

Cycle-time Aware Architecture Synthesis of
Custom Hardware Accelerators

Mukund Sivaraman, Shail Aditya
Compiler and Architecture Research Laboratory
HP Laboratories Palo Alto
HPL-2002-300
October 21st , 2002*

E-mail: mukund@hpl.hp.com, aditya@hpl.hp.com

high- level
synthesis,
timing
analysis,
embedded
hardware
architecture
synthesis

We present the cycle-time aware architecture synthesis methodology used
in PICO-NPA that automatically synthesizes minimal cost RT-level
designs from high- level specifications to meet a given cycle-time. This
allows subsequent physical synthesis to succeed on first pass with
predictable performance. The core of the methodology is a static timing
analysis engine that is used at multiple levels - program-level,
architecture-level and RT-level - in order to identify, schedule and
validate useful operator chains that are incorporated into the design
automatically. We present architecture synthesis results for several
embedded applications and evaluate the benefits of this technique.

* Internal Accession Date Only Approved for External Publication
Presented at the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems --
CASES--8-11 October 2002, Grenoble, France
 Copyright ACM

Cycle-time Aware Architecture Synthesis of
Custom Hardware Accelerators

Mukund Sivaraman
Hewlett-Packard Labs

1501 Page Mill Road, MS 1166
Palo Alto, CA 94304

1-650-857-2549

mukund@hpl.hp.com

Shail Aditya
Hewlett-Packard Labs

1501 Page Mill Road, MS 1166
Palo Alto, CA 94304

1-650-857-3088

aditya@hpl.hp.com

ABSTRACT
We present the cycle-time aware architecture synthesis
methodology used in PICO-NPA that automatically synthesizes
minimal cost RT-level designs from high-level specifications to
meet a given cycle-time. This allows subsequent physical synthesis
to succeed on first pass with predictable performance. The core of
the methodology is a static timing analysis engine that is used at
multiple levels – program-level, architecture-level and RT-level –
in order to identify, schedule and validate useful operator chains
that are incorporated into the design automatically. We present
architecture synthesis results for several embedded applications
and evaluate the benefits of this technique.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
optimization.

General Terms
Design, Performance, Verification.

Keywords
operator chaining, high-level synthesis, timing analysis, delay
analysis, timing during scheduling, target clock period, clock
frequency, embedded hardware architecture synthesis.

1. INTRODUCTION
The ever increasing demand for multi-media consumer products,
mobile devices, and other "smart" products in today’s market
poses an enormous design challenge to the embedded computer
and electronics industry. The main objective is to turn out fast,
reliable, and cost-effective electronic designs of increasing
complexity in the shortest possible time. The PICO (Program-In-
Chip-Out) project addresses this challenge by providing an
automatic methodology to design programmable and non-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010…$5.00.

programmable custom hardware accelerators starting from a high-
level algorithmic description such as a C program. Starting from a
high-level description enables comprehensive application analysis
that is used for both high performance architecture design as well
as reducing cost via customization. Furthermore, architectural
design automation and exploration enables the user to make
informed design choices leading to more cost-effective and reliable
designs with a faster time-to-market.

This paper describes the cycle-time aware architecture synthesis
methodology within PICO-NPA [1], the subsystem of PICO that
designs custom, non-programmable loop accelerators
automatically. PICO-NPA takes a C loop nest and a performance
requirement as input and produces a customized hardware circuit
of minimal cost that executes that loop at the desired performance
level. The system is capable of making cost-performance trade-
offs at multiple levels: exploiting multi-dimensional loop-level
parallelism by spreading the computation over multiple processors
(P), exploiting instruction-level parallelism within each processor
through software pipelining as measured by the initiation interval
(II) between successive loop iterations, and optimizing
architecture-level hardware cost and performance by better
utilization of the specified clock cycle-time (T). In this paper we
focus our attention on this last issue.

PICO-NPA differs from traditional high-level synthesis techniques
[2][3][4][5] in that it actively models and manages the achievable
cycle-time of the circuit being designed to be close to a pre-
specified cycle time T. Using the techniques described in this
paper, PICO-NPA is able to automatically synthesize RT-level
designs that are better suited for subsequent physical synthesis in
that they achieve first pass timing convergence at the given cycle
time with a high degree of confidence. At the same time, such
designs are more cost-effective because of a better utilization of
the available clock period through a systematic use of operator
chaining during architecture synthesis.

The outline of this paper is as follows. Section 2 gives an
overview of the PICO-NPA design flow. Section 3 discusses the
timing-oriented view of the architecture synthesis problem in more
detail. Section 4 describes our timing-driven architecture synthesis
methodology, including ways to selectively reduce cost as well as
to improve critical path timing. Sections 5 and 6 discuss our
experimental setup and results respectively. Section 7 discusses
related work and Section 8 concludes.

2. PICO-NPA DESIGN FLOW
The abstract design flow followed within PICO-NPA is shown in
Figure 1. PICO-NPA accepts a multi-dimensional loop nest
written in C that needs to be accelerated in hardware to a desired
performance level, expressed as a combination of the number of
processors (P), the initiation interval (II) and a cycle time (T).
Architecture synthesis within PICO-NPA is actively driven by
these parameters and has two major steps. In the first step, the
given loop nest is analyzed for dependences and its iterations are
mapped to an array of systolic processors. In the second step, the
transformed loop structure is used to synthesize the architecture of
a single systolic processor. The latter is achieved by first allocating
sufficient hardware to meet the desired initiation interval and then
scheduling the loop operations on that hardware in a software
pipeline at the specified initiation interval and cycle-time.

Figure 1. The PICO-NPA design flow.

The subsequent steps of physical synthesis (logic synthesis, place
and route) are fairly standard and PICO-NPA uses standard
commercial tools to implement them. However in traditional
design flows, very often the design goes through several iterations
of physical synthesis in order to meet the given cycle-time
constraints through a tedious manual process of discovering critical
paths in the design, fixing them in the RT-level design, and then
re-synthesizing. PICO-NPA avoids such iterations by producing
an RT-level design that is expected to meet its cost and
performance estimates through subsequent physical synthesis in
one pass. This is the main advantage of explicitly managing cycle-
time constraints during architecture synthesis and is the main topic
of this paper.

3. PROBLEM DESCRIPTION
Given a circuit, let us denote the maximum combinational delay
that a signal may experience before being latched at a sequential
latch by ∆. The metric (T-∆) is called the available timing slack
(or simply slack) at that latch. Usually, there is some variance in
the amount of slack across all latches in the circuit. A typical
histogram of the available slack at a latch is shown in Figure 2.
The figure shows the number of latches that have a certain

amount of available slack for a given cycle time of 10ns in the
channel application.

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

Timing slack (ns)

Figure 2. A histogram of available timing slack at T=10ns.

It can be seen that a majority of latches have a lot of slack and
hence are “wasting” the computation time available, while others
have relatively tighter signal arrival constraints. While it may not
be possible (or desirable) to reduce the cycle-time of the circuit
due to these tightly constrained latches, it is still possible to make
use of the excess slack at other latches to reduce the overall cost
of the circuit. This can be done by executing more than one flow-
dependent operation in the same clock cycle and eliminating the
intermediate latches between them. This technique is known as
operator chaining [2] and is a well-known optimization in high-
level synthesis. Operator chaining also potentially increases
performance by reducing the total number of control steps needed
to execute the program.

1

10

100

1000

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Timing slack (ns)

Figure 3. Slack histogram for unrestricted chaining at T=10ns.

Adding too much combinational logic to a control step, however,
may cause the available slack to become negative, which implies
that the circuit is unable to meet the specified cycle-time T and
can only correctly operate at a reduced speed. This situation is
depicted in Figure 3 for the channel application, where we have
allowed unrestricted chaining in the circuit to take place that is
limited only by the availability of resources and data dependences
due to recurrences. This has led to a design that can only correctly
operate with a cycle-time of 13ns.

A good RT-level design, therefore, is one where the available
slack never goes into negative territory and is otherwise distributed
as close to zero slack as possible in an attempt to reduce the
overall cost of the design. A cycle-time aware design flow actively
attempts to construct minimal cost designs that are guaranteed to

Parallelized loop code

Gate-level design

RT-level design

Iteration Scheduling &
Program Transformation

C loop nest P, II, T

Resource allocation,
Operation scheduling
& Hardware synthesis

Logic
Synthesis

Place &
Route

layout

Architecture
Synthesis
Physical
Synthesis

meet a specified cycle-time T as opposed to determining their
maximal operating frequency after blind cost optimization.

In PICO-NPA, we tackle this problem during architecture
synthesis (as opposed to physical synthesis in traditional design
flows) because this provides maximal freedom in making
intelligent operator chaining decisions. We use global information
from the control and data flow graph (CDFG) prior to operation
scheduling in order to identify what sequences of operations
should be considered for chaining, and we use local timing
analysis during scheduling and hardware mapping in order to
validate the candidate operator chains. Our goal is to create the
maximal chaining possible in the final design without impacting its
cycle-time. Furthermore, we wish to achieve this even in situations
where hardware resources may be shared between multiple
operations (II>1).

4. APPROACH

Figure 4. The cycle-time aware architecture synthesis design

flow in PICO-NPA.

Figure 4 shows the cycle-time aware architecture synthesis design
flow in PICO-NPA. The key feature of our approach is a static
timing analysis sub-system that is used at multiple steps of the
design flow to validate various architectural decisions being made
with respect to cycle-time constraints. The design flow can be
broadly classified into three phases based on the level of
abstraction at which the timing analysis sub-system is used. In the
pre-scheduling phase, program-level timing analysis is used to

identify candidate operator chains. During scheduling and binding
phase, architecture-level timing analysis is used to select specific
operator chains to be incorporated into the design that meet the
specified cycle-time. Finally, a detailed timing validation check is
performed on the fully synthesized RT-level design in the post-
scheduling synthesis phase.

4.1 Pre-scheduling
As shown in Figure 4, PICO-NPA starts by performing classical
compiler optimizations on the parallel loop code obtained after
iteration-level scheduling and mapping of the original C loop nest
onto an array of systolic processors. The subsequent steps
relevant to cycle-time aware architecture synthesis are described
below.

4.1.1 Operator chaining candidate identification
At this step, potential operator chains are identified using a
pattern-matching engine. The pattern matcher reads in a library of
templates specified in a general template specification language,
and matches the templates with the operations and operands in the
program graph. For the purposes of operator chaining, we use
templates of the following form:

where Op1 can be an arithmetic, logical, comparison, or move
operation and feeds into a unary operation Op2 (move, abs) or
either operand of a non-unary operation Op2 (arithmetic, logical,
or comparison). The templates can be used in effect to exclude
certain operations from being chained due to system interface
constraints. For example, loads/stores may be excluded if the path
from/to external memory doesn’t have enough timing slack. Note
that these templates only specify potential operator chains of
length equal to 2. Longer chains of operations may be formed by
the concatenation of back-to-back operator chains during
scheduling (Section 4.2). Therefore, these templates are sufficient
for identifying all chaining opportunities including those across
loop iterations.

For each pattern that is identified by the pattern matcher, a
program-level timing analysis is performed as follows in order to
check if the pattern is indeed chainable. As a first step, for the
pattern under consideration, each operator in the pattern is
mapped to its fastest hardware implementation (the one with
maximum available slack) from among the macrocells available in
the macrocell library. In the second step, we evaluate the delay of
every latch-to-latch signal path induced by chaining the operations
in the pattern using the components chosen above, and check
against the specified cycle-time T. The mapping from an operator
chaining pattern to corresponding hardware is illustrated below:

RT-level
STA

Architecture-
level STA

Program-
level STA

Parallelized loop code

Op chain identification
- Pattern matching
- Timing-driven filtering
- Annotation

Classical compiler optimizations

Width Clustering & FU
allocation

Modulo scheduling
& binding

Architecture
Modeler

RTL Synthesis

Macrocell lib
- Functionality
- Cost model
- Delay model

Static
Timing

Analyzer

RT-level HDL design

Edge drawing

Op1

Op2

Op1

Op2

Op1

Op2

Here, Op1 is mapped to FU1, which happens to be internally
pipelined, while Op2 is mapped to FU2, which is combinational.
The signals going in and out of the pair of FUs are terminated in
latches and the resulting hardware structure is checked for timing
validity, as described later in Section 4.4.

Choosing the fastest hardware mapping results in an optimistic
timing check, therefore, any pattern that fails to satisfy timing at
this point will certainly not meet timing when the corresponding
operations get scheduled and bound onto actual FUs selected.
Such timing-violating patterns are pruned away, thereby reducing
the total number of potential chains that the scheduler needs to
consider.

For those patterns that pass the timing check, a chaining attribute
is annotated on the program graph’s internal representation (IR).
These attributes are kept up to date as further compiler
optimizations take place, and are used in a subsequent edge
drawing step (Section 4.1.3).

4.1.2 Width clustering and FU allocation
Operations are grouped into clusters based on their width [8], and
for each width cluster, a least-cost set of FUs are allocated from a
library of macrocells using a mixed integer-linear program (MILP)
formulation [1]. In the course of formulating this MILP problem,
we determine whether a given FU can execute a given operation
type. In addition, we also ensure that the delay of the FU when
executing the widest operation in the width cluster of this type
satisfies the specified clock cycle-time. For instance, a multiply
operation executing on a pipelined multiplier FU may meet the
specified cycle-time, but may not do so on a combinational
multiplier FU. Therefore, the combinational multiplier would be
excluded from consideration for this multiply operation during FU
allocation.

4.1.3 Edge drawing
Dependence edges are drawn for the program graph prior to
scheduling. At this point, the flow-edge latencies1 between

1 The flow-/anti-/output-edge latency between two operations

corresponds to the minimum operation issue time separation
such that the flow-/anti-/output-dependence relations are
satisfied [7].

potentially chainable operations are reduced by 1. For instance, if
a 3-cycle multiply operation can be chained with an add operation,
then the flow-edge latency from the multiply operation to the add
operation will be marked as 2 cycles instead of 3 cycles, as
illustrated below:

 Unchained Chained

This allows us to effectively convey potential operator chaining
information to our scheduler which works with integer latencies.

4.2 Scheduling and Binding
We have extended the iterative modulo scheduler (IMS [6]) to
make scheduling and binding decisions that are correct with
respect to timing, i.e., they do not lead to violation of the cycle-
time. At each step, the scheduler picks up the highest priority
operation and tries to schedule it at the earliest time slot at which
an FU capable of executing that operation is available. The
combination of a specific time slot and a specific FU resource is
called a scheduling pattern. We actively manage timing slacks
during this phase by checking the timing validity of every
scheduling pattern that the scheduler considers for an operation.
This involves ensuring that selecting this pattern will result in
hardware where every path satisfies the given clock cycle-time
constraint.

The validation of a scheduling pattern crucially depends on
previous scheduling and binding decisions because they directly
determine the physical connectivity among the hardware FU
components. Therefore, we use an architecture modeler that
maintains an internal representation of the partial hardware
structure as it is being defined during the scheduling process. The
architecture modeling can be fine-grained wherein data flow
between FUs is bound to registers and the corresponding
interconnect is synthesized, or can be coarse-grained wherein data
flows are modeled as virtual links between producing and
consuming FUs. In our observation, the coarse-grained
architecture modeling proved to be sufficiently accurate for timing
analysis purposes.

In order to perform the timing validation, the architecture modeler
temporarily updates the hardware structure with the scheduling
pattern under consideration. Architecture-level timing analysis is
then performed as discussed below to check if this resulting
hardware structure can be clocked at the specified cycle-time. If
the scheduling pattern fails the timing validity check, then it is
removed from consideration at this scheduling step.

Both the hardware structure updation and timing analysis occur in
the innermost loop of the modulo scheduler, therefore, they need
to be very efficient. We perform these steps incrementally, i.e., at

Op1

Op2

FU1

FU2 *

+

*

+

each step, timing analysis is performed only for those portions of
the updated hardware structure whose timing is affected. An
example of this is shown in Figure 5. It shows the addition of
virtual data flow links (shown as bold arrows) to the hardware
structure as a result of scheduling and binding an operation on
FU1, and the portion of the updated hardware structure where
timing analysis would need to be performed (the shaded region).

Figure 5. Incremental hardware updation and timing-validity

checking.

We make certain conservative approximations during the timing
analysis in order to avoid a situation where the current scheduling
and binding decision becomes timing-invalid in the future as more
operations are bound on an FU (thereby causing its width, fanout
load capacitance, or fanin operand multiplexing to increase). The
width, fanout and fanin of each FU is approximated prior to
scheduling and binding, based on the cluster to which the FU
belongs, the maximum fanout over all operations in the program
graph, and the II.

4.3 Post-Scheduling RT-level Timing
After scheduling & binding of operations, binding of variables to
registers and subsequent materialization of the hardware has been
performed, timing analysis is done on the detailed RTL hardware
structure. At this point, the FU widths, fanouts, register and
interconnect structure are known exactly, therefore, the timing
analysis is very accurate. This timing analysis serves as validation
of the design for timing correctness.

4.4 Timing analysis
As described above, the timing analysis sub-system of PICO-NPA
is used at various steps in the design flow at different levels of
abstraction. However, the underlying delay models and the timing
analysis algorithm are common to and are shared across all of
them.

Every RT-level hardware component (FUs, latches, switching
multiplexers and logic elements) used in PICO-NPA has a delay

model associated with it, which is included as part of a macrocell
library database. For instance, the delay model for a 3-cycle
pipelined multiply-adder (which reads its add input operand in2
two cycles after operands in0 and in1 are read) is shown in Figure
6. The delay model consists of a set of timing edges from input
ports or internal pipelining latches of a hardware component to
other internal pipelining latches or output ports, with associated
delay functions (∆in, ∆pipe, ∆out, ∆thru). The delays are a function of
relevant hardware parameters, e.g., FU width, output load
capacitance etc. The delay functions may be taken from the
datasheet for a hard-macro, or they may be derived by performing
logic synthesis for several combinations of the relevant parameters
and subsequently measuring the delays. Furthermore, these delays
may be represented as closed-form functions, or as a set of values
upon which interpolation may be performed as needed.

Figure 6. Delay model for a multiply-adder.

The timing analysis algorithm operates on a directed graph built
using the delay models of a given set of hardware components and
edges representing the physical connectivity between their output
and input ports. Unconnected input and output ports are
terminated by a latch, as shown in Figure 7. The algorithm finds
the maximum arrival time of signals at each node by recursively
finding the maximum signal arrival time at all its predecessor
nodes, which is a linear-time algorithm [9]. In Figure 7, each
timing edge is shown annotated with a delay value (interconnect
delay is assumed to be zero for illustration purposes), and the
computation of the maximum signal arrival time (maxdelay) at
each node is also shown.

Figure 7. Timing analysis on hardware structure.

in0 in1

in2

out0

1.5ns 2.3ns

1.2ns

maxdelay
= max(3.1,2.6)
= 3.1ns

maxdelay
= max(1.2)
= 1.2ns

maxdelay
= max(3.1+1.5,1.2+2.3)
= 4.6ns

3.1ns 2.6ns

FU2

FU4

FU5

FU3
FU6

FU1

In our timing analysis, we also exploit the fact that the hardware
has a periodicity of II cycles to eliminate false paths and
combinational cycles from the analysis. A path is said to be false
or unsensitizable when a signal cannot propagate from the
beginning to the end of the path under any combination of actual
inputs. An example of such a case is shown in Figure 8a. Here the
two chains are not active in the same phase, therefore any path
through all three FUs is not sensitizable. False combinational
cycles may arise when two different operator chains share FUs,
but in different directions, as shown in Figure 8b.

(a) An acyclic false path.

(b) A cyclic false path.
Figure 8. Examples of false paths.

Both acyclic and cyclic false paths are dealt with by performing
the timing analysis separately for each of the II phases of circuit
operation, where, for each phase, the timing analysis considers
only those timing edges that are active in that phase.

5. EXPERIMENTAL SETUP
The cycle-time aware architecture synthesis framework described
above has been implemented within our PICO-NPA research
prototype. We have taken several applications through architecture
synthesis and a few of them all the way through physical
synthesis. The applications are taken from various domains such
as printing, digital photography, signal processing and
communications. Table 1 presents a brief description of the
applications used.

Table 1. The embedded applications used in this study.

Application Description

Cell ATM cell delineation

Channel Multi-channel ATM cell de-mux

Fir 16-tap finite impulse response filter

Fsed Floyd-Steinberg image half-toning

Linescreen Table-driven image half-toning

Heat 1D relaxation

Dct 8x8 Discrete cosine transform

Huffman Huffman encoding

Matmul Matrix multiplication

Sobel Image edge detection

String String sequence matching

For each application, we synthesized a single processor (P=1)
running at a given clock frequency of 100MHz (T=10ns) for a
range of throughput requirements (II=1, 2, 4, 8). We performed
architecture synthesis in three different modes – one without
chaining, one with maximal chaining without regard to timing
slack2, and one where chaining is performed in conjunction with
active timing slack management. The timing slack and gate count
numbers shown below were obtained by analyzing the RT-level
netlist produced by PICO-NPA after architecture synthesis. The
area and delay models used for the macrocells were derived by
pre-characterizing the macrocells using logic synthesis, and curve-
fitting the results to produce closed-form delay functions.

6. RESULTS

-11.7-26.8-9.1 -7.5
-5

-4

-3

-2

-1

0

1

2

3

ce
ll

cha
nn

el dct fir
fse

d
he

at

hu
ffm

an

line
scr

ee
n

matm
ul

sob
el

stri
ng

M
in

 T
im

in
g

 S
la

ck
 (

T
=1

0n
s) No chaining Max chaining Chaining w/ timing

Figure 9. Minimum timing slack for II=1.

Figure 9 shows the results of timing slack management for II=1.
On the Y-axis we have plotted the minimum slack across all
latches in the circuit. A negative minimum slack implies that the

2 This was accomplished simply by switching off the timing sub-

system and accepting every chaining decision as being valid for
timing.

FU1

FU2

FU3

chained edge (active in phase i)

chained edge (active in phase j)

FU1 FU1

chained edge (active in phase i)

chained edge (active in phase j)

circuit is unable to meet the specified cycle-time. Figure 9 clearly
shows that chaining without timing slack management leads to
circuits that cannot meet their specified cycle-time. It also shows
that timing slack management is very effective in controlling the
amount and location of operator chaining so that the given cycle-
time is met across all paths. Without this mechanism, for many
applications the only way to meet the given cycle time is to do no
chaining at all. We also see that some applications remain
unaffected, either because there are very few opportunities to
chain (e.g. matmul) or all the chaining opportunities already meet
the 10ns cycle time (e.g. cell and string). Applications in the latter
category may still need active slack management for a faster clock
design.

0

20

40

60

80

100

120

140

ce
ll

ch
an

ne
l dct fir

fse
d

he
at

hu
ffm

an

line
scr

ee
n

matm
ul

sob
el

stri
ng

G
at

e
C

ou
nt

 (
x1

00
0)

No chaining Max chaining Chaining w/ timing

Figure 10. Gate counts for II=1.

The main benefit of doing operator chaining is a reduction in
silicon area used by the circuit as measured by its gate count. The
results for II=1 are shown in Figure 10. In general, the gate counts
reduce when chaining is employed due to elimination of pipeline
latches between the producer and the consumer function units.
The chart shows that the potential reduction in total gate cost with
maximal chaining varies dramatically among applications, ranging
from 5% in matmul which provides very little opportunity to about
34% in Huffman where almost a third of the cost can be
eliminated. However, the key observation is that chaining with
timing slack management is also able to obtain most of this cost
benefit ranging from about 5% in matmul to about 30% in cell.
With timing slack management, the cost benefit is reduced in
precisely those applications that would have otherwise performed
over-aggressive chaining and failed to meet their cycle-time. This
shows that our active timing slack management scheme is very
effective in trading off a slight increase in silicon area in order to
obtain a predictable cycle-time.

-5

0

5

10

15

20

25

30

35

ce
ll

cha
nn

el dct fir
fse

d
he

at

hu
ffm

an

line
scr

ee
n

matm
ul

so
be

l
stri

ng

%
 G

at
e

C
ou

nt
 R

ed
uc

tio
n II=1 II=2 II=4 II=8

Figure 11. Percentage gate count reduction across II.

Figure 11 shows the percentage of gate count reduction obtained
by chaining using timing slack management at lower throughput3
(II>1). The main trend in the chart is that the cost benefit is
lowered at higher II. This is as expected because at lower
throughput, more and more hardware components (function units
and latches) are shared and cost benefits can be realized only
when all data-dependent operation pairs between two function
units are actually chained. However, the encouraging aspect is that
the degradation is gradual, and the cost reduction is still significant
for several applications at II=8 (up to 10%). However, for some
applications the cost even increases slightly (fir at II=8). This is
attributable to the fact that chaining causes the schedule to change
and therefore may adversely affect hardware resource sharing
obtained previously. The interaction between the timing and
resource management heuristics during scheduling needs further
investigation and is beyond the scope of this paper.

As a final point, we expect the reduction in latches obtained by our
approach to be retained by logic synthesis because commercial
logic synthesis tools do not change the state elements specified in
the RT-level design (retiming is rarely used). Furthermore, latch
elimination will result in exposing more combinational logic
between successive latches to logic synthesis, thereby leading to
more opportunities for logic optimization, and consequently even
larger gate count reductions than shown by our RT-level results.

7. RELATED WORK
Operator chaining, by itself, is a well-known technique in high-
level synthesis. Various high-level synthesis systems either directly
or indirectly address chaining within their framework [3][4][5].
Some systems make explicit chaining decisions either globally (e.g.
multiply-add) or while scheduling operators from the CDFG into
control steps using an abstract model of operator delays. Others
are based on retiming [10] the final circuit after a preliminary
round of scheduling and mapping and readjusting the placement of
latches to reduce cost. In either case, the maximum speed at
which the circuit may operate is an output of the design process,
to be determined and improved upon during physical synthesis.

Our approach, in contrast, actively shepherds the architecture of
the circuit to meet a cycle-time given as input using both global
information before scheduling and local information during
scheduling and hardware mapping. The designs produced by these
techniques meet the specified cycle-time in a single pass of
physical synthesis. Snider’s work [11] is closest to ours in this
respect but he does not consider II>1 designs (and the resulting
complexity due to hardware resource sharing) and therefore his
architecture-level timing analysis is highly simplistic.

8. SUMMARY AND CONCLUSIONS
In this paper, we have presented a description and evaluation of
the cycle-time aware architecture synthesis methodology used
within PICO-NPA. We use a multi-phase strategy that identifies
useful operator chains at the program-level prior to operation

3 For some experiments (II=2 : cell, dct; II=4 : heat, huffman), the

modulo scheduler succeeded in scheduling only for target II + 1.
This was due to the heuristic nature of our scheduling algorithm,
but it does not affect our conclusions in any significant way.

scheduling, implements a subset of them during scheduling using
active timing slack management at the architecture-level, and
finally verifies these decisions after synthesis at the RT-level.

The major contributions of this paper are the following:

• We have shown that timing slack management during
architecture synthesis is an effective technique in designing
circuits automatically that can meet a specified cycle-time.

• We have shown that operator chaining is very effective in
significantly reducing the cost of custom hardware
accelerators generated by PICO. However, unrestricted use
of operator chaining makes the achievable cycle-time of the
circuit highly unpredictable. The active timing slack
management framework described in this paper is able to
make intelligent chaining decisions that provide most of the
cost benefit without impacting the cycle-time.

• The cost reduction due to chaining is maximum for high
throughput designs (5-30% for II=1). This improvement is
lower but still fairly significant (up to 10% for II=8) for
designs with lower throughput.

9. ACKNOWLEDGEMENTS
The authors would like to acknowledge Scott Mahlke and
Shivarama Rao Kokrady for the initial implementation of the
pattern-matching engine, and Mike Schlansker and Rodric M.
Rabbah for an initial implementation of the architecture modeler.

10. REFERENCES
[1] R. Schreiber, S. Aditya, S. Mahlke, V. Kathail, B. R. Rau,

D. Cronquist and M. Sivaraman. PICO-NPA: High-Level
Synthesis of Nonprogrammable Hardware Accelerators.
Journal of VLSI Signal Processing, 31, 2002, pp. 127-142.

[2] R. Camposano. From Behavior to Structure: High-level
Synthesis. IEEE Design & Test of Computers, October
1990.

[3] H. De Man, F. Catthoor, G. Goossens, J. Vanhoof, J. V.
Meerbergen, S. Note, J. Huisken. Architecture-Driven
Synthesis Techniques for VLSI Implementation of DSP
Algorithms. Proceedings of the IEEE, 78(2), pgs. 319-335,
February, 1990.

[4] N. Park and A. Parker. Sehwa: A software package for
synthesis of pipelined data path from behavioral specification.
IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, March 1988, pp. 356-370.

[5] P. G. Paulin , J. P. Knight , E. F. Girczyc. HAL: A Multi-
paradigm Approach to Automatic Datapath Synthesis. Proc.
Design Automation Conference, 1986, pp. 263-270.

[6] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops. In Proc. 27th Annual
International Symposium on Microarchitecture, pgs. 63-74,
December 1994.

[7] B. R. Rau, V. Kathail, S. Aditya. Machine-description driven
compilers for EPIC and VLIW processors. Design
Automation for Embedded Systems, Vol 4, pgs. 71-118,
Kluwer Academic Publishers, Boston, 1999.

[8] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, T.
Sherwood, Bitwidth Cognizant Architecture Synthesis of
Custom Hardware Accelerators. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, Vol
20(11), November 2001.

[9] T. Kirkpatrick and N. Clark. PERT as an aid to logic design.
Tech. Rep. IBM, 1966.

[10] C. E. Leiserson and J. B. Saxe. Retiming Synchronous
Circuitry. Algorithmica, 6(1):5-35, 1991.

[11] G. Snider. Performance-Constrained Pipelining of Software
Loops onto Reconfigurable Hardware. Tenth ACM
International Symposium on Field-Programmable Gate
Arrays, Feb. 2002.

