

WISE – A Simulator Toolkit for Ubiquitous
Computing Scenarios

Vikram Vijayraghavan, John J. Barton
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-302
October 22nd , 2002*

E-mail: John_Barton@hpl.hp.com

ubiquitous,
pervasive,
nomadic,
simulator,
toolkit, Java

This paper presents WISE, a simulator toolkit developed for
exploring the new generation of wireless devices, their interactions,
and the wireless infrastructure and services designed for these
devices. WISE stands for Wireless Infrastructure Simulation
Environment. Our focus is on the layers of software and that lie
above basic device function and networking protocols. Ultimately
we hope WISE will develop into a simulator for pervasive or
ubiquitous computing.

* Internal Accession Date Only Approved for External Publication
Presented at the UbiTools '01 Workshop on Application Models and Programming Tools for Ubiquitous Computing,
UBICOMP 2001, 30 September 2001, Atlanta, GA
 Copyright Hewlett-Packard Company 2002

 WISE – A Simulator Toolkit for Ubiquitous Computing Scenarios
Vikram Vijayraghavan and John J. Barton

Hewlett Packard Laboratories
Palo Alto, CA 94304

John_Barton@hpl.hp.com

This paper presents WISE, a simulator toolkit developed for exploring the new generation of wireless
devices, their interactions, and the wireless infrastructure and services designed for these devices. WISE
stands for Wireless Infrastructure Simulation Environment. Our focus is on the layers of software and that
lie above basic device function and networking protocols. Ultimately we hope WISE will develop into a
simulator for pervasive or ubiquitous computing.

Motivation

Many toolkits exist for the network layer or physical layer simulation of wireless devices [1][2]. These
toolkits provide a means for comparing wireless protocols in a controlled and consistent fashion. This
gives a scientific basis for judging the effectiveness of the protocols but equally important the simulators
provide a way to demonstrate the protocols and their use models without full-scale development and
deployment. WISE is an effort to provide similar benefits to the application layer for wireless systems.

WISE was also motivated by a vision of digital “appliances” interacting directly with Internet services [5].
We believe that more appliances will appear if such services were available, but without the appliances no
convincing services can be developed. By developing a simulator for the client side we enable service
creation and testing to move forward and further encourage the development of digital appliances.

Consider the problem of developing a wireless digital camera. In addition to issues of industrial design for
the camera itself, developers will face issues of the user interface for connectivity and for imaging services
as well as usage models for such a device. WISE can be used to develop several aspects in the design of a
wireless camera – in deciding the most effective user interface for the camera, in deciding the kind of
services provided to the wireless camera, in deciding the protocol(s) to be used by the digital camera,
dealing with variable latency issues, dealing with regions of weak/ excellent connectivity, for examples. In
addition many aspects of the design can be tested within a simulator and the features of such a device can
be demonstrated. All of these benefits can be obtained at a fraction of the cost of a full prototype
development.

Goals

WISE is to provide a simulator toolkit with the following properties:

• Creation and usage of devices. It must be easy to create a representation of the devices in the

simulator. For example this can be an image of the device that looks like the device in question and has
the functionality of the device relevant to wireless operations. Ideally, the experimenter with our
toolkit can design his own classes using a GUI interface like DENIM/SILK [3] or specific software
IDE’s like Forte [4] and inject it into the simulator. However the simulator itself should provide
minimal functionality in this area.

• Multiple scenarios. Devices might exist in different regions of varying connectivity, devices
themselves might have different views (for example top, bottom, front etc), and devices might act
differently depending on other devices being present (they may be context-sensitive devices). All these
real world issues should be supported by the simulator toolkit.

• Flexible User Interface and Form Factor. Most of the wireless appliances have unique, small form
factor displays and controls. This brings a whole different set of user interface problems. Some of these
issues can be studied within a desktop simulator.

• Data Manipulation Each device might access data from the infrastructure, for example pulling content
from a webserver. Each device might also have its own store of data, like photo in a digital camera.

Both of these require user manipulations and browsing environments that allow users to activate
services on the data. For example in a digital camera, a web browser for selecting a storage service
needs to work in conjunction with an image browser for choosing an image to send to that service.

• Communication Protocols. Wireless appliances have many communication protocols to choose from.
Obviously are a must but the link layer access mechanisms are totally different for these wireless
appliances. Access points, Bluetooth support, HTTP, and UPNP are examples of the kind of protocols
WISE may need to support.

• Ease of use. The simulator should be simple enough for end-users of wireless devices to use in testing.
Its programming model should allow experimenters to begin quickly and yet not be hindered from
developing sophisticated device, scenario, or protocol enhancements.

• Fidelity of the simulation. Important issues in wireless device use must be simulated as well as the
medium of a desktop computing environment allows. These include connectivity latency, bandwidth,
and screen size, but they might also include other issues like battery life.

• Openness. The toolkit needs mechanisms to allow new implementations to be added.

The WISE model:

The WISE model presents a layered abstracted view of the environment to the end-user. Each of the layers
in WISE can be extended for building new scenarios. The top layer is the World and the next layer
includes the Devices. Below devices live layers for data collection and communication protocols.

The World. Devices interact in a 2 dimensional pane called a “World”. They can interactwith (real, not
simulated) Internet services, with other simulated devices using simple overlap collision detection or with
characteristics of the physical world model. The simplest example is a World with full connectivity and no
device-device interaction. In that world, device-service interaction can be studied. In our “wireless” World
has 2D regions of connectivity and regions with no connectivity. As devices are moved in that World, they
must contend with the degree of connection.

The Devices are represented as pictures of the physical user interface of the device, as it would appear to
the end-user. They have basic controls implemented as mouse-clickable buttons. Multiple pictures of a
device may be needed if it has controls on multiple sides or if it has lights or dials that change state during
use. Typical devices will include a screen that may allow content to be displayed.

The Data API is a generic name for methods to access both the data present in the device and the data
presented to the user but available on the network (e.g. web pages). The Web Client is the underlying layer
of the Data API responsible for interaction with the outside world on the Internet via HTTP protocol. This
interface sets up a “model” of a model/controller/view design to encourage reuse and design clarity.

The Communication Protocol API is responsible for simulating the intra-device and device-infrastructure
communication. The Protocol layer below that is for supporting various protocols like TCP, UPNP.
Currently we simply map the wireless device TCP/IP stack onto the desktop TCP/IP stack to simulate IP
connectivity.

Connectivity. The Connectivity API is responsible maintaining the connectivity of the device with respect
to its current location. The World stores information dynamically about the Devices in it and the
Connectivity API is used to fetch this information and deduce as to what kind of connectivity the Device
has currently. This is an example of interaction across layers in the WISE model as the Connectivity API is
essentially per Device but interacts with the larger subset – the World.

Implementation:

The initial version of WISE has been implemented using Java[6]. It’s a package of classes that provide a
skeletal framework for simulation. In the current implementation the user select a world as a Java class
name and launches WISE with that class name as an argument. Next WISE dynamically creates menus by

reading load Java classes by name. For example, a file called “devices.txt” lists all the devices. Uses pick
from the menus to create a scenario.

We have implementations of a simple unstructured world and one with partial connectivity. For devices we
have a camera, PDA, handheld scanner, and a mythical wrist-mounted multimodal device. The first two
use commercially quality art work for the user interface background. The scanner uses an image that was,
well, scanned in on a color scanner. The wrist device was hand-drawn with color pencil and scanned in.
 A set of common classes for the communications and web-browsing elements of these devices allow rapid
development and these classes are called through interfaces that allow alternative implementations to be
added. Thus far we have created two kind of browsers – the WebBrowser and the ImageBrowser. We have
one implementation of the protocol API to support HTTP Posts to ADS[5] services.

Below is a snapshot of WISE with a digital camera device and a handheld scanner represented using the
toolkit. The picture frame is divided into two regions, one dark region comprised of waveforms
representing the connected region and the other one (light background) representing the disconnected
region. When the Camera is in the connected region, trying to access the infrastructure will result in a call
to inConnectedRegion() which will return false if the range is not in reach. Appropriate warning or action
must then be taken by the camera user interface. The camera includes a mini-web client in the view screen
capable of displaying links to services for selection by the user.

Future Work and Extensions

WISE is barely past the concept stage. Once the framework of the simulator has been built one could think
of adding functionality. Some ideas include:
• Multiple views of the device: Each device might have different views. For example, front and top

panels of a digital camera have different functions and controls. In fact such a model can be
generalized to a controller – view architecture where there are controls, views and services separately.

• Grouping of Devices – The next step would be to form logical groups of devices and interaction
between these groups e.g. some form of multicast device operation.

• Context-sensitive devices: Each device might have to act differently in the presence of another device.
Hence there should be some context-sensitivity built in those devices.

• Service models & security: The simulator not only allows looking at the device side but also at the
service side. We are currently exploring deploying a directory based service portal and also the
implications in security of communication if we take such a path.

• Multiple access points: Scenarios with multiple access points and more involved topologies are to be
considered.

• Multi-modal devices and multi-modal scenarios: how device features or devices can be coordinated in
their interaction with services.

• Scripted scenarios: fixed scripts would allow testing and comparison of protocols.

Conclusion

We have started a simulator toolkit for pervasive computing in the realm of device and infrastructure
design and interaction. It seems to be that there is little work in this direction and we hope to make further
contributions here. We intend to use the simulator in a real world scenario to test and provide feedback for
the design of next generation wireless digital cameras and other devices connected to the Appliance Data
Services project [5]. Our plan is to engage other researchers in the joint development of the toolkit and its
application through open-source distribution. The distribution should be in place for the workshop and we
will be able to demonstrate the toolkit as well.

Acknowledgements

The digital camera simulator code of Andreas Ziedler aided our initial efforts to develop the simulator.
Amy Battles and Andy Goris of Hewlett Packard provided the images of the HP C618 digital camera.

References

1. Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A
Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In
Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and
Networking, ACM, Dallas, TX, October 1998. See also http://www.monarch.cs.cmu.edu/ cmu-
ns.html

2. BlueHoc simulator - http://oss.software.ibm.com/bluehoc/
3. Forte Visual IDE for Java - http://www.sun.com
4. James A. Landay and Brad A. Myers, "Sketching Interfaces: Toward More Human Interface

Design." In IEEE Computer, 34(3), March 2001, pp. 56-64. See especially the CrossWeave
project– James Lin and James Landay http://guir.berkeley.edu/projects/denim/research/vl.shtml

5. "Making Computers Disapper: Appliance Data Services" Andrew C. Huang, Benjamin C. Ling,
John J. Barton, Armando Fox, ACM SIGMOBILE Seventh Annual International Conference on
Mobile Computing and Networking (Mobicom) 2001, Rome Italy. See also http://
swig.stanford.edu

6. Java ™ - Sun MicroSystems Inc. – http://java.sun.com

