
                                                                       
Visualising Search-Spaces for 
Evolved Hybrid Auction Mechanisms 
 
Dave Cliff 
Information Infrastructure Laboratory  
HP Laboratories Bristol 
HPL-2002-291 
October 30th , 2002* 
 
E-mail: dave_cliff@hp.com 
 
 
automated 
mechanism 
design, 
auctions, 
marketplaces, 
ZIP 
traders GA, 
genetic 
algorithm, 
BICAS 
 

A sequence of previous papers has demonstrated that a genetic 
algorithm (GA) can be used to automatically discover new optimal 
auction mechanisms for automated electronic marketplaces 
populated by software-agent traders. Significantly, the new auction 
mechanisms are often unlike traditional mechanisms designed by 
humans for human traders; rather, they are peculiar hybrid 
mixtures of established styles of mechanism. Qualitatively similar 
results (i.e., non-standard hybrid mechanism designs being 
evolved) have been demonstrated for Cliff's ZIP trader algorithm 
and also for Gode & Sunder's ZI-C traders, provoking the 
possibility that such hybrid markets may be optimal for any 
marketplace populated entirely by artificial trader-agents. The 
financial implications of this work could potentially be measured 
in billions of dollars. In an attempt to elucidate why these evolved 
hybrid markets outperform traditional human-designed 
mechanisms, this paper presents results from thousands of 
repetitions of the GA experiments. These data allow 2D 
projections of the 10-dimensional real-space fitness landscape to 
be made, which inter alia illustrate a surprisingly high sensitivity 
in the relationship between the fitness evaluation function and the 
resulting landscape. 
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Abstract: A sequence of previous papers has demonstrated that 
a genetic algorithm (GA) can be used to automatically discover 
new optimal auction mechanisms for automated electronic mar-
ketplaces populated by software-agent traders. Significantly, the 
new auction mechanisms are often unlike traditional mecha-
nisms designed by humans for human traders; rather, they are 
peculiar hybrid mixtures of established styles of mechanism. 
Qualitatively similar results (i.e., non-standard hybrid mecha-
nism designs being evolved) have been demonstrated for Cliff’s 
ZIP trader algorithm and also for Gode & Sunder’s ZI-C trad-
ers, provoking the possibility that such hybrid markets may be 
optimal for any marketplace populated entirely by artificial 
trader-agents. The financial implications of this work could po-
tentially be measured in billions of dollars. In an attempt to elu-
cidate why these evolved hybrid markets outperform traditional 
human-designed mechanisms, this paper presents results from  
thousands of repetitions of the GA experiments. These data al-
low 2D projections of the 10-dimensional real-space fitness land-
scape to be made, which inter alia illustrate a surprisingly high 
sensitivity in the relationship between the fitness evaluation 
function and the resulting landscape.  
 
To be presented in abridged form at the “Beyond Fitness: Visualis-
ing Evolution” workshop, 8th International Conf. on the Simulation 
and Synthesis of Living Systems; Sydney, Australia, December 2002. 

 
I. INTRODUCTION 

 
ZIP (Zero-Intelligence-Plus) artificial trading agents, intro-
duced in 1997 [1], are software agents (or “robots”) that use 
simple machine learning techniques to adapt to operating as 
buyers or sellers in open-outcry auction-market environments 
similar to those used in the experimental economics work of 
Smith (e.g. [2]). Although initially developed purely to 
address deficiencies in Gode & Sunder’s ZI-C traders [3], 
recent experimental work by Das et al. at IBM [4] has shown 
that ZIP traders (unlike ZI-Cs) consistently out-perform 
human traders in human-against-robot auction marketplaces. 
 
The operation of ZIP traders has been successfully demon-
strated in experimental versions of continuous double auction 
(CDA) markets similar to those found in the international 
markets for commodities, equities, capital, and derivatives; 
and in posted-offer auction markets similar to those seen in 
domestic high-street retail outlets [1,2]. In any such market, 
there are a number of parameters that govern the adaptation 
and trading processes of the ZIP traders. In the original for-
mulation [1], the values of these parameters were set by hand, 
using “educated guesses”.  However, at CIFEr’98, the first 
results were presented from using a standard genetic algo-
rithm (GA) to automatically optimise these parameter values 
[5], thereby eliminating the need for skilled human input in 
deciding the values of the parameters; more details of these 
GA results were subsequently given in [6].  

In all previous work using artificial traders, ZIP or otherwise, 
the market mechanism (i.e., the type of auction that the trad-
ers are interacting within) had been fixed in advance. Well-
known market mechanisms from human economic affairs 
include: the English Auction (where sellers stay silent and 
buyers quote increasing bid-prices; also known as the ascend-
ing-bid mechanism), the Dutch Flower Auction (where buy-
ers stay silent and sellers quote decreasing offer-prices; also 
known as the descending-offer mechanism); the Vickery or 
second-price sealed-bid auction (where sealed bids are sub-
mitted by buyers, and the highest bidder is allowed to buy, 
but at the price of the second-highest bid -- this curious 
mechanism encourages honesty and is robust to attack by 
dishonest means); and the CDA (where sellers announce de-
creasing offer prices while simultaneously and asynchro-
nously the buyers announce increasing bid prices, with the 
sellers being free to accept any buyer’s bid at any time and 
the buyers being free to accept any seller’s offer at any time).   
 
At CIFEr’02, Cliff [7] presented the first results from ex-
periments where a GA optimised not only the parameter val-
ues for the trading agents, but also the style of market 
mechanism in which the traders operate. To do this, a space 
of possible market mechanisms was created for evolutionary 
exploration. The space included the CDA and also one-sided 
auctions similar (but not actually identical to) the English 
Auction (EA) and the Dutch Flower Auction (DFA); and sig-
nificantly this space is continuously variable, allowing for 
any of an infinite number of peculiar hybrids of these auction 
types to be evolved, which have no known correlate in natu-
rally occurring market mechanisms. While there was nothing 
to prevent the GA from settling on solutions that correspond 
to the known CDA auction type or the EA-like and DFA-like 
one-sided mechanisms, Cliff [7,8] repeatedly found that the 
GA settles on hybrid solutions and that these hybrids lead to 
the most desirable market dynamics. Although the hybrid 
market mechanisms could easily be implemented in online 
electronic marketplaces, they have not been designed by hu-
mans: rather they are the product of evolutionary search 
through a continuous space of possible auction-types. Thus, 
the CIFEr’02 paper [7] was the first demonstration that radi-
cally new market mechanisms for artificial traders may be 
designed by automatic means, thereby establishing the new 
field of automated market-mechanism design. Independently, 
similar work was under development elsewhere, and was 
published a couple of months later [9]. Cliff’s CIFEr’02 re-
sults [7] have recently been independently replicated using a 
different form of GA and of genetic encoding [10]. 
 
As all of Cliff’s results [7,8] were from marketplaces popu-
lated by ZIP traders, an obvious question to ask is to what 
extent those results were dependent on the use of ZIP traders. 
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That is: if non-ZIP trader-agents had been used, would simi-
lar hybrid auction mechanisms still be found to be optimal by 
the GA? This question was answered in the affirmative by 
Cliff, Walia, & Byde [11,12] who demonstrated qualitatively 
similar results using Gode & Sunder’s ZI-C traders. ZI-C 
traders are essentially parameter-free stochastic agents, and 
their computational simplicity made it possible to explicitly 
plot the “fitness landscapes” showing the economic perform-
ance of ZI-C marketplaces over the entire space of possible 
auction mechanisms being considered. Doing the same for 
ZIP traders is a much more computationally daunting task, as 
the trader algorithm is more complex (involving a minimum 
of eight free real-valued parameters) and also has a richer 
statistical structure (i.e., it is significantly multimodal). In 
[11], coarse projections of the ZIP fitness landscapes were 
produced for comparison with the ZI-C landscapes. In this 
paper, we present the results of 4000 experiments performed 
to better illustrate these ZIP fitness landscapes.  
 
The 4000 experiments reported here would represent ap-
proximately 8000 hours of continuous computation had a 
single-CPU computer been used (assuming the use of a 
1.8Ghz P4 Hewlett-Packard ePC with 512Mb RAM running 
Windows2000); that is, roughly 11 months of continuous 
computation. Luckily, a (shared) compute-cluster built from 
50 such ePCs was available for this research, reducing the 
minimum wait to 160(=8000/50) hours, i.e. a little under one 
week. Yet by the current publicly-stated aims of various 
computer companies (including HP), a 50-node cluster is 
very small fry. Super-clusters of “grid” computers or “utility 
data centers” are currently planned (or under construction) 
involving thousands or tens of thousands of such nodes. This 
paper concludes with some speculative discussion of the im-
plications for artificial evolution research of such a several-
orders-of-magnitude increase in available compute resources.  
 
Before that, Section II gives an overview of the background 
experimental methods and results as published by Cliff 
[5,6,7,8]; and Section III reviews the visualisations of ZIP-
trader fitness landscapes previously published in [11]. Much 
of Sections II and III is verbatim repetition from our previous 
papers, but such background is necessary for completeness 
and intelligibility. In Section IV we then show new visualisa-
tions which illustrate how the fitness landscape alters as a key 
parameter of the evaluation function is gradually changed.  
 
Note that, throughout this paper, v=U[x,y] is used to denote a random real 
value v generated from a uniform distribution over the range [x,y].    
 
 

II. BACKGROUND 
 
A. Zero-Intelligence Plus (ZIP) Traders 
 
ZIP traders are described fully in [1], which includes sample 
source-code in the C programming language. For the pur-
poses of this paper a high-level description of the key pa-
rameters is sufficient. Each ZIP trader i is given a private 

(secret) limit-price, λi, which for a seller is the price below 
which it must not sell and for a buyer is the price above 
which it must not buy. If a ZIP trader completes a transaction 
at its λi price then it generates zero utility (“profit” for the 
sellers or “saving” for the buyers). For this reason, each ZIP 
trader i maintains a time-varying margin µi(t) and generates 
quote-prices pi(t) at time t according to pi(t)=λi(1+µi(t)) for 
sellers and pi(t)=λi(1-µi(t)) for buyers. The “aim” of traders is 
to maximise their utility over all trades, where utility is the 
difference between the accepted quote-price and the trader’s 
λi value. Trader i is given an initial value µi(0) (i.e., µi(t) for 
t=0) which is subsequently adapted over time using a simple 
machine learning technique known as the Widrow-Hoff rule 
which is also used in back-propagation neural networks. This 
rule has a “learning rate” parameter βi that governs the speed 
of convergence between trader i’s quoted price pi(t) and the 
trader’s idealised “target” price τi(t). When calculating τi(t), 
traders introduce a small random absolute perturbation gener-
ated from U[0,ca], and also a small random relative perturba-
tion coefficient generated from U[1-cr,1] (when a trader is 
reducing its pi(t)) or U[1,1+cr] (when increasing  pi(t)) where 
ca and cr are global system constants. To smooth over noise 
in the learning system, there is an additional “momentum” 
parameter γi for each trader (such momentum terms are also 
commonly used in back-propagation neural networks).  
 
Thus, adaptation in each ZIP trader i has the following pa-
rameters: initial margin µi(0); learning rate βi; and momen-
tum term γi.  In an entire market populated by ZIP traders, 
these three parameters are assigned to each trader from uni-
form random distributions each of which is defined via “min” 
and “delta” values in the following fashion: µi(0)=U(µmin, 
µmin+µ∆); βi=U(βmin, βmin+β∆); and γi=U(γmin,γmin+γ∆); ∀i. 
 
Hence, to initialise an entire ZIP-trader market it is necessary 
to specify values for the six market-initialisation parameters 
µmin, µ∆, βmin, β∆, γmin, and γ∆; and also for the two system con-
stants ca and cr. And so it can be seen that any set of initiali-
sation parameters for a ZIP-trader market exists within an 
eight-dimensional real space, conventionally denoted by R8. 
Vectors in this 8-space can be considered as genotypes, and 
from an initial population of such genotypes it is possible to 
allow a GA to find new genotypes that best satisfy an appro-
priate evaluation function. This is exactly the process that 
was introduced at CIFEr’98 [5,6], as described in Section 
II.C below. Before that, we discuss the issue of simulating 
the passage of time. 
 
When monitoring events in a real auction, as more precision 
is used to record the time of events, so the likelihood of any 
two events occurring at exactly the same time is diminished. 
For example, if two quotes made at five minutes past nine are 
both recorded as occurring at 09:05, then they appear in the 
record as simultaneous; but a more accurate clock would 
have been able to reveal that the first was made at 
09:05:01.64 and the second at 09:05:01.98. Even if two 
events occur absolutely at the same time, very often some 
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random process (e.g. what direction the auctioneer is looking 
in) acts to break the simultaneity.  
 
Thus, we may simulate real marketplaces (and implement 
electronic marketplaces) using techniques where each signifi-
cant event always occurs at a unique time. We may choose to 
represent these by real high-precision times, or we may ab-
stract away from precise time-keeping by dividing time into 
discrete (possibly irregular) slices, numbered sequentially, 
where one significant event is known to occur in each slice. 
Such a time-slicing approach was used in previous work 
[1,5,6,7,8,11]. In each time-slice, the atomic “significant 
event” is one quote being issued by one trader and the other 
traders then responding either by ignoring the quote or by one 
of the traders accepting the quote. (NB in [4] a continuous-
time formulation of the ZIP-trader algorithm was used).  
 
In the markets described here and in [1,5,6,7,8,11], on each 
time-slice a ZIP trader i is chosen at random from those cur-
rently able to quote (i.e. those who hold appropriate stock or 
currency), and trader i’s quote price pi(t) then becomes the 
“current quote” q(t) for time t. Next, all traders j on the con-
traside (i.e. all buyers j if i is a seller, or all sellers j if i is a 
buyer) compare q(t) to their own current quote price pj(t) and 
if the quotes cross (i.e. if pj(t)<=q(t) for sellers, or if 
pj(t)>=q(t) for buyers) then the trader j is able to accept the 
quote. If more than one trader is able to accept, one is chosen 
equiprobably at random to make the transaction. If no traders 
are able to accept, the quote is regarded as “ignored”. Once 
the trade is either accepted or ignored, the traders update their 
µ(t) values using the learning algorithm outlined above, and 
the current time-slice ends. This process repeats for each 
time-slice in a trading period, with occasional injections of 
fresh currency and stock, or redistribution of λi limit prices, 
until either a maximum number of transactions have oc-
curred, or until either no seller or no buyer is able to quote, or 
until a maximum number of time-slices have passed since the 
last accepted quote (i.e., a until a protracted sequence of suc-
cessive ignored quotes occurs). This protracted-sequence-of-
ignored-quotes termination criterion is of relevance to the 
discussion in Section IV of this paper, so we should note here 
that in the implementation used for this work (as in the ver-
sion published in [1]) the number of ignored quotes necessary 
to terminate trading is set by the system constant MAX_FAILS, 
which has been set to 100 in the work reported here, as in the 
ZIP work reported previously [1,5,6,7,8,11]. 
  
B. Space of Possible Auctions 
 
Now consider the case where we implement a ZIP-trader con-
tinuous double auction (CDA) market. In any one time-slice 
in a CDA either a buyer or a seller may quote, and in the defi-
nition of a CDA a quote is equally likely from each side.  
One way of implementing a CDA is, at the start of each time-
slice, to generate a random binary variable to determine 
whether the quote will come from a buyer or a seller, and 
then to randomly choose one individual as the quoter from 

whichever side the binary value points to. Here, as in previ-
ous ZIP work [1,5,6] the random binary variable is always 
independently and identically distributed over all time-slices. 
  
Let Q=b denote the event that a buyer quotes on any one 
time-slice and let Q=s denote the event that a seller quotes, 
then for the CDA we can write Pr(Q=s)=0.5 and note that 
because Pr(Q=b)=1.0-Pr(Q=s) it is only necessary to specify 
Pr(Q=s), which we will abbreviate to Qs hereafter. Note 
additionally that in an EA we have Qs=0.0, and in the DFA 
we have Qs=1.0. Thus, there are at least three values of Qs  
(i.e. 0.0, 0.5, and 1.0) that correspond to three types of 
auction familiar from centuries of human economic affairs.  
 
However, although the ZIP-trader case of Qs=0.5 is indeed a 
good approximation to the CDA, the fact that any ZIP trader j 
will accept a quote whenever q(t) and pj(t) cross means that 
the one-sided extreme cases Qs=0.0 and Qs=1.0 are not exact 
analogues of the EA and DFA.  Nevertheless, consider the 
implications of considering values of Qs of 0.0, 0.5, and 1.0 
not as three distinct market mechanisms, but rather as three 
points on a continuum. How do we interpret, for example, 
Qs=0.1?  Certainly there is a straightforward implementation: 
on the average, for every nine quotes by buyers, there will be 
one quote from a seller. Yet the history of human economic 
affairs offers no examples (as far as we are aware) of such 
markets: why would anyone suggest such a bizarre way of 
operating, and who would go to the trouble of arbitrating 
(i.e., acting as an auctioneer for) such a mechanism? Never-
theless, there is no a priori reason to argue that the three 
known points on this Qs continuum are the only loci of useful 
auction types. Maybe there are circumstances in which values 
such as Qs=0.1 are preferred. Given the infinite nature of a 
real continuum, it seems appealing to use an automatic explo-
ration process, such as a GA, to identify useful Qs values.   
 
Thus, a ninth dimension was added to the search space, and 
the genotype in the GA is now the eight real values for ZIP-
trader initialisation, plus a real value for Qs, so the GA is 
searching for points in R9 that give the best market dynamics.  
 
C. The Genetic Algorithm 
  
A simple genetic algorithm was used. As with each experi-
ment reported in [5,6,7,8,11] a population of size 30 was 
used, and evolution was allowed to progress for some number 
of generations ng. In each generation, all individuals were 
evaluated and assigned a “fitness” value (reflecting how good 
that genotype’s market dynamics were); and the next genera-
tion’s population was then generated via mutation and cross-
over on parents identified using rank-based tournament selec-
tion. Elitism (where an unaltered copy of the fittest individual 
from generation g is inserted into the population of g+1) was 
also used.    
 
The genome of each individual was simply a vector of nine 
real values. In each experiment, the initial random population 
was created by generating random values from U[0,1] for 

- 3 - 



each locus on each individual’s genotype. Crossover points 
were between the real values, and crossover was governed by 
a Poisson random process with an average of between one 
and two crosses per reproduction event. Mutation was im-
plemented by adding random values from U[-m(g),+m(g)] 
where m(g) is the mutation limit at generation g (starting the 
count at g=0). Mutation was applied to each locus in each 
genotype on each individual generated from a reproduction 
event, but the mutation limit m(g) was gradually reduced via 
an exponential-decay annealing function of the form: 
log10(m(g))=-(log10(ms)-(g/(Ng-1))log10(ms/me)) where Ng is 
the maximum number of generations and ms is the “start” 
mutation limit (i.e., for m(0)) and me is the “end” mutation 
limit (i.e., for m(ng-1)). In all the experiments reported here 
and in earlier papers [7,8], Ng=103, ms=0.05, and me=0.0005.    
 
If ever mutation caused the value at a locus to fall outside 
[0.0,1.0] it was simply clipped to stay within that range. This 
clip-to-fit approach to dealing with out-of-range mutations 
biases evolution toward extreme values (i.e. the upper and 
lower bounds of the clipping), and so Qs values of 0.0 or 1.0 
are, if anything, more likely to be evolved. Initial and mu-
tated genome values of µ∆, β∆, and γ∆  were also clipped to 
satisfy (µmin+µ∆)<=1.0, (βmin+β∆)<1.0, & (γmin+γ∆)<1.0. 
 
The fitness of genotypes was evaluated using the same meth-
ods as described in [5,6,7,8,11]. One trial of a particular ge-
nome was performed by initialising a ZIP-trader market from 
the genome, and then allowing the traders to operate within 
the market for a fixed number of trading periods, with alloca-
tions of stock and currency being replenished between trad-
ing periods. Each trading period was ended in the manner 
described at the end of Section II.A.  
 
During each trading period, Smith’s α measure [2] of devia-
tion of transaction prices from the theoretical market equilib-
rium price was monitored, and a front-weighted average was 
calculated across the trading periods in the trial. As the out-
come of any one such trial is influenced by stochasticity in 
the system, the final fitness value for an individual was calcu-
lated as the arithmetic mean of 100 such trials. Note that as 
minimal deviation of transaction prices from the theoretical 
equilibrium price is desirable, lower scores are better: the 
intention here is to minimise the fitness value.  
 
In [7] the number of generations ng for each experiment was 
set to equal Ng (i.e., 1000), but all the significant evolutionary 
activity was found to occur in the first 500 generations; hence 
in subsequent work [8,11] ng=500 was used. Thus, in any one 
experiment, there are 30 individuals evaluated over 500 gen-
erations where each evaluation involves calculating the mean 
of 100 trials, so a total of 1.5 million market trials would be 
executed in any one GA experiment. Nevertheless, the pro-
gress of each GA experiment is itself affected by stochasticity 
(e.g. the GA may become trapped on local optima) and so to 
generate reliable results each experiment was repeated 50 
times, requiring a total of 75 million market trials. On a cur-
rent single-CPU PC, 50 repetitions of the single-schedule 

experiments from [7] take around four days to complete. As 
shown by Walia [12], much of this consumption of compute 
time is due to our choice of a computationally expensive (but 
statistically rigorous) random number generator function.  
 
D. Previous Results 
 
In the CIFEr’02 paper [7], three differing market supply and 
demand schedules were used, shown here in Figures 1, 2, and 
3, and referred to hereafter as markets M1, M2, and M3 re-
spectively.   
 
Each of Figures 1 to 3 shows a supply and demand schedule 
for a marketplace with 11 buyers and 11 sellers, each em-
powered to buy/sell one unit of commodity, and all three are 
similar (or identical) to the schedules used by Smith [2]. Fig-
ure 4 shows results from 50 repetitions of an experiment 
where the GA explores the R9 subspace in an attempt to op-
timise the ZIP-trader market parameters for operating in M1: 
for each experiment, the fitness of the best (elite) member of 
the population is recorded. The results are clearly tri-modal. 
 
Of the 50 repetitions, in five the elite ends up on fitness min-
ima of about 3.2, while the other two elite fitness modes are 
on less-good minima of around 4.0 and 4.75. For comparison, 
Figure 5 shows the results of 50 repeats of the same experi-
ment, where the value of Qs was not evolved, being instead 
clamped at 0.5: i.e. the CDA value. The CDA mechanism is 
often applauded as an auction mechanism in which equilibra-
tion is rapid and stable, so we could expect the best fitness 
from using this market type. With the fixed CDA auction 
style, an average elite fitness of around 4.5 is settled on by 
the majority of experiments (48 repetitions) while a small 
minority (2 repetitions) settle on a less good mode of around 
5.1. Clearly then, the evolved-mechanism results are better 
than the fixed-mechanism CDA results; that is, when the GA 
is allowed so find its own value of Qs rather than have the 
CDA Qs value of 0.5 imposed on it, it finds fitter solutions – 
solutions with less deviation of transaction prices from the 
equilibrium price.  As it happens, the Qs value found in the 
best elite mode for the evolving-mechanism M1 experiments 
is zero [7], and for M2 the best Qs was also zero [7]. But, 
surprisingly and significantly, for M3 the best Qs was neither 
zero, nor 0.5, nor 1.0 – i.e. none of the Qs values correspond-
ing to traditional human-designed auction mechanisms; 
rather, the best Qs for M3 was found to be around 0.16 [7]. 
 
All of the results in the CIFEr’02 paper came from experi-
ments in which the same static supply/demand schedule was 
used for the duration of each evaluation of every genotype. 
This is a somewhat unrealistic simplification, for two rea-
sons. First, a primary reason why auction mechanisms such 
as the CDA are of interest is their ability to adapt to changes 
in the market’s supply and demand curves. Second, it is 
likely that the GA exploited this regularity and over-fitted the 
ZIP-trader parameters to the particular market schedules used 
(e.g. a genome that does well in M1 may perhaps perform 
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poorly in M2). Thus, in a subsequent paper [8], similar ex-
periments were run but in these new studies the evaluation of 
a genotype involved six trading periods on one market sched-
ule, followed by a shock-change to another schedule, and 
then another six trading periods on the new schedule; with 
the fitness of the genotype being calculated over the entire 
twelve periods of trading.  

Hence in these experiments the genotypes had to optimise not 
only the ZIP-trader’s ab initio adaptation to the first schedule 
but also their re-adaptation to the new schedule introduced 
half-way through the evaluation process. Two sets of experi-
ments were performed: one in which the ZIP traders operated 
in M1 for six periods followed by a shock-change to M2 for 
the final six periods (referred to as the M1M2 experiments); 
and another in which the order was M2 followed by M1 (re-
ferred to as M2M1). It was demonstrated [8] that the order 
was significant: the M1M2 results differed significantly from 
the M2M1 results. Although in the single-schedule experi-
ments both M1 and M2 were found to have optima at Qs=0, 
when the two schedules were both used in one trial then non-
zero values of Qs evolved: for M1M2 the best-mode value 
was a “hybrid” of around 0.25; while for M2M1 the best 
value was 0.45, which did not yield statistically significant 
differences in performance from the CDA value of 0.5. 
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Figure 1: Supply and demand schedules for market M1. Vertical axis is 
Price; horizontal axis is Quantity. 
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Figure 4: Elite fitness values from 50 repetitions of a 500-generation evolv-
ing-mechanism (EM) experiment operating with M1. Lower values are better 
solutions (less deviation from equilibrium). Results are trimodal, with five of 
the repetitions (10% ) settling to values around 3.2. 
   

 

 
Figure 2:  Supply and demand schedules for market M2. 
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Figure 5: Elite fitness values from 50 repetitions of a 500-generation experi-
ment operating with M1, but with a fixed-mechanism (FM) CDA of Qs=0.5: 
bimodal results, with 96% of the repetitions settling to fitness values around 
4.5 and the remaining 4% at around 5.2.  
 
 

 
Figure 3:  Supply and demand schedules for market M3. 
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III. ZIP-TRADER FITNESS LANDSCAPES 
 
A. Methods and Results 
 
As was stated in the previous section, the genotypes in the 
ZIP-trader experiments are within R9 (strictly, they are all 
within the real unit hypercube [0.0,1.0]9). For any such geno-
type, one evaluation (e.g. taking the mean score from 100 
trials, as used here) will give a fitness score for that genotype; 
and so it is possible in principle to visualise the “fitness land-
scape” as a surface over the 9-d axes of the genotype space. 
Visualising such a 10-d object in the two or three dimensions 
that we humans are familiar with communicating in is mani-
festly problematic; yet appropriate visualisations can be 
highly valuable in demonstrating that the results of the GA’s 
evolutionary search are indeed a plausible global optimum. 
Thus, in this section, we present data (first published in [11]) 
showing visualisations of the fitness landscapes for all five of 
the ZIP-trader experiments reported in [7] and [8] (i.e., M1, 
M2, M3, M1M2, and M2M1), before showing in Section IV 
the fitness landscapes from comparable experiments where 
the markets are populated by ZI-C traders.  
 
To understand the visualisation, consider Figure 5. In this set 
of fifty M1 experiments the value of Qs was fixed at 0.5 and 
by generation 500 there are two clear elite-fitness modes: one 
at approx 4.5 and one at approx 5.2. Of the fifty repetitions, 
96% settle to the first mode and 4% settle to the second. This 
could be represented by a histogram where the horizontal axis 
represents discretized (“binned”) values of the elite-fitness 
mode, and the vertical axis represents the frequency with 
which each mode is observed; for the M1 Qs=0.5 data of Fig-
ure 5 we would see two distinct peaks in the histogram: a big 
one around 4.5 and a smaller one around 5.2. 
 
Now to visualise the entire fitness landscape for ZIP traders 
in M1, run more fixed-mechanism experiments but for each 
set of 50 repetitions hold the value of Qs fixed at some value 
while all the other 8 ZIP parameters on the genome are opti-
mised by the GA. These data allow us to plot a 3-d projection 
of the 10-d fitness landscape: in our projection, one horizon-
tal dimension is the fixed value of Qs; another is the elite-
fitness mode-value; and the vertical axis shows the frequency 
with which the different mode values are reached for each of 
the Qs values. Figure 6 shows a perspective projection of 
such a 3-d histogram, calculated for ZIP traders in M1. An 
alternative view of the same data is presented in Figure 7, i.e. 
as a contour plot with a logarithmic compression function 
applied to the frequency values. For comparison, Figures 8, 9, 
10, and 11 show such contour plots of the fitness landscape 
for ZIP-trader experiments with markets M2, M3, M1M2, 
and M2M1 respectively. 
 
B. Discussion 
 
All of the contour plots of the fitness landscapes show good 
agreement with the previous experimental results, in the 

sense that the minima (i.e. left-most data points) on the con-
tour plots are in good agreement with the values discovered 
by the evolving-mechanism GA experiments reported on in 
[7,8] and summarised in Section II.D: markets M1 and M2 
both have minima at Qs=0.0; M3 has a minimum between 
Qs=0.125 and Qs=0.25; M1M2 has a clear minimum at 
Qs=0.25; and M2M1 has a minimum at Qs=0.5. It is also 
worth noting that all the contour plots show some degree of 
multi-modality for some values of Qs.  
 

 
Figure 6:  3-d histogram showing elite fitness-mode frequency data from 
multiple repetitions of ZIP-trader GA experiments in M1 over a variety of 
fixed Qs values. The narrow horizontal axis is Qs (from 0.0 at the rear to 1.0 
at the front, increasing at intervals of 0.125); the long horizontal axis is elite-
fitness value from 3.0 at the left to 8.0 at the right, in “bins” of 0.125; the 
vertical axis shows the frequency with which the GA settles to each elite-
fitness (out of 50 repetitions at each fixed Qs value). Note that the elite-
fitness values for Qs=1.0 are so poor (i.e., so high) that their histogram data 
lie off the scale to the right. 
 
Thus, the evolving-mechanism results from [7,8] are sup-
ported by this brute-force exploration of the fixed-mechanism 
fitness landscapes for each market schedule: in each case, the 
evolved value of Qs is very close to the value identified by 
empirical examination of the fitness landscapes, and the mul-
ti-modality of each fitness landscape justifies the use of 
multiple repetitions of each experiment in order to identify 
the true optimal solution. 
 
However, the differences between Figure 7 (M1) and Figure 
9 (M3) are intriguing: the two contour plots show some major 
differences, yet examination of the supply and demand 
schedules (shown in Figures 1 and 3 respectively) reveals that 
these differences in the fitness landscapes are caused by only 
minor changes in the supply and demand schedules. Specifi-
cally, in both M1 and M3 the equilibrium price is 2.00 and 
the equilibrium quantity is 6; both schedules have 11 buyers 
and 11 sellers; and both schedules have identical differences 
in limit prices between successive traders. In fact, the only 
difference between M1 and M3 concerns the magnitude of 
the difference in limit prices between successive traders, 
which we’ll denote by ∆λ: in M1, ∆λ=0.25; in M3, ∆λ=0.30. 
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IV.  HIGH RESOLUTION ZIP FITNESS LANDSCAPES That such an apparently minor difference in the market 
schedules can have a relatively major effect on the resultant 
fitness landscapes is a phenomenon deserving of more de-
tailed exploration, which is the topic of the rest of this paper. 

 
A. Methods 
 

 The contour plots presented in the previous section are one 
approach to visualising densities of the elite-fitness modes, 
but the fact that the data was calculated at fixed discrete Qs 
values (of 0.0, 0.125, 0.250, … , 1.00) introduces some unap-
pealing artefacts. For instance, in Figure 8 the “stepped” ap-
pearance of the main high-frequency peak ridge from 
Qs=0.375 to Qs=0.750 is an artefact (the true underlying ridge 
is probably smooth, but appears jagged because it is sampled 
at discrete intervals). The apparent jump-discontinuity in that 
peak-ridge from Qs=0.750 to Qs=0.875 is also artefactual: a 
finer-grained sampling of Qs values (e.g. at Qs=0.755, 0.760, 
0.765, etc) would have provided data to fill in this “gap”.   

 
Figure 7:  Contour plot of the data shown in Figure 6. Horizontal axis is 
fitness values from 2.0 at the left to 7.5 at the right (grid-spacing is 0.125); 
vertical axis is Qs from 0.0 at the top to 1.0 at the bottom (grid-spacing is 
0.125). Darker shading represents higher frequency. Nonzero frequencies for 
Qs=1.0 are so poor that they lie off the scale to the right. 
 

 

 
A second problem with the contour plots is that they show 
histograms for the elite-fitness data at generation 500, but 
give no indication of the variability in that data (i.e., how 
different would the contour plot have looked at generation 
499, or 475?). In general, it is more rigorous and more infor-
mative to show measures of central tendency (e.g. a mean) 
and of variability (e.g. a standard deviation).   

Figure 8: Contour plot of fitness landscape for ZIP traders in M2. Scale as 
for Fig. 7. Nonzero frequencies for Qs=1.0 lie off the scale to the right. 
 

 

 
To avoid these visualisation artefacts, and to show the data in 
a more rigorous fashion, a new set of visualisation experi-
ments was conducted.  In each experiment, a fixed value for 
Qs was chosen at random from a uniform distribution, and 
that value remained constant throughout the experiment. All 
other experiment details were the same as those described in 
Section II, except that the final measure of an experiment’s 
outcome is now the mean and standard deviation of the elite 
fitness over the final 50 generations of the experiment (i.e., 
generations 450 to 500). The result of any one such experi-
ment can be plotted on a 2D graph showing Qs on the hori-
zontal axis, with the vertical axis showing mean elite fitness  
(and error bars indicating the standard deviation on that 
mean). Performing a large number of repetitions of this ex-
periment (e.g. n=500) with a different randomly-generated 
value of Qs on each repetition gives a scatter-plot which as a 
visualization technique is broadly similar to the contour plots 
shown previously but which avoids their problems. In the 
remainder of this paper, fµ will be used to denote mean elite 
fitness. 

Figure 9: Contour plot of fitness landscape for ZIP traders in M3. Scale as 
for Figure 7. Fitness values for Qs>=0.875 lie off the scale to the right. 
 

 
Figure 10: Contour plot of fitness landscape for ZIP traders in M1M2. Scale 
as for Figure 7. Nonzero frequencies for Qs=1.0 lie off the scale to the right. 
 

 
Figure 11: Contour plot of fitness landscape for ZIP traders in M2M1. Scale 
as for Figure 7. Nonzero frequencies for Qs=0.0 and Qs=1.0 lie off the scale 
to the right.   

B. Results   
  
Qs/fµ scatter-plots were generated for ∆λ=0.25, 0.26, 0.27, 
0.28, 0.29, and 0.30. They are illustrated in Figures 12 to 17 
respectively. The data for M1 (∆λ=0.25) in Figure 12 shows 
three clear modes. A dominant mode runs from fµ=~4.1 at 
Qs=0.0 through to fµ=~4.3 at Qs=0.5. For later discussion, 
we’ll call this Mode A. Above and roughly parallel to Mode 
A there lies a second weaker mode running from fµ=~4.75 at 
Qs=0.0 to fµ=~5.00 at Qs=0.5, which we’ll call Mode B. Fi-

Having established the background to our current work, we 
now proceed with introducing our new results. In the next 
section we show finer-grained projections of the fitness land-
scapes that result from using schedules M1 and M3, and also 
from intermediate schedules where the step-size ∆λ has val-
ues between 0.25 and 0.30.    
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nally, a third mode sweeps up and to the left from fµ=~3.5 at 
Qs=0.00 up to fµ=~5.5 at Qs=0.25, beyond which it rapidly 
fades. We’ll call that Mode C. 

 

 
Examining Figures 13 to 17, we see that each change of 0.01 
in λ∆ has a noticeable systematic change on Modes A, B, and 
C. At a macro-level, we see that Modes B and C act as less  
 

 

Figure 15: λ∆=0.28 Qs/fµ scatter-plot. Format as for Figure 12. 
 

 

 

Figure 12: λ∆=0.25 Qs/fµ scatter-plot. Vertical axis is fitness, horizontal axis 
is fixed Qs value. Each data-point marks the mean elite fitness fµ from the 
final 50 generations of a 500-generation experiment, with the vertical error 
bars indicating plus and minus one standard distribution. This plot shows 
data from 500 repetitions of the experiment with the fixed Qs value for each 
experiment being generated from Qs=U[0.0,0.5].  
 
 

 

Figure 16: λ∆=0.29 Qs/fµ scatter-plot. Format as for Figure 12. 
 

 

Figure 13: λ∆=0.26 Qs/fµ scatter-plot. Format as for Figure 12. 
 

 

Figure 17: λ∆=0.30 Qs/fµ scatter-plot. Format as for Figure 12. 
 
powerful attractors as ∆λ increases, so that by λ∆=0.30  (i.e., 
M3) Mode A appears to be effectively all that remains.  At 
the micro-level, in the change from λ∆=0.25 to λ∆=0.26, 
Modes A and B have both moved up slightly, while Mode C 
has moved upwards more rapidly.  Furthermore, for Qs=0.25 
to Qs=0.50, a new mode (which we’ll call mode D) is appear-
ing slightly above mode A. The distinction between these 
Modes A and D is seen more clearly when the error bars are 
removed from the scatter plots. Thus, Figures 18 to 23 show 
the same data as Figures 12 to 17, but with no error-bars and 
with the vertical axis scales altered for greater clarity. Figure 14: λ∆=0.27 Qs/fµ scatter-plot. Format as for Figure 12. 

 

- 8 - 



Figures 19 and 20 indicate that as λ∆ increases, Mode D be-
comes a stronger attractor; such that by λ∆=0.28 the domi-
nant mode is actually D rather than A. 

 

 
Figure 18: λ∆=0.25 Qs/fµ scatter-plot as shown in Figure 12 but with error-
bars removed and vertical-axis scale altered.  
 

 
Figure 19: λ∆=0.26 Qs/fµ scatter-plot as shown in Figure 13 but with error-
bars removed and vertical-axis scale altered. 
 

 
Figure 20: λ∆=0.27 Qs/fµ scatter-plot as shown in Figure 14 but with error-
bars removed and vertical-axis scale altered.  
 
 
To establish that these different fµ modes do represent distinct 
modes in genotype space, we can seek to identify distinct 
clusters in the R8 genotype space (recall, in these experiments 
the 9th genotype dimension, i.e. Qs, was clamped to a random 
value for each experiment.)  Although a clustering algorithm 
could be used to analyse the genome data, as it happens the 

distinct fµ modes are clearly (and conveniently) strongly cor-
related with one locus on the genotype, allowing the clusters 
to be identified by inspection. This locus is the µmin (base 
profit margin at time zero) value. Figures 24 to 29 show the 
µmin data for λ∆=0.25 to 0.30 respectively. 
 

 
Figure 21: λ∆=0.28 Qs/fµ scatter-plot as shown in Figure 15 but with error-
bars removed and vertical-axis scale altered. 

 
 

 
Figure 22: λ∆=0.29 Qs/fµ scatter-plot as shown in Figure 16 but with error-
bars removed and vertical-axis scale altered. 
 

 
Figure 23: λ∆=0.30 Qs/fµ scatter-plot as shown in Figure 17 but with error-
bars removed and vertical-axis scale altered. 
 
 
Figures 24 to 29 show that genomes in Mode C all have µmin 
=~1.0 and that as λ∆ increases Mode C weakens, failing to 
attract any of the elite genotypes once λ∆>0.28. Mode B can 

- 9 - 



also be seen as the line of genomes with µmin values spread 
from ~0.0 to ~0.25 in Figure 24; a line which rises and fades 
as λ∆ increases in Figures 25 to 29. The interplay between 
Modes A and D as λ∆ increases is made more clear when the 
same co-ordinate data is normalised by the underlying value 
of λ∆: that is, when the mean elite fitness value and the mean 
elite µmin value for each data-point are divided by the λ∆ for 
the experiment. This normalisation accounts for the fact that  

 

 

 

Figure 27: λ∆=0.28 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figures 15 and 21. 

 

 

Figure 24: λ∆=0.25 µmin /fµ scatter-plot. Horizontal axis is genome µmin value; 
vertical axis is fitness. Each data-point shows the mean elite fitness over 
generations 450 to 500 of an experiment, plotted against the mean elite ge-
nome µmin value over those 50 generations. Data from the 500 repetitions 
shown in Figures 12 and 18.  
 

 

Figure 28: λ∆=0.29 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figures 16 and 22. 
 

 

Figure 25: λ∆=0.26 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figures 13 and 19.  
 

 

Figure 29: λ∆=0.30 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figures 17 and 23. 
 
 
µmin is interpreted as a percentage margin. Figures 30 to 35 
show these normalised data. The normalised data shows that 
Mode A is characterised by µmin/λ∆>1.0, 16<fµ/λ∆<18; while 
Mode D is characterised by µmin/λ∆<1.0, 17<fµ/λ∆<19. And 
so it is clear that the dominant mode for λ∆=0.30 is one that 
acts as only a very weak attractor for λ∆=0.25 (with the hind-
sight gained by this analysis, Mode D can now be seen as the 
light scattering of nine data-points above Mode A between 
Qs=0.375 and Qs=0.500 in Figure 18). 

Figure 26: λ∆=0.27 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figures 14 and 20. 
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Having clarified the nature of the four modes seen in the fit-
ness data of Figures 12 to 17, we can turn our attention to the 
nature of the best mode in each experiment. For λ∆ in the 
range [0.26,0.30] we see in Figures 13 to 17 that, for both 
Modes A and D, there is a clear shallow “U” curve with its 
minimum fµ (i.e., most desired market dynamics) at Qs values 
around 0.125. This is true also of the Mode A curve for 
λ∆=0.25, but in that instance we see also that Mode C actu-
ally gives lower fitness (i.e., better market dynamics).  Given 
the upward path of Mode C identified as λ∆ increases, we 

 

 

 

Figure 33: λ∆=0.28 ∆λ-normalised µmin /fµ scatter-plot; format as for Figure 
30; data from the 500 repetitions illustrated in Figures 15, 21, and 27. 

 
 

 

Figure 30: λ∆=0.25 ∆λ-normalised µmin /fµ scatter-plot. Horizontal axis is 
quotient µmin/∆λ; vertical axis is quotient of mean elite fitness and ∆λ. Data 
from the 500 repetitions shown in Figures 12, 18, and 24. 
 

 

Figure 34: λ∆=0.29 ∆λ-normalised µmin /fµ scatter-plot; format as for Figure 
30; data from the 500 repetitions illustrated in Figures 16, 22, and 28. 
 

 

Figure 31: λ∆=0.26 ∆λ-normalised µmin /fµ scatter-plot; format as for Figure 
30; data from the 500 repetitions illustrated in Figures 13, 19, and 25.  

 

Figure 35: λ∆=0.30 ∆λ-normalised µmin /fµ scatter-plot; format as for Figure 
30; data from the 500 repetitions illustrated in Figures 17, 23, and 29 
 
can expect to see Mode C acting as a much stronger attractor 
for λ∆<0.25. Given the large differences in genome µmin and 
optimal Qs values between Mode C and Modes A/D, it would 
appear that λ∆=0.25 marks the point of a “phase transition” 
between two radically different modes of elite genotypes. To 
confirm the existence of this transition, two more sets of 500 
experiments were conducted, for λ∆=0.24 and λ∆=0.23. Fig-
ures 36 and 37 show the respective Qs/fµ scatter plots, and 
Figures 38 and 39 show the respective µmin/fµ scatter plots. 

Figure 32: λ∆=0.27 ∆λ-normalised µmin /fµ scatter-plot; format as for Figure 
30; data from the 500 repetitions illustrated in Figures 14, 20, and 26. 

- 11 - 



The increased dominance of Mode C as λ∆ reduces is clear 
from these extra data. The sudden transition of the elite from 
Mode A/D to Mode C is illustrated in Figures 40 and 41, 
which respectively show the fµ values and the elite-mode µmin 
values, each as a function of λ∆, for the best-scoring 1% 
(n=5) of the 500 repetitions for each value of λ∆. While Fig-
ure 40 shows a progressive increase (i.e., a worsening) in the 
fitness of the best 1% as λ∆ increases, Figure 41 illustrates 
the  “phase transition” step-change in µmin values at λ∆=0.25.   

 

 
 

 

Figure 39: λ∆=0.23 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figure 37. 

 

 

                           Figure 36: λ∆=0.24 Qs/fµ scatter-plot; n=500. 
 
 

 

Figure 40: λ∆/fµ scatter-plot: horizontal axis is λ∆, vertical axis is fµ ; data-
points are from the best-scoring 1% (n=5) of the 500 repetitions performed 
for each value of λ∆. 
 

 

                            Figure 37: λ∆=0.23 Qs/fµ scatter-plot n=500. 
 
 

 

Figure 41: λ∆/µmin scatter-plot: horizontal axis is λ∆, vertical axis is µmin; 
data-points are from the best-scoring 1% (n=5) of the 500 repetitions per-
formed for each value of λ∆. 

 
C. Discussion 
 
The results presented in this section, from 4000 repetitions of 
the GA experiments, are more illuminating than the previous 
contour-plot visualizations of these fitness landscapes first 
published in [11]. Four distinct elite-genotype modes have 
been identified, and the effects of changes in λ∆ on those 
modes have been revealed. In several places, a “snapshot” 

Figure 38: λ∆=0.24 µmin /fµ scatter-plot; format as for Figure 24; data from 
the 500 repetitions illustrated in Figure 36. 
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approach, i.e. studying fµ distributions for a single fixed value 
of Qs, (as used in the contour plots of Figures 7 to 11) would 
give apparently bi-modal results where in fact the data is tri-
modal but two modes overlap in the Qs/fµ scatter-plot: this is 
seen most clearly in Figure 37 where Modes A and C overlap 
for much of the range Qs=0.125 to Qs=0.250. 
 
While it is fortunate that the four modes reveal themselves so 
clearly as distinct clusters in the µmin data, if this had not been 
the case then any appropriate clustering algorithm could be 
used to automatically identify such clusters (see [13] for a 
comprehensive review of data-clustering algorithms).  Simi-
larly, it is fortunate that the single Qs dimension yielded such 
revealing scatter-plots. But in the absence of such good for-
tune, there are many techniques for dimensionality reduction 
in multivariate data (such as principal components analysis 
and multidimensional scaling [14] or “principal curve” tech-
niques such as nonlinear principal component analysis [15]) 
that could be employed to identify the best dimensions to use 
as basis vectors for projecting down from the high-
dimensional source data to the two or three dimensions ap-
propriate for display on screen or on paper.  
 
The predominant change resulting from successive reductions 
in λ∆ from 0.30 to 0.23 is the increasing influence of Mode C 
as an attractor for elite genotypes. The visualization of the 
search space has demonstrated that λ∆=0.25 marks the point 
of a phase transition where the fittest genotypes found in an 
evolving-Qs GA experiment cease to come from Modes A/D 
and start to come from Mode C. At face value, this would 
indicate that Mode C genotypes are the best to use for mar-
kets such as M1 where λ∆<=0.25. However, this is not nec-
essarily the case. In fact what the µmin visualizations reveal is 
an unanticipated exploitation of a system parameter by the 
GA. Put more directly: Mode C genotypes score a high fit-
ness by exploiting an aspect of the ZIP implementation not 
considered in the fitness evaluation function. Recall that ear-
lier in this paper (at the end of Section II.A) it was stated that 
in the original ZIP implementation published in [1] (and used 
in all successive ZIP work: [5,6,7,8,11]) there is a system 
parameter MAX_FAILS, set to 100, that determines the maxi-
mum number of successive ignored quotes allowed to pass 
before a trading period is ended. This parameter prevents ZIP 
marketplaces from continuing indefinitely with traders con-
stantly quoting prices ignored by the contraside (and making 
small adjustments to their margins as a consequence) but 
never actually trading.  
  
The Mode C genotypes exploit the fact that, with 
MAX_FAILS=100, very long sequences of quotes can occur 
without any transactions taking place: note that the Mode C 
genotypes give their best performance (lowest fµ values) at 
Qs=~0.0 for all the values of λ∆ explored here. That is, in 
practice, the best Mode C genotypes do not allow the sellers 
to quote at all. Note also that the Mode C genotypes are dis-
tinguished by their common feature of µmin=~1.0. This de-
termines that all buyers and all sellers will have initial profit 

margins very close to 100%. As the sellers cannot quote, the 
seller margins are not particularly relevant. However, with 
buyer margins close to 100%, at the start of trading the bid-
prices in the market will all be very close to zero. Thus the 
market’s apparent demand curve (i.e., the demand curve that 
could be constructed from the bid array given by all buyers’ 
current pi(t) bid values, as opposed to the true demand curve 
constructed from the buyers’ private λi prices) will lie very 
close to the zero line, and it will not intersect with either the 
true or the apparent supply curve. All the bid prices will then 
gradually rise as the buyers reduce their margins each time a 
bid is ignored by the sellers; this gradually raises the apparent 
demand curve, until an intersection with the apparent supply 
curve does occur, at which point a transaction will take place. 
Significantly, the seller in each such transaction is most likely 
to be the current most intra-marginal seller (i.e. the currently 
active seller whose λi value lies below the theoretical equilib-
rium price by the greatest amount). In this way, the evolved 
Qs=0.0/µmin=1.0 mechanism ensures that extra-marginal sell-
ers (i.e. those whose λi values lie above the theoretical equi-
librium price) are highly unlikely to engage in any transac-
tions. A marketplace where extra-marginal sellers are effec-
tively excluded from the outset is likely to show faster equili-
bration than one in which the extra-marginal sellers can trade, 
which helps explain why Qs=0.0/µmin=1.0 genomes score well 
on the fitness measure used here.  
 
In summary then, for Mode C the bids announced in the mar-
ket during the protracted periods of non-trading allow the 
traders to adjust their margins such that, when transactions 
do start to occur, equilibration is significantly quicker. And 
so we see that the Mode C data is a reflection of the old ad-
age “you get what you measure”. The fitness evaluation func-
tion used here (and in all our previous work) is dependent 
only on transaction prices, and totally ignores the number of 
ignored quotes in the market leading up to each transaction. 
This is exploited by the best Mode C genotypes, which spec-
ify ZIP initialisation parameters that collectively ensure a 
high likelihood of both many failed bids preceding a transac-
tion and a bid actually being accepted before the MAX_FAILS 
limit is reached, where the seller accepting the bid is likely to 
be the most intra-marginal seller remaining in the market.   
 
One obvious way around this type of solution would be to 
employ a fitness evaluation function that rewards higher ra-
tios of accepted-to-ignored quotes as well as rewarding speed 
of equilibration.  As these are two distinct objectives, a 
Pareto-optimising approach would be appropriate (e.g. [16]).  
 
Although the results presented in this paper have illuminated 
the nature of the surprising difference in the fitness-landscape 
contour-plots for M1 and M3 shown in Figures 7 and 9, and 
although the discussion presented in this section has identi-
fied how the solution encoded on Mode C genomes operates, 
several significant open questions remain to be answered.  
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These questions include: 
 
• Why do Mode C genomes dominate (i.e., give the best 

market dynamics) for λ∆<=0.25 while Modes A/D 
dominate for λ∆>0.25? 

• Why is there the transition from Mode A to Mode D as 
λ∆ increases from 0.26 to 0.28, and to what extent if any 
is that transition significant? 

• Why do both Mode A and Mode D show (in Figures 18 
to 23, and also Figures 36 and 37) a clear U-curve with a 
low-point optimum at Qs=~0.125? 

• What other elite-genome modes exist (if at all) for the 
so-far unexplored ranges λ∆<0.23 and λ∆>0.30? 

• To what extent are the data presented here dependent on 
other free parameters in the market schedules? For in-
stance, the range 0.23<=λ∆<=0.30 has been explored in 
all the experiments reported here with 11 traders on each 
side, and with an equilibrium price of 2.00, and with an 
equilibrium quantity of 6 (see Figures 1 and 3). At this 
stage it is not at all obvious how the results presented 
here might alter quantitatively or even qualitatively as 
the λ∆ values are held constant while these other market 
supply/demand parameters are altered. 

• What happens when the λ∆ on the supply curve and the 
λ∆ on the demand curve are not equal (i.e., when the 
slopes of the supply and demand curves are not symmet-
ric)? Or when the values are not uniform for each curve 
(i.e., when the supply and/or demand curves are non-
linear?). That is, we should explore all of the above ques-
tions for a much wider range of styles of supply/demand 
schedule; as Walia [11,12] has recently done for evolv-
ing-Qs markets populated by ZI-C traders. 

• In exactly what way (if at all) do the results presented 
here depend on the values of system parameters such as 
MAX_FAILS or on implementation details such as the par-
ticular genetic encoding used?  

 
All of these questions appear to be fertile ground for future 
research, and for the time being the most productive way of 
tackling these issues appears to be by empirical exploration 
methods such as those presented here. The results shown in 
this section make clear that small variations in one free pa-
rameter (i.e., the λ∆ value affecting the simple stationary 
symmetric supply and demand schedules in the ZIP-trader 
marketplaces) can have effects that are not intuitively pre-
dictable in advance. This lack of an intuitive understanding 
could in principle be addressed by appropriate mathematical 
modelling, but the compounded non-linearities, stochasticity, 
and adaptation (giving non-stationary probability distribu-
tions) in the ZIP-trader system all combine to make a full 
analytic understanding (e.g., via game-theoretic analysis or 
probabilistic modelling) seem a very distant goal. The 
chicken-and-egg circularity in the relationship between the-
ory and data is well known; for the time being, we are con-
centrating on building a body of parametric-variation data 
that can then be used to suggest and constrain hypothe-

ses/theories that guide the direction of subsequent empirical 
studies.  
 
Clearly, there is no shortage of topics for further research; 
and nor is there any shortage of experiments with which to 
keep our compute-clusters busy.     

 
 

V. CONCLUSION 
 
This paper commenced with a review of previous experimen-
tal work up to and including the recent “low-resolution” con-
tour plots that give meaningful 2-d projections of the 10-d 
fitness landscapes underlying this work. The major new re-
sults of Section IV showed the outcome of 4000 repetitions 
of our GA experiments (taking ~8000 hours of computation). 
 
This higher-resolution data showed that, with only very mi-
nor variations in the λ∆ value, the “attractor” modes for the 
elite genotypes in our experiments could show major shifts 
and phase transitions. While the λ∆ value is not an explicit 
term in the fitness evaluation function, it is an implicit factor 
insofar as it determines the supply and demand curves that 
underlie the equilibration-based fitness evaluation function 
used in this work; and of course the evaluation function plays 
a large part in determining the fitness landscape for any GA 
system.   
 
The new hi-resolution data again confirms that the GA can 
successfully find optimum genotypes. However, the data on 
sub-optimal solutions (i.e. the nature of the fitness landscape 
at points other than optimum) has the potential to be more 
informative than the optimum data taken alone. Although 
none of the evolved solutions here improve significantly on 
any of our original GA results presented in [6], the new data 
helps us to better illuminate the nature of the fitness land-
scapes traversed by the GA in attempting to evolve new 
mechanism designs for ZIP-trader marketplaces, and also 
helps us to understand the nature of the optima in those land-
scapes. With this illumination comes the chance of better 
understanding what factors in the system affect the nature of 
the optimum solutions, and how they do so: at the moment, 
the causal mechanistic interactions leading to one genome 
being better than another for any particular supply/demand 
schedule remain unclear, rendering all our results as idio-
pathic. But the relationship between fµ, µmin and λ∆ demon-
strated in Figures 30 to 35 appears to be one promising lead 
in identifying such causes. 
 
While the high-resolution visualisations presented for the first 
time here offer better opportunities for understanding the per-
formance of the evolving-marketplace ZIP-trader systems, it 
should be noted that none of the figures in this paper are at all 
novel in terms of the nature of the visualisation techniques 
employed: scatter plots are nothing new. 
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But what is perhaps more novel here is the approach to con-
suming CPU cycles: burning 8000 hours of CPU time to gen-
erate these figures would have seemed an astonishingly prof-
ligate use of compute resources only a few years ago. And 
indeed, for a researcher working with a single-CPU machine, 
waiting eleven or so months for a set of possibly-illuminating 
visualization results would perhaps not be the best use of 
computer time.  
 
Yet, with many hardware vendors now pushing to build “util-
ity data centres” and/or “grid” compute facilities with thou-
sands or tens of thousands of connected processors available 
offering CPU cycles as a utility-style resource [17], the 
shared 50-server compute farm used for this work starts to 
appear decidedly lightweight, despite the fact that it can be 
spoken of as being roughly equivalent to a single-CPU 
90Ghz Pentium4 machine with 25Gb of RAM. Within the 
next few years, it seems perfectly plausible that research such 
as the explorations reported here could be conducted by buy-
ing CPU-cycles from a utility data centre (UDC) in such a 
way that the time taken to generate the visualization data is 
measured in minutes or even seconds, rather than days or 
weeks.1 In such a scenario, the transition in working styles 
will be similar to the move from batch-mode to interactive 
computing that was brought about by the development of 
mini/microcomputers in the 1960s and 1970s. The need 
would then be not so much for newer and more efficient or 
clever ways of getting a GA to find a solution, but rather for 
faster and more informative ways to visualise the high-
dimensional data streams pouring out of the UDC; and for 
more intuitive ways to steer through these data spaces to find 
areas of significance or interest. In fact, research interest in 
“blind” search techniques such as GAs and other forms of 
artificial evolutionary computation could possibly wane, to 
be replaced by a new style of working involving applications 
of brute-force enumerative search to spaces of possible solu-
tions so large as to be considered practically infinite, where 
the search is guided interactively by skilled human operators 
interacting with sophisticated visualisation workstations 
(where “visualisation” could include presentation via non-
visual sensory modes such as audio, force-feedback on con-
trollers, etc). Right now this seems a realistic and exciting 
possibility, but only time will tell.  
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