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We present the cycle-time aware architecture synthesis methodology used 
in PICO-NPA that automatically synthesizes minimal cost RT-level 
designs from high- level specifications to meet a given cycle-time. This 
allows subsequent physical synthesis to succeed on first pass with 
predictable performance. The core of the methodology is a static timing 
analysis engine that is used at multiple levels - program-level, 
architecture-level and RT-level - in order to identify, schedule and 
validate useful operator chains that are incorporated into the design 
automatically. We present architecture synthesis results for several 
embedded applications and evaluate the benefits of this technique. 

 

* Internal Accession Date Only                               Approved for External Publication 
Presented at the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems --
CASES--8-11 October 2002, Grenoble, France 
 Copyright ACM  



Cycle-time Aware Architecture Synthesis of  
Custom Hardware Accelerators

Mukund Sivaraman 
Hewlett-Packard Labs 

1501 Page Mill Road, MS 1166 
Palo Alto, CA 94304 

1-650-857-2549 

mukund@hpl.hp.com 

Shail Aditya 
Hewlett-Packard Labs 

1501 Page Mill Road, MS 1166 
Palo Alto, CA 94304 

1-650-857-3088 

aditya@hpl.hp.com 
 
ABSTRACT 
We present the cycle-time aware architecture synthesis 
methodology used in PICO-NPA that automatically synthesizes 
minimal cost RT-level designs from high-level specifications to 
meet a given cycle-time. This allows subsequent physical synthesis 
to succeed on first pass with predictable performance. The core of 
the methodology is a static timing analysis engine that is used at 
multiple levels – program-level, architecture-level and RT-level – 
in order to identify, schedule and validate useful operator chains 
that are incorporated into the design automatically. We present 
architecture synthesis results for several embedded applications 
and evaluate the benefits of this technique. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 
optimization. 

General Terms 
Design, Performance, Verification. 

Keywords 
operator chaining, high-level synthesis, timing analysis, delay 
analysis, timing during scheduling, target clock period, clock 
frequency, embedded hardware architecture synthesis. 

 

1. INTRODUCTION 
The ever increasing demand for multi-media consumer products, 
mobile devices, and other "smart" products in today’s market 
poses an enormous design challenge to the embedded computer 
and electronics industry. The main objective is to turn out fast, 
reliable, and cost-effective electronic designs of increasing 
complexity in the shortest possible time. The PICO (Program-In-
Chip-Out) project addresses this challenge by providing an 
automatic methodology to design programmable and non-  
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programmable custom hardware accelerators starting from a high-
level algorithmic description such as a C program. Starting from a 
high-level description enables comprehensive application analysis 
that is used for both high performance architecture design as well 
as reducing cost via customization. Furthermore, architectural 
design automation and exploration enables the user to make 
informed design choices leading to more cost-effective and reliable 
designs with a faster time-to-market. 

This paper describes the cycle-time aware architecture synthesis 
methodology within PICO-NPA [1], the subsystem of PICO that 
designs custom, non-programmable loop accelerators 
automatically. PICO-NPA takes a C loop nest and a performance 
requirement as input and produces a customized hardware circuit 
of minimal cost that executes that loop at the desired performance 
level. The system is capable of making cost-performance trade-
offs at multiple levels: exploiting multi-dimensional loop-level 
parallelism by spreading the computation over multiple processors 
(P), exploiting instruction-level parallelism within each processor 
through software pipelining as measured by the initiation interval 
(II) between successive loop iterations, and optimizing 
architecture-level hardware cost and performance by better 
utilization of the specified clock cycle-time (T). In this paper we 
focus our attention on this last issue. 

PICO-NPA differs from traditional high-level synthesis techniques 
[2][3][4][5] in that it actively models and manages the achievable 
cycle-time of the circuit being designed to be close to a pre-
specified cycle time T. Using the techniques described in this 
paper, PICO-NPA is able to automatically synthesize RT-level 
designs that are better suited for subsequent physical synthesis in 
that they achieve first pass timing convergence at the given cycle 
time with a high degree of confidence. At the same time, such 
designs are more cost-effective because of a better utilization of 
the available clock period through a systematic use of operator 
chaining during architecture synthesis.   

The outline of this paper is as follows. Section 2 gives an 
overview of the PICO-NPA design flow. Section 3 discusses the 
timing-oriented view of the architecture synthesis problem in more 
detail.  Section 4 describes our timing-driven architecture synthesis 
methodology, including ways to selectively reduce cost as well as 
to improve critical path timing. Sections 5 and 6 discuss our 
experimental setup and results respectively. Section 7 discusses 
related work and Section 8 concludes. 

 



2. PICO-NPA DESIGN FLOW 
The abstract design flow followed within PICO-NPA is shown in 
Figure 1. PICO-NPA accepts a multi-dimensional loop nest 
written in C that needs to be accelerated in hardware to a desired 
performance level, expressed as a combination of the number of 
processors (P), the initiation interval (II) and a cycle time (T). 
Architecture synthesis within PICO-NPA is actively driven by 
these parameters and has two major steps. In the first step, the 
given loop nest is analyzed for dependences and its iterations are 
mapped to an array of systolic processors. In the second step, the 
transformed loop structure is used to synthesize the architecture of 
a single systolic processor. The latter is achieved by first allocating 
sufficient hardware to meet the desired initiation interval and then 
scheduling the loop operations on that hardware in a software 
pipeline at the specified initiation interval and cycle-time.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The PICO-NPA design flow.  

 

The subsequent steps of physical synthesis (logic synthesis, place 
and route) are fairly standard and PICO-NPA uses standard 
commercial tools to implement them. However in traditional 
design flows, very often the design goes through several iterations 
of physical synthesis in order to meet the given cycle-time 
constraints through a tedious manual process of discovering critical 
paths in the design, fixing them in the RT-level design, and then 
re-synthesizing. PICO-NPA avoids such iterations by producing 
an RT-level design that is expected to meet its cost and 
performance estimates through subsequent physical synthesis in 
one pass.  This is the main advantage of explicitly managing cycle-
time constraints during architecture synthesis and is the main topic 
of this paper. 

 

3. PROBLEM DESCRIPTION 
Given a circuit, let us denote the maximum combinational delay 
that a signal may experience before being latched at a sequential 
latch by ∆. The metric (T-∆) is called the available timing slack 
(or simply slack) at that latch. Usually, there is some variance in 
the amount of slack across all latches in the circuit. A typical 
histogram of the available slack at a latch is shown in Figure 2. 
The figure shows the number of latches that have a certain 

amount of available slack for a given cycle time of 10ns in the 
channel application. 
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Figure 2. A histogram of available timing slack at T=10ns. 
 

It can be seen that a majority of latches have a lot of slack and 
hence are “wasting” the computation time available, while others 
have relatively tighter signal arrival constraints. While it may not 
be possible (or desirable) to reduce the cycle-time of the circuit 
due to these tightly constrained latches, it is still possible to make 
use of the excess slack at other latches to reduce the overall cost 
of the circuit. This can be done by executing more than one flow-
dependent operation in the same clock cycle and eliminating the 
intermediate latches between them. This technique is known as 
operator chaining [2] and is a well-known optimization in high-
level synthesis. Operator chaining also potentially increases 
performance by reducing the total number of control steps needed 
to execute the program. 
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Figure 3. Slack histogram for unrestricted chaining at T=10ns. 
 

Adding too much combinational logic to a control step, however, 
may cause the available slack to become negative, which implies 
that the circuit is unable to meet the specified cycle-time T and 
can only correctly operate at a reduced speed. This situation is 
depicted in Figure 3 for the channel application, where we have 
allowed unrestricted chaining in the circuit to take place that is 
limited only by the availability of resources and data dependences 
due to recurrences. This has led to a design that can only correctly 
operate with a cycle-time of 13ns. 

A good RT-level design, therefore, is one where the available 
slack never goes into negative territory and is otherwise distributed 
as close to zero slack as possible in an attempt to reduce the 
overall cost of the design. A cycle-time aware design flow actively 
attempts to construct minimal cost designs that are guaranteed to 
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meet a specified cycle-time T as opposed to determining their 
maximal operating frequency after blind cost optimization. 

In PICO-NPA, we tackle this problem during architecture 
synthesis (as opposed to physical synthesis in traditional design 
flows) because this provides maximal freedom in making 
intelligent operator chaining decisions. We use global information 
from the control and data flow graph (CDFG) prior to operation 
scheduling in order to identify what sequences of operations 
should be considered for chaining, and we use local timing 
analysis during scheduling and hardware mapping in order to 
validate the candidate operator chains. Our goal is to create the 
maximal chaining possible in the final design without impacting its 
cycle-time. Furthermore, we wish to achieve this even in situations 
where hardware resources may be shared between multiple 
operations (II>1). 

 

4. APPROACH 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The cycle-time aware architecture synthesis design 

flow in PICO-NPA. 

 

 

Figure 4 shows the cycle-time aware architecture synthesis design 
flow in PICO-NPA. The key feature of our approach is a static 
timing analysis sub-system that is used at multiple steps of the 
design flow to validate various architectural decisions being made 
with respect to cycle-time constraints. The design flow can be 
broadly classified into three phases based on the level of 
abstraction at which the timing analysis sub-system is used. In the 
pre-scheduling phase, program-level timing analysis is used to 

identify candidate operator chains. During scheduling and binding 
phase, architecture-level timing analysis is used to select specific 
operator chains to be incorporated into the design that meet the 
specified cycle-time. Finally, a detailed timing validation check is 
performed on the fully synthesized RT-level design in the post-
scheduling synthesis phase. 

 

4.1 Pre-scheduling 
As shown in Figure 4, PICO-NPA starts by performing classical 
compiler optimizations on the parallel loop code obtained after 
iteration-level scheduling and mapping of the original C loop nest 
onto an array of systolic processors. The subsequent steps 
relevant to cycle-time aware architecture synthesis are described 
below.  

 

4.1.1 Operator chaining candidate identification 
At this step, potential operator chains are identified using a 
pattern-matching engine. The pattern matcher reads in a library of 
templates specified in a general template specification language, 
and matches the templates with the operations and operands in the 
program graph. For the purposes of operator chaining, we use 
templates of the following form: 

 

 

 

 

 

 
 

where Op1 can be an arithmetic, logical, comparison, or move 
operation and feeds into a unary operation Op2 (move, abs) or 
either operand of a non-unary operation Op2 (arithmetic, logical, 
or comparison). The templates can be used in effect to exclude 
certain operations from being chained due to system interface 
constraints. For example, loads/stores may be excluded if the path 
from/to external memory doesn’t have enough timing slack. Note 
that these templates only specify potential operator chains of 
length equal to 2. Longer chains of operations may be formed by 
the concatenation of back-to-back operator chains during 
scheduling (Section 4.2). Therefore, these templates are sufficient 
for identifying all chaining opportunities including those across 
loop iterations. 

For each pattern that is identified by the pattern matcher, a 
program-level timing analysis is performed as follows in order to 
check if the pattern is indeed chainable. As a first step, for the 
pattern under consideration, each operator in the pattern is 
mapped to its fastest hardware implementation (the one with 
maximum available slack) from among the macrocells available in 
the macrocell library. In the second step, we evaluate the delay of 
every latch-to-latch signal path induced by chaining the operations 
in the pattern using the components chosen above, and check 
against the specified cycle-time T. The mapping from an operator 
chaining pattern to corresponding hardware is illustrated below: 
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Here, Op1 is mapped to FU1, which happens to be internally 
pipelined, while Op2 is mapped to FU2, which is combinational. 
The signals going in and out of the pair of FUs are terminated in 
latches and the resulting hardware structure is checked for timing 
validity, as described later in Section 4.4. 

Choosing the fastest hardware mapping results in an optimistic 
timing check, therefore, any pattern that fails to satisfy timing at 
this point will certainly not meet timing when the corresponding 
operations get scheduled and bound onto actual FUs selected. 
Such timing-violating patterns are pruned away, thereby reducing 
the total number of potential chains that the scheduler needs to 
consider. 

For those patterns that pass the timing check, a chaining attribute 
is annotated on the program graph’s internal representation (IR). 
These attributes are kept up to date as further compiler 
optimizations take place, and are used in a subsequent edge 
drawing step (Section 4.1.3). 

 

4.1.2 Width clustering and FU allocation 
Operations are grouped into clusters based on their width [8], and 
for each width cluster, a least-cost set of FUs are allocated from a 
library of macrocells using a mixed integer-linear program (MILP) 
formulation [1]. In the course of formulating this MILP problem, 
we determine whether a given FU can execute a given operation 
type. In addition, we also ensure that the delay of the FU when 
executing the widest operation in the width cluster of this type 
satisfies the specified clock cycle-time. For instance, a multiply 
operation executing on a pipelined multiplier FU may meet the 
specified cycle-time, but may not do so on a combinational 
multiplier FU. Therefore, the combinational multiplier would be 
excluded from consideration for this multiply operation during FU 
allocation.  

 

4.1.3 Edge drawing 
Dependence edges are drawn for the program graph prior to 
scheduling. At this point, the flow-edge latencies1 between 
                                                           
1 The flow-/anti-/output-edge latency between two operations 

corresponds to the minimum operation issue time separation 
such that the flow-/anti-/output-dependence relations are 
satisfied [7]. 

potentially chainable operations are reduced by 1. For instance, if 
a 3-cycle multiply operation can be chained with an add operation, 
then the flow-edge latency from the multiply operation to the add 
operation will be marked as 2 cycles instead of 3 cycles, as 
illustrated below: 
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This allows us to effectively convey potential operator chaining 
information to our scheduler which works with integer latencies. 

 

4.2 Scheduling and Binding 
We have extended the iterative modulo scheduler (IMS [6]) to 
make scheduling and binding decisions that are correct with 
respect to timing, i.e., they do not lead to violation of the cycle-
time. At each step, the scheduler picks up the highest priority 
operation and tries to schedule it at the earliest time slot at which 
an FU capable of executing that operation is available. The 
combination of a specific time slot and a specific FU resource is 
called a scheduling pattern. We actively manage timing slacks 
during this phase by checking the timing validity of every 
scheduling pattern that the scheduler considers for an operation. 
This involves ensuring that selecting this pattern will result in 
hardware where every path satisfies the given clock cycle-time 
constraint. 

The validation of a scheduling pattern crucially depends on 
previous scheduling and binding decisions because they directly 
determine the physical connectivity among the hardware FU 
components. Therefore, we use an architecture modeler that 
maintains an internal representation of the partial hardware 
structure as it is being defined during the scheduling process. The 
architecture modeling can be fine-grained wherein data flow 
between FUs is bound to registers and the corresponding 
interconnect is synthesized, or can be coarse-grained wherein data 
flows are modeled as virtual links between producing and 
consuming FUs. In our observation, the coarse-grained 
architecture modeling proved to be sufficiently accurate for timing 
analysis purposes. 

In order to perform the timing validation, the architecture modeler 
temporarily updates the hardware structure with the scheduling 
pattern under consideration. Architecture-level timing analysis is 
then performed as discussed below to check if this resulting 
hardware structure can be clocked at the specified cycle-time. If 
the scheduling pattern fails the timing validity check, then it is 
removed from consideration at this scheduling step. 

Both the hardware structure updation and timing analysis occur in 
the innermost loop of the modulo scheduler, therefore, they need 
to be very efficient. We perform these steps incrementally, i.e., at 
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each step, timing analysis is performed only for those portions of 
the updated hardware structure whose timing is affected. An 
example of this is shown in Figure 5. It shows the addition of 
virtual data flow links (shown as bold arrows) to the hardware 
structure as a result of scheduling and binding an operation on 
FU1, and the portion of the updated hardware structure where 
timing analysis would need to be performed (the shaded region). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Incremental hardware updation and timing-validity 

checking. 

 

We make certain conservative approximations during the timing 
analysis in order to avoid a situation where the current scheduling 
and binding decision becomes timing-invalid in the future as more 
operations are bound on an FU (thereby causing its width, fanout 
load capacitance, or fanin operand multiplexing to increase). The 
width, fanout and fanin of each FU is approximated prior to 
scheduling and binding, based on the cluster to which the FU 
belongs, the maximum fanout over all operations in the program 
graph, and the II. 

 

4.3 Post-Scheduling RT-level Timing 
After scheduling & binding of operations, binding of variables to 
registers and subsequent materialization of the hardware has been 
performed, timing analysis is done on the detailed RTL hardware 
structure. At this point, the FU widths, fanouts, register and 
interconnect structure are known exactly, therefore, the timing 
analysis is very accurate. This timing analysis serves as validation 
of the design for timing correctness. 

 

4.4 Timing analysis 
As described above, the timing analysis sub-system of PICO-NPA 
is used at various steps in the design flow at different levels of 
abstraction. However, the underlying delay models and the timing 
analysis algorithm are common to and are shared across all of 
them. 

Every RT-level hardware component (FUs, latches, switching 
multiplexers and logic elements) used in PICO-NPA has a delay 

model associated with it, which is included as part of a macrocell 
library database. For instance, the delay model for a 3-cycle 
pipelined multiply-adder (which reads its add input operand in2 
two cycles after operands in0 and in1 are read) is shown in Figure 
6. The delay model consists of a set of timing edges from input 
ports or internal pipelining latches of a hardware component to 
other internal pipelining latches or output ports, with associated 
delay functions (∆in, ∆pipe, ∆out, ∆thru). The delays are a function of 
relevant hardware parameters, e.g., FU width, output load 
capacitance etc. The delay functions may be taken from the 
datasheet for a hard-macro, or they may be derived by performing 
logic synthesis for several combinations of the relevant parameters 
and subsequently measuring the delays. Furthermore, these delays 
may be represented as closed-form functions, or as a set of values 
upon which interpolation may be performed as needed. 

 

 

 

 

 

 
Figure 6. Delay model for a multiply-adder. 

 

The timing analysis algorithm operates on a directed graph built 
using the delay models of a given set of hardware components and 
edges representing the physical connectivity between their output 
and input ports.  Unconnected input and output ports are 
terminated by a latch, as shown in Figure 7. The algorithm finds 
the maximum arrival time of signals at each node by recursively 
finding the maximum signal arrival time at all its predecessor 
nodes, which is a linear-time algorithm [9]. In Figure 7, each 
timing edge is shown annotated with a delay value (interconnect 
delay is assumed to be zero for illustration purposes), and the 
computation of the maximum signal arrival time (maxdelay) at 
each node is also shown. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Timing analysis on hardware structure. 
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In our timing analysis, we also exploit the fact that the hardware 
has a periodicity of II cycles to eliminate false paths and 
combinational cycles from the analysis. A path is said to be false 
or unsensitizable when a signal cannot propagate from the 
beginning to the end of the path under any combination of actual 
inputs. An example of such a case is shown in Figure 8a. Here the 
two chains are not active in the same phase, therefore any path 
through all three FUs is not sensitizable. False combinational 
cycles may arise when two different operator chains share FUs, 
but in different directions, as shown in Figure 8b. 

 

 

 

 

 

 

 

 

 

(a) An acyclic false path. 

 

 

 

 

 

 

(b) A cyclic false path. 
Figure 8. Examples of false paths. 

 

 

Both acyclic and cyclic false paths are dealt with by performing 
the timing analysis separately for each of the II phases of circuit 
operation, where, for each phase, the timing analysis considers 
only those timing edges that are active in that phase.  

 

5. EXPERIMENTAL SETUP 
The cycle-time aware architecture synthesis framework described 
above has been implemented within our PICO-NPA research 
prototype. We have taken several applications through architecture 
synthesis and a few of them all the way through physical 
synthesis. The applications are taken from various domains such 
as printing, digital photography, signal processing and 
communications. Table 1 presents a brief description of the 
applications used.  

 

 

 

 

 

Table 1. The embedded applications used in this study. 

Application Description 

Cell ATM cell delineation 

Channel Multi-channel ATM cell de-mux 

Fir 16-tap finite impulse response filter 

Fsed Floyd-Steinberg image half-toning 

Linescreen Table-driven image half-toning 

Heat 1D relaxation 

Dct 8x8 Discrete cosine transform 

Huffman Huffman encoding 

Matmul Matrix multiplication 

Sobel Image edge detection 

String String sequence matching 

 

For each application, we synthesized a single processor (P=1) 
running at a given clock frequency of 100MHz (T=10ns) for a 
range of throughput requirements (II=1, 2, 4, 8). We performed 
architecture synthesis in three different modes – one without 
chaining, one with maximal chaining without regard to timing 
slack2, and one where chaining is performed in conjunction with 
active timing slack management. The timing slack and gate count 
numbers shown below were obtained by analyzing the RT-level 
netlist produced by PICO-NPA after architecture synthesis. The 
area and delay models used for the macrocells were derived by 
pre-characterizing the macrocells using logic synthesis, and curve-
fitting the results to produce closed-form delay functions. 

 

6. RESULTS 
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Figure 9. Minimum timing slack for II=1.  

 

Figure 9 shows the results of timing slack management for II=1. 
On the Y-axis we have plotted the minimum slack across all 
latches in the circuit. A negative minimum slack implies that the 

                                                           
2 This was accomplished simply by switching off the timing sub-

system and accepting every chaining decision as being valid for 
timing. 
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circuit is unable to meet the specified cycle-time. Figure 9 clearly 
shows that chaining without timing slack management leads to 
circuits that cannot meet their specified cycle-time. It also shows 
that timing slack management is very effective in controlling the 
amount and location of operator chaining so that the given cycle-
time is met across all paths. Without this mechanism, for many 
applications the only way to meet the given cycle time is to do no 
chaining at all. We also see that some applications remain 
unaffected, either because there are very few opportunities to 
chain (e.g. matmul) or all the chaining opportunities already meet 
the 10ns cycle time (e.g. cell and string). Applications in the latter 
category may still need active slack management for a faster clock 
design. 
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Figure 10. Gate counts for II=1. 

 

The main benefit of doing operator chaining is a reduction in 
silicon area used by the circuit as measured by its gate count. The 
results for II=1 are shown in Figure 10. In general, the gate counts 
reduce when chaining is employed due to elimination of pipeline 
latches between the producer and the consumer function units. 
The chart shows that the potential reduction in total gate cost with 
maximal chaining varies dramatically among applications, ranging 
from 5% in matmul which provides very little opportunity to about 
34% in Huffman where almost a third of the cost can be 
eliminated. However, the key observation is that chaining with 
timing slack management is also able to obtain most of this cost 
benefit ranging from about 5% in matmul to about 30% in cell. 
With timing slack management, the cost benefit is reduced in 
precisely those applications that would have otherwise performed 
over-aggressive chaining and failed to meet their cycle-time. This 
shows that our active timing slack management scheme is very 
effective in trading off a slight increase in silicon area in order to 
obtain a predictable cycle-time. 
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Figure 11. Percentage gate count reduction across II. 

Figure 11 shows the percentage of gate count reduction obtained 
by chaining using timing slack management at lower throughput3 
(II>1). The main trend in the chart is that the cost benefit is 
lowered at higher II. This is as expected because at lower 
throughput, more and more hardware components (function units 
and latches) are shared and cost benefits can be realized only 
when all data-dependent operation pairs between two function 
units are actually chained. However, the encouraging aspect is that 
the degradation is gradual, and the cost reduction is still significant 
for several applications at II=8 (up to 10%). However, for some 
applications the cost even increases slightly (fir at II=8). This is 
attributable to the fact that chaining causes the schedule to change 
and therefore may adversely affect hardware resource sharing 
obtained previously. The interaction between the timing and 
resource management heuristics during scheduling needs further 
investigation and is beyond the scope of this paper. 

As a final point, we expect the reduction in latches obtained by our 
approach to be retained by logic synthesis because commercial 
logic synthesis tools do not change the state elements specified in 
the RT-level design (retiming is rarely used). Furthermore, latch 
elimination will result in exposing more combinational logic 
between successive latches to logic synthesis, thereby leading to 
more opportunities for logic optimization, and consequently even 
larger gate count reductions than shown by our RT-level results. 

 

7. RELATED WORK 
Operator chaining, by itself, is a well-known technique in high-
level synthesis. Various high-level synthesis systems either directly 
or indirectly address chaining within their framework [3][4][5]. 
Some systems make explicit chaining decisions either globally (e.g. 
multiply-add) or while scheduling operators from the CDFG into 
control steps using an abstract model of operator delays. Others 
are based on retiming [10] the final circuit after a preliminary 
round of scheduling and mapping and readjusting the placement of 
latches to reduce cost. In either case, the maximum speed at 
which the circuit may operate is an output of the design process, 
to be determined and improved upon during physical synthesis. 

Our approach, in contrast, actively shepherds the architecture of 
the circuit to meet a cycle-time given as input using both global 
information before scheduling and local information during 
scheduling and hardware mapping. The designs produced by these 
techniques meet the specified cycle-time in a single pass of 
physical synthesis. Snider’s work [11] is closest to ours in this 
respect but he does not consider II>1 designs (and the resulting 
complexity due to hardware resource sharing) and therefore his 
architecture-level timing analysis is highly simplistic.  

 

8. SUMMARY AND CONCLUSIONS 
In this paper, we have presented a description and evaluation of 
the cycle-time aware architecture synthesis methodology used 
within PICO-NPA. We use a multi-phase strategy that identifies 
useful operator chains at the program-level prior to operation 

                                                           
3 For some experiments (II=2 : cell, dct; II=4 : heat, huffman), the 

modulo scheduler succeeded in scheduling only for target II + 1. 
This was due to the heuristic nature of our scheduling algorithm, 
but it does not affect our conclusions in any significant way. 



scheduling, implements a subset of them during scheduling using 
active timing slack management at the architecture-level, and 
finally verifies these decisions after synthesis at the RT-level. 

The major contributions of this paper are the following: 

• We have shown that timing slack management during 
architecture synthesis is an effective technique in designing 
circuits automatically that can meet a specified cycle-time. 

• We have shown that operator chaining is very effective in 
significantly reducing the cost of custom hardware 
accelerators generated by PICO. However, unrestricted use 
of operator chaining makes the achievable cycle-time of the 
circuit highly unpredictable. The active timing slack 
management framework described in this paper is able to 
make intelligent chaining decisions that provide most of the 
cost benefit without impacting the cycle-time. 

• The cost reduction due to chaining is maximum for high 
throughput designs (5-30% for II=1). This improvement is 
lower but still fairly significant (up to 10% for II=8) for 
designs with lower throughput. 
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