

Optimal Server Resource Allocation Using an Open
Queueing Network Model of Response Time

Alex Zhang, Pano Santos, Dirk Beyer, Hsiu-Khuern Tang
Intelligent Enterprise Techno logy Laboratory
HP Laboratories Palo Alto
HPL-2002-301
October 21st , 2002*

service level
agreement, web
performance
tuning,
software
performance
modeling,
response time,
queueing,
optimization

We present a nonlinear integer optimization model for determining
the number of machines at each tier in a multi-tier server network.
We utilize a result from an open queueing network model on the
average response time; the optimization model is to minimize a
weighted sum of total machines while satisfying the average
response time constraint (or a service level expression that is
convertible to the average response time). We then discuss the
solution to this optimization model and present an algorithm that
utilizes a bounding procedure.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1 Introduction

This report examines the issue of dynamically provisioning computing resources, in the

form of server machines, to meet a prescribed service level on average response time.

This issue frequently arises in ASPs (Application Service Providers) and in web-service

operations (e-commerce sites, for example).

The web-service system that we consider has a tiered structure. Typically three tiers

are con�gured: web servers, application servers, and database servers. Within each tier,

multiple machines can be provisioned to share the incoming workload which consists of a

series of di�erent types of web requests. The response time is de�ned in this report to be

the time taken for a web request to go through the three-tiered system (i.e. \server-side

response time").

Our question is to allocate an adequate number of machines to each tier in order to meet

certain service level requirement. Applications that allow di�erent number of machines at

each tier are called horizontally scalable. We deal with such a horizontally scalable system

where service level requirement is expressed in average response time of the system. Since

the system response time is the sum of response times at each of the three tiers, the service

level requirement can be met by di�erent con�gurations in the number of machines at

each tier. For example, the con�guration of 3 web servers, 2 application servers, and 1

database server may achieve the same average response time as the con�guration of 1

web server, 3 application servers, and 1 database server. The question, then, is to �nd

a minimum number of machines in total to meet a prescribed service level requirement.

Realizing that machines at di�erent tiers might be di�erent and incur di�erent costs,

the more general optimization problem is to minimize the total weighted sum of the

machines, with the weights reecting the \costs" of some kind (such as operating costs)

of machines at di�erent tiers.

This problem is a sub-problem in a more general problem of web transaction analysis

and optimization (TAO) discussed in HPL Technical Report HPL-2002-45 (Garg et al

2002). We refer to this report for a more detailed discussion of the system and modeling

e�orts. Appleby et al (2001) describe various aspects of IBM's Oceano project which

is centered on service level management and which includes many issues that the TAO

project also sets out to solve. Menasce and Almeida (1998) present general issues in

capacity planning issues for web performance.

In another HPL technical report HPL-2002-64, Santos, Zhu and Crowder (2002) ad-

dress the issue of allocating resources (machines) in a tree-like topology of a data center,

2

considering performance constraints such as link bandwidth and switch capacity while

minimizing communication delay between the assigned servers. They propose a mathe-

matical optimization model with binary variables for optimally con�guring the topology.

This report di�ers from Santos et al (2002) in that we consider only the average response

time performance measure. Our topology is a tiered structure. The use of the queue-

ing model in expressing the average response time leads to a general non-linear integer

problem, but with only a few general integer variables. These simpli�cations allow us

to characterize the solution of the problem and devise an algorithm to �nd the solution

e�ciently.

We point out that the solution of the problem is relevant to the dynamic resource al-

location at a Utility Data Center (UDC). The dynamic resource allocation at a UDC

requires the integration of demand and capacity planning. This concept is known as

Capacity on Demand. Capacity on Demand consists of optimizing the assignment of

bu�ers (or shared) resources to satisfy the requirements of multiple applications. A UDC

enables multiple applications to be hosted on a collection of shared resources, where the

resources assigned to the applications may be increased when workload increases and

reduced when workload reduces. This dynamic resource allocation allows exible service

level agreements (SLAs) in an environment where peak workload is much greater than

the normal steady state. A key problem with Capacity on Demand is that the user needs

are translated into a logical con�guration, and physical resources are then assigned to the

logical con�guration to satisfy the resource requirements of the application. The problem

addressed in this paper is precisely to determine the optimal resource requirements of an

application under a workload in such a way that application SLAs are satis�ed.

This report is organized as follows. We will next describe the queueing model which

gives the expected (average) response time as a function of demand and the amount of

resources allocated. In Section 3, we will then formulate the resource allocation problem

as a mathematical program consisting of a linear objective function and a nonlinear

constraint, with general integer decision variables. Sections 4 and 5 examine the two-

tier problem and the general n-stage problem, and give the main mathematical results on

feasibility conditions, bounds, and relaxed problem solutions. Section 6 presents our main

algorithmic results on solving the practical integer optimization problems. In Section 7,

we show that our optimization model is applicable to any service level metric that can

be translated into the average response time.

3

2 A Queueing Model of Response Time

In HPL-2002-45, we have modeled the 3-tiered web system as an open queueing net-

work, with a single type of critical resource (such as CPU). Related work addressing

systems performance predictions on queueing time is the layered model by Rolia and

Sevcik (1995), and Shiekh et al (1997). Here we present a simple (non-iterative) model

for queueing time. Its simplicity is a computational advantage when used as input in an

optimization routine which needs to determine the optimal resource allocation frequently

and quickly. In our simple model, each machine is modeled as a processor sharing queue.

Assuming that all machines at the same tier are identical, and that the workload balanc-

ing and scheduling is such that the workload is shared equally among the machines at

the same tier, this queueing model gives the average response time of the 3-tier system

as follows:

E[R] =
E[S1]

1� �1E[S1]=N1

+
E[S2]

1� �2E[S2]=N2

+
E[S3]

1� �3E[S3]=N3

(1)

where E[S1], E[S2], and E[S3] are the expected processing times (or service demands) of

a request on the critical resource (such as CPU) at web, application and database tiers,

respectively; �1, �2, and �3 are the arrival rates to the three tiers (e.g. �1 is the total

arrival rate to all the web servers in the web tier); and N1, N2 and N3 are the number of

servers in each of the three tiers, respectively.

The only inputs to the average response time model are the arrival rates (or throughput)

(�1, �2, �3), the number of servers at each tier (N1, N2, N3), and the average service times

(E[S1], E[S2], E[S3]). The average service times (service demands) can be computed

from the measured utilization rates of the critical resource (CPU), through the following

relationship:

E[S1] = U1=(�1=N1);

where U1 < 1 is the measured per-machine average utilization rate; (�1=N1) is the per-

machine average throughput rate.

We have tested the accuracy of the average response time formula (1) using measured

response time data recorded from a test bed (the \PetStore" e-tailing web site, see Garg

et al 2002) consisting of 1 web server, 2 application servers, and 1 database server. The

data log also includes CPU utilization percentages for all machines in 5-minute intervals.

Under various workload scenarios (di�erent levels of request intensity and di�erent mix

percentages of request types), the queueing formula (1) was found to be from 4% to 27%

of the actual average response time.

4

3 Resource Allocation with the Average Response

Time Measure

Our model of resource optimization would then be to minimize a total weighted \cost"

(represented by machine replacement cost or operating cost) of the system, subject to

the constraint that the average system response time to be less than or equal to a certain

level (T , such as 1 second). That is:

min
N1;N2;N3

h1N1 + h2N2 + h3N3 (2)

s.t. E[R] =
E[S1]

1� �1E[S1]=N1
+

E[S2]

1� �2E[S2]=N2
+

E[S3]

1� �3E[S3]=N3
� T ; (3)

N1; N2; N3 positive integers;

where weights h1, h2, and h3 (all assumed to be strictly positive) are to reect the

di�erence in the costs of the di�erent servers; for example, if a database server machine

is twice as expensive as a web server machine, then h3 = 2 � h1. As we mentioned earlier,

if costs are di�cult to ascertain, a convenient simpli�cation would be to minimize the

total number of machines (N1 +N2 +N3); i.e. to set h1 = h2 = h3 = 1.

When N1 increases, the values of �1 and E[S1] remain the same, as �1 is the aggregate

arrival rate to the web tier. Hence, parameters �1; �2; �3 and E[S1]; E[S2]; E[S3] are true

input parameters in the optimization model.

Finally, although we have given the explicit formulation for the 3-tiered system, we could

easily generalize the formulation to any n-stage system (each tier is a stage). However, we

will begin our discussion about the solution of the optimization model with the two-stage

model.

4 The Two-Stage System

If the number of servers at a particular tier is �xed (say there can be only one database

server), the optimization problem is simpli�ed. The 2-stage problem provides a case for

mathematical examination.

Consider the 2-stage version of this problem:

min
N1;N2

h1N1 + h2N2 (4)

s.t.
s1

1� u1=N1
+

s2
1� u2=N2

� T ; (5)

5

N1; N2 positive integers:

where si � E[Si] and ui � �iE[Si] are input parameters. Here ui can be interpreted as

an expression of workload; for example, u1 = 1:5 signi�es that the aggregate workload

on web server tier is equivalent to 1.5 web server machines working full time (at 100%

utilization). Clearly, we can also replace the non-negativity constraints N1; N2 positive

integers by a tighter N1 � max(u1; 1) and N2 � max(u2; 1).

The basic tradeo� expressed through the above optimization problem is that of balancing

fewer expensive machines with a resulting longer response time against more numerous

cheaper machines with a resulting shorter response time.

We �rst look at the feasibility of this simple optimization problem.

Proposition 1. The 2-stage problem is feasible if and only if s1 + s2 < T .

Proof. Say s1 + s2 < T . Then let N1 !1 and N2 !1, we have

s1
1� u1=N1

+
s2

1� u2=N2
! s1 + s2 < T:

Hence the constraint can be satis�ed by large N1 and N2; the problem is feasible.

Now assume that the problem is feasible. Then there exist positive integers N0
1 and N0

2

such that
s1

1� u1=N0
1

+
s2

1� u2=N0
2

� T:

Hence,

s1 + s2 <
s1

1� u1=N0
1

+
s2

1� u2=N0
2

� T:

k

We also �nd lower bounds on the feasible N1 and N2:

Proposition 2. The feasible N1 and N2 satisfy

N1 >
u1(T � s2)

T � s1 � s2
; N2 >

u2(T � s1)

T � s1 � s2
: (6)

Proof. From the feasibility condition,

T � s1
1� u1=N1

+
s2

1� u2=N2

>
s1

1� u1=N1

+ s2;

s1
1� u1=N1

< T � s2;

N1 >
u1(T � s2)

T � s1 � s2
:

6

Similar derivation for the inequality for N2. k

Remark. Since N1 and N2 are required to be integers, we can tighten the inequality to

N1 � d u1(T � s2)

T � s1 � s2
e where dxe stands for the smallest integer greater than or equal to x.

Example. Let s1 = 0:3, s2 = 0:5, u1 = 0:3, u2 = 0:4, T = 1. Notice that s1+ s2 = 0:8 <

T = 1, hence the necessary and su�cient condition for feasibility of the optimization

problem is satis�ed. Then

N1 >
0:3(1� 0:5)

1� 0:3� 0:5
= 0:75; N1 � 1;

N2 >
0:4(1� 0:3)

1� 0:3� 0:5
= 1:4; N2 � 2:

k

The bounds on N1 and N2 will facilitate the numerical search for the optimal values. In

general, the numerical search will have to enumerate all integer pairs (N1; N2) satisfying

Proposition 2. In section 6, we will give an iterative algorithm for tightening these

bounds, which we will utilize in an algorithm for obtaining the integer optimal solution.

The continuous-variable version of the optimization problem, however, has a closed form

solution.

Proposition 3. The continuous-variable version of the 2-stage problem has the following

optimal solution:

N c
1 = u1 +

q
s1u1=h1;

N c
2 = u2 +

q
s2u2=h2;

where > 0 is the shadow price of the required average response time and is given by

p
 =

p
h1s1u1 +

p
h2s2u2

T � s1 � s2
:

The objective function value is given by

Zc = h1u1 + h2u2 +
p

�q

s1u1h1 +
q
s2u2h2

�
:

Proof. Consider the Lagrangian:

L(N1; N2;) = h1N1 + h2N2 +

s1

1� u1=N1

+
s2

1� u2=N2

!
:

7

Take partial derivative w.r.t. N1 and set to zero we obtain:

@L

@N1
= h1 � � s1u1

(N1 � u1)2
= 0;

hence

N c
1 = u1 +

q
s1u1=h1:

Similarly we obtain N c
2 . Since N

c
1 and N c

2 are continuous, the constraint

s1
1� u1=N1

+
s2

1� u2=N2

� T

must be binding (= T); substituting N c
1 and N c

2 into the equality and simplify alge-

braically we can solve for . k

Remark. Proposition 1 guarantees T � s1 � s2 > 0 if the problem is feasible. Also,

N c
1 > u1 and N c

2 > u2.

Example (continued). Let s1 = 0:3, s2 = 0:5, u1 = 0:3, u2 = 0:4, T = 1. Introduce

h1 = 1, h2 = 2. We solve the continuous-variable version of the 2-stage problem as

follows.

p
 =

p
h1s1u1 +

p
h2s2u2

T � s1 � s2
=

p
1 � 0:3 � 0:3 +p

2 � 0:5 � 0:4
1� 0:3� 0:5

= 4:6623;

N c
1 = u1 +

q
s1u1=h1 = 0:3 + 4:6623

q
0:3 � 0:3=1 = 1:6987;

N c
2 = u2 +

q
s2u2=h2 = 0:4 + 4:6623

q
0:5 � 0:4=2 = 1:8743;

Zc = h1N
c
1 + h2N

c
2 = 5:4473:

The integer-optimal solution (found through enumeration) isN�
1 = N�

2 = 2, with achieved

average response time of 0.978 seconds (better than the required T = 1 second), and

objective function value of 6 (worse than 5.4473 of the continuous solution).

k

From Proposition 3, the continuous-variable solution of the problem has some interesting

properties. The shadow price () of the required average response time is the increase

in the objective function value (cost) per unit of decrease on the response time; for

example, \ = $20/second" denotes that each second in decreased response time will

cause an approximately $20 increase in the total objective function value (cost). The

shadow price as an output of the mathematical optimization model may have pricing

8

1.2 1.4 1.6 1.8 2
T

20

40

60

80

gamma

Figure 1: Shadow price for the required average response time T . Parameters: s1 = 0:3,
s2 = 0:5, u1 = 0:3, u2 = 0:4, h1 = 1, h2 = 2.

implications on SLAs. We notice that the shadow price is related to T by the following

relationship: / 1=(T � c)2 (where c � s1 + s2). The shadow price decreases rapidly

as the allowable response time increases. On the other hand, the number of machines

at each tier, as well as the objective function value (cost), is approximately inversely

proportional to the required response time (N c
i / 1=(T � c); Zc / 1=(T � c)). Figure 1

and Figure 2 show the relationship of , N c
1 and N

c
2 as a function of the required response

time T .

5 The General Case: An n-Stage System

All three propositions in the 2-stage system case can be generalized to n-stage systems.

Here are the restatements of the old results.

Proposition 1. The n-stage problem is feasible if and only if
Pn

i=1 si < T .

Proposition 2. The feasible Ni, i = 1; 2; : : : ; n, satisfy

Ni >
ui(si + T �Pn

j=1 sj)

T �Pn
j=1 sj

: (7)

Proposition 3. The n-stage problem has the following continuous-variable solution:

N c
i = ui +

q
siui=hi; (8)

9

1.2 1.4 1.6 1.8 2
T

0.5

1

1.5

2

2.5

3
N1,N2

Figure 2: N c
1 (lower curve) and N c

2 (top curve) as a function of the required average
response time T . Parameters: s1 = 0:3, s2 = 0:5, u1 = 0:3, u2 = 0:4, h1 = 1, h2 = 2.

where > 0 is the shadow price of the expected response time and is given by

p
 =

Pn
i=1

p
hisiui

T �Pn
i=1 si

: (9)

The objective function value is

Zc =
nX
i=1

hiui +
p

nX
i=1

q
siuihi: (10)

6 The Integer Program: A Solution Algorithm

We point out that the continuous-variable version of the problem is only a relaxation of

the original integer problem. We emphasize that the integer optimal solutions might be

far away from the continuous solutions as given by equation (8); that is, if the continuous

solution is (N1; N2) = (1:44; 1:79), the integer optimal solution might be (1; 4). Rounding

up each of the continuous Ni will clearly lead to a feasible, but not necessarily optimal,

solution.

Proposition 2 gives a lower bound on each Ni, and can be utilized as the starting values

in a numerical search algorithm. The following proposition further gives a (dynamic)

upper bound on the search.

Proposition 4. If (N0
1 ; : : : ; N

0
n) are integers and satisfy the expected average response

time constraint, then any other integer solutions (N1; : : : ; Nn), where Ni � N0
i for all i

10

with strict inequality for at least one i, cannot be optimal.

Proof. Suppose integers Ni � N0
i for i = 2; : : : ; n, with N1 > N0

1 . Then (N1; N2; : : : ; Nn)

is a feasible integer solution, since the average response time E[R] is strictly decreasing

in each Ni. However,
Pn

i=1 hiNi >
Pn

i=1 hiN
0
i ; hence (N1; N2; : : : ; Nn) cannot be optimal.

k

We further obtain bounds on the integer-optimal objective function values (costs).

Proposition 5. Let Z� be the integer-optimal objective function value, and N c
i be the

continuous-variable solution as given by (8) with objective function value Zc as given by

(10). Then

nX
i=1

hiN
c
i � Zc � Z� � ZUB �

nX
i=1

hidN c
i e: (11)

Proof. Since the continuous-variable model is a relaxation of the integer model, we

have Zc � Z�. Since each dN c
i e � N c

i , the integer solution (dN c
1e; dN c

2e; : : : ; dN c
ne) is a

feasible solution since the response time function (the left-hand-side of the constraint) is

decreasing in each Ni. Hence the second inequality holds. k

For the previous numerical example introduced in previous sections, N c
1 = 1:6987, N c

2 =

1:8743, and Zc = 5:4473, hence Proposition 5 yields the bounds 5:4473 � Z� � 6 (the

true Z� = 6).

Figure 3 illustrates the use of Proposition 5 in bounding the integer optimal solution.

To provide a heuristic solution to the integer model, we �rst solve the continuous-variable

problem (in closed-form), and simply round up each N c
i if N c

i is not an integer (i.e. to

the next higher integer), we will obtain an integer feasible solution, with a guaranteed

performance within ZUB �Zc =
Pn

i=1 hi(dN c
i e �N c

i) from the true optimum. When N c
i ,

i = 1; 2; : : : ; n, are relatively large (say greater than 3), the relative gap between the

heuristic solution and the true integer optimal solution is quite small.

6.1 Improved Bounds with an Iterative Procedure

Proposition 5 is useful in the search for integer optimal solution in that we know any

integer optimal solution must satisfy h1N1+h2N2+� � �+hnNn � Zc; hence ifN1; � � � ; Nn�1

have been determined, we must have Nn � (Zc�h1N1�� � ��hn�1Nn�1)=hn. This narrows

the search range in the n-th dimension (Nn).

11

Figure 3: An illustration of the lower and upper bounds

Proposition 5 also enables us to improve the bounds as given by Proposition 2. The

procedure is as follows.

Step 0. (Initial lower bounds) Following Proposition 2, setNLB
i = dui(si + T �Pn

j=1 sj)

T �Pn
j=1 sj

e:

Step 1. (Upper bounds) For i = 1; 2; : : : ; n, obtain an upper bound on Ni by

using the inequality Ni � (Z�Pj 6=i hjNj)=hi � (ZUB�Pj 6=i hjN
LB
j)=hi.

Set NUB
i = b(ZUB �P

j 6=i hjN
LB
j)=hic.

Step 2. (Improved lower bounds) For i = 1; 2; : : : ; n, obtain an improved lower

bound on Ni by using the inequality
si

1� ui=Ni
+
X
j 6=i

sj
1� uj=Nj

� T

where for j 6= i, Nj is set to its upper bound NUB
j . Set new NLB

i =

d ui
1� (si=ti)

e where ti � T �P
j 6=i

sj
1�(uj=NUB

j
)
.

Step 3. (Improved bounds) If for some i, the new NLB
i is better (greater) than

the old NLB
i , then replace all old bounds by the new bounds and go back

to Step 1; Otherwise, stop and output the current NLB
i and NUB

i .

The above algorithm uses the service level constraint (on average response time) to �nd

the lower bounds, and then in turn uses the optimality condition
Pn

i=1 hiNi � ZUB to

12

�nd the upper bounds. The upper bounds may lead to improved lower bounds from the

response time constraint; the iteration terminates when no further improvements can be

made.

We illustrate the above bounding algorithm using the previous numerical example (where

n = 2). Recall s1 = 0:3, s2 = 0:5, u1 = 0:3, u2 = 0:4, h1 = 1, h2 = 2.

Step 0. From Proposition 2, NLB
1 = 1; NLB

2 = 2.

Step 1. Upper bounds. N1 � 6� 2NLB
2 = 6� 2 � 2 = 2; hence NUB

1 = 2.

N2 � (6 � NLB
1)=2 = (6 � 2)=2 = 2; hence NUB

2 = 2. (Since NLB
2 =

NUB
2 = 2, we have N2 = 2.)

Step 2. Improved lower bounds. t1 = T � s2
1�(u2=NUB

2
)
= 1 � 0:5

1�(0:4=2)
= 0:375;

NLB
1 = d u1

1�(s1=t1)
e = d 0:3

1�(0:3=0:375)
e = d1:5e = 2 (an improvement).

Further iterations do not improve the current bounds, hence the procedure

terminates with NLB
1 = NUB

1 = NLB
2 = NUB

2 = 2. In this numerical example,

the bounding procedure happens (by chance) to lead to the unique optimal

integer solution (without applying any optimization procedure).

6.2 A Numerical Search Algorithm

We �rst give a simple algorithm for solving the integer optimization problem with n = 2

(two tiers). We then give a recursive algorithm for solving a general n-stage problem.

Algorithm TwoStage(T): Given a required average response time T , �nd the optimal

N1 and N2 to minimize h1N1 + h2N2.

Step 0. Feasibility test: If s1 + s2 � T then the problem TwoStage(T) is infea-

sible. Terminate and output \infeasible".

Step 1. Bounds: Compute the continuous-variable solution from equations (8),

(9) and (10). Compute the lower and upper bounds NLB
i and NUB

i for

i = 1; 2; : : : ; n following the iterative bounding procedure outlined in the

previous section. Set the optimal objective function value Z to in�nity.

Step 2. Set N1 to its lower bound NLB
1 .

Step 3. Set t2 = (T � s1
1�u1=N1

) and N2 = d u2
1�(s2=t2)

e.
Step 4. Compute objective function value h1N1 + h2N2. If this is lower than Z,

then set Z = h1N1 + h2N2 and remember (N1; N2).

13

Step 5. If N1 < NUB
1 then increment N1 by one and return to Step 3; otherwise

terminate and output (N1; N2).

To explain the above TwoStage(T) algorithm, we note that we loop over N1 from its

lower bound to its upper bound. For any �xed N1, we can calculate the smallest N2

that still makes the required response time T feasible; that is, s1
1�u1=N1

+ s2
1�u2=N2

� T

(Step 3). We do not need to consider any other N2, as any N2 less than that given in

Step 3 will be infeasible, and any N2 greater than that given in Step 3 will result in a

higher objective function value (by Proposition 4). The (N1; N2) from Step 3 thus form

the integer boundary of the feasible region.

It is possible to terminate TwoStage(T) early if N2 from Step 3 turns out to be equal to

NLB
2 . Any higher N1 (and same or higher N2) will only lead to higher objective function

value (Proposition 4).

The following is an algorithm that recursively solves a higher-dimension problem.

Algorithm n-Stage(T):

Step 0. Feasibility test: If
Pn

i=1 si � T then the problem n-Stage(T) is infeasible.

Terminate and output \infeasible".

Step 1. Bounds: Compute the continuous-variable solution from equations (8),

(9) and (10). Compute the lower and upper bounds NLB
i and NUB

i

for i = 1; 2; : : : ; n following the iterative bounding procedure. Set the

optimal objective function value Z to in�nity.

Step 2. Set Nn to its lower bound NLB
n .

Step 3. Solve the problem (n�1)-Stage(tn) where tn = T � sn
1�un=Nn

. If (n�1)-

Stage(tn) returns \infeasible" then go to Step 4; Otherwise obtain (the

returned) (N1; : : : ; Nn�1). If Z >
Pn

i=1 hiNi, then set Z =
Pn

i=1 hiNi

and remember (N1; : : : ; Nn�1; Nn).

Step 4. If Nn < its upper bound NUB
n then increment N1 by one and return to

Step 3; otherwise terminate and output (N1; N2; : : : ; Nn).

We note that the computational complexity of the above algorithm (number of enumer-

ations) is of the order of
Qn

i=1(N
UB
i � NLB

i) where n is typically a small number (2 or

3).

14

7 Optimization Model Using the Critical Quantile

Response Time

It is possible to specify the service level requirement in a critical quantile of the response

time, such as \95% of the response times to be less than 5 seconds." In mathematical

language, PrfR � Qg � 0:95, where R is the response time, Q is the critical quantile

(Q = 5 seconds here).

If response time R is exponentially distributed, then the requirement PrfR � Qg � 0:95

is equivalent to E[R] � � �Q where � = 1=[� ln(1� 0:95)] � 0:33381. Hence in case of

exponentially distributed response time, the response time quantile requirement can be

exactly translated into a requirement on the average response time.

In cases when the response time is not exponentially distributed, we can use Markov's

inequality

PrfR � Qg � (E[R]=Q) or PrfR � Qg � 1� (E[R]=Q): (12)

to produce a surrogate (approximate) inequality 1 � (E[R]=Q) � 0:95, or equivalently

E[R] � 0:05Q. Hence, by letting T � 0:05Q, the resulting optimization model would be

identical to the one we have discussed.

The use of inequality 1� (E[R]=Q) � 0:95 guarantees the satisfaction of the requirement

PrfR � Qg � 0:95. We want to point out that we found, through actual test data, that

Markov's inequality is a loose inequality in the sense that the actual achieved response

time performance when using the surrogate constraint 1� (E[R]=Q) � � is much better

than predicted; i.e. the actual probability PrfR � Qg is much greater than �.

8 Concluding Remarks

In this document, we have looked at an optimization model using our computationally

simple queueing results on the average response time. The optimization model determines

the number of servers at each of the n tiers, reecting the cost di�erentials among the

tiers. So the model will likely designate fewer expensive machines together with more

numerous cheap machines so as to achieve the overall average response time.

The continuous-variable version of the optimization model leads to the closed form so-

lution as given by (8), (9) and (10), which gives the \ideal" (in the sense if fractional

machines are permissible) machine con�gurations. Figures 1 and 2 show that the ideal

15

number of machines is inversely proportional to the required average response time T .

It is possible to consider the sensitivity of the ideal N c
i to other problem parameters (hi,

si, and ui), by taking partial derivative of Ni w.r.t. these parameters in equation (8) and

noting that is also a function of hi, si, and ui.

Finally, the optimization model is applicable (can be extended) to any service level ex-

pression that can be translated into the average response time.

9 Acknowledgement

We would like to thank Xiaoyun Zhu for her tremendously helpful comments which have

clari�ed numerous aspects in the description of the problem context. We also like to

thank Opher Baron for his comments on an earlier version of this report.

10 References

Appleby, K., S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. 2001. Oceano |

SLA based management of a computing utility, in IFIP/IEEE Intl. Symp. on Integrated

Network Management, May 2001.

Garg, Pankaj K., Ming Hao, Cipriano Santos, Hsiu-Khuern Tang, Alex Zhang. 2002.

Web Transaction Analysis and Optimization. HP Laboratories Technical Report, HPL-

2002-45, March 4, 2002. Palo Alto, CA 94304.

Menasce, Daniel A. and Virgilio A.F. Almeida, 1998. Capacity Planning for Web Per-

formance, Prentice Hall PTR, Upper Saddle River, NJ 07548.

Rolia, Jerry A. and K.C. Sevcik. 1995. The Method of Layers. IEEE Transactions on

Software Engineering, Vol. 21, No. 8, August 1995.

Santos, Cipriano, Xiaoyun Zhu, Harlan Crowder. 2002. A Mathematical Optimization

Approach for Resource Allocation in Large Scale Data Centers. HP Laboratories Tech-

nical Report, HPL-2002-64. Palo Alto, CA 94304.

Sheikh, Fahim, Jerry Rolia, Pankaj Garg, Svend Frolund, and Allan Shepherd. 1997.

Layered Performance Modeling of a CORBA-based Distributed Application Design. Proc.

4th International Conference on Analytical and Numerical Modeling Techniques with ap-

plication to QUALITY OF SERVICE (QoS) MODELLING, Singapore, September 1-4,

16

1997.

17

