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Abstract. Signcryption is a public key primitive proposed by Zheng [14]

to achieve the combined functionality of digital signature and encryption

in an eÆcient manner. We present a signcryption scheme based on RSA

and provide proofs of security in the random oracle model [6] for its

privacy and unforgeability. Both proofs are under the assumption that

inverting the RSA function is hard.

Our scheme has two very appealing aspects to it. First of all it does

not use any symmetric encryption, so our security analysis is based on a

number theoretic assumption alone, albeit in the random oracle model.

Secondly it o�ers non-repudiation in a very straightforward manner.

1 Introduction

Signcryption is a novel public key primitive �rst proposed by Zheng in 1997 [14].

A signcryption scheme combines the functionality of a digital signature scheme

with that of an encryption scheme. It therefore o�ers the three services: privacy,

authenticity and non-repudiation. Since these services are frequently required

simultaneously, Zheng proposed signcryption as a means to o�er them in a more

eÆcient manner that a straightforward composition of digital signature scheme

and encryption scheme. The title of [14] stated that it should be possible to

achieve

Cost(Signature &Encryption) << Cost(Signature) + Cost(Encryption); (1)

and an ingenious scheme was proposed to meet such a goal.

It is only recently that research has been done on de�ning security for sign-

cryption and providing security arguments for schemes [2, 3]. In [3] a scheme

similar to the original one proposed in [14] is analysed. The model in [2] is

slightly di�erent in that it does not make (1) a requirement of signcryption. The



goal is simply to analyse primitives that achieve the combined functionality of

signature and encryption.

Here we continue this line of research into provable security of signcryption

schemes satisfying (1). We present a signcryption scheme based on the RSA

trapdoor one-way function. Unlike [14], our scheme does not require any sym-

metric encryption. This means that our security analysis can be based on the

sole assumption that the RSA function is one way, albeit in the random oracle

model.

A second attractive feature of our scheme is that it o�ers non-repudiation

in a very simple manner. Non-repudiation for signcryption is not a straightfor-

ward consequence of unforgeability like it is for digital signature schemes. The

reason for this is that a signcrypted message is \encrypted", as well as \signed".

Therefore, by default, only the intended receiver of a signcryption may verify

its authenticity. If a third party is to settle a repudiation dispute over a sign-

cryption it must have access to some information in addition to the signcryption

itself. Of course the receiver could always surrender its private key but this is

clearly unsatisfactory. It is often the case that several rounds of zero-knowledge

are required. This is not the case for our scheme.

The scheme uses a padding scheme similar to PSS [7, 8]. The PSS padding

scheme was originally designed to create a provably secure signature algorithm

when used with RSA [7]. It was subsequently pointed out in [8] that a version

of PSS could also be combined with RSA to create a provably secure encryption

function. As demonstrated here, this makes PSS padding perfect for RSA based

signcryption. The resulting scheme is very eÆcient in terms of bandwidth: a

signcryption is half the size of a message signed and encrypted using standard

techniques for RSA. It is for this reason that we give it the name Two Birds One

Stone.

The remainder of this paper is organised as follows. In Section 2 we describe

how our scheme works, �rst of all in an abstract manner and secondly when

RSA is used. We present security de�nitions for signcryption in Section 3. Our

security results are given in Section 4. We end by summing up our work and

discussing future possibilities for research.

2 Two Birds One Stone (TBOS)

2.1 Abstract TBOS

The TBOS cryptosystem will make use of what we will call a permutation with

trapdoors. A permutation with trapdoors f : f0; 1gk ! f0; 1gk is a function that

requires some secret, or \trapdoor", information to evaluate and some di�erent

secret information to invert. In the scheme below we will assume that the sender

of messages, Alice, knows the secret information necessary to evaluate f , and

the receiver, Bob, knows the secret information necessary to evaluate f�1.

The scheme may be used to signcrypt messages from f0; 1gn, where k =

n+k0+k1 for integers k0 and k1. Before f is applied to a message some random

padding is applied. The padding used is similar to PSS [7, 8]. We describe how

the scheme works below.



Parameters

The scheme requires two hash functions

H : f0; 1gn+k0 ! f0; 1gk1 and G : f0; 1gk1 ! f0; 1gn+k0:

Signcryption

For Alice to signcrypt a message

m 2 f0; 1gn for Bob:

1. r
r
 f0; 1gk0

2. !  H(mjjr)
3. s G(!)� (mjjr)
4. c f(sjj!)
5. Send c to Bob

Unsigncryption

For Bob to unsigncrypt a

cryptogram c from Alice:

1. sjj!  f�1(c)

2. mjjr  G(!)� s

3. If H(mjjr) = ! accept m

Else reject

As it stands TBOS has no obvious way to provide non-repudiation. We discuss

how this problem may be overcome in the next section.

2.2 RSA-TBOS

We now show how RSA is used to create something like a permutation with

trapdoors, as in Section 2.1, for use with TBOS. We are not claiming that the

resulting function is a permutation. This is not necessary for our proof of security.

To begin with a sender Alice generates an RSA key pair (NA; eA); (NA; dA),

with jNAj = pA � qB and jpAj = jqB j = k=2. A receiver Bob does likewise

giving him (NB ; eB); (NB ; dB). Using G and H as above we describe the scheme

below. Here, if a bit string �jj� represents an integer, then � represents the most

signi�cant bits of that integer.

Signcryption

For Alice to signcrypt a message

m 2 f0; 1gn for Bob:

1. r
r
 f0; 1gk0

2. !  H(mjjr)
3. s G(!)� (mjjr)
4. If sjj! > NA goto 1

5. c0  (sjj!)dA mod NA

6. If c0 > NB , c
0  c0 � 2k�1

7. c c0
eB mod NB

8. Send c to Bob

Unsigncryption

For Bob to unsigncrypt a

cryptogram c from Alice:

1. c0  cdB mod NB

2. If c0 > NA, reject

3. n c0
eA mod NA

4. Parse n as sjj!
5. mjjr  G(!)� s

6. If H(mjjr) = !, return m

7. c0  c0 + 2k�1

8. If c0 > NA, reject

9. n c0
eA mod NA

10. If n > NB , reject

11. Parse n as sjj!
12. Parse G(!)� s as mjjr
13. If ! 6= H(mjjr), reject
14. Return m



The point of step 6 in signcryption is to ensure that c0 < NB. If c
0 initially fails

this test then we have NA > c0 > NB . Since both NA and NB have k-bits we

infer that c0 also has k-bits and so the assignment c0  c0�2k�1 is equivalent to
removing the most signi�cant bit of c0. This gives us c0 < NB as required. Note

that this step may cause some trial and error in unsigncryption. In particular

it may be necessary to perform c0
eA mod NA twice (the two c0's will di�er by

2k�1). It would have been possible to de�ne an alternative scheme under which

the trial and error occurs in signcryption. This would mean repeating steps 1-5

in signcryption with di�erent values of r until c0 < NB was is obtained.

Non-repudiation is very simple for RSA-TBOS. The receiver of a signcryption

follows the unsigncryption procedure up until stage 2, c0 may then be given to

a third party who can verify its validity.

3 Security Notions for Signcryption Schemes

3.1 IND-CCA2 for Signcryption Schemes

We take as our starting point the standard de�nition of indistinguishability of

encryptions under against adaptive chosen ciphertext attack (IND-CCA2) for

public key encryption schemes [1, 4, 5, 10, 11]. A public key encryption scheme

enjoys IND-CCA2 security if it is not possible for an adversary to distinguish the

encryptions of two messages of its choice under a particular public key, even when

it has access to a decryption oracle for this public key. The adversary is able to

query the decryption oracle before choosing its two messages and its queries may

be determined given information gleaned from previous queries. The adversary

is then given the challenge ciphertext i.e. the encryption under the public key in

question of one of the two messages chosen at random. It is allowed to continue

to query the decryption oracle subject to the condition that it does not query

the challenge ciphertext itself. The adversary wins if it correctly guesses which

of the two messages was encrypted.

In our de�nition of IND-CCA2 security for signcryption we allow the adver-

sary access to an unsigncryption oracle for the target receiver's key in a similar

manner to that described above for encryption schemes. The di�erence here is

that an oracle for the target receiver's unsigncryption algorithm must be de�ned

with respect to some sender's public key. We therefore consider an attack on two

users: a sender and a receiver.

In the case of public key encryption schemes the adversary is able to encrypt

any messages that it likes under the public key that it is attacking. This is not the

case for signcryption schemes. The private key of the target sender is required

in signcryption and so the adversary is not able to produce signcryptions on its

own. We must therefore provide the adversary with a signcryption oracle for the

keys of the target sender and the target receiver. For an encryption scheme the

adversary is able to use its own choice of randomness to generate encryptions, we

therefore allow the adversary to choose the randomness used by the signcryption

oracle, except for challenge ciphertext generation.

We give a more concrete description of the attack below.



Setup

Using the global systems parameters two private/public key pairs (xA; YA) and

(xB ; YB) are generated for a target sender/receiver respectively.

Find

The adversary is given YA and YB , it is also given access to two oracles: a

signcryption oracle for YA; YB and an unsigncryption oracle for YA; YB . The

adversary is allowed to choose the random input as well as the message for the

signcryption oracle. At the end of this phase the adversary outputs two messages

m0 and m1 with jm0j = jm1j.

Challenge

A bit b is chosen uniformly at random. The message mb is signcrypted under

YA; YB to produce c� which is given to the adversary.

Guess

The adversary may continue to query its oracles subject to the condition that

it does not query its unsigncryption oracle with c�. At the end of this phase the

adversary outputs a bit b0. The adversary wins if b0 = b.

If A is an adversary as described above we de�ne its advantage as:

Adv(A) = j2 � Pr[b0 = b]� 1j:

We say that a signcryption is IND-CCA2 secure if the advantage of any polynomial-

time adversary is a negligible1 function of the security parameter of the scheme.

3.2 Unforgeability of Signcryption Schemes

We adapt the de�nition of existential unforgeability under adaptive chosen mes-

sage attack [13] for signature schemes to the signcryption setting.

When using a signature scheme, the only private key used in signature gener-

ation belongs to the sender. An adversary can therefore be anyone, since there is

no di�erence in the ability to forge signatures between a receiver of signed mes-

sages and a third party. For a signcryption scheme however, signature generation

uses the receiver's public key as well as the sender's keys. In this instance there

may be a di�erence in the ability to forge signcryptions between the receiver

and a third party, since only the receiver knows the private key corresponding to

its public key. With the above in mind we assume that an adversary has access

to the private key of the receiver as well as the public key of the sender. It can

therefore perform unsigncryption itself.

We allow an adversary to query a signcryption oracle for the target sender's

private key. This oracle takes as input a message, and an arbitrary public key

chosen by the adversary. The oracle returns the signcryption of the message

under the target sender's key and the key chosen by the adversary.

1 A function �(k) is negligible if for every c there exists a kc such that �(k) � k
�c for

all k � kc.



We say that the adversary wins if produces a valid forged signcryption on

some message under the target sender's public key. This message must never

have been queried to a signcryption oracle during the attack.

If A is an adversary as described above we de�ne its advantage as:

Adv(A) = Pr[A wins]:

We say that a signcryption scheme is existentially unforgeable under adaptive

chosen message attack if the advantage of any polynomial-time adversary is a

negligible function of the security parameter of the scheme.

4 IND-CCA2 Security of TBOS

4.1 The Underlying Hard Problem

If we assume that the secret information necessary to evaluate a permutation

with trapdoors f is made public, then f becomes a standard trapdoor one-way

permutation. We call this the induced trapdoor one-way permutation of f . First of

all we consider the security of TBOS under the partial-domain one-wayness [12]

of the induced trapdoor one-way permutation of f . Let us �rst state formally the

de�nitions that we will use. Below f will be a trapdoor one-way permutation.

De�nition 1 (One-wayness). The function f is (t; �)-partial domain one-way

if the success probability of any adversary A wishing to recover the pre-image of

f(sjj!) in time less than t is upper bounded by �. We state this as:

Advowf (A) � Pr
s;!

[A(f(sjj!)) = sjj!] < �:

For any f we denote the maximum value of Advowf (A) over all adversaries run-

ning for time t as Advowf (t).

De�nition 2 (Partial-domain one-wayness). The function f is (t; �)-partial

domain one-way if the success probability of any adversary A wishing to recover

the partial pre-image of f(sjj!) in time less than t is upper bounded by �. We

state this as:

Adv
pd�ow
f (A) � Pr

s;!
[A(f(sjj!)) = !] < �:

For any f we denote the maximum value of Adv
pd�ow
f (A) over all adversaries

running for time t as Adv
pd�ow
f (t).

De�nition 3 (Set partial-domain one-wayness). The function f is (l; t; �)-

set partial domain one-way if the success probability of any adversary A wishing

to output a set of l elements which contains the partial pre-image of f(sjj!) in
time less than t is upper bounded by �. We state this as:

Adv
s�pd�ow
f (A) � Pr

s;!
[! 2 A(f(sjj!))] < �:

For any f and l we denote the maximum value of Adv
s�pd�ow
f (A) over all ad-

versaries running for time t as Adv
s�pd�ow
f (l; t).



Suppose that an adversary is given c and successfully returns a set of l elements

of which one is ! such that f(sjj!) = c for some s. It is now possible to break the

partial-domain one-wayness of f by selecting one of these elements at random.

This tells us that

Adv
pd�ow
f (t) � Adv

s�pd�ow
f (l; t)=l: (2)

4.2 IND-CCA2 Security of Abstract TBOS

Theorem 1. Let A be an adversary using a CCA2 attack to break TBOS (as

de�ned in Section 2.1). Suppose that A has advantage � after running for time

t, making at most qg, qh, qs and qu queries to G, H, the signcryption oracle and

the unsigncryption oracle respectively. Suppose that TBOS is implemented with

k-bit permutation with trapdoors f and let f 0 be the induced trapdoor one-way

permutation of f . We have the following

Adv
pd�ow
f 0 (t0) �

1

qg + qh + qs
�
�
�� 2�k0 � (qh + qs)� 2�k1 � qd

�

where t0 = tg � (qg + qh+ qs) + th � (qh + qs) + ts � qs + tu � qu, qg is the time taken

to simulate the random oracle G (in the proof of Lemma 1 below) and th; ts and

tu are de�ned analogously.

This follows from (2) and the following lemma.

Lemma 1. Using the notation of Theorem 1 we have

Adv
s�pd�ow
f 0 (qg + qh + qs; t

0) � �� 2�k0 � (qh + qs)� 2�k1 � qd:

Proof. We will show how the adversary A may be used to break the set-partial

domain one-wayness of f 0 by �nding the partial pre-image of c� chosen at ran-

dom from the range of f 0. Note that the adversary does not know the secret

information necessary to evaluate f . The proof is similar to the corresponding

proof in [8].

We will consider an attack on two users Alice, the target sender who knows

how to evaluate f , and Bob, the target receiver who knows how to evaluate

f�1. We run adversary A on the input of all universal public parameters and

the public keys of Alice and Bob. It is necessary to show how to respond to A's

queries to the random oracles G and H and the signcryption/unsigncryption

oracles. We denote the algorithms to do this as Gsim, Hsim, Ssim and Usim

respectively and we describe them below. To make our simulations sound we

keep two lists, LG and LH that are initially empty. The list LG will consist of

query/response pairs to the random oracle G. The list LH will do the same for

H . It will also store some extra information as described in Hsim below. At the

end of the simulation we hope to �nd the partial pre-image of c� among the

queries in LG.



Gsim(!) Hsim(mjjr)
If (!; x) 2 LG for some x: If

�
mjjr; !; c) 2 LH for some !:

Return x Return !

Else: Else:

x
r
 f0; 1gn+k0 !

r
 f0; 1gk0

Add (!; x) to LG x Gsim(!)

Return x s x� (mjjr)
Add

�
mjjr; !; f(sjj!)

�
to LH

Return !

Ssim(mjjr) Usim(c)

Run Hsim(mjjr) If (mjjr; !; c) 2 LH for some m:

Search LH for entry (mjjr; !; c) Return m

Return c Else reject

Note that in Hsim above we assume that each query has form mjjr. All this
means is each query has length n+ k0 bits and so may be parsed as mjjr where
m has n bits and r has k0 bits. We make this assumption because, in the random

oracle model, it would not help A to make queries of length di�erent from n+k0.

We also allow A to make queries of the form mjjr to Ssim i.e. we allow A

to provide its own random input. This is consistent with a CCA2 attack on an

encryption scheme such as RSA-PSS where an adversary can encrypt messages

itself using its own random input.

At the end of the �nd stageA outputsm0 andm1. We choose a bit b uniformly

at random and supply the adversary with c� as the signcryption of mb. Suppose

c� = f(s�jj!�), this places the following constraints on the random oracles G

and H :

H(mbjjr
�) = !

� and G(!�) = s
� � (mbjjr

�): (3)

We denote by AskG the event that during A's attack !� has ended up in LG.

We denote by AskH the event the query mjjr� has ended up in LH for some m.

If !� =2 LG, then G(!�) is unde�ned and so r� is a uniformly distributed

random variable. Therefore the probability that there exists an m such that

mjjr� 2 LH is at most 2�k0 � (qh + qs). This tells us that

Pr[AskHj:AskG] � 2�k0 � (qh + qs): (4)

Our simulation Usim can only fail if it outputs reject when it is presented with a

valid ciphertext. We denote this event UBad. Suppose that Usim is queried with

c = f(sjj!) and let mjjr = G(!)� s:

We may mistakenly reject a valid ciphertext if H(mjjr) = !, while mjjr is not

in LH . Suppose that this query occurs before c
� is given to A then, since mjjr is

not in LH , H(mjjr) will take its value at random. If this query is made after c�

is given to A then c 6= c� means that (m; r) 6= (mb; r
�) and so (3) is irrelevant.

In either case H(mjjr) may take its value at random which means that

Pr[UBad] � 2�k1 � qd: (5)



Let us de�ne the event Bad as

Bad = AskG _ AskH _ UBad: (6)

Let us denote the event that the adversary wins, i.e. it outputs b0 such that

b0 = b, by S. In the event :Bad the bit b is independent of our simulations, and

therefore independent of the adversaries view. We infer from this that

Pr[Sj:Bad] =
1

2
: (7)

Also, in the event :Bad, the adversary interacts with a perfect simulation of

random oracles and signcryption/unsigncryption oracles. This gives us

Pr[S ^ :Bad] �
1

2
+

�

2
� Pr[Bad]: (8)

From (7) we obtain

Pr[S ^ :Bad] = Pr[Sj:Bad] � Pr[:Bad] =
1

2
� (1� Pr[Bad]): (9)

Combining (8) with (9) gives us

Pr[Bad] � �: (10)

From (6) we have

Pr[Bad] � Pr[AskG _ AskH] + Pr[DBad]

= Pr[AskG] + Pr[AskH _ :AskG] + Pr[DBad]

� Pr[AskG] + Pr[AskHj:AskG] + Pr[DBad] (11)

Together (4), (5) and (11) give us

Pr[AskG] � �� 2�k0 � (qh + qs)� 2�k1 � qd: (12)

The result follows.

4.3 IND-CCA2 Security of RSA-TBOS

We now adapt the result of Section 4.2 to give a proof of the IND-CCA2 security

of RSA-TBOS (as de�ned in Section 2.2) in the random oracle model under the

assumption that the RSA function is one-way.

As in Lemma 1 we will assume that there is an adversary A that runs for

time t and has advantage � in breaking the IND-CCA2 security of RSA-TBOS

after making at most qg , qh, qs and qu queries to G, H , the signcryption oracle

and the unsigncryption oracle respectively. Given an RSA public key (NB ; eB),

with NB = pB � qB and jpB j = jqB j = k=2, and c�, we will show how A may be

used to compute the eB-th root of c� modulo NB .

The �rst step is to generate an RSA key pair (NA; eA); (NA; dA) with NA =

pA � qB where jpAj = jqB j = k=2. We use Gsim, Ssim and Usim from Lemma 1,

we replace Hsim with the algorithm below.



Hsim(mjjr)
If
�
mjjr; !; c) 2 LH for some !, return !

Else:

1. !
r
 f0; 1gk0

2. x Gsim(!)

3. s x� (mjjr)
4. If sjj! > NA, goto 1

5. c0  (sjj!)dA mod NA

6. If c0 > NB , c
0  c0 � 2k�1

7. c c0
eB mod NB

8. Add (mjjr; !; c) to LH

9. Return !

The event Bad is de�ned as in (6) in the proof of Lemma 1. In our simulation

here we are again going to supply A with c� as the challenge ciphertext. This

gives us an extra consideration in our simulation. We say that our simulation is

Good if (i) c�dB mod NB < NA and (ii) gcd(c�dB mod NB; NA) = 1. Over the

random choices of (NB ; eB) ; (NB ; dB), c
� and NA we have Pr[(i)] = 1=2 and

Pr[(ii)j(i)] � 1� 2�(k=2)+(3=2), hence

Pr[Good] � (2�1 � 2�
k

2
+ 1

2 ): (13)

We may now use (12) in the proof of Lemma 1 to give us

Pr[AskGjGood] � �� 2�k0 � �2�k1 � qd (14)

in our new simulation. We are interested in the event AskG ^ Good. We have

Pr[AskG ^ Good] = Pr[AskGjGood] � Pr[Good]: (15)

Together (13), (14) and (15) tell us

Pr[AskG ^ Good] � (2�1 � 2�
k

2
+ 1

2 ) �
�
�� 2�k0 � (qh + qs)� 2�k1 � qd

�
= Æ:

(16)

Now, in the event AskG ^ Good we recover a set LG of size

q = qg + qh + qs; (17)

containing the k1 least signi�cant bits of z
�

0 where (z
�

0
dA mod NA)

eB mod NB =

c�. Call these bits !0.

Once we have run our simulation once with challenge ciphertext c� and ob-

tained LG we do the following:

For i = 1; : : : n� 1:

�i
r
 Z

�

NB

c�i
r
 c� � �eBi mod NB

Run the simulation with challenge ciphertext c�i
keeping a list LGi

for G query/response pairs



For i = 1; : : : ; n� 1 after each run we end up with a list LGi
of size q containing

the k1 least signi�cant bits of z�0 � �i mod NA where �i = �
eA
i mod NA with

probability at least that of AskG^Good as given in (16). Now, if each of the n runs

of our simulation were successful, we have !0 2 LG; !1 2 LG1
; : : : ; !n�1 2 LGn�1

such that z
�

0 = !0 + 2k1x0 mod NA

�i � z
�

0 = !i + 2k1 � xi mod NA for i = 1; : : : ; n� 1

(18)

where z�0 and x0; : : : ; xn are unknown. Now, for i = 1; : : : ; n� 1 let

�i = 2�k1 � (�i!0 � !i) mod NA and 
i = 2�k1 � �i mod NA: (19)

From (18) and (19) we derive the following for i = 1; : : : ; n� 1

xi � 
i � x0 = �i mod NA: (20)

We have the following lemma from [9].

Lemma 2. Suppose 2k�1 � NA < 2k, k1 > 64 and k=(k1)
2 � 2�6. If the set of

equations (20) has a solution x = (x0; : : : ; xn�1) such that jjxjj
1

< 2k�k1 , then

for all values of 
 = (
1; : : : ; 
n�1), except for a fraction

2n�(k�k1+n+2)

N
n�1
A

(21)

of them, this solution is unique and can be computed in time polynomial in n

and in the size of NA.

It is also shown in [8] that taking n = d(5k)=(4k)e gives

2n�(k�k1+n+2)

N
n�1
A

� 2�k=8: (22)

If we have n successful runs of our simulation we still do not know which elements

of the LG's form the equations (20) and so to use this method we will have to

apply the Lemma 2 algorithm qn times. Once we have a solution to (20) we know

z�0 such that c� =
�
(z�0

dA mod NA)
�eB

mod NB . From this we may use dA to

compute z�, the eB-th root of c�, as

z
� = z

�

0
dA mod NA: (23)

Now, from (16), (20), (22), (23) and Lemma 2 we obtain the result below.

Theorem 2. Let A be an adversary that uses a CCA2 attack to attempt to break

RSA-TBOS with security parameter k. Suppose that A succeeds with probability �

in time t after making at most qg, qh, qs and qu queries to G, H, the signcryption

oracle and the unsigncryption oracle respectively. In the random oracle model for

G and H we may use A to invert RSA with probability �0 in time t0 where

�
0 � Æ

n � 2�k=8;

t
0 � n � t+ (qg + qh + qs)

n � poly(k) + 2 � n � (qh + qs) � T;

n = d(5k)=(4k1)e, and T is the time it takes for a modular exponentiation.



5 Unforgeability of RSA-TBOS

Before we give our security result we must discuss exactly what constitutes a

forged RSA-TBOS signcryption. Suppose that we have a user of RSA-TBOS

with public key (NB ; eB). This user can produce a random c 2 Z�NB
and claim

to have forged a signcryption from user who owns key (NA; eA). Without know-

ing (NB ; dB) it would not be possible to verify this claim. A forged signcryption

by the owner of (NB ; dB) must therefore be presented by following the unsign-

cryption procedure up until stage 2, c0 may then be given to a third party who

can verify its validity.

Let us suppose that we have an RSA public key (NA; eA) and c 2 Z�NA
whose

eA-th root, modulo NA, we wish to compute. We show in the appendix how to

use A, a forging adversary of RSA-TBOS, to do this. This gives the result below.

Theorem 3. Let A be an adversary attempting to forge RSA-TBOS signcryp-

tions. Let k be the security parameter of RSA-TBOS. Suppose that A succeeds

with probability � in time t after making at most qg, qh and qs queries to G, H

and the signcryption oracle respectively. In the random oracle model we may use

A to invert RSA with probability �0 in time t0 where

�
0 � �� qs �

�
2�(k0+1) � (2qh + qs � 1) + 2�(k1+1) � (2qg + 2qh + qs � 1)

�

�2�(k1+1) � qh � (2qg + qh + 2qs � 1);

t
0 � t+ (qh + 2qs) � T; (24)

where T is the time it takes for a modular exponentiation.

6 Conclusion

We have proposed provably secure signcryption scheme based on the RSA func-

tion. This scheme is very attractive in that it produces very compact signcryp-

tions with little extra computational cost. A second positive attribute of our

scheme is that it does not use any symmetric key encryption. This means that

our security analysis is under the sole assumption that the RSA function is one-

way, albeit in the random oracle model. Also, our scheme o�ers non-repudiation

in a very simple manner.

In the future it would be interesting to adapt these ideas to produce a scheme

that is provably secure under the stronger de�nitions of security proposed for

signcryption in [3].

Of independent interest we have introduced the concept of a permutation

with trapdoors. It would be interesting to know if any other protocol problems

could be solved with such a primitive.
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Appendix

Proof of Theorem 2

Our proof technique is similar to one used in [7]. We are going to run the

adversary A in a simulated environment. We �rst describe or simulation before

analysing how it could fail and showing how it could be used to invert the RSA

function.

Our simulation must respond A's queries to the random oracles G and H and

the signcryption oracle. We denote the algorithms to do this Gsim, Hsim, and

Ssim respectively and we describe them below. To make our simulations sound

we keep two lists LG and LH that are initially empty. The list LG will consist of

query/response pairs. At the end of the simulation we hope to �nd the partial

pre-image of c� among queries in LG.

Gsim(!)

If (!; x) 2 LG for some x:

Return x

Else:

x
r
 f0; 1gn+k0

Add (!; x) to LG

Return x

Hsim(mjjr) Ssim(mjjr; (NB ; eB))

If
�
mjjr; !;�) 2 LH for some !: x

r
 Z

�

NA

Return ! y  xeA mod NA

Else: Parse y as sjj!

x
r
 Z

�

NA
Add (mjjr; !;�;�;�) to LH

z  xeA mod NA Add (!; s� (mjjr)) to LG

y  c�z mod NA If x > NB , x x� 2k�1

Parse y as sjj! c xeB mod NB

Add (mjjr; !; x; y; z) to LH Return c

Add (!; s� (mjjr)) to LG

Return !

Let us now analyse our simulation. Consider events that would cause the adver-

sary's view in our simulated run to di�ers from it's view in a real attack. Such

an event could be caused by an error in Gsim, Hsim or Ssim. We let AskG be the

event that there is an error in Gsim and de�ne AskH and SBad analogously.

It is easily veri�ed that

Pr[AskG] = 0: (25)

An error in Hsim will only occur if it attempts to add (!; s� (mjjr)) to LG when

G(!) is already de�ned. We conclude that



Pr[AskH] � 2�k1 �

qh�1X
i=0

(qg + qs + i)

= 2�(k1+1) � qh � (2qg + qh + 2qs � 1): (26)

An error in Ssim will occur if it attempts to add (mjjr; !;�;�;�) to LH when

H(mjjr) is already de�ned. The only other possibility for an error in Ssim is

attempting to add (!; s � (mjjr)) to LG when G(!) is already de�ned. We

conclude that

Pr[SBad] � 2�k0 �
� qs�1X

i=0

(qh + i)
�
+ 2�k1 �

� qs�1X
i=0

(qg + qh + i)
�

= qs �
�
2�(k0+1) � (2qh + qs � 1) + 2�(k1+1) � (2qg + 2qh + qs � 1)

�
:

(27)

We also de�ne the event FBad to be that when A outputs a valid forged sign-

cryption c on some message m, but mjjr was never a query to Hsim. Clearly we

have

Pr[FBad] � 2�k1 : (28)

We de�ne the event Bad to be

Bad = AskG _ AskH _ SBad _ FBad: (29)

Let us consider the event A wins ^ :Bad in our simulated run of A. If this

event occurs then A outputs a forged signcryption c of some m such that

(mjjr; !; x; y; z) 2 LH for some r; !; x; y; z. Now, looking at the construction

of Hsim we see that we have

(c=x)eA = (y=xeA) = (y=z) = (c�z=z) = c
� mod NA: (30)

Therefore (c=x) mod NA is the eA-th root of c� modulo NA as required. We

denote the event that we manage to �nd the eA-th root modulo NA of c� by

Invert. We see from (30) that

Pr[Invert]sim � Pr[A wins ^ :Bad]sim; (31)

where the subscript sim denotes the fact that these are probabilities in our

simulated run of A. We will denote probabilities in a real execution of A with

the subscript real . From (31) and the de�nition of Bad we see that



Pr[Invert]sim � Pr[A wins ^ :Bad]real � Pr[A wins]real � Pr[Bad]real: (32)

The result now follows from (25), (26), (27), (28), (29) and (32).


