. To avoid the flooding of either documents or pro-
files, profiles in the P2P overlay are organized around their vector
representations such that the searching space of a new document
is organized around related profiles, achieving both efficiency and
accuracy.

To efficiently deliver documents to a large number of interested
parties, pFilter uses application-level multicast to disseminate doc-
uments. Several features distinguish pFilter’s multicast algorithm
from other publish/subscribe systems. First, based on semantics,
similar subscriptions are fused to reduce the number of individual
profiles. Second, to support potentially billions of multicast trees,
the resources devoted to a multicast tree is a tunable continuum
depending on the importance of each tree. Last, unlike existing
multicast tree construction algorithms that only utilize limited local
proximity information, our landmark+latency measurement algo-
rithm can generate an accurate global proximity map of the system
in a decentralized fashion, which is used to guide the construction
of multicast trees.

The remainder of the paper is organized as the follows. Section 2
provides background information about peer-to-peer overlay net-
works and information retrieval algorithms. We describe profile
matching and document dissemination in Section 3 and Section 4
respectively. A discussion is provided in Section 5. Related work
is given in Section 6. Section 7 concludes the paper.

2. BACKGROUND
pFilter is built atop eCAN [15] (a hierarchical version of CAN) and
uses extensions to VSM and LSI [2]. The Cartesian space abstrac-
tion of CAN makes it particularly attractive when used to store vec-
tor representations of documents generated by IR algorithms such
as VSM and LSI. We describe these basic components below.

2.1 DHT Systems and eCAN
Recent DHT systems, represented by CAN, Chord, and Pastry, of-
fer an administration-free and fault-tolerant application-level over-
lay network. The basic functionality these system provide is a dis-
tributed hash table (DHT). In these systems, there is a consistent
binding between objects and nodes. Locating an object is reduced
to the problem of routing to the node that hosts the object from the
node where the query is submitted.

CAN stands for content-addressable network. It organizes the log-
ical space as a d-dimensional Cartesian space (a � -torus) and par-
titions it into zones. One or more nodes serve(s) as owner(s) of a
zone. An object key is a point in the space, and the object is stored
at the node whose zone contains the point. Locating an object is
reduced to the problem of routing to the node that hosts the object.
Routing from a source node to a destination node is equivalent to
routing from one zone to another in the Cartesian space. A node
join corresponds to picking a random point in the Cartesian space,
routing to the zone that contains the point, and splitting the zone
with its current owner(s).

An example of CAN is shown in Figure 1. There are five nodes A to
E in the overlay network. Each node owns a zone in the Cartesian
space. Initially C owns the entire zone at the upper-right corner.
When D joins, the zone owned by C splits and part of the zone is
given to D. When D wants to retrieve the object with key � � ��� � � � ���

,

0.4
0.1

0.5 - 1
0- 0.5

E

B
0- 0.5
0.5 - 1

A
0- 0.5
0- 0.5

D
0.7 5 - 1

0.5 - 1

C
0.5 - 0.7 5
0.5 - 1

z o n e c o o r d i n a t e s

o b j e c t k e y
0

0

1

1

Figure 1: A 2-dimensional CAN.

it sends the request to E because E’s coordinates is closer to the
object key. E forwards the request to A and A sends the object
back to D directly.

eCAN improves CAN’s logical routing cost to � �
	�� �
� ���
, and takes

only routes that closely approximate the underlying Internet topol-
ogy.

2.2 Vector Space Model
VSM represents documents and queries as term vectors. Each el-
ement of the vector represents the importance of a word (term) in
the document or query. The weight of an element is often computed
using the term frequency * inverse document frequency (TF*IDF)
scheme [2]. The intuition behind it is that two factors decide the
importance of a term in a document: the frequency of the term in
the document and the frequency of the term in other documents. If
a term appears in a document with a high frequency, there is a good
chance that the term could be used to differentiate the document
from others. However, if the term also appears in a lot of other
documents, e.g., computer, the importance of the term should
be penalized. VSM usually normalizes vectors to unit Euclidean
norm to compensate for differences in document length. During a
retrieval operation, the query vector is compared to document vec-
tors. Those closest to the query vector are considered to be similar
and are returned. A common measure of similarity is the cosine of
the angle between vectors.

2.3 Latent Semantic Indexing
Literal matching schemes such as VSM suffer from synonymy, pol-
ysemy and noise in documents. LSI has been proposed to address
these problems. It uses singular value decomposition (SVD) to
transform and truncate a matrix of term vectors computed from
VSM to discover the semantics of terms and documents. For in-
stance, although car, vehicle, and automobile are different
terms, LSI may be able to discover that they are related in seman-
tics. Intuitively, LSI transforms a high-dimensional term vector
into a medium-dimensional semantic vector by projecting the for-
mer into a medium-dimensional semantic subspace. The basis of
the semantic subspace is computed using SVD. Semantic vectors
are normalized and their similarity is measured as in VSM.

In our P2P search engine pSearch [12], we describe how to extend
VSM and LSI to work in P2P networks. In this paper, our focus
is on LSI since it is more powerful. Some techniques developed
for LSI here can be easily extended to work with VSM. We will
describe profile matching using LSI and document dissemination

2

� ��� �����
	

� � � � 	 � � � 	 � ��� �� ��� ���
��	 � 	 � ��� �

�
�

�
�

�

�

��	 � �
���
��� ����� � ��	 � ��� � ��� � � � 	 � ��� ������	

� � � !

� � � " � #

� #

Figure 2: Profile matching in a 2-dimensional CAN.

in pFilter starting from the next section.

3. PROFILE MATCHING
As is mentioned earlier, pFilter connects a large number of com-
puters into a structured P2P overlay network using an extension
to CAN [8]. The advantage of adopting a completely decentral-
ized P2P model is that the capability of the system scales with the
amount of resources the system aggregates (in this case, the num-
ber of users). But it also poses a significant challenge with respect
to efficient and accurate matching between profiles and documents
in a decentralized environment. A naive solution that sends every
document or profile to every node in the system is obviously not an
option for systems running at pFilter’s scale.

3.1 The Basic Idea
In pFilter, through a careful combination of profile placement and
document routing, a new document only needs to be matched against
relevant profiles stored at a rendezvous node, which is identified by
overlay routing based on the semantics of the document. In par-
ticular, pFilter uses the vector representations (semantic vectors)
of profiles and documents, generated by the LSI algorithm, as the
key to store them in CAN’s DHT. This has the effect that profiles
or documents stored logically close in the overlay are also close
in semantics, reducing the problem of semantic-based searches to
routing in overlay.

Figure 2 illustrates this with an example. In the figure, each zone
is owned by a node. Given a profile, it is routed in CAN using its
semantic vector as the key (step 1), and registered at zones within a
small radius based on a similarity threshold set by the user (step 2).
We call these zones the registration region for the profile. Given a
new document A, it is routed using its semantic vector as the key
(step 3), and matched against profiles stored at the target zone $.
Then a notification is sent to all matching subscribers (step 4). Be-
cause profiles similar to the document above certain threshold must
have been registered at $, pFilter will not miss any matching pro-
files. In Figure 2, the same profile can also match with document B
that is routed to another zone.

The efficiency of the above algorithm closely depends on the num-
ber of nodes whose zones intersect with the registration region of
a profile, because every such node has to store a copy of the pro-
file. If a large number of nodes are involved in registering a single
profile, pFilter’s performance would degrade to a simple system
where profiles are flooded to every node. Unfortunately, although
the radius of the registration region is typically small (users usually
prefer queries with tight selectivity), the registration region inter-
sects with almost all zones in the system when the dimensionality

% &
% '
% (

)+*-, .0/213)54610.87 9)+*-, .87 9 :;7) 13< * =)+7 :;.?>0*

@ A B % C A DFEHG0I

% &
% '
% (

J
K
L
M

N J J

Figure 3: Multi-plane in a 2-dimensional CAN.

of the semantic vectors is high (100-300). This is the well-known
curse of dimensionality [5].

3.2 Dispelling the Curse of Dimensionality
The curse of dimensionality is the holly grail in many fields such
as database and data mining. Hundreds of papers [5] have been
published on this subject, using data structures such as tree or grid
to prune the search space. These algorithms, however, usually
do not work well at hundreds of dimensions, and require chang-
ing CAN’s DHT abstraction. Our own experience in using space
filling curve or distance-based dimensionality reduction techniques
confirms that they are not effective at handling more than 10-20
dimensions.

In pFilter, domain-specific knowledge allows us to attack this prob-
lem at a lower cost. As a result of the singular value decomposition
used in LSI, the elements appearing earlier in a semantic vector are
more important than those appearing later. By aggressive cutoff, a
semantic vector can be truncated to only a few dimensions to re-
duce the number of nodes involved in a profile registration, at the
cost of precision.

We use a multi-plane scheme to reduce the dimensionality while
keeping good precision. We partition lower elements of a semantic
vector into multiple low-dimensional subvectors, with one subvec-
tor on each plane. The dimensionality of CAN is set to that of an
individual plane. Each of the subvectors is used as the DHT key
for routing. A profile is registered to nodes on each plane and a
document is also routed on each plane. Subscribers found on each
plane are notified. Note that the local matching between a docu-
ment and a profile still uses the full-length semantic vector to keep
precision. Local matching can take advantage of advanced algo-
rithms that use data structures such as trees or grids to speed up the
searching process [5].

A multi-plane example is shown in Figure 3. The first 6 elements
of the vectors are partitioned into 2-dimensional subvectors on 3
planes. Both the document and profile are routed on every plane.
In this example, they match on the second plane. Note that only a
single CAN overlay is needed to support multiple planes.

The profile placement and matching algorithm is closely related to
the pLSI algorithm used in our P2P search engine pSearch [12]. In
pSearch, we find that using 4-6 planes with about 10-12 elements
on each plane can be very effective. Figure 4 shows the result of a
pLSI experiment that matches 50 queries against the 528,543 doc-
uments in the Text Retrieval Conference-8 (TREC-8) corpus [13].
The O axis is the number of nodes in the P2P overlay, the left P

3

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

1000 5000 10000

Number of nodes in the system

V
is

it
ed

 n
o

d
es

 %

0%
20%
40%
60%
80%
100%

A
cc

u
ra

cy

visited nodes
accuracy

Figure 4: Performance of pLSI, using TREC corpus.

axis is the percentage of visited nodes, and the right P axis is the
percentage of shared documents between the documents returned
by pLSI and LSI. We can see that pLSI is efficient as well as ac-
curate. It only needs to visit about 0.4-1.0% nodes to achieve an
accuracy of 95%. Translating this result into pFilter, it means that
pFilter only needs to register a profile at about 0.4-1.0% nodes to
achieve an accuracy nearly as good as a centralized information
filtering system.

4. DOCUMENT DISSEMINATION
When a new document arrives, pFilter needs to deliver it to sub-
scribers of all matching profiles identified by the algorithm de-
scribed in Section 3. An efficient way to do this is to disseminate
the document through an application-level multicast tree. To filter
Internet-scale contents, pFilter employs three major optimizations
in multicast tree construction:

� Utilizing a global view of the system to build and maintain
efficient multicast trees;

� Reducing the number of multicast trees by fusing similar pro-
files;

� Reducing the routing states through discriminative treatment
of the trees.

We describe each of them in the sections that follow.

4.1 Tree Construction Using Global States
The performance of a multicast tree, to a great extent, depends on
how close the structure of the tree approximates the underlying In-
ternet topology. The simplest way to construct an optimal multicast
tree without router support is to measure the latencies between each
pair of nodes in the system, build a graph with nodes as vertexes and
latencies as the weights of edges, and then run a spanning tree al-
gorithm over the graph. Though simple, this centralized algorithm
is not suitable for a distributed environment due to its excessive
latency measurements.

4.1.1 Tree Construction Using the Closest Neighbor
The basic idea of the naive algorithm, however, is still valid. That
is, it is crucial for the tree construction algorithm to have a global
view of the system in order to build efficient multicast trees. We
propose a more realistic variant of the naive algorithm, pCast. In
pCast, when a node joins a multicast group, it attaches to a node
that is closest among all existing nodes in the multicast tree. The
global information pCast requires is the knowledge of the closest

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

16 32 64 128 256 512 1024 2048

Number of nodes in the tree

S
tr

et
ch

small-backbone-ITM
large-backbone-ITM
traceroute

Figure 5: Performance of the pCast algorithm with optimal
neighbor selection.

neighbor. For the time being, we assume that it is possible to find
the closest neighbor in a decentralized fashion. We will describe
such an algorithm in Section 4.1.2.

To give the readers a flavor of the quality of trees constructed by
pCast, we compare the cost of a pCast tree to that of the minimal
spanning tree. Here tree cost is the summation of the weights of all
edges in the tree. The metric we use is stretch, defined as the ratio
of tree cost for a tree constructed by pCast to that of the minimal
spanning tree.

Three network topologies are used in the experiment. The first two
topologies are of 10,000 nodes each, generated from GT-ITM [4]:
one with a large backbone (228 transit domains) and the other with
a small backbone (25 transit domains). The third topology is sam-
pled from the Internet, using traceroute to measure latencies
among 85,007 nodes. 1 For each topology, some nodes are ran-
domly selected to join a multicast group. The results are shown in
Figure 5, where the O axis is the number of nodes in the multicast
tree, and the P axis is the stretch. In the figure, with as many as
2048 nodes in the tree, pCast introduces less than 15% overhead for
the large-backbone-ITM and traceroute topologies. The
performance for the small-backbone-ITM topology is worse
because its edge network is denser than the other two. In such a
network, when a nodes

�
joins, it is more likely that some nodes

already in the tree can benefit from choosing
�

as their parent (Sec-
tion 4.1.4 and 4.1.5), as opposed to simply attaching

�
to an exist-

ing node. On the other hand, stretch only measures the relative per-
formance. The absolute performance overhead of pCast in a small
backbone network is not as significant as that in a big backbone
network.

4.1.2 Finding the Closest Neighbor
The need to efficiently generate proximity information among nodes
is crucial to all multicast tree construction algorithms. In our previ-
ous work [14], we show that just using local knowledge to generate
proximity information is not effective, e.g., expanding-ring search.
We propose a landmark+latency measurement algorithm pNeigh-
bor to find close-by neighbors for a node in a decentralized fashion.

1We thank Zhiheng Wang at University of Michigan for providing
us with this topology.

4

0
1
2
3
4
5
6
7

1 10 20 30 40 50 60 70 80

Number of RTT measurements

S
tr

et
ch

ERS pNeighbor

Figure 6: Performance of the pNeighbor algorithm.

The intuition behind the landmark technique is that nodes physi-
cally close to each other in the Internet are likely to have similar
latencies to some selected landmark nodes. Suppose there are �
landmark nodes � � � � � � � ��� ��� � in the system, then each node has
a landmark vector �
� � � � � � ����� � � � � associated with it, where � � is the
node’s round trip time (RTT) to landmark � � . To find a physically
close-by neighbor in the overlay, a node ranks other nodes accord-
ing to the similarity in landmark vectors, and measure RTTs to top�

candidates to locate the actually closest one.

We evaluate the performance of pNeighbor using the same graph
used in Section 4.1.1. Given a node A, we use pNeighbor to find
its closest neighbor among all 10,000 nodes in the system. The
metric we use is still stretch, but defined here as the ratio of the dis-
tance between a node A and its nearest neighbor found by pNeigh-
bor to the distance between A and its actual nearest neighbor. We
randomly select 1000 nodes in the graph and report their average
stretch in Figure 6, where ERS is expanding-ring search, the O axis
is the number of RTT measurements to top

�
candidates, and the

P axis is the stretch. For ERS, it measures
�

direct or indirect
neighbors in the overlay. Two conclusions can be drawn from the
figure. First, algorithms that only utilize local information such as
expanding-ring search is not effective in finding the closest neigh-
bor. Second, pNeighbor’s performance improves quickly while the
number of RTT measurements increases. It only needs to measure
RTTs to about 20-40 nodes to achieve a stretch nearly as good as
the ideal case.

4.1.3 Peer-to-Peer Tree Construction
In Section 4.1.1 and 4.1.2 we demonstrate the effectiveness of the
pCast and pNeighbor algorithms through experiments. In this sec-
tion, we describe how to extend pCast to work in a P2P fashion.
The basic idea is to have each node independently discover a close-
by node that subscribes to the same query, using the landmark vec-
tor of the node or the semantic vector of the profile as keys to access
CAN’s DHT. In the following, we first give the steps of the decen-
tralized pCast algorithm and then illustrate it with an example.

When a node
�

registers a profile, it carries out the following steps:

1.
�

measures RTTs to landmark nodes and include its land-
mark vector, CPU/storage capacity, and current load in the
profile;

2.
�

uses the landmark vector as the DHT key to store the pro-
file in a registration region 	 of the overlay. 2 This process

2The number of landmarks may not match with the dimensionality
of CAN. Solutions for this problem is described in [14].

��

 ����� � ����� � � ����� � � "!$# � !$# % & ���$��' % �(#)$����� �
 �(��� � �*��� ��� !+�� � � "!$# � !$# % & ���$�(' % �(#)$����� �

,

-

./

�

/
,

�

/
,

- �

,

- �
0�1 2 0�3 2 0�4�2

�

/
.

0�5 2
�(��� �$�6!+�(�"!+��# � �(��� ��# � 7 �(��� �$�6!+�(�"!+��# � �(��� ��# � 8

Figure 7: Publish a query under both semantic vector and land-
mark vector.

is similar to the step 1 and 2 in Figure 2 but the routing is
guided by the landmark vector instead of the semantic vec-
tor.

3. At nodes within the registration region 	 , it searches for pro-
files of close-by nodes that already subscribe to the same
query. If such nodes exist, it uses the pNeighbor algorithm to
find the closest one, attach to it, and the registration process
terminates.

4. If no close-by nodes are found in step 3,
�

uses the semantic
vector as the DHT key to store the profile in another registra-
tion region 9 of the overlay. This process is the step 1 and 2
in Figure 2.

5. At nodes within the registration region 9 , it again uses the
pNeighbor algorithm to find the closest node that already
subscribes to the same query and attaches to it. If no such
node is found,

�
must be the first node that subscribes to

this query. It simply attaches to the root.

We illustrate this algorithm with an example in Figure 7. To make
the example intuitive, we draw the distances in Figure 7 (a)-(c) pro-
portional to physical distances among nodes in the Internet. In Fig-
ure 7 (d), the positions of nodes in the graph corresponds to their
positions in CAN’s logical Cartesian space, and the circles repre-
sent the registration regions for profiles.

In Figure 7 (a), three subscribers A, B, and C already join the multi-
cast tree. In Figure 7 (d), they use the semantic vector and landmark
vector as the DHT key to store their profiles in registration region
	 and 9 , respectively. In Figure 7 (b), subscriber D and E join. In

5

step 3 of the algorithm, D and E notice the profile A left there and
directly attach to A, skipping step 4 and 5 of the algorithm. (The
use of node U in Figure 7 will be explained in Section 4.3.)

Comparing with traditional schemes, our tree construction algo-
rithm offers the following advantages: (1) Better proximity ap-
proximation: the parent selection for a new node is not constrained
by the structure of the tree; (2) Faster tree construction: the par-
ent selection process avoids searching the tree level by level, se-
quentially; (3) No bottleneck at the rendezvous node R in Figure 7,
which is typically a problem for existing publish/subscribe systems.
It has been shown that 25 most popular queries account for over 1%
of all queries submitted to search engines [6]. For these hot queries,
a new subscriber is likely to find a close-by node that already sub-
scribe to the same query in step 3 of the algorithm, avoiding going
to R in step 4.

To increase the probability that a subscriber is satisfied by a close-
by neighbor in step 3 of the algorithm, we can condense the regis-
tration region by using only a subset of nodes in the overlay to store
proximity information. More details are available in [14].

Except its direct children, the rendezvous node R does not need to
remember every registered profile to function properly. When its
load increases due to the excessive publishing of profiles, it can
ignore incoming profiles whose landmark vectors are similar to the
landmark vectors in known profiles, after directing the owners of
those profiles to attach to an appropriate place. However, we expect
it is not a problem for a node to record several thousand profiles.

4.1.4 Basic Tree Maintenance Operations
In Figure 5, the performance of the tree constructed by pCast is
not as good as the minimal spanning tree, and the performance gap
widens as the number of nodes in the tree increases. This is because
pCast only attaches a node to its closest neighbor without fixing the
edges that already exist in the tree. When the network conditions
flux, maintenance of the tree also needs to be done to adapt the
tree structure to the changing environments. We refine the pCast
algorithm to address both problems.

When node
�

joins a multicast group and finds the closest node
X in the current tree, it establishes links to both X and X’s parent
P. The distances between (P,

�
), (

�
, X), and (P, X) are measured,

and the link with the largest distance is cut. (In reality, the decision
can be made also taking QoS requirements into consideration.) For
each of X’s children and P’s children, we incrementally exam them
to see if each of them is better to list it as a child of N.

We illustrate our algorithm with an example. Similar to Figure 7 (a)-
(c), we draw the distances in Figure 8 proportional to physical dis-
tances among nodes in the Internet.

In the very beginning, A joins and the closest node to A is R, and
hence a link is established between R and A. When B joins, it again
find that R is the closest node and connects to R directly. (see
Figure 8 (a).)

When C joins, it finds that the closest node is A, and links are es-
tablished between R and C and C and A. The distances between (R,
A), (R, C) and (C, A) are compared, and the link with the largest
distance (R, A) are broken. (see Figure 8 (b) and (c)).

Then node D joins, and finds out that B is the closest node. Two

� � � � � �

� � �

� � �

�

�

�

�

�

�
	

�

�

�
	

�

�

�
	

� � �

�

�

�
	

Figure 8: Tree maintenance operations.

links (R, D) and (D, B) are established and the link with the largest
distance (R, B) is then broken. We now exam the children of R and
B and find that it is beneficial to link C as a child of D. The result
is shown in Figure 8 (e).

In pFilter, nodes in the overlay replicate their neighbors’ contents.
If a node A’s parent in the multicast tree fails, A restarts the profile
registration process to attach to a close-by node. A’s descendants
could be ignorant of this repair. If the root R of a tree fails, one
of R’s neighbors Q will notice the failure and take over the zone
owned by R, along with the tree rooted at R. Q uses the profile
registration process to find the closest node in the tree, attaches to it,
and announces that it is the new root of the tree. This announcement
is propagated throughout the tree to change the directions of edges
properly.

4.1.5 Advanced Tree Maintenance Operations
The capability of the tree maintenance algorithm described in the
previous section is still limited. We describe a more advanced algo-
rithm in this section. This algorithm can be carried out optionally
and independently by nodes to improve performance.

Either at join or periodically, a node
�

use pCast’s registration
process to find a set of nodes that subscribe to the same query and
have landmark vectors similar to that of

�
.

�
measures RTTs to

top
�

candidates and identifies � nodes that are actually close. Both�
and � are tunable parameters based on the efforts

�
is willing to

spend. We use � to denote the closest � nodes, their parents,
�

and
�

’s parent.
�

locally builds a graph consisting of nodes in
� and run a spanning tree algorithm over the graph to find a tree
structure that can improve performance.

We illustrate the details of the algorithm using Figure 9. At the be-
ginning of the algorithm,

�
finds three closest nodes A, B and C

and builds a graph as shown in Figure 9 (a), where � is X’s par-
ent and R is a conceptual root of the tree. Since

�
does not know

the structure of the rest of the tree, it can only add three virtual
links between (R, �), (R, �) and (R, �) to annotate that these

6

�
� �

�
� �

�
�

� �
�

	 		

�
� �

�
� �

�
�

� �
�

�
� �

�
� �

�
�

� �
�

 � �
� �

 � �
Figure 9: Advanced tree maintenance operations.

nodes are somehow connected through the root. In Figure 9 (b),
�

adds a link to every node in � and annotate the links with mea-
sured latency. These latencies are either measured by

�
directly or

reported by other nodes upon
�

’s request. The latency of virtual
links is set to 0.

�
runs a spanning tree algorithm over the graph

to find the best tree structure and informs other nodes to adapt ac-
cordingly. The result is shown in Figure 9 (c). Note that the virtual
links are always included in the minimal spanning tree since their
weights are 0.

To guarantees that the result of this algorithm is still a tree that con-
nects all nodes in the original tree, a virtual link is added between
R and a node X if and only if X is in � and it is not a descen-
dant of any other nodes in � . For instance, although C is B’s
parent, there is no virtual link between R and C. To discover the
ancestor-descendant relationship, the root periodically propagates
a hello message throughout the tree and each node adds itself into
the message. Each node can learn its ancestors from the message
independently. The message can also be used to detect loops in the
tree due to rare race conditions in the tree construction process.

4.2 Fusion of Profiles
To handle potentially billions of registered profiles, it is not afford-
able to maintain one ordinary multicast tree for each unique profile.
For queries that are similar enough, pFilter builds a single multicast
tree for them. Assume that each profile is represented by ��� ������� ,
where � is the semantic vector of the query, and � � is the similarity
threshold set by the user. Any document whose semantic vector is
within ��� distance to � are considered as a match to query ��� ������� .
There are two cases that queries can be fused, and we illustrate
them in Figure 10. In Figure 10 (a), query ��� ��� � � covers query����������� . We can simply add subscribers for ������� ��� to the ��� �!� � �
multicast tree, with the guarantee that nobody will miss interesting
documents. In Figure 10 (b), query ��"��!� � � and ��# �!�%$ � do not cover
each other, but we can build an artificial query �'& ����(�� to cover both.
In Figure 10 (c), the multicast tree is dedicated for query ��" ��� � � . In
Figure 10 (d), when node D registers its query in CAN’s DHT using# as the key, it notices that there exists a multicast tree for similar
query ��" ��� � � . Instead of building a new multicast tree, it tries to

)* + ,* -
* .
/0*21

* 3 4

5�6 7 5�8 7

5�9 75 : 7

;) < * +>= ; / < * . =
;) < * +>= ; , < * -�=? @

A
B

;) < * +>=
;) < * +>=
?

A
B

Figure 10: Two cases that profiles can be fused.

attach to the existing multicast tree by informing a physically close-
by node B that is already in the multicast tree (how to find such a
node is described in Section 4.1.3). B then informs A to increase
the query region covered by this multicast tree. A in turn propagates
this notification to its parent.

In a multicast tree for fused queries, a node must compare an in-
coming document with each of its children’s interests to decide
whether to forward it along certain links. For instance, in Fig-
ure 10 (d), when B receives a document only matches with ��"���� � � ,
it forward the document to C, ignoring D.

4.3 Discriminative Treatment of the Trees
Existing multicast algorithms maintain too many routing states for
each individual multicast tree, because of the lack of discrimina-
tion among subscriptions. (It has been shown that the popularities
of queries submitted to search engines are highly biased [6].) For
instance, in Scribe [11], every node on the route connecting a sub-
scriber to the root of the topic has to maintain some states for the
subscription.

In addition to profiles fusion, in pFilter, the states devoted for a
multicast tree is a tunable continuum depending on the popularity
of the profile. There are two extremes. For a very popular profile,
pFilter selects nodes from all nodes in the system to build the most
efficient multicast tree, whereas for unpopular profiles, which are
the majority, matching documents can be sent directly the corre-
sponding subscribers using point-to-point communication. If sys-
tems like Scribe is used, a lot of multicast trees would have dozens
of internal nodes that are not interested in the subscriptions, with
only several or even a single real subscriber(s) at leaves.

In Figure 7 (c), as the traffic in the multicast tree increases, B wants
to pull in a close-by high-bandwidth node to improve performance.
It will discover U because they have similar landmark vectors and
their registration regions intersect (see Figure 8 (d)). If no close-by
nodes can help improving performance, B computes the landmark
vector of an ideal node V such that the summation of distance be-
tween (R, V), (V, B) and (V, C) is likely to be significantly less than

7

the summation of distance between (R, B) and (R, C). B then uses
the ideal landmark vector as the key to access the DHT to find such
a node. For very important (high traffic) trees, every node in the
overlay can be pulled in to build the most efficient tree.

5. DISCUSSION
We discussion some issues not covered in Sections 3 and 4 in this
section.

Audio/Video. pFilter works by representing contents as vectors
and organizing profiles around these vector representations. This
method can be applied to any media that can be abstracted as vec-
tors and have its object similarity measured as some kind of dis-
tance in the vector space. A lot of pattern recognition problems
fall into this category. For instance, people also employ singular
value decomposition to extract algebraic features from images, and
use various extractors to derive frequency, amplitude, and tempo
feature vectors from music data.

Information crawler and gateway. The ultimate goal of pFilter
is to involve millions of machines to build a large-scale informa-
tion filtering system. Users of pFilter can voluntarily publish their
contents as people do for Web today. But we can imagine that not
all content sources are able to (or willing to) participate in pFilter
due to reasons such as firewall segregation or security concerns.
In addition to voluntary content publishing, pFilter can also have
some nodes act as information crawler to collect contents and pub-
lish them in pFilter, as Web crawlers do for search engines. Some
nodes can also act as information gateway, forwarding information
they receive from various channels to pFilter, e.g., discussions in
mailing list, stock prices, and so forth.

Duplicate elimination. There are several reasons that a single doc-
ument may be delivered to a node multiple times. A document may
be injected into the system by different users that think it is interest-
ing. Even a document injected by a single user can travel through
multicast trees on different planes (Section 3.2) and a node sits at
the conjunction of these trees will receive it more than once. To
eliminate duplicates, which is both annoying and inefficient, we
can ask each node to cache the digital signature of documents that
it forwarded recently and discard documents that appear to be du-
plicates judging from the signatures.

Advanced matching. Besides LSI, many other searching tech-
niques can also be adopted in pFilter. For instance, a profile can
specify that only contents injected by certain persons, collected
from certain Web sites, or created within certain time frame are
allowed to be delivered to the user. More advanced matching in-
cludes the example described in Section 1, detecting if a document
is a citation to a given paper. These advanced matching conditions
can be checked at every forwarding step in the multicast tree, or af-
ter it reaches a subscriber. Executing the check in the multicast tree
may require associating mobile codes with profiles. We think that
adding a final filtering step at the subscriber may be more practical.

Searching structured documents. We have concentrated on fil-
tering and dissemination of unstructured documents. Many of our
techniques can be used for structured document as well. In database
systems, data are organized according to well-defined schemas. In
pFilter, we can use a schema vector to abstract a schema, map-
ping an attribute in a schema to an element in the schema vec-
tor. Because there are potentially many different schemas, different
schema vectors can be of different dimensions and the elements in

a schema vector can be of different types. Publishing, matching,
and fusion of relational data can be done in a similar manner as
we do for the semantic vectors. For XML documents, matching
is typically performed based on DTDs or Xpaths. This typically
involves XML structure (tree) matching. Besides introducing dis-
tributed tree matching algorithms, one way to take advantage of the
techniques proposed in this paper is to first use pFilter to retrieve
matching documents from distributed sources based on contents,
and then run a conventional XML structure matching algorithm lo-
cally to refine the results.

6. RELATED WORK
There is an enormous body of related work—far too many to enu-
merate in this paper. Here we give only references to surveys of
related fields, and focus on those most related. Surveys could be
found on P2P [7], information retrieval and filtering [10], and pub-
lish/subscribe [9].

Information retrieval and filtering are well-studied fields. VSM
and LSI [2] are among the most successful IR algorithms, and are
adopted by major search engines [6]. But publications are mainly
focused on the precision of IR algorithms, rather than their effi-
ciency and scalability. SIFT [16] does pay attention to efficiency
but it runs at small scale, only filter messages in news groups, and
do not use multicast for efficient document delivery.

Existing content-based publish/subscribe systems only need to match
several well-structured attributes against values, while pFilter must
match unstructured documents and profiles expressed in natural
languages, using vectors of hundreds of dimensions.

P2P publish/subscribe systems such as Scribe [11] only support
simple subject-based subscriptions. Their performance is even more
questionable than conventional publish/subscribe systems, in our
opinion, because the edges of the multicast tree must be routes
in the P2P overlay. As demonstrated in [14], the performance of
P2P routing is inherently inferior to IP routing, because of the con-
straints of the DHT abstraction.

7. CONCLUSION
In this paper, we describe pFilter, a global-scale decentralized in-
formation filtering and dissemination system for unstructured infor-
mation, such as text, HTML and multimedia files. pFilter connects
potentially millions of computers in national (and/or international)
computing Grids or user desktops into a structured peer-to-peer
overlay network. Nodes in the overlay collectively publish/collect
documents, build index, register profiles, and filter and disseminate
information.

To our knowledge, pFilter is the first large-scale decentralized in-
formation filtering and dissemination system. In pFilter, we made
the following contributions:

� Avoid the flooding of either documents or profiles through a
careful combination of profile placement and document rout-
ing, achieving both efficiency and accuracy;

� Experiment with various searching algorithms for high-dimensional
data, identify their weakness and devise the multi-plane di-
mensionality reduction algorithm that takes advantage of domain-
specific knowledge;

8

� Utilize a global view of the system to build and maintain
efficient multicast trees;

� Reduce the number of multicast trees by fusing similar pro-
files;

� Reduce the routing states through discriminative treatment of
the trees.

We already built pFilter’s basic components separately: a LSI-based
information filtering system that extends the SMART package de-
veloped at Cornell [3], a topology-aware P2P overlay and its sim-
ulator [14], and a simulator for the multicast tree construction al-
gorithm pCast. Currently we are in the process of integrating these
pieces together to build a pFilter prototype.

REFERENCES
[1] M. K. Bergman. The deep web: Surfacing hidden value.

http://www.brightplanet.com/deepcontent.

[2] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces,
and information retrieval. SIAM Review, 41(2):335–362,
1999.

[3] C. Buckley. Implementation of the smart information
retrieval system. Technical Report TR85-686, Department of
Computer Science, Cornell University, Ithaca, NY 14853,
May 1985. Source codes are available at
ftp://ftp.cs.cornell.edu/pub/smart.

[4] K. Calvert, M. Doar, and E. W. Zegura. Modeling internet
topology. IEEE Communications Magazine, June 1997.

[5] V. Gaede and O. Gunther. Survey on multidimensional
access methods. Technical Report ISS-16, Institut fur
Wirtschaftsinformatik, Humboldt Universitat zu Berlin,
August 1995.

[6] R. Lempel and S. Moran. Optimizing result prefetching in
web search engines with segmented indices. In VLDB, 2001.

[7] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical Report HPL-2002-57, HP Lab, 2002.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In ACM
SIGCOMM’01, August 2001.

[9] A. Rifkin and R. Khare. A survey of event systems.
http://www.cs.caltech.edu/ adam/isen/event-systems.html.

[10] C. O. Riordan and H. Sorensen. Information filtering and
retrieval: An overview.

[11] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The design of a large-scale event
notification infrastructure. In Networked Group
Communication, pages 30–43, 2001.

[12] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information
retrieval in structured overlays. In HotNets-I, Princeton, NJ,
October 2002. Available at
http://www.cs.washington.edu/hotnets.

[13] Text Retrieval Conference (TREC). http://trec.nist.gov.

[14] Z. Xu, C. Tang, and Z. Zhang. Building topology-aware
overlays using global soft-state. Technical Report
HPL-2002-281, HP Labs, September 2002.

[15] Z. Xu and Z. Zhang. Building low-maintenance expressways
for p2p systems. Technical Report HPL-2002-41, HP
Laboratories Palo Alto, 2002.

[16] T. Yan and H. Garcia-Molina. SIFT—A tool for wide-area
information dissemination. In Proc. 1995 USENIX Technical
Conference, pages 177–186, New Orleans, 1995.

9

