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Chapter 1

Introduction

“There is only one thing more painful than learning from
experience and that is not learning from experience.”

Anon.

This dissertation explores the novel application of a biologically-inspired
learning algorithm based on the human immune system to the problem of
document classification. Its overall aim is to produce a novel, working system
built on an immune-based learning algorithm and able to perform better than
the currently available learning algorithms. In order to give substance to any
claims made, I intend to compare the performance of my system to that
of other methods in a systematic and rigorous manner. The motivation for
this project is drawn from the current need for techniques which address a
range of web-based information retrieval tasks and in this, the introductory
chapter, I give a broad overview of the concepts and themes central to the
work presented here, laying the foundations on which the work detailed in
the following chapters rests.

Concept learning can be framed as the problem of acquiring the defi-
nition of a general category given a sample of positive and negative training
examples of the category [63]. For example, consider the general category
of ‘papers relevant to this dissertation’, which forms the target concept for
which we wish to acquire a definition. Our sets of positive and negative train-
ing examples could be the papers listed in the bibliography and those in my
rubbish bin respectively. Now imagine a black box, pictured schematically in
Figure 1.1, with three slots marked ‘relevant documents’, ‘irrelevant docu-
ments’ and ‘unknown documents’, a button marked ‘learn’, and two round
lights labelled ‘relevant’ and ‘irrelevant’. Initially, we begin by posting all
the papers listed in the bibliography into the ‘relevant documents’ slot, and
all those retrieved from the rubbish bin into the ‘irrelevant documents’ slot.
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Figure 1.1: An idealised concept learner

After posting all these papers into their appropriate slots we hit the learn
button, at which point the machine whirrs and clunks for a few minutes,
until finally falling silent. We now turn to a third set of papers whose titles
suggest that they may possibly be relevant to the dissertation, and this time
feed them into the slot labelled ‘unknown documents’. As we feed each paper
into the machine either the ‘relevant’ or ‘irrelevant’ light comes on, telling
us if the paper is indeed relevant or not to the dissertation.

The inner workings of such a black box, at least metaphorically, form the
central focus of this dissertation. The black box, from a machine learning
perspective, can be seen as a concept learner, at the heart of which is a
learning algorithm, whose job it is to take the training examples and create
a classifier which is then able to look at further examples and decide if they
fit into the learned concept or not. The learning algorithm we implement
and study is based on aspects of the dynamics of the human immune system
(HIS), part of whose function in its role as protector of the body can be
broadly seen as the classification of proteins in the body into two classes:
self - belonging to the body; and nonself - not belonging to the body and
potentially harmful. It achieves this classification in part by using a large
number of cells called T-cells capable of recognising proteins and produced
by its own ‘learning algorithm’ in process called negative selection, shown
in Figure 1.2, which results in the survival of only those T-cells which do
not recognise any cells belonging to the body. The mature T-cells then form
the immune systems ‘classifier’ and roam the body examining proteins they
encounter and destroying those that they do recognise. Systems inspired
by this and other aspects of the dynamics of the HIS are termed artificial
immune systems (AISs), and it is one such biologically-inspired system
that forms the basis of the learning algorithm and classifier explored in this
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Figure 1.2: Concept learning in the human immune system

dissertation.

The actual generation of the set of T-cells, abstracted as detectors in
AIS models, is of course a vastly more complex process than the one just
described, and which the AIS implemented here performs through a coop-
erative coevolutionary algorithm, based on previous work by Potter and
De Jong [78]. Coevolution is the simultaneous evolution of two or more ge-
netically distinct populations with coupled fitness landscapes [83], and is often
couched within a competitive framework in which individual species try to
outdo each other in what can be viewed as a type of ‘arms race’. An al-
ternative approach, the one employed here and shown in Figure 1.3, is
to base the performance of a species on how well it cooperates with other
species. We evolve several species, each containing a number of detectors,
and combine detectors from different species to form our detector set. The
success of an individual detector is related to how well the set of detectors
in which it is contained work together, and not to the detector’s individual
performance, thereby favouring the evolution of detector sets with detectors
which cooperate, rather than compete with each other to achieve some task.

Initially, we test the AIS concept learner outlined above on a standard
machine learning data set [85], comparing it to a similar system described by
Potter and De Jong [78]. The performance of the AIS is then further assessed
on a web-based information retrieval task. Taking the pragmatic definition
given by Lancaster [58], we define an information retrieval system as one
that does not inform (i.e. change the knowledge of ) the user on the subject
of his inquiry. It merely informs on the existence (or non-existence) and
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whereabouts of documents relating to his request. Pazzani et al. [72] describe
one such system, instantiated as a software agent, that learns a profile of
user’s interests, which can be equated with a classifier, from a collection
of user-rated web pages, and uses this profile to identify other web pages
that may be relevant to the user. The agent presents users searching for
information with a list of links, called an index page, some of which may
be relevant to the user’s current interests, some not. Several of these links
are visited by the user and rated as relevant or irrelevant, and the agent is
then instructed to learn the concepts of relevant and irrelevant on the basis
of these user-rated web pages. After learning these concepts, the agent uses
them to classify the links on the index page which the user has not visited,
thereby aiding the user in their search. To construct the concept, Pazzani
et al. compare several different standard learning algorithms and find that a
naive Bayesian classifier generally performs best. We reimplement this naive
Bayesian classifier and in turn compare and contrast its performance with
that of the AIS concept learner implemented here.

In applying learning algorithms to the classification of text and HTML
documents, the motivation behind this dissertation, an additional concern
arises which, although not a central topic of this dissertation, needs to nev-
ertheless be addressed. Learning algorithms usually require data to be struc-
tured in the form of feature vectors which are composed of a number of
features, each with an associated value. For example, a data set describing
the physical appearance of a number of people might have a record for each
person, with each record containing a number of fields such as height, weight,
and so on. These fields represent the features, the values of which together
form a feature vector, analogous to the record for a particular person. No



such feature vectors are immediately obvious for a collection of documents,
and so a feature extraction algorithm needs to first be applied to the
documents in order to transform them into feature vectors before they are
passed on to the concept learner. One such feature extraction algorithm is
implemented in this dissertation.

As already mentioned, the role of this chapter has been to give a broad
overview of the concepts and themes central to this dissertation, and to lay
out its aims and motivation. Chapter 2 discusses in more detail key concepts
and related work on which the models and methods employed here and de-
tailed in Chapter 3 are built. Chapters 4 and 5 describe the experiments
performed and the results obtained on the standard and document classi-
fication problems respectively, comparing and contrasting the performance
of the AIS classifier with that of other learning systems. Chapter 6 sum-
marises and discusses the implications of the results presented in the previous
two chapters, with possible directions for future investigation considered in
Chapter 7. Chapter 8 draws the dissertation to a close. Appendix A
is used to present a number of additional results which, due to their length,
would not fit well into the main body of the work. Implementation details
and the source code for the programs used to obtain the results of Chapters
4 and 5 are given in Appendix B.

On a final note, a word of caution is necessary: while taking its inspiration
from the human immune system, the concept learner presented here makes
no attempt or claim to model faithfully or even realistically actual biological
actors or mechanisms. Rather, what is sought is a system that exhibits
similar functional properties through mechanisms loosely based on current
biological understanding. In consequence, any use of biological terminology
should be seen as an explanatory aid and not as an indication of a direct
correspondence to its biological counterparts.



Chapter 2

Background

“I not only use all the brains that I have, but all that I can
borrow.”

Woodrow Wilson (1856-1924).

In this chapter fundamental concepts and work related to this dissertation
are presented and reviewed, beginning with a look at information retrieval
from a general standpoint, and then more specifically at two of its main
research areas: feature extraction and concept learning. Practical applica-
tions within this field and relevent to this dissertation are then reviewed. A
summary of the human immune system is then presented, followed by a dis-
cussion of artificial immune systems and their applications. Finally, apposite
aspects of evolutionary algorithms are surveyed. The goals of this chapter are
twofold: firstly, it represents an attempt to synthesise a large body of work
spanning several fields, much of which itself crosses traditional disciplinary
boundaries. Secondly, it stands as a platform from which informed decisions
can be made concerning the implementation details of the immune-based
system of this dissertation.

2.1 Information retrieval

This dissertation focuses on the design and application of an immune-based
system for document classification, a task which itself belongs in a wider
sense to the field of information retrieval. While an exact definition of
this field is problematic, from a pragmatic perspective we will adopt, as al-
ready mentioned, the one given by Lancaster in terms of information retrieval
systems [58]: an information retrieval system does not inform (i.e. change
the knowledge of ) the user on the subject of his inquiry. It merely informs



on the existence (or non-existence) and whereabouts of documents relating to
his request. Work in this field has grown steadily since the 1940’s and the
advent of computers, and has been driven by the need for systems which are
able to quickly and accurately access the increasingly large amounts of data
being produced and stored on computers. With the birth of the Internet
and World Wide Web this need has become more pressing than ever, but the
problems of effective retrieval still remain largely unsolved [97].

Much of the work within the field of information retrieval belongs to three
main areas: content analysis, information structure, and evaluation.
Content analysis is concerned with transforming documents into a form suit-
able for processing; information structure with improving the effectiveness
and efficiency of information retrieval systems through the exploitation of
relationships between documents; and evaluation with the assessment of the
performance of information retrieval systems. In terms of the concept learner
described in the previous chapter, these areas can be equated to deciding
what to feed into the machine, how the machine works, and how to assess
how well it works respectively. Work relevant to this dissertation concerning
the first two of these areas is reviewed and discussed in the following two sec-
tions, while the evaluation of system performance is dealt with in Chapters
4 and 5.

2.1.1 Feature extraction

In terms of document classification tasks, feature extraction is important in
two respects: it can improve classifier accuracy and reduce the amount of
computation and storage space needed for classifier training. Much of the
work in this area was and still remains centred around the field of natural
language processing, whose goal is to analyse, understand and generate lan-
guages that humans use naturally, and can be approached from a statistical
perspective. This is also the approach taken in this dissertation, and will be
described in detail in Chapter 3. In recent years however, especially with
the birth of the World Wide Web and Internet, several novel approaches have
been explored, and it is these approaches that we focus on in the remainder
of this section. While these newer approaches are arguably more powerful
than the statistical one implemented here, there are several reasons why they
have not been used. Firstly, purely from an implementational point of view,
they are often much more complex, and, as concept learning as opposed to
feature extraction is the main focus of this dissertation, the time spent on
implementation would have detracted from that spent on the dissertation’s
central theme. These newer approaches also produce feature representations
which would have been more difficult to integrate into our artificial immune
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system model. Lastly, the system with which we compare our concept learner
in Chapter 5 uses a statistical feature extractor, and so in order to provide
a more principled comparison we have used the same feature extractor as
this system.

Cohen [13], conjecturing that extracting data for learning systems might
be qualitatively different from extracting data for other purposes, investigates
the role of feature extraction from HTML documents in classifier error. He
proposes a feature extraction algorithm based on a semi-automatic wrapper!
generation procedure [12], and finds that this system decreases classification
errors on several learning algorithms. Yang et al. [100] approach the problem
of HTML classification from a slightly different perspective by attempting
to identify hypertext regularities, such as similar patterns of hypertext links,
which exist over a range of domains and which can be exploited in the opti-
mal design of a classifier. They find that the identification and exploitation
of such regularities by feature extraction algorithms is crucial for optimal
classifier performance as it helps to reduce the amount of noise present in
HTML document representations. Ciravegna [10] explores the performance
of an adaptive information extraction algorithm for web-based text which
is able to automatically adapt to new problem domains. This is useful as
the application of information extraction algorithms to new domains usually
involves a large amount of specialist information-extraction knowledge at the
implementation stage. His system was able to produce significant gains in
terms of classification accuracy and reduction of training time of concept
learners into which the extracted information was fed, and which form the
subject of discussion of the next section.

2.1.2 Concept learning

Concept learning can, in a general sense, be considered as a supervised learn-
ing task in which the goal is to infer from a training set a classifier which
is able to correctly assign a class to novel examples. Formally, we can de-
fine a training set S = {(x1, 1), -, (Xm, Ym) }, where each training example
(x;,y;) is composed of a vector x; = [x;1, -, Z;y], usually called a feature
vector, itself usually composed of discrete or real-valued features z;;; and a
class y; = f(x;), drawn from a discrete set of classes C = {1,--- ,K}. A
concept learner is a learning system or algorithm which takes a training set
as input, and outputs a classifier or hypothesis h(x) which represents an ap-
proximation to the unknown target function or concept f. Then, given novel

Lan interface for a data source that accepts user queries, transforms them into a form
appropriate for interrogating the data source, and returns the results to the user.



feature vectors x, the classifier predicts their associated classes y = h(x).
In this dissertation, we concentrate principally on a subclass of the gen-
eral classification problem in which the feature vectors are Boolean, that is
z;; € {FALSE, TRUE}, or, using a binary representation, x;; € {0,1}, and
where each feature vector can belong to one of two classes, i.e. C = {0,1},
which can often be interpreted as no/yes, false/true, negative/positive or ir-
relevant /relevant. In this case, the problem of concept learning can be sum-
marised as one of inferring a Boolean-valued function from a set of training
examples.

Central to concept learning is the inductive learning hypothesis. While
the goal of a concept learner is ideally to determine the hypothesis A which
is identical to the target concept f over the entire set of possible feature
vectors X, also called feature space, the only information available about f
is its value over the feature vectors in the training set, which form a subset
of X. As no information is available about the remaining unseen members
of X, we make the assumption, framed as the inductive learning hypothesis,
that any hypothesis h which approzimates the target concept f well over a
sufficiently large training set will also approximate f well over the unseen
members of X. The problem of determining the hypothesis A is often viewed
as a search problem in which the search space, H, also known as the hypoth-
esis space, consists of possible hypotheses h and the goal of the search is to
find the hypothesis which most closely fits the training examples. From this
perspective, concept learners can be viewed as search algorithms which are
able to effectively search hypothesis space.

Many concept learning systems exist, most employing some form of in-
ductive learning algorithm which arrives at hypotheses by considering spe-
cific examples. These algorithms are often based on a symbolic representa-
tion language such as predicate calculus [61], decision trees [80] or propo-
sitional logic [74], the most popular of such systems including ID3 [79],
C4.5 [81], CN2 [11], AQ [61] and ICL [5]. Other approaches such as multi-
layer neural networks trained with back-propagation [84] and genetic pro-
gramming [29, 91] have also been used. The performance of many of these
algorithms is compared in a number of survey papers [60, 92|, and many
have found applications in web-based information retrieval task, which we
now review.

2.1.3 Applications

In a series of papers, Pazzani et al. [71, 72| explore algorithms for learning
and revising user profiles which are then used to determine HTML docu-
ments that would be interesting to a user. They compare several learning



algorithms, including a naive Bayesian classifier [63], nearest neighbour [25],
decision trees [80] and multi-layer neural networks trained with backpropa-
gation [84], and find that the naive Bayesian classifier generally performed
best. They also investigate the role of feature selection in the predictive
accuracy of the classifiers, and find that appropriate feature extraction al-
gorithms significantly reduced classification error. They go on to implement
the naive Bayesian classifier in a system, Syskill and Webert, which auto-
matically filters search results for users. A similar system, NewsDude [3],
also developed by Pazzani and Billsus, combines a naive Bayesian classifier
with a nearest neighbour classification algorithm and is used to recommend
news articles. Two user profiles are used in this system, one representing
the long-term interests of a user and the other the user’s short-term interests
created from recently read articles. In this way the recommendation of many
similar articles can be avoided. In this dissertation we reimplement the sys-
tem of Pazzani et al. [72] and compare its performance to our immune-based
concept learner, the results of which are presented in Chapter 5 below.

Several other systems which aid users in the management of web-based
information have also been developed. Pant and Menczer [69] describe a
webtool called MySpiders which consists of an evolutionary multi-agent sys-
tem that browses adaptively on behalf of users. This tool is designed to
complement search engines by creating a large number of agents which au-
tonomously search the internet for information specified by users and which
reproduce and die depending on the relevance to the user’s query of the in-
formation they encounter. A functionally similar system, WaWa [26], which
allows the construction of web agents for information retrieval and extrac-
tion tasks, is based on two neural networks which are trained by user-rated
documents. However, WaWa is also able to create its own examples through
reinforcement learning. The application of reinforcement learning to web-
document filtering is also explored by Zhang and Seo [101], who document a
system which is initially trained by explicit user feedback and is then refined
by observation of user behaviour. They find that their system performs bet-
ter in terms of information quality and adaptation speed than several other
online filtering approaches. Adaptation speed in relation to our system is
discussed in Chapter 7.

All these systems depend on the existence of both positive and negative
evidence, either obtained by explicit user rating of a set of documents, or
through the observation of user behaviour and the use of heuristics to in-
fer positive and negative evidence from this behaviour. Schwab et al. [86]
propose and test a recommendation system which learns only from positive
evidence, thus sidestepping the need for manual rating or heuristics. They
found that, as highlighted in the previous section, feature selection played
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an important role in increasing the performance of their system, and that
the performance of their system was comparable with that of systems which
learnt from both positive and negative evidence. Learning from positive ex-
amples only has also been explored in artificial immune systems by Hunt and
Cooke [49] and in this context will be discussed shortly.

2.2 The human immune system

We now move on to give a brief overview of the major mechanisms and
dynamical properties of the human immune system (HIS), of which more
detailed accounts can be found in immunology textbooks such as [2, 39] and,
from a more artificial immune system orientated perspective, [42]. The HIS
plays a key role in maintaining the stable functioning of our body, detect-
ing and eliminating dysfunctional endogenous cells, termed infectious self,
and damaging exogenous microorganisms, infectious nonself, such as bacte-
ria and viruses which enter the body through various routes including the
respiratory and digestive systems, and damaged dermal tissues. In a quite
different sense, the human immune system also plays a key role in this disser-
tation, providing inspiration for the fundamental mechanisms on which the
immune-based concept learner described in Chapter 3 is built. This section
is perhaps more detailed than might be expected, a fact which we justify
by our belief that in order to do effective biologically-inspired computing a
detailed understanding of the biological mechanisms from which inspiration
is obtained is essential.

The immune system as a whole consists of a multilayered architecture
presenting several different lines of defence against infectious material, also
termed pathogens. The physical layer acts to physically block the ingestion
of pathogens and includes the skin, nasal hairs, and reflex actions such as
coughing and sneezing. The physiological layer includes fluids secreted by
the body, such as saliva, sweat and tears, which transport pathogens out of
the body and contain enzymes that break down pathogenic material. The
third layer, the cellular layer, is composed of a variety of different cell types
with different roles and introduces a further distinction between immune
system mechanisms, that of the innate and specific, acquired or adaptive
immune systems. Innate immunity consists of the defence mechanisms the
body utilises immediately or within several hours of infection, and whose
response is non-specific, that is, the range of pathogens which are capable
of generating a response from the innate immune system are fixed at birth
for the lifetime of the body, and its level and form of response do not adapt
in relation to specific pathogen levels in the body. Adaptive immunity, in

11



contrast, usually takes several days to become effective and is specific in the
sense that it adapts to remove a specific pathogenic infection, allocating its
resources in a dynamic way.

Most of the cells active in the innate and acquired immune systems be-
long to the leukocyte family, commonly know as white blood cells, and are
divided into three major classes: granulocytes, monocytes and lymphocytes,
all of which originate from stem cells in the bone marrow. These different
cell types are pictured in Figure 2.1. Granulocytes, which make up 50%
to 60% of all leukocytes, carry granules within their soma containing vari-
ous chemicals and are themselves divided into three subclasses: neutrophils,
eosinophils and basophils. The second class of leukocytes, monocytes, mature
into macrophages, which play key roles in both innate and adaptive immune
system responses. As actors in the innate immune system, macrophages play
a similar role to granulocytes in locating and destroying pathogens, and these
two cell types are often collectively referred to as phagocytes. In the adaptive
immune systems, macrophages form members of a functionally grouped set
of cells called antigen-presenting cells (APCs). While still the subject of on-
going research, it is thought that APCs express pattern-recognition receptors
(PRRs) on their surface which only respond to material unique to microor-
ganisms not associated with human cells. Upon recognition, the pathogen is
ingested by the APC, broken down into protein fragments and reexpressed
on the surface of the APC as part of Class II major histocompatability com-
plex (MHC-II). MHC complexes are groups of molecules responsible for the
transport of proteins within cells, of which there are two types, the second
of which, MHC-I, we shall meet shortly.

leukocytes
granulocytes monocytes lymphocytes
neutrophils eosinophils basophils macrophages T-lymphocytes B-lymphocytes
VAR
T-helper T-killer
lymphocytes lymphocytes

Figure 2.1: Hierarchy of immune system cell types

Lymphocytes, the third class of leukocytes, develop into two major sub-
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types - B-lymphocytes, or B-cells, so called since they mature in an organ
called the bursa of Fabricius in birds, the equivalent of which is still un-
known in humans; and T-lymphocytes (T-cells), which mature in the thy-
mus. B-cells mediate humoral immunity, the production of immunoglobulin,
commonly know as antibody, a protein which reacts specifically with and
neutralises pathogens, and is present on the surface of B-cells. During the
recognition stage, these surface antibodies act as receptors which bind with
segments of pathogen proteins called epitopes, with the strength of the bond
between receptor and epitope termed affinity. The receptors on the surface
of a particular B-cell are all identical, known as monoclonality, and if enough
of these receptors are able to bind with epitopes above a certain threshold
level, the B-cell is stimulated by a signal known as Signal One or stimula-
tion to ingest the pathogen, which it then breaks down into peptides which
are reexpressed on the surface of the B-cell as part of a class I major his-
tocompatability complex (MHC-II). The B-cell then takes no further action
until it receives Signal Two or help, from a member of the second type of
lymphocyte: T-cells.

T-cells themselves mature into two distinct subpopulations: T-helper and
T-killer cells, the former of which provides the help signal. Maturation of
T-cells occurs in the thymus and is a two-stage process. Firstly, immature
T-cells, which also possess surface receptors, undergo positive selection in
which any T-cells with receptors unable to bind with MHC molecules are
destroyed. T-cells are then subjected to a process of negative selection in
which they are exposed to a wide range of self proteins and destroyed if they
recognise any such proteins. This results in a population of T-cells whose
surface receptors only respond to protein fragments, expressed within MHC
structures, that are not present in self molecules.

Returning to the process of humoral immunity, once B-cells have received
Signal One and reexpressed peptides of the ingested pathogen on their sur-
face, they need Signal Two, provided by T-helper cells to proceed. T-helper
cells only produce this signal when two conditions are fulfilled: their surface
receptors successfully bind with nonself peptides within MHC-II molecules
expressed on the surface on B-cells; and they receive a third signal, costimu-
lation, which is produced by the binding of an APC to the same T-helper cell
of that which is bound to the B-cell. In order to bind to the T-helper cell,
the APC must display the same peptides on its surface as those displayed by
the B-cell. Once these conditions are met, the T-helper cell will issue Signal
Two to the B-cell which causes the B-cell to become active. Once active, the
B-cell migrates to a lymph node where it divides, producing a large number
of B-cells with similar, but not identical, surface receptors in a process called
somatic hypermutation, the non-hereditable mutation of cell components at
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a much higher rate than genetic mutation. Only those B-cells that bind to
pathogenic material also transported to the lymph node survive, with their
survival rate proportional to their affinity to the pathogen epitopes. Once
this process is completed, the remaining B-cells leave the lymph node and
differentiate into plasma or memory cells. Plasma cells produce a soluble
form of their surface receptors called antibody, which coat pathogens to aid
in their destruction by macrophages. Memory cells are B-cells with a long
lifespan, possibly up to that of the lifespan of the body, which, through their
receptors, are able to recognise and respond to reinfection by the same or
similar pathogen much more rapidly in what is called a secondary immune
response. The entire process of B-cell mitosis, mutation and differentiation
is known as affinity maturation and clonal selection.

infected cell

T-killer kill
>
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Figure 2.2: The processes of cell-mediated and humoral immunity

A second type of immune mechanism, cell-mediated immunity, is medi-
ated by members of the second class of T-cells: T-killer cells. T-killer cells
are responsible for the detection and disposal of intracellular pathogens, usu-
ally viruses, as opposed to extracellular pathogens such as bacteria, which
as we have seen are dealt with by B-cells. T-killer cells cannot ‘see’ inside
cells, but rather rely on a mechanism present in all cells which transports

14



fragments of proteins inside a cell to its surface and expresses them as part
of a MHC-I complex. So, when a pathogen enters a cell, some of its peptides
are displayed on the cellular surface. T-killer cells roam the body examining
such surface MHC-I complexes, and, if, in a process similar to humoral im-
munity, they receive a help signal from a T-helper cell and match the MHC-I
complex, they destroy the cell. The processes of cell-mediated and humoral
immunity are summarised schematically in Figure 2.2.

2.3 Artificial immune systems

2.3.1 General principles

As seen in the previous section, the HIS employs various techniques in its
role of protector of the body. From an information processing perspective,
these techniques include learning, implemented as affinity maturation and
negative selection; memory, through crossreactivity and the secondary im-
mune response; and massively parallel and distributed computations using
to the order of 10% different receptors [96] and 107 new lymphocytes pro-
duced daily [68]. These all give rise to the general properties of the immune
system, which Forrest et al. [31] identify as being: diverse, distributed, er-
ror tolerant, dynamic, self-protecting and adaptable. Diversity refers to the
uniqueness of the HIS both at a population and individual level which, for
example, means that different people are susceptible to different pathogens.
The fact that there is no central coordination of an immune response, with
individual lymphocytes instead controlling such a response, gives the HIS its
distributed nature. Error tolerance relates to the fact that the HIS in general
makes very few mistakes, and those which is does make are seldom fatal.
The HIS is spatially and temporally dynamic as its individual components
are constantly being created, destroyed and circulated throughout the body,
and self-protecting in the sense that the same mechanisms which protect the
body also protect the immune system itself. Lastly, it is adaptable in that it
is able to identify and respond to novel pathogens and also retain a memory
of past infections. Artificial immune systems attempt, through the modelling
of immune system mechanisms, to exploit one of more of these properties, or,
as Dasgupta puts it [16], artificial immune systems are intelligent methodolo-
gies inspired by the immune system toward real-world problem solving. These
definitions draw a distinct line between the fields of artificial immune sys-
tems and theoretical immunology, whose goal is to stimulate and complement
experimental analysis of the immune system. While the latter is, of course,
extremely important, it is the former that is of particular interest to this
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dissertation, and so forms the focus of the remainder of this section.

Artificial immune systems can be broadly divided into three categories
based on the mechanism they implement: network-based models, negative
selection models, and lymphocyte models, although this distinction is a lit-
tle artificial as many hybrid models also exist. The first of these categories
refers to systems which are largely based on Jerne’s idiotypic network the-
ory [53, 54], which recognises that interactions occur between antibodies and
antibodies as well as between antibodies and antigens, a paradigm explored
in more detail in the work of Varela and Coutinho [15, 98]. Negative selection
models use negative selection as the method of generating a population of
lymphocytes. Lastly, lymphocyte models implement various aspects of T-
and B-cell dynamics such as clonal selection and hypermutation in order to
create systems with some of the properties described in the previous para-
graph. Examples of all of these three types of immune system models can be
found in the next section.

Several survey papers exist of artificial immune system methods and ap-
plications which offer a much more comprehensive review of the issues dis-
cussed in this section. An overview of different immune system paradigms
and applications is given by Dasgupta and Attoh-Okine [17], and an up-
to-date and comprehensive bibliography of artificial immune system related
work is provided by Dasgupta et al. [19]. De Castro et al. [21] present a
detailed survey of applications that use immune system metaphors, often
combined with other problem solving techniques such as neural networks
and evolutionary algorithms. They find applications across a wide range of
areas including robotics, optimisation, computer security and machine learn-
ing, of which the major areas are briefly reviewed in the following sections.
Although diverse, these areas all bear relevance to this dissertation through
the insights they provide into the design and application of artificial immune
systems.

2.3.2 Applications
2.3.2.1 Machine learning

A number of studies on the general pattern recognition capabilities of immune-
based models have been conducted. Forrest et al. [33] describe an immune
system model which they use to study the learning and pattern recognition
processes that take place in the HIS. The model employs a schematic repre-
sentation for detectors similar to the one used in the immune-based system
of this dissertation, described in detail in Section 3.1.1. Their system was
assessed on its ability to detect common patterns in noisy input data and to
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maintain diversity within its population, both of which are important in the
recognition of a large number of patterns with relatively few resources. They
found that their system tended to evolve general detectors which were able
to recognise a wide range of antibodies through the identification of common
schema, an advantageous property in reducing the numbers of detectors nec-
essary for correct classification, and one exploited in this dissertation. Similar
studies have also been carried out by De Castro and Timmis [20], and Hunt
and Cooke [49], whose system learns from positive examples only. While
they demonstrate that learning from positive examples is indeed possible
within an artificial immune system context, the test data we use to evaluate
our system, as with the majority of classification problems, contains both
positive and negative examples. In this case, disregarding the negative ex-
amples would be tantamount to throwing away valuable information, and so
we choose to implement an artificial immune system which learns from both
positive and negative examples. Farmer et al. [28] also approach the study of
the general pattern recognition properties of immune system from a dynami-
cal systems perspective and, through insights gained from this approach, are
able to identify many similarities with the classifier systems of Holland [46].

Immune-based systems have found several applications in the domain of
supervised learning. The AIS classifier of this dissertation, described fully
in Chapter 3, is largely based on the immune-based concept learner of
Potter and De Jong [78], and discussion of this model will therefore be post-
poned until that chapter. Other such immune-based supervised learning
algorithms include that of Carter [7], Immunos-81, which models B- and T-
cells along with several aspects of their interactions to produce phenomena
such as primary and secondary immune responses. Carter assesses his sys-
tem’s performance against several widely-used machine learning algorithms
on two standard machine learning data sets, and finds that its performs well.
He also experiments with two different strategies for the selection of the B-
cells which will reproduce, finding that the best selection strategy to use
depends on the data set under consideration. Several studies with particular
relevance to this dissertation due to their web-based nature have also been
carried out. Cayzer and Aickelin [8, 9] describe and study an immune-based
recommender system built on models of antibody-antigen interaction, which
provides the matching capability of their system, and of antibody-antibody
interaction, which allows diversity to be maintained within the antibody pop-
ulation. They employ their system in two collaborative filtering tasks: the
recommendation of movies from a large database, and the prediction of the
votes that will be cast for a previously unseen movie. They find that, while
the performance of their system without antibody-antibody interactions is
satisfactory, the addition of such interactions markedly improves its perfor-
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mance. Morrison and Aickelin [65] explore the design and performance of a
similar system on the task of website recommendation based on metadata,
which differs from the approach taken in this dissertation in that we use the
actual data contained in the web page to classify web pages.

Various studies of immune-based paradigms for unsupervised learning
tasks such as data clustering and exploratory analysis [52] have also been
carried out. Hart and Ross [40] present a system which combines features
from immune system and sparse distributed memory [56] models and which
is evolved using a coevolutionary genetic algorithm similar to that of Pot-
ter and De Jong [78]. This system is used to perform clustering in large,
dynamic databases. Timmis et al. [93, 94, 95] compare an AIS model to
several other unsupervised learning algorithms including cluster analysis and
Kohonen networks. Their system employs a population of B-cells and imple-
ments a model of somatic hypermutation to simulate B-cell cloning. They
find that this model performs well on several test problems in comparison
to other unsupervised learning methods, and also provides an effective tech-
nique for exploratory data analysis and visualisation. As a final example
of applications to unsupervised learning tasks, Atluri et al. [1] implement
an immune-based system incorporating models of memory cells in order to
classify remote sensing data on soil moisture levels, a problem involving ex-
tremely large amounts of data. They however find that its classification
performance is poor compared with that of a neural network classifier, at-
tributing this poor performance to the data representation scheme used and
the choice of matching algorithm. This example highlights the need for the
careful, problem-specific choice of mechanisms, and perhaps more impor-
tantly the fact that, while successful at many tasks, immune-based models
are by no means, however rosier a picture is painted by this section, a panacea
for all problems.

2.3.2.2 Anomaly detection

Although strictly speaking also a classification problem, the widespread ap-
plication of AIS models to computer security and more broadly to anomaly
detection, and hence the relatively large amount of literature available, make
it appropriate to devote a separate section to this area, beginning with a re-
view of applications of immune-based systems to various aspects of computer
security.

Somayaji et al. [90] discuss the application of artificial immune systems
to computer security from a general perspective, identifying a number of
potential uses including the protection of static data, active processes, and
networks of mutually trusting computers. Several of these applications are
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investigated empirically by a number of authors. Hofmeyr and Forrest [44]
describe ARTIS, a general artificial immune system which incorporates what
they consider three key characteristics of the natural immune system: 7ro-
bustness, adaptivity and autonomy. They successfully apply their system to
a network intrusion detection problem, and discuss the relationship between
immune classification and another type of classifier paradigm termed learn-
ing classifier systems [47]. The parallel between learning classifier systems
and immune-based classification is also drawn by Farmer et al. [28], who use
a learning classifier system to model the immune system. Forrest et al. [32]
describe two systems for detecting anomalous system process behaviour and
file-changes associated with the action of a computer virus. The first of these
systems initially builds a profile of normal behaviour in terms of system calls
for a given set of programs and then uses an immune-based system to monitor
the behaviour of these programs and detect abnormal behaviour potentially
caused by infection with a virus. As well as changing program behaviour,
viruses also change the actual byte-code of the infected program, and this fac-
tor is exploited in the second of their systems, which uses an immune-based
system to monitor a set of files for such changes. The implementation of such
change-detection algorithms is also explored in [34, 35, 41], who use negative
selection to generate a population of antibodies. Forrest and Hofmeyr [30, 43|
also explore the use of artificial immune systems in network security, outlin-
ing a system which monitors network packets and detects abnormal network
traffic, which can be associated with attempted intrusions.

While computer security has been the largest area of application of immune-
based systems for anomaly detection, Hunt et al. [50] have explored its appli-
cation in the domain of fraud detection. They describe an artificial immune
system designed to automatically detect fraudulent loan and mortgage ap-
plications which is able to learn and detect patterns of fraud, and also to
incorporate explicit domain knowledge. Their system consists of a popula-
tion of B-cells which are able to undergo clonal selection and hypermutation.

2.3.2.3 Optimisation

While not ‘designed’ for classical optimisation, as with evolutionary algo-
rithms, immune-based paradigms have nevertheless been successfully em-
ployed in a number of such optimisation problems. Mori and Tsukiyama [64]
develop an adaptive scheduling system which, through the implementation
of models of B-cell differentiation and proliferation is able to find good so-
lutions to a scheduling problem with variable batch size. A similar system
is implemented by Endoh et al. [27], and found to produce good solutions
to the n-city Travelling Salesperson Problem of combinatorial optimisation.
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The additional incorporation of an explicit representation of immune system
memory cells was found to substantially increase the performance of this
system. Huang [48] compare the performance of an immune-based algorithm
to that of several other methods on a capacitor placement problem in a ra-
dial distribution system? and find that the immune-based algorithm offers
substantial savings in both computational cost and solution quality.

Central to all the systems described above is the need for a mechanism
which is able to generate and maintain lymphocyte populations. We now
move on to first examine from a general perspective one such possible method,
that of evolutionary algorithms, and then to address specifically how this
paradigm can be used in the creation of concept learners and how immune-
inspired mechanisms can enhance the performance of evolutionary algorithms
in general.

2.4 Evolutionary algorithms

The complexity of many computational problems, whose solution often in-
volves searching through a vast number of possible answers, has led to the
development of a range of innovative techniques. One area of research which
has attracted a large amount of interest in recent years is that of evolution-
ary computation, within which evolutionary strategies [82], genetic program-
ming [57] and genetic algorithms [45] form the main threads. The central
idea behind these three approaches, collectively referred to as evolutionary
algorithms, is the evolution of a population of candidate solutions through
the application of operators inspired by natural selection and random varia-
tion. Evolutionary algorithms have been successfully applied in the solution
of many practical problems in a wide range of fields including engineering,
machine learning, computer science and economics, as well as offering impor-
tant insights into the dynamics of natural evolutionary systems. We focus
here on those aspects of evolutionary algorithms applicable to this disserta-
tion, namely that of coevolution and the evolution of concept learners, and
leave to reader to consult the many excellent texts, such as [38, 62], for a
more general introduction.

2.4.1 Cooperative coevolution

In a series of papers Potter and De Jong [75, 76, 78] and Potter, De Jong and
Grefenstette [77] explore the use of a cooperative coevolutionary algorithm

Zan electrical system which distributes power from one generating source to a number
of targets and where, if there is a power failure, all targets lose power.
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for function optimisation and for the evolution of artificial neural networks,
sequential decision rules, and learning algorithms. Their approach is the one
taken in this dissertation and described fully in Chapter 3 below. Briefly,
it involves the evolution of a number of non-interbreeding subspecies, indi-
viduals of which only represent partial solutions to the problem at hand, and
are combined to form a complete solution. Sofge et al. [89] extend this ap-
proach in an attempt to decrease the degree of epistasis which can sometimes
occur in cooperative coevolutionary approaches. Their system involves the
‘blending’ of the usually distinct species of individuals as evolution proceeds,
which they find helps the population to escape local optima. Neri [66] also
investigates the incorporation of cooperative coevolution into three learning
algorithms and shows that such algorithms are able to produce efficient con-
cept descriptions. Concept learners have also been created using a variety of
other evolutionary techniques, a survey of which is briefly made in the next
section.

2.4.2 Evolving concept learners

In [22], De Jong et al. explore the use of genetic algorithms in the design
and implementation of concept learning systems. Their supervised concept
learner, GABIL, is based around a standard genetic algorithm which searches
a space of classification rules for a set which performs well on a given classi-
fication problem. Their approach to evolving solutions is however somewhat
different to standard techniques in that it uses a batch-incremental training
regime in which the concept learner is initially evolved to classify just one
training example from the training set. Once GABIL has learnt to classify
this example correctly, another is presented and, if classified correctly, no
evolution takes place and a further training example is presented. If the new
training example is incorrectly classified, the system is evolved until it cor-
rectly classifies this and all previously presented examples correctly. They
show that the performance of this incremental approach to rule set evolution
compares favourably to that of other standard concept learning algorithms
and also offers a means of dynamically adjusting biases inherent in concept
descriptions in order to further improve classifier performance.

Other approaches to the evolution of classifiers have also been explored.
Folino et al. [29] explore the evolution of decision tree classifiers using a cel-
lular genetic programming approach and consider two different evolutionary
approaches: a coarse-grained island model [14], and a fine-grained diffusion
model [73]. They opt for the fine grained diffusion model, arguing that this
method enables faster convergence and improved accuracy. Genetic program-
ming as a method for the evolution of classification rules is also explored by
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Tan et al. [91]. Dasgupta and Gonzélez [18] evolve complex fuzzy classifier
rules using a canonical generational genetic algorithm with a direct encod-
ing of the rules and various special operators. Their results are compared
in Chapter 4 with those obtained for the learning systems explored in this
dissertation.

Forrest et al. [33], as already mentioned in Section 2.3.2.1, describe
an immune system model which they use to study the learning and pattern
recognition processes that take place in the immune system and in which a ge-
netic algorithm plays a central role. In order to maintain population diversity
in their system they employ an algorithm utilising emergent fitness sharing
and similar to the bidding method used by learning classifier systems [47],
which, further to their theoretical exploration in [88], they compare empiri-
cally with explicit fitness sharing [23]. This maintenance of diversity in the
human immune system has also directly inspired a number of extensions to
the canonical genetic algorithm, which we now briefly discuss.

2.4.3 Immune-based evolutionary algorithms

The maintenance of genetic diversity within a population is necessary for
the long term success of an evolutionary system, as without such diversity
populations would become trapped in local optima and unable to respond
to environmental changes, termed premature convergence. The human im-
mune system, as we have seen in Section 2.2, is an example of a system
which maintains a population of diverse individuals, and has provided the
inspiration for a number of artificial evolutionary systems. In [87], Smith
and Forrest analyse a immune-based cooperative genetic algorithm from the
perspective of diversity maintenance, also contrasting it to explicit fitness
sharing mechanisms [23], and find that, as well as effectively maintaining
genetic diversity, their algorithm also produces more general solutions than
genetic algorithms employing explicit fitness sharing. Jiao and Wang [55]
also describes an immune-based genetic algorithm which extends the canon-
ical genetic algorithm through the introduction of two new genetic operators
based around the concepts of vaccination and clonal selection. They test
their extended algorithm on a 442-city Travelling Salesperson Problem and
find that it obtains the optimal solution in an order of magnitude fewer
generations than the canonical algorithm.

This chapter has, through necessity, been rather lengthy. We are now,
however, in a position to make informed choices concerning the construction
of our own immune-based concept learning system, which forms the subject
matter of the next chapter.
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Chapter 3

Materials and methods

“In preparing the soil for planting, you will need several tools.
Dynamite would be a beautiful thing to use, but it would have a
tendency to get the dirt into the front-hall and track up the
stairs.”

Robert Benchley (1889-1945).

In this chapter we describe in detail the materials and methods used,
beginning with the two classifiers implemented - the artificial immune system
(AIS) classifier, and the naive Bayesian classifier (NBC). Descriptions of the
cooperative evolutionary algorithm and test data then follow, and the chapter
ends with an account of the feature extraction algorithm employed.

3.1 The classifiers

In this section we describe the two classifiers which we will presently use in our
experiments in Chapters 4 and 5. They have commonalities in so far as they
both attempt to determine the class of an example by examining relationships
between the attributes of the example’s feature vector. However, they diverge
in the mechanisms by which they do this, one based on immune-system
principles, the other on statistical analysis. We begin by describing the
immune-based classifier.

3.1.1 The artificial immune system classifier

The AIS classifier is based on one described by Potter and De Jong [78], and
is composed of a set of detectors, each of which is instantiated as a ternary
schema of the same length as the feature vectors it will classify. Associated
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with each detector is a real-valued threshold which indicates the percentage
of matching bits between schema and feature vector necessary before a match
is said to have occurred. The strength of the match between detector and
feature vector is the percentage of matching bits in the schema and feature
vector, ignoring any positions where the schema contains a #. For example,
for the detector and feature vector shown in Table 3.1, there are 2 matching
bits out of 5 non-# bits, so the binding strength between the detector and
feature vector is % = 0.4. The calculated binding strength must be greater
than the threshold of the detector to consider a match to have occurred.
Detectors can be of one of two types, Type 0 or Type 1, with a Type 0
detector, as in the human immune system, classifying any feature vector it
matches as nonself, while a Type 1 detector contrarily classifying matching

feature vectors as self.

detector | 01#1##11
feature vector | 11100101

Table 3.1: Example detector and feature vector

3.1.2 The naive Bayesian classifier

The naive Bayesian classifier [25, 63], a probabilistic method of classification,
calculates the probabilities of a particular feature vector belonging to each
possible class and then classifies the feature vector as belonging to the class
for which this probability is highest. Formally, if a = [ay,as, -+ ,a,] is a
feature vector made up of n features, a;, and V = {vy,vq, -+ ,v,,} is a set of
m classes, then the class vyp € V' that the NBC classifies the example a as
belonging to is given by:

vnp = argmax P(v;) HP(ai|Uj), Vv eV

v; eV i1
On a practical level, the NBC was easy to implement as the work of
calculating the conditional probabilities had already been done during the
feature extraction process which will be described in Section 3.4 below.

3.2 The evolutionary algorithm

The scheme used to evolve an AIS concept learner is based on a coevolution-
ary approach described by Potter and De Jong [78] briefly outlined in the
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last chapter. The cooperative coevolutionary algorithm consists of a number
of non-interbreeding species of detectors, whose encoding will be described
shortly, and initially starts with one randomly initialised species whose fitness
is evaluated as described below. The initialisation of species is controlled by
two parameters: a generality bias parameter and a type bias parameter, both
in the range [0,1]. The generality bias parameter represents the probability
that any position in a newly initialised detector contains a #, as opposed to
a 0 or 1. The type bias parameter is the probably that a detector will be of
Type 1.

At each generation, a trial population composed of the fittest detector in
each species is created and the fitness of this trial population evaluated. The
fitness of all individuals in a species is then evaluated, as described below.
Next, child species are created by selecting two parents from the same species
using fitness-proportionate selection with balanced linear scaling [62], which
are then recombined using uniform crossover, and mutated by bit flipping to
create a child detector, which forms part of the child species for the species
the parents were selected from. This process continues until the child and
parent species are the same size. The fitness of each individual in the new
species is then evaluated. If the fitness of the trial population fails to increase
above a certain stagnation threshold over several consecutive generations, a
new species is added and any species not contributing to the fitness of the trial
population are removed. Values for the parameters used in the experiments
described below are given in Table 3.2. A schematic representation of the
control flow of the evolutionary algorithm is given in Figure 3.1.

parameter | value
species size | 100
crossover rate | 0.6
mutation rate m
stagnation threshold | 0.001
stagnation generations | 2
generality bias | 0.5
type bias | 0.5

Table 3.2: Evolutionary algorithm parameter settings

3.2.1 The encoding scheme

Detectors are encoded as binary genomes each containing 4 genes, as pictured
in Figure 3.2. The first gene, the 8-bit threshold gene, encodes the value
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Figure 3.1: Control flow of evolutionary algorithm
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for the detector’s threshold. A Gray coding was used for this gene in order
to avoid small changes in the genotype producing disproportionately large
changes in the phenotype. The threshold value is calculated by converting
the gene to base 10 and then dividing this value by 255 to get a real number in
the range [0, 1]. The second and third genes, the pattern and mask genes, are
combined to form the detector’s schema. Each of these genes has the same
number of bits as the number of bits in the feature vectors the AIS classifier
is designed to operate on. The mask gene is overlaid onto the pattern gene
and any positions at which the mask gene is 1 changes the corresponding
bit in the pattern gene to a #. A value of 0 in the mask gene leaves the
corresponding bit of the pattern gene unchanged. In this way the schema is
formed by copying the pattern gene, modified by the mask gene. The fourth
gene stores the detectors type, as previously described in Section 3.1.1.

Genome
threshold | pattern | mask | type
00110111 | 10100101 | 01101110 | 1

4
Detector
threshold ‘ schema ‘ type
0.215686 |  1#H#O###1 | 1

Figure 3.2: Detector encoding scheme

This is of course only one of many possible encodings and perhaps even
seems a rather inelegant way of shoehorning the problem into a binary repre-
sentation. We therefore also ran several experiments with a direct encoding
which encoded the threshold gene as a real value in the range [0, 1], the
schema as a ternary 8-tuple, and the type gene as a 1-bit binary value.
The threshold gene was mutated using Gaussian mutation and no crossover
operator was applied to this gene, while mutation of the schema gene was
achieved by randomly changing it to one of its two other possible values. Mu-
tation of the type gene was handled by standard bit flipping and a uniform
crossover operator was applied to the schema and type genes. It turned out
that neither encoding scheme produced significantly better performance in
our experiments, so we opted to continue using the encoding of Potter and
De Jong in order to simplify comparisons between our system and theirs.
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3.2.2 The fitness evaluation scheme

The fitness of the trial population, composed of the best individual from
each species, is calculated by presenting it with each training vector in the
training set in turn. The detector in the trial population which matches the
current training vector with the greatest binding strength is then found, and
if this strength is greater than the detector’s threshold, the detector is said
to have matched the training vector, and assigns it to Class 1 (or Class 0
if the detector is Type 1), otherwise if no match occurs the training vector
is assigned to Class 0. The assigned class is then compared with the actual
class of the training vector, and if equal the trial population is said to have
classified the training vector correctly. The number of correct classifications
made by the trial population over the entire training set is recorded and
converted into a percentage of the total number of training vectors to give
the predictive accuracy of the trial population on the training set. The
fitness of all individuals in the trial population is then set to this value,
and the individuals are reinserted into their respective species. A schematic
representation of the control flow of the fitness evaluation scheme is given in
Figure 3.3.

3.3 Test data

3.3.1 The voting problem

Two sets of test data were used in the experiments of Chapters 4 and 5,
both taken from the UCI Repository of Machine Learning Databases [4]. The
first data set, the 1984 United States Congressional Voting Records [85], gives
the voting records for 267 Republican and 168 Democrat members of the U.S.
House of Representatives. Each record holds the vote cast by the member
on 16 different issues, and the original records have been simplified to record
this vote as yea, nay or abstain. Each member’s voting record is converted
to a Boolean feature vector, with each consecutive pair of bits representing a
vote for a particular issue using the scheme given in Table 3.3. Associated
with each record is the class the record belonged to: 0 for Democrat, 1 for
Republican.

3.3.2 The HTML document classification problem

The second data set, the Syskill and Webert Web Page Ratings [70] consists
of 4 data sets: Bands, BioMedical, Goats and Sheep, each containing HTML
pages related to a particular topic. A user rated each page in a set as not
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vote ‘ encoding

abstain 00
yea 01
nay 10

Table 3.3: Encoding scheme for voting data set

interesting or interesting, which allowed a page to be assigned to one of
two classes: Class 0 (cold) and Class 1 (hot) respectively. The task in this
problem is to make predictions about whether examples from an unseen set
of web pages would be interesting or not from the information contained
within a training set of ranked pages. Table 3.4 provides a summary of the
structure of the data sets.

data total number of | number of | number of

set examples classes attributes | categories
Voting 435 2 16 3
Bands 61 2 N/A 2
BioMedical 131 2 N/A 2
Goats 70 2 N/A 2
Sheep 65 2 N/A 2

Table 3.4: Data set summary

3.4 The feature extractor

Unlike the first data set, which offered a fairly straightforward encoding of
the raw data into feature vectors, for the document classification problem
such a simple encoding is not so obvious when dealing with HTML input
data. Following Pazzani et al. [72], a feature extraction algorithm was used
to convert a raw HTML document into a Boolean feature vector. Each bit
in the feature vector represents the absence or presence (at least once) of
some associated feature, in this case a word, in the document. The task of
the feature extraction algorithm is to decide from which words to compose
the feature vector, and this is done using an information-based approach to
extract the most informative words from a collection of documents [59, 72].

Initially, the feature extraction algorithm takes the complete set of pages,
S, and creates a list of all the words, W, contained in the pages. If a word,
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considered as a sequence of upper of lower case letters (a-zA-Z) separated
by nonalphabetic characters, occurs more than once on the same page or
across several pages, it is only represented once on this list. All words were
converted to upper case and any words occurring on a list of frequently used
words (Table 3.5) were removed. The expected information gain, E(w, S),
that the presence or absence word w € W gives towards the classification of
S [80], is:

E(w, ) = I(S) = [P(w = pres)I(Sy=pres) + P(w = abs) I (Sw=as)]

with P(w = pres) is the probability a word is present at least once on any
page, Sy—pres the set of pages containing the word w, and,

I(S)= > —P(Sc)log,[P(Sc)]

Ce{hot,cold}

where S¢ is the set of pages belonging to class C, and P(S¢) is the probability
of a page belonging to that class.

In the above equations I(S) can be seen as representing a measure of the
amount of information that knowing which class a document was in would
give us. If there was a fifty-fifty chance that a document was in either class,
I(S) would be 1 and we would have gained 1 bit of information. If all the
documents were in one class, I(S) would be 0, and no information would have
been gained as we would already know which class the document was in. For
a skewed distribution of documents into classes, the value of I(.S) lies between
these maximum and minimum values. The second term in the equation for
E(w, S) above, which is subtracted from I(S), is basically a measure of how
much more information we need in order to decide on the class of a document
given that a particular word is present or absent in that document. Thus, if
a particular word tells us which class a document is in, then this second term
is minimised and E(w, S) maximised. On the other hand, if the presence
or absence of a word provides no information as to which class a document
is in, the second term is maximised and E(w,S) minimised. In summary,
the higher the expected information gain, E(w, S), for a particular word, the
more information it provides in deciding which class a document belongs to,
and the more informative that word is considered. Therefore, to create n
features the extraction algorithm uses the n words with the highest values
of E(w,S). Each HTML document is then converted to a Boolean feature
vector by assigning a 1 to the appropriate feature if the document contains
the word at least once, and a 0 if the document does not contain the word.
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AND HREF THE IMG SRC
FOR FONT COM ALIGN ALT
SIZE INDEX HTM TITLE GOPHER
ORG NAME THIS WEB YOU
WWW HOME ABOUT INTERNET WIDTH
PAGE FTP BODY ARE LIST
HTML NET HEIGHT LINKS NEWS
FROM HEAD STRONG WELCOME WITH
TOP MAILTO YOUR GIFS BOTTOM
MAIL CGlI THAT BIN ALL
CENTER WUSTL GDB GOV OTHER
ANY HAS NOT TOC GNN
HTTP GIF WIC SERVER  AVAILABLE
IBC ADDRESS  INFORMATION HERE CAN
EDU WHAT MORE OUR WILL
HAVE  COMMENTS WHO PLEASE ALSO

Table 3.5: Frequent words removed from the word list

3.5 Summary

We have now reached somewhat of a halfway point in this dissertation, and
so it seems an opportune moment to briefly review what has been achieved so
far, and to point the way forward to what remains. We initially gave a broad
outline of the context in which the work present here sits, and then went on
to review and discuss at some length work related to that of this dissertation.
In this section we have given a detailed description of the system we chose
to implement in light of this related work, and also of the systems and data
which we will use as a benchmark in a number of experiments and against
which we will evaluate our own immune-based concept learner. We now go on
to describe and present the results of these experiments, and to then discuss
these results and consider directions for future work.
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Chapter 4

Experiments and analysis - a
standard classification task

“The materials of action are variable, but the use we make of
them should be constant.”

Epictetus (c. 50-138 A.D.)

Our goal in this section is to obtain an understanding of the dynamics
of the immune system and naive Bayesian classifiers on the voting classifica-
tion problem, and to compare and contrast their performance. To do this,
we conduct a series of experiments which highlight different aspects of the
classifiers’ performance. Initially, in Section 4.1, we calculate the predic-
tive accuracy of each classifier. In Section 4.2 we take a more detailed look
at the dynamics of the cooperative evolutionary algorithm, examining the
effects a range of parameter settings have on classifier performance. Finally,
in Section 4.3, the structure of the classifiers produced by the two learning
algorithms is studied.

4.1 Classifier performance

One of the most commonly used measures of classifier performance is that
of predictive accuracy. The true predictive accuracy of a classifier on a
particular problem, represented as a data set, is the probability that the clas-
sifier will classify any randomly chosen example correctly, or, alternatively,
is the probability that the classifier will not make an error in classifying
the example. For example, in order to achieve a perfect score of 1.0 on the
voting problem, a classifier would have to, given any voting record, be able
to say correctly whether the record was that of a Democrat or Republican.
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In an a priori world, an exact figure for this metric could be obtained by
testing the classifier on all possible voting records. However, as with many
real-world problems, since the voting records given are just those from 1984
and therefore only a sample of all possible voting records over all years, we
have to appeal to statistics for an estimation of the classifier’s true predictive
accuracy. The sample predictive accuracy, a,, of a classifier is defined

as:
correctly classified examples

s = total number of examples
and, given an appropriate experimental setup, is an unbiased estimator of
the true predictive accuracy.

For the voting problem, 10-fold crossvalidation is the recommended
procedure for calculating the sample predictive accuracy as an unbiased esti-
mator of the true predictive accuracy of a classifier [99]. 10-fold crossvalida-
tion involves randomly dividing the complete data set into 10 equally sized
disjoint sets, and then using 1 subset as a test set and the other 9 as a
training set. The training set is used by the learning algorithm to create a
classifier, whose sample predictive accuracy is then calculated using the test
set. This process is repeated for each of the 10 subsets, the mean sample
predictive accuracy of these 10 trials forming a unbiased estimator to the
true predictive accuracy of the classifier. These results can be further re-
fined by repeating the 10-fold crossvalidation process a number of times and
averaging the predictive accuracy over these trials.

In our experiments we estimated the predictive accuracy of the immune
system and naive Bayesian classifiers by performing 10-fold crossvalidation
over 5 trials. A randomly constructed crossvalidation set was used in each
trial and the trials were paired, meaning the same training and test sets
were used to train and test the two classifiers on each iteration. The results
of these experiments are shown in Figure 4.1 and summarised in Table 4.1.
Figure 4.1 is a density plot of the distribution of predictive accuracies of
the classifiers produced in the crossvalidation trials. Density plots can be
thought of as histograms with a large number of bins, producing a smoother
representation of the distribution of results over a number of trials. Predic-
tive accuracy is represented along the x-axis, and the relative frequency with
which a classifier with this predictive accuracy was observed during the ex-
periments along the y-axis. Since each 10-fold crossvalidation run produces
10 classifiers, and this was repeated 5 times, a total of 50 measures were
obtained of the predictive accuracy of classifiers produced by each learning
algorithm.

For classifiers produced by the naive Bayesian algorithm, Figure 4.1
shows a right-skewed unimodal distribution with a single low, spread peak
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Figure 4.1: 10-fold crossvalidation (voting data set)

Algorithm predictive | standard | 95% confidence
H accuracy | deviation interval
immune-based 0.974 0.026 0.057
naive Bayesian 0.901 ‘ 0.049 ‘ 0.088

Table 4.1: Summary: 10-fold crossvalidation (voting data set)
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(standard deviation: 0.049) almost symmetrical about its mean predictive
accuracy of 0.901. In contrast the immune system concept learner produced
a less symmetric distribution with a higher mean of 0.974, rising fairly steeply
and then dropping off even more steeply, giving a tighter distribution of values
(standard deviation: 0.026) than the NBC. To determine if there was any
statistically significant difference between the two distributions we performed
a Wilcoxon rank sum test, the results of which indicated that the means of the
distributions are indeed different. 95% confidence intervals for these means
are also given in Table 4.1. From these results we can conclude that the
immune-based learning algorithm repeatedly produced classifiers which were
able to correctly classify more examples than the classifiers produced by the
NBC, and that any given classifier produced by the immune-based algorithm
is more likely to be closer to the true predictive accuracy than that of an
NBC.

These results can also be compared to others reported in the literature
for a number of different classifiers and summarised in Table 4.2. These
results were calculated on the voting problem using the same 10-fold cross-
validation testing regime as the one employed here, with the exception of
Lim et al. [60], who, instead of reporting predictive accuracy, reported on
the rate of misclassification, e, of the algorithms they tested. This statistic
is also known as the classifier’'s sample error rate and defined as the num-
ber of misclassifications made by the classifier, i.e. e, = 1 — a,, where a,
is the classifier’s predictive accuracy. Other statistics such as variance and
confidence intervals are also given where provided by the original paper, and
these statistics are also reproduced for the two learning algorithms of this
dissertation for ease of comparison. The predictive accuracy, 0.964, of the
AIS concept learner of Potter and De Jong [78], calculated using one 10-fold

Algorithm predictive | standard | 95% confidence || error
accuracy | deviation interval rate

immune-based 0.974 0.026 0.057 0.026
AIS [78] 0.964 0.018 0.036
QUEST [60] 0.963 0.037
AQ15 [78] 0.956 0.023 0.044
POLYCLASS [60] 0.948 0.052
Fuzzy Classifier [18] 0.947 0.316 0.053
naive Bayesian 0.901 0.049 0.088 0.099

Table 4.2: Comparison of classifier performance (voting data set)
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crossvalidation run, is lower than that of the similar immune-based classifier
implemented in this dissertation. They also reported on the performance
of classifiers produced by the AQ15 symbolic inductive learning system and
found, with a mean of 0.956 and 95% confidence interval of 0.023, that there
was no significant difference in its performance compared to that of their
AIS concept learner. Dasgupta and Gonzalez [18] evaluated an evolved fuzzy
rule-based classifier on a 10-fold crossvalidation regime over 5 trials and re-
ported its predictive accuracy as 0.947 with a variance of 0.1, while Lim
et al. [60] tested 33 classification algorithms, finding the POLYCLASS and
QUEST algorithms to have the highest predictive accuracy of 0.948 and 0.963
respectively, although their performance was not statistically significant from
that of 20 other algorithms they also tested. While data to perform statis-
tical tests! which would give a more quantitive analysis of the differences in
these classifiers and the ones trialed in this dissertation was not available,
the difference in the predictive accuracy of the immune-based algorithm and
that of the classifiers reported in Table 4.2 suggests that the immune-based
algorithm outperforms all of these algorithms.

4.2 Evolutionary algorithm dynamics

4.2.1 An exemplar

The previous section gave an indication of the predictive accuracy of the
classifiers produced by the AIS concept learner and compared this to the
performance of several other algorithms, but gave little insight into the dy-
namics of the system which produced these classifiers. Figure 4.2 consists of
several graphs depicting the evolution of a typical classifier over 100 genera-
tions of one crossvalidation run of the last section. These graphs show, from
top to bottom, the predictive accuracy, classifier size and mean predictive
accuracies of the individual species from which the classifier’s detectors were
drawn. The vertical red line at generation 69 identifies the point at which the
classifier with the highest predictive accuracy was found. Initially, the classi-
fier starts with one species, whose mean fitness increases until generation 9,
when a new species is created due to the stagnation of the predictive accu-
racy of the classifier. The classifier’s size then stays at 2 until generation 45,
although, as seen by the relatively large downwards steps at generations 29
and 36 for species 2, since the classifier’s predictive accuracy has stagnated,
the individuals of the second species are randomised through the deletion and

La t-test would have produced unreliable results as our data violates one of the assump-
tion of this test, namely that the sample distribution is normally distributed.
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then recreation of this species. The size of the classifier increases steadily
from 2 to 6 species over generations 36 to 54, where it stays until genera-
tion 69, although species 6 is randomised several times during this period.
At generation 68 the classifier’s size is reduced to 5, and this is in fact the
generation at which the best classifier found over the entire run is produced.
From then on the size of the classifier oscillates between 5 and 6, with species
5 and 6 periodically being destroyed and recreated, as shown once again by
the relatively large vertical steps in the mean fitness of these two species,
the periodicity of 2 generations resulting from the setting of the stagnation
generations parameter to 2. From these graphs and our observations of the
evolutionary algorithm over many runs we can conclude that, generally, the
number of species steadily increases, retaining good detectors, until a size
is reached when further increases in the number of species generally offers
no improvements in performance. At this point the algorithm seeks to re-
duce the number of species by repeatedly destroying and recreating the most
recently added species.

4.2.2 Sensitivity analysis

In order to gain a more empirical understanding of how changes in the config-
uration of the AIS concept learner affected the performance and composition
of the classifiers it produced, we repeated the 10-fold crossvalidation ex-
periment described in the last section with a variety of differently configured
concept learners. As well as varying the number and size of the initial species
used in the coevolutionary algorithm, we were also interested in seeing if the
manner in which its constituent individuals were initialised affected classi-
fier predictive accuracy and size. Figure 4.3 shows a series of density plots
which, as in Figure 4.1, depict the distribution of classifier predictive accu-
racy over five 10-fold crossvalidation trials in which different values for the
generality and type bias parameters, described in Section 3.1.1, were used.
These nine plots have been placed on a grid with generality bias increasing
horizontally and type bias vertically. The top left corner of this grid depicts
the distribution for a classifier where both parameters were set to 0.1, and
the bottom right a classifier with both parameters set to 0.9. The central
rows and columns contain graphs for classifiers with a type and generality
bias of 0.5 respectively. As can be seen from these graphs, generality biases
of 0.1, that is, allowing very few # values in newly initialised individuals, on
the whole marginally decreased the predictive accuracy of evolved classifiers.
Type biases, the probability that a detector will be of Type 1, seemed to
have little effect on overall classifier performance, and we concluded that, in
general, the evolutionary algorithm seemed to be fairly robust to the settings
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of these parameters.

In addition, similar experiments were conducted, whose results are not
shown, in which the rates of mutation, crossover, and creation and dele-
tion of species were varied. The number of generations before evolution was
terminated was also varied and it was found that no significant increase in
classifier predictive accuracy was achieved by letting the evolutionary algo-
rithm run for more than the 100 generations used in the experiments above.
An r-contiguous bits matching algorithm was also implemented in which a
detector with threshold ¢ € [0, 1] recognised an antigen if at least ¢ x b consec-
utive bits matched, where b is the total number of bits in the detector. This
configuration was found to generally produce classifiers of lower predictive
accuracy than the percentage-of-matching-bits scheme described above and
used in the current implementation.

4.3 Classifier structure

One of the major advantages of the AIS classifier described here is the com-
prehensibility of the classification rules it produces. To produce a rule-based
description for a classifier, the first 2-bit schema of each detector was con-
verted to a test of the first vote, the second 2-bit schema to a test of the
second vote, and so on, using the same schema interpretation of Potter and
De Jong [78] and given in Table 4.3. Table 4.4 gives the encoding scheme
for the voting data, originally given in Section 3.3.2 and reproduced here
in order to ease interpretation of Table 4.3. In this table partial matches
are taken into account and given a half credit, indicated by the % subscript.
Tables 4.5 and 4.6 show the rule-based interpretation for the Democrat and
Republican detectors respectively of the best classifier evolved after a typical
100-generation 10-fold crossvalidation run of the coevolutionary algorithm,
along with the threshold values for each detector. Threshold values in the
rule-based interpretation can be seen as roughly indicating the fraction of
tests in the rule which need to be true in order for the rule’s result to be
true. This structure is similar to that of the classifiers of Potter and De Jong,
and shows a graduation from detectors with a low threshold and few rules
to detectors with high thresholds and a greater number of rules. The evolu-
tionary algorithm appears to search for attribute values which will classify a
large number of the examples, as in those of votes 3 and 4, and assigns low
thresholds to these rules, increasing the threshold value as the complexity of
the rules expressed in the detectors increases.

The number of detectors in evolved classifiers is also of interest, as it is
desirable for reasons of parsimony to have classifiers with as few rules as
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possible in order to increase classification speed and aid the extraction of
information about the data. Table 4.7 gives the mean number of detectors
observed in the crossvalidation experiments of Section 4.1 above. This
table shows a general bias towards a greater number of Democrat rather
than Republican detectors, suggesting that recognising Democrats rather
than Republicans was a more fruitful strategy for the evolved classifiers.
These results also compare favourably to those reported by Potter and De
Jong [78] for the AQ15 system, which, with a mean size of 15.10 for the
voting problem, generally produced a much larger number of cover elements.

Schema Interpretation
00 abstain or yeai or nay
01 yea or abstain 1
10 nay or abstain%
11 yeaL or nayi
O# abstain or yea
1# nay
#0 abstain or nay
#1 yea
## ignore

Table 4.3: Schema interpretation for rule-based description

vote | encoding

abstain 00
yea 01
nay 10

Table 4.4: Encoding scheme for voting data set
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Antibody 1

#ERH##1 1 On###HAHHHAHHHAHH H A HHHRS

0.505882
if | vote 3 = yea
vote 4 = nay or abstain%
then | class = democrat
Antibody 2 | st 0 L L 1 4
0.752941
if | vote 7 = abstain or yea
vote 8 = nay
vote 13 = nay
vote 16 = nay
then | class = democrat
Antibody 3 | ####0### 1 1 1 00### # it HHH#
0.756863
if | vote 3 = abstain or yea
vote 9 = yea
vote 10 = nay or abstain%
vote 11 = abstain or yea
then | class = democrat
Antibody 4 | #O0#10#0###0####HH1# 1t HHHSHH
0.894118
if | vote 1 = abstain or yea
vote 2 = yea
vote 3 = abstain or yea
vote 4 = abstain or yea
vote 6 = abstain or yea
vote 11 = nay
then | class = democrat
Antibody 5 | #1#1#0#10#### 1 ##00###HOH#H#HH O
0.913725
if | vote 1 = yea
vote 2 = yea
vote 3 = abstain or yea
vote 4 = yea
vote 5 = abstain or yea
vote 7 = yea
vote 9 = abstain or yeai or nayi
vote 12 = abstain or yea
vote 15 = abstain or yea
then | class = democrat

Table 4.5: AIS rule interpretation (Democrat detectors)
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Antibody 1 | #O1###0#0#######H OO H4H 1 ##t

0.596078
if | vote 1 = abstain or yea

vote 2 = nay

vote 4 = abstain or yea

vote 5 = abstain or yea

vote 10 = abstain or yea

vote 11 = abstain or yea

vote 15 = yea

then | class = republican

Antibody 2 | ###1###1 0 Lttt 1 B ##0# Lt 4

0.937255
if | vote 2 = yea

vote 4 = yea

vote 5 = abstain or yea

vote 6 = yea

vote 9 = yea

vote 11 = abstain or yea

vote 12 = yea

then | class = republican

Table 4.6: AIS rule interpretation (Republican detectors)

mean | standard | min | max

deviation
Democrat | 4.70 0.30 3 6
Republican | 2.28 0.74 1 4
Total | 6.98 | 067 | 4 | 10

Table 4.7: Number of detectors in evolved classifiers
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Chapter 5

Experiments and analysis -
HTML document classification

“Fxperiments are mediators between nature and idea.”

Johann Wolfgang Von Goethe (1749-1832).

The last chapter showed that the AIS concept learner was able to find
good solutions to the voting problem. In this chapter, we report on the
performance of the concept learner on the second of our problems, that of
classifying web pages as relevant or irrelevant based on a user provided train-
ing set of ranked pages.

5.1 Classifier performance

The previous chapter used 10-fold crossvalidation to estimate the predictive
accuracy of the classifiers produced by our two learning algorithms. This was
acceptable as the size of the data set, 435 samples in all, was large enough to
produce a reliable estimate. However, the four data sets used in this section
range from between 61 to 131 samples, making crossvalidation an unreliable
means of estimating the predictive accuracy due to the relatively small size of
the test set produced by this method [63]. In such cases alternative methods
need to be employed, one of which, and the one used here, is to randomly
create a training set by randomly selecting n samples from the original data
set without replacement. The remaining unselected samples then become
the test set. These two sets can then be used to give a reliable estimate of
the predictive accuracy for classifiers trained with a training set of size n.
This method is also advantageous for our purposes in that it can be used to
assess the performance of classifiers over a range of training set sizes, giving
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a good indication of number of pages a user would have to rate in order to
get reliable results from the classifier.

Figure 5.1 shows the predictive accuracy of the AIS and NBC learning
algorithms trained using a number of different training set sizes on a feature
vector with 128 features. The training set size extends along the x-axis, and
the mean predictive accuracy of classifiers trained with a set of this size along
the y-axis. For each training set size we randomly selected the appropriate
number of training examples, using the remainder as a test set. In order
to transform the HTML documents into feature vector representations, af-
ter the training and test sets were created, the 128 most informative words
were extracted from the training set documents, and these words used to
transform the training and test sets into Boolean feature vectors in the pro-
cess described in Section 3.5. This process was repeated 30 times for each
training set size, and the mean predictive accuracy of the resulting classifiers
plotted in Figure 5.1 for each of the four data sets: Bands, BioMedical,
Goats and Sheep, described in Section 3.3.2 above. Summaries of these
results, including standard deviations and confidence intervals are given in
Appendix A in Tables A.1, A.2, A.3 and A.4.

The first thing that can be noted from the graphs in Figure 5.1 is the
somewhat lower predictive accuracy of both classifiers on this classification
problem compared with that of the voting problem of the previous chapter.
This is not suprising as text classification problems are generally considered
to be relatively hard classification problems [63], and in an informal survey
of the literature on text classification we found the best classifiers to be
achieving predictive accuracies of around 0.70 whatever the text classification
problem. In this context, the performance of both classifiers is more than
reasonable on the four problems. The results presented for the NBC are also
similar to those of the NBC-based system of Pazzani et al. [72], offering an
indication that the performance levels are due to the nature of the problem
and not a result of implementation problems.

This said, there are marked differences in the predictive accuracies of the
NBC and AIS classifiers on the four problems, with the AIS algorithm at
first sight appearing to generally perform better on all data sets, except the
bands set, than the naive Bayesian classifier. As before, a Wilcoxon rank sum
significance test was performed on the results and this confirmed that there
was a statistically significant difference between the predictive accuracies of
the two algorithms, except on the bands data set. From this we can conclude
that the AIS classifier in general consistently produces better classifiers than
those produced by the NBC algorithm.

Also interesting to note is the relatively constant performance of the AIS
classifiers over a range of training set sizes. Increasing the size of the training
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Figure 5.1: Classifier performance (document classification)
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set seemed to produced little increase in classifier performance for this algo-
rithm, while for the NBC there was a much greater fluctuation in classifier
performance on an increase in training set size. This constancy of AIS perfor-
mance is particularly useful on problems such as this one because classifiers
which perform well on a small training set size would be advantageous as
users would be able to rate less pages but still obtain accurate predictions.

5.2 Evolutionary algorithm dynamics

Similar experiments to those described in the Section 4.2 above were per-
formed to obtain a picture of the dynamics of the AIS algorithm over a
typical evolutionary run, and to assess the role of various parameter setting
on algorithm performance. These results were on the whole similar to those
previously presented in Section 4.2 for the voting problem and are not
given here but instead relegated to Appendix A where they are included
for completeness. Since we are particularly interested in the performance of
the AIS classifier on relatively small training sets, the graphs given in the
appendix were all obtained using a training set size of 20 on the sheep data
set. Figure A.1 shows the dynamics of a standard evolutionary run as in
Figure 4.2 above, and Figure A.2 the consequences of varying the gen-
erality and detector biases as in Figure 4.3 above. The same conclusions
as were reached in Section 4.2 concerning the variation of these parame-
ters, namely that the evolutionary algorithm is generally robust to changes
in their values, can on reviewing these figures be seen to also apply to the
classification problem of this chapter.

5.3 Feature extractor dynamics

The feature extraction algorithm determines the number of words which are
to be represented in the feature vector and thus the amount of information
the classifier has available to classify a particular sample. In order to study
the effects changes in feature vector length have on classifier performance
we varied the number of words used as features, the results of which are
shown in Figures 5.2 and 5.3 for the AIS and NBC respectively. These
results were obtained on the sheep data set for a range of training set sizes,
represented along the x-axis, using the same method as that of the trials
described previously in Section 5.1.

Figure 5.2 shows the AIS constantly producing classifiers with a pre-
dictive accuracy of around 0.75 for features vectors of any length, while in
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Figure 5.3 the NBC generally produces classifiers with a lower accuracy.
The exception is for feature vectors with 1024 and 2048 features, where the
predictive accuracy for the NBC is higher than that of the AIS. Increasing
the number of features in the feature vector can have two effects. It provides
the classifier with more information, so predictive accuracy should rise, but
it also introduces more noise, making the classifier’s job harder. Also, in
practical systems, long feature vectors are disadvantageous, as they require
large amounts of storage space and more processing time. The advantage of
the AIS concept learner here is that it is able to consistently produce classi-
fiers with better predictive accuracies from feature vectors with few features
than the NBC.
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Chapter 6

Discussion

“Twice and thrice over, as they say, good is it to repeat and
review what 1s good.”

Plato (c. 427-347 B.C.)

In this chapter we review and discuss the results presented in the last two
chapters, considering the performance of the AIS classifier across the two
problem domains on which it was evaluated. We begin by discussing reasons
for the differences in performance seen over these two domains.

While the AIS classifier outperforms all the learning algorithms it has
been compared against in Chapters 4 and 5, there are marked differences
in the levels of predictive accuracies it achieves on the voting and document
classification problems. One factor which can be attributed to contributing
to these differences is the variation in the size of the training sets available
for each problem. In terms of available data, the voting problem represents
a fairly data-rich classification problem, with 435 samples available, whereas
the number of available samples for the document classification problem,
between 61 and 131, makes it a relatively data-sparse problem. This leads to
less samples being available for classifier training, and so it is expected that
performance will generally be lower on the data-sparse problem [63].

A second factor contributing to the difference in performance across the
two problems is the feature extraction algorithm. In this dissertation we use
a statistical feature extraction algorithm which extracts features based on
their expected information gain and, while necessary to provide a principled
comparison with the NBC-based system of Pazzani et al. [72], as discussed in
Section 2.2.1 such a method is far from ideal in the context of HT'ML doc-
ument classification. The coarse-grained document representation produced
by our feature extractor introduces a fair amount of noise into the system,
making classification generally that much harder than in the voting prob-
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lem. Using a more fine-grained feature extractor, such as those described by
Cohen [13] or Yang et al. [100], which also exploits meta-features of HTML
documents such as hyperlinks and tags, would potentially increase classifier
performance on the document classification problem and close the gap in
performance difference. Other potential ways of increasing the performance
of our AIS classifier are discussed in the next chapter.

An issue which has not been raised so far is that of classifier training
time. In practical terms, choice of a classifier not only depends upon the
predictive accuracies it is able to achieve, but also on the amount of time
taken in training the classifier. No matter how good the results achieved,
users would often be unwilling to wait for more than a few seconds for these
results, and definitely not, for example, the several days or even months taken
by some of the algorithms reported by Lim et al. [60]. While our immune-
based classifier is obviously more computationally expensive than the naive
Bayesian classifier, for the voting problem of Chapter 4, a typical 100-
generation run with 400 training examples took around 40 seconds. For the
document classification problem of Chapter 5, the immune-based classifier
took around 6 seconds to train over 100 generations on a training set of size 20
with 128 features. These figures are of course to some extent implementation
and system specific, further details of which are given in Appendix B, but
nevertheless show that as well as achieving better predictive accuracies than
that of many other classifiers, our immune-based classifier is able to do so in
a time which allows it to be applied to real-world problems.

In summary, Chapters 4 and 5 show that we have been able to achieve
the aim of this project, namely: we have produced a novel, working system
built on an immune-based learning algorithm which is able to perform better
than the currently available learning algorithms. In order to give substance
to this claim, we have compared our system’s performance to that of other
systems in a systematic and rigorous manner. We now move on to discuss
possible directions for future research.
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Chapter 7

Future work

“All progress is precarious, and the solution of one problem
brings us face to face with another problem.”

Martin Luther King Jr. (1929-1968).

This section explores several possibilities for further work that could build
on the work presented here but which, due to time and space constraints,
we were unable to include in the current implementation. First, we consider
several potential applications of the present system not explored here, and
then go on to consider a number of changes to the current system which
could further enhance its performance.

Many potential document classification problems are dynamic in nature,
meaning that the data on which the concept learner bases its hypotheses
changes over time. Take for example a system in which users have a collection
of documents from which the concepts of ‘related’ and ‘unrelated’ are learnt.
Over time, users may add or remove documents to and from this collection.
Instead of relearning the concepts from scratch each time a document is
added, as is necessary with naive Bayesian classifier, it would be interesting
to see if the AIS concept learner was able to produce accurate hypotheses
starting from the previously learned concept, and so potentially offer savings
in the amount of training time necessary. This could be implemented by
keeping the final species from the evolutionary run which produced the last
concept and starting the evolution of the new species from these individuals,
instead of from the one random species currently used to begin evolutionary
runs. Another possibility which would involve less storage overheads would
be to initialise individuals as mutations of the current detector set. Gaspar
and Collard [37] study the performance of an immune-based system on a
time-dependent optimisation problem and find that it performs well against
a standard genetic algorithm, a performance which they attribute to the
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central role of diversity within the adaptive dynamics of their system, giving
a further indication that immune-based systems may also be advantageous
in dynamic classification problems.

Another little-explored but potentially useful study would be to evaluate
the performance of the AIS learning algorithm at the task of learning from
positive examples only. One can imagine a system in which users, instead of
having to formulate a standard ‘string of words’ search query to input into a
web search engine, instead simply highlight a number of documents and ask
the system to find related documents. Since, in this example, no negative
i.e. irrelevant examples are provided, the system would have to construct
its hypotheses purely from positive evidence. This is essentially how mature
T-cells in the human immune system are produced in that, during negative
selection, immature T-cells are only exposed to self proteins, and so would
suggest, along with the previously mentioned study of Hunt and Cooke [49],
that a system employing similar dynamics might also be successful at this
task.

The possibility is currently being explored of implementing the AIS con-
cept learner described here in a real-world application, the ePerson collabo-
rative information management system being developed at Hewlett-Packard
Laboratories, Bristol. This system is a platform in which new paradigms
in information management and retrieval are being explored. As part of its
functionality, a workspace is provided in which users can place documents
and organise them in a bookmark-style hierarchy, with different users choos-
ing different categorisation schemes. For example, consider two researchers
collaborating on solving a problem. Both researchers may have compiled col-
lections of documents related to the problem, but organised them in different
ways suiting their style of working. The AIS concept learner, by taking the
documents in one category as positive examples, and all the documents in
all the other categories as negative examples, is able to learn a concept for
the category. This concept can then be used to determine if any of the docu-
ments from the second user’s workspace fit into this category. By repeating
this for all the categories in the first user’s workspace, the documents in the
second user’s workspace can be automatically classified according to the first
user’s categorisation scheme.

An area of research which has attracted increasing interest in recent years
within the machine learning community is that of ensemble learning [24]. As
the name suggests, an ensemble is a collection of individually trained clas-
sifiers who decisions are combined in some manner, such as boosting [6] or
bagging [36], and is seen as a way of improving classifier performance, with
the performance of an ensemble of classifiers often found to be higher than
that of its individual constituent classifiers [67]. It would be interesting to ex-
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plore this possibility with an immune-based classifier to see if any additional
performance increases could be obtained.

The algorithms used in the implementation of the immune concept learn-
ing system explored in this dissertation constrain the form and general prop-
erties of the classifiers it produces. Changing these algorithms could poten-
tially enhance the performance of the system, and while several different pos-
sibilities such as changing the matching algorithm were explored, as outlined
in Section 4.2, a number of further possibilities exist. One such possibility,
that of using a more fine-grained feature extraction algorithm, has already
been mentioned in the previous chapter. In terms of the mechanisms at work
in the human immune system those of the artificial immune system described
in this dissertation are, to say the least, simplistic, and present a very crude
analogy to their biological counterparts. Nevertheless, even from such hum-
ble an analogy it has been shown that a powerful concept learning system
can be created, and perhaps with increased fidelity to its biological counter-
part, further increases in performance can be gained. One such possibility
involves a more realistic implementation of the processes of humoral immu-
nity as described in Section 2.2 and pictured in Figure 2.2. Instead of the
simple T-cell driven model of the current system, implementation of both
B- and T-cells and their associated dynamics in the human immune system,
such as in the systems of Carter [7] or Cayzer and Aickelin [8, 9] described in
Section 2.3.2.1, could permit a more accurate classification of documents
through processes akin to affinity maturation and clonal selection.
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Chapter 8

Conclusions

“There are so many ways to wear what we have before it’s
gone.”

Ani Di Franco (1970-).

We have reached the end of the journey which this dissertation represents
and which we now briefly review. It began in Chapter 1 with the laying out
in broad terms of the general themes and concepts on which the work pre-
sented here rested, and of the aims and motivation behind this work. Chap-
ter 2 presented and discussed in detail the key concepts and work related
to the immune-based system we implemented, which itself was elaborated
in Chapter 3, along with the other systems we implemented and the data
we used to provide a principled comparison to other related systems. The
performance and dynamics of our immune-based system were analysed and
contrasted with that of other concept learners on a standard classification
task in Chapter 4, where we found the performance of the immune-based
system to be significantly better than its contemporaries. In Chapter 5 we
then compared our immune-based learner with other learning algorithms on
a web-based document classification task, and also found that it performed
significantly better. Conclusions on this performance across both tasks were
drawn and discussed in Chapter 6, which led on to the suggestions for future
work presented in Chapter 7.

My final task is to review the aim of the dissertation as originally set out in
Chapter 1 and to assess if [ have achieved this aim. My aim was to produce
a novel, working system built on a immune-based learning algorithm which
was able to perform better than the currently available learning algorithms
on a standard classification problem and a web-based document classification
problem. As detailed in the previous paragraph, the immune-based system
was able to consistently outperform the systems with which it was compared,
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and as such, achieved its aim.
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Appendix A

Additional results

In this appendix additional results from Chapter 5 which would not have fit-
ted comfortably into the main body of text are presented. Tables A.1, A.2,
A.3 and A.4 give summaries of the results of the experiments described in
Section 5.1, and Figure A.1 shows the dynamics of a standard evolution-
ary run for these experiments. Figure A.2, as with Figure 4.2, shows the
effects variations in the generality bias and type bias parameters have on
classifier performance on the document classification task of Chapter 5.
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training | learning | predictive | standard | 95% confidence
set size | algorithm || accuracy | deviation interval
10 AIS 0.698 0.056 0.072
NBC 0.750 0.000 0.030
20 AIS 0.690 0.047 0.047
NBC 0.707 0.067 0.012
30 AIS 0.686 0.074 0.051
NBC 0.696 0.084 0.030
40 AIS 0.690 0.081 0.034
NBC 0.689 0.056 0.037
50 AIS 0.694 0.116 0.046
NBC 0.683 0.105 0.068

Table A.1: bands data set performance summary

training | learning | predictive | standard | 95% confidence
set size | algorithm | accuracy | deviation interval
10 AIS 0.685 0.080 0.099
NBC 0.754 0.002 0.039
20 AIS 0.706 0.047 0.005
NBC 0.661 0.095 0.083
30 AIS 0.686 0.056 0.034
NBC 0.597 0.137 0.144
40 AIS 0.689 0.048 0.072
NBC 0.556 0.155 0.193
50 AIS 0.679 0.070 0.106
NBC 0.516 0.137 0.219

Table A.2: biomedical data set performance summary
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training | learning | predictive | standard | 95% confidence
set size | algorithm || accuracy | deviation interval
10 AIS 0.605 0.065 0.011
NBC 0.562 0.055 0.074
20 AIS 0.650 0.083 0.021
NBC 0.590 0.061 0.097
30 AIS 0.664 0.054 0.031
NBC 0.601 0.066 0.094
40 AIS 0.679 0.087 0.014
NBC 0.624 0.066 0.095
50 AIS 0.717 0.095 0.024
NBC 0.649 0.073 0.112

Table A.3: goats data set performance summary

training | learning | predictive | standard | 95% confidence
set size | algorithm | accuracy | deviation interval
10 AIS 0.734 0.070 0.060
NBC 0.738 0.134 0.051
20 AIS 0.725 0.062 0.040
NBC 0.627 0.142 0.155
30 AIS 0.747 0.049 0.045
NBC 0.662 0.097 0.125
40 AIS 0.751 0.067 0.018
NBC 0.724 0.104 0.072
50 AIS 0.743 0.106 0.045
NBC 0.629 0.153 0.183

Table A.4: sheep data set performance summary
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Appendix B

Implementation details and
source code

B.1 Implementation details

All the code was written on a 1.4GHz Athlon Linux box, originally in C and
then in C++, compiled using g++ v2.95.3 with level 2 optimisation, and re-
leased under the GNU General Public License. The experiments described in
Chapters 4 and 5 were carried out on the Linux box already mentioned and
on four 1.8GHz Pentium 4’s also running Linux. Output data was processed
and analysed using the R statistical package [51], with which all the graphs
contained in the dissertation were also produced. Figures were created us-
ing xfig and the flowcharts with TCM. The dissertation was typeset using
the ITEX 2. document preparation system and the BIBTEX bibliographic
database system.

The code is organised into header and implementation files to aid read-
ability, extensibility and testing. The main routines for AIS concept learner
can be found in ConceptLearner.h and ConceptlLearner.cpp, with specific rou-
tines for the evolutionary algorithm and classifier used by the concept learner
found in EvolutionaryAlgorithm.h and Classifier.h and their associated imple-
mentation files respectively. The DataSet.h and DataSet.cpp files contain rou-
tines for handling the input, output and creation of crossvalidation sets for
the voting problem, and the FeatureExtractor.h and FeatureExtractor.cpp files
the feature extractor routines for the HTML document classification task.
The naive Bayesian classifier is implemented in NaiveBayesianClassifier.h and
NaiveBayesianClassifier.cpp. Examples of how all these routines are used can
be found in crossvalidate-potter.cpp and evolve-pazzani.cpp programs, which
were used to generate the results presented in Chapters 4 and 5 respectively.
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The concept learner, feature extractor, naive Bayesian classifier and data
sets were instantiated as C++4 classes as summarised in Table B.1. More
details of the objects and methods contained in these classes can be found
in the source code listings.

class | description file
ConceptLearner | concept learner ConceptlLearner.h
Genome | genome EvolutionaryAlgorithm.h
Species | species EvolutionaryAlgorithm.h
Detector | detector Classifier.h
FeatureVector | feature vector DataSet.h
DataSet | voting data set DataSet.h
CrossvalidationSet | voting crossvalidation set | DataSet.h
FeatureExtractor | feature extractor FeatureExtractor.h
NaiveBayesianClassifier | naive Bayesian classifier | NaiveBayesianClassifier.h

Table B.1: C4++4 classes.

The code was tested by carefully observing the behaviour of its con-
stituent functions on a number of artificially-generated test problems. Mem-
ory usage was assessed by observing the processes that were generated at
run-time to ensure no memory leaks occured. The figures given in Chap-
ter 6 for run-time performance were taken from runs on the 1.4GHz Athlon
box. The system itself should be viewed as an experimental version and
was written so that a range of parameters could be easily set and functions
interchanged. In order to provide reasonable performance levels, the code
was partially optimised for speed, and therefore some functions are some-
what longer than would necessarily be found in a production version. In its
current state, the system is very robust and flexible. Source code can be
downloaded from the author’s website at http://cogs.milieu3.net/.
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B.2 Source code

B.2.1 crossvalidate-potter.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/* artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license * /

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/********************************************>l<******>l<**************************/
/* crossvalidate immune—based and naive bayesian classifiers on voting data */
/******************************************************************************/

// headers

#include <string>

#include <iostream>

#include <stdio.h>

#include <stdlib .h>

#include <math.h>

#include <time.h>

#include ”ConceptLearner.h”
#include ”"NaiveBayesianClassifier.h”

// constants
#define RANDSEED 100 // random seed
#define MAXFILELEN 100 // max filename length

int main(int argc, char sxxargv)
{
register unsigned int i, j;
FILE xdatafile;
time_t *start_time, xend_time;

// save time info

start_time = (time_t %) malloc(sizeof(time_t));
end_time = (time_t %) malloc(sizeof(time_t));
time (start_-time );

// parse command line
if (arge != 8)
{
cerr << ”"crossvalidate—potter 7 <<\
"TRIALS CVSETS GENERATIONS INIT_BIAS TYPEBIAS INFILE OUTFILE\n”
return (EXIT_FAILURE);

}

unsigned int trials = atoi(argv[l]);
unsigned int cvsets = atoi(argv[2]);
unsigned int generations = atoi(argv[3]);
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double initBias = atof(argv[4]);
double typeBias = atof(argv[5]);
string xinfile = new string(argv[6
string xoutfile = new string (argv|

1);
71);
outfile—>append (”"-");
outfile—>append argv
outfile—>append (”"-");
outfile—>append argv[ 1);
")
rgv
")

‘[ 1)

[3]);

(7
(
(7
(
outfile—>append (”—’
outfile—>append (a
outfile—>append (”—’
outfile—>append(argv[ 1);
outfile—>append ("=");
outfile—>append(argv[ 1);
outfile—>append(”.cv.dat”);

datafile = fopen(outfile—>c_str (), "w”);

// reset random number seed
srand (RANDSEED ) ;
srand48 (RANDSEED) ;

// load training set
DataSet xdataSet = new DataSet(infile);
cout << ”\n**x data set loaded s%%\n”

fprintf(datafile, "%—2d %—3d %—5d %—.10f %—.10f %—3d\n”, \
trials, cvsets, generations, initBias, typeBias, \
dataSet—>vectorLength);

// create crossvalidation sets

CrossvalidationSet *crossvalidationSet = new CrossvalidationSet(dataSet, \
cvsets);

cout << ?\nxxx crossvalidation sets created *xx\n”

// create naive bayesian classifier
NaiveBayesianClassifier xnaiveBayesianClassifier = new \
NaiveBayesianClassifier(dataSet—>vectorLength);

// create concept learner

ConceptLearner xconceptLearner = new ConceptLearner ();
conceptLearner—>setFeatureVectorLength (dataSet—>vectorLength);
conceptLearner—>outputData = 1;

conceptLearner—>outputStream = datafile;
conceptLearner—>setGeneralityBias(initBias);
conceptLearner—>setDetectorTypeBias (typeBias);
conceptLearner—>save(datafile);

cout << ”"\n*xx concept learner initialised sxx\n”;
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cout << ”"\n#sxx performing 7 << trials << 7 trials xxx\n”;
for(i = 1; i <= trials; i++)
{
crossvalidationSet—>randomise ();
cout << ”\n#**% crossvalidating concept learner s%x\n”;
for(j = 0; j < cvsets; j++)
{
cout << "xxx trial 7 << i << ” crossvalidation set 7 <<\
J<< ” ***\nn;

// initialise

conceptLearner—>reset ();

conceptLearner—>trainingSet = crossvalidationSet—>trainingSet[j];
conceptLearner—>testSet = crossvalidationSet—>testSet [j];
conceptLearner—>addRandomSpecies () ;

// evolve classifier
conceptLearner—>evolveClassifier (generations );

// output data

printf (7s%x final %—.10f\t%—.10f\t%—2d *%%\n”,
conceptLearner—>classifierTrainingFitness, \
conceptLearner—>classifierTestFitness, \
conceptLearner—>classifierSize \
)

fprintf(datafile ,”%—.10f\t%—.10f\ t%—2d\n",
conceptLearner—>classifierTrainingFitness, \
conceptLearner—>classifierTestFitness, \
conceptLearner—>classifierSize \

)

conceptLearner—>createFromBestTraining ();

printf (7s*x train %—.10f\t%—.10f\t%—2d ***\n”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTrainingSize \
)i

fprintf(datafile, "%—.10f\t%—.10f\ t%—2d\n”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTrainingSize \

)i

conceptLearner—>createFromBestTest ();

printf (7s*x* test %—.10f\t%—.10f\t%—2d *xx\n", \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTestSize \
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)

fprintf(datafile, ?%—.10f\t%—.10f\ t%—2d\n"”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTestSize \

)i

// train naive bayesian classifier
naiveBayesianClassifier—>train (crossvalidationSet—>trainingSet [j]);
printf (”s%% nbc train %—.10f\ttest %—.10f *xx\n\n”, \
naiveBayesianClassifier—>test (crossvalidationSet—> \
trainingSet[j]), naiveBayesianClassifier—>test ( \
crossvalidationSet—>testSet [j]) \
)i
fprintf(datafile, "%—.10f\t%—.10f\n", \
naiveBayesianClassifier—>test (crossvalidationSet—> \
trainingSet[j]), naiveBayesianClassifier —> \
test (crossvalidationSet—>testSet [j]) \

)

// flush data file
fflush (datafile );

}

fclose (datafile );

// output time info

time (end_time );

printf (”*%% done (%d minutes) #*x\a\n”, \

(unsigned int) (difftime (xend_time, xstart_time) / 60.0));

return (EXIT_SUCCESS);
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B.2.2 evolve-pazzani.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* evolve immune—based and naive bayesian classifiers on html data * /
/******************************************************************************/

// headers

#include <string>

#include <iostream>

#include <stdio.h>

#include <stdlib .h>

#include <math.h>

#include <time.h>

#include ”ConceptLearner.h”
#include ”"NaiveBayesianClassifier.h”
#include ”"FeatureExtractor.h”

// constants
#define RANDSEED 100 // random seed
#define MAXFILELEN 100 // max filename length

int main(int argc, char sxargv)
{
register unsigned int i;
FILE xdatafile;
time_t *start_time, xend_time;
DataSet xtrainingSet, *testSet;

// save time info

start_time = (time_-t %) malloc(sizeof(time_t));
end_time = (time_t %) malloc(sizeof(time_t));
time (start_-time );

// parse command line
if (arge 1= 9)
{
cerr << "evolve—pazzani 7 <<\
"TRIALS TRAINING-SIZE GENERATIONS INIT_BIAS TYPEBIAS ” <<\
"FVLENGTH INFILE OUTFILE\n”;

return (EXIT FAILURE);
}
unsigned int trials = atoi(argv[l]);
unsigned int trainingSize = atoi(argv[2]);
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unsigned int generations = atoi(argv[3]);
double initBias = atof(argv[4]);
double typeBias = atof(argv[5]);

outfile—>append (”"-");
outfile—>append argv[ 1);
.ev.dat”);

unsigned int fvLength = atoi(argv[6]);
string xinfile = new string(argv[7]);
string xoutfile = new string (argv|[8]);
outfile—>append (”"—");
outfile—>append(argv[ 1);
outfile—>append ("—=");
0utfile—>append(argv[ 1);
outfile—>append ("—=");
outfile—>append(argv[ 1);
outfile—>append (”"—");
outfile—>append(argv[ 1);
outfile—>append ("—=");
0utfile—>append(argv[ 1);

(7=

(

(7

outfile—>append
datafile = fopen(outfile—>c_str (), "w”);

// reset random number seed
srand (RANDSEED ) ;
srand48 (RANDSEED ) ;

// load data set

FeatureExtractor xfeatureExtractor = new FeatureExtractor(infile );
cout << ”\ns**% html data loaded and parsed sxx\n”
featureExtractor—>vectorLength = fvLength;

fprintf(datafile, "%—2d %—3d %—5d %—.10f %—.10f %—3d\n”, \
trials, trainingSize, generations, initBias, typeBias, fvLength);

// create naive bayesian classifier
NaiveBayesianClassifier xnaiveBayesianClassifier = new \
NaiveBayesianClassifier(fvLength );

// create concept learner

ConceptLearner xconceptLearner = new ConceptLearner ();
conceptLearner—>setFeatureVectorLength (fvLength );
conceptLearner—>outputData = 1;
conceptLearner—>outputStream = datafile;
conceptLearner—>setGeneralityBias(initBias);
conceptLearner—>setDetectorTypeBias (typeBias);
conceptLearner—>save (datafile );

cout << ”\n#*x*%x concept learner initialised x%x\n”
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cout << ”\n*** performing 7 << trials << 7 trials *xx\n”;
for(i = 1; i <= trials; i++)
{
featureExtractor—>createDataSet (fvLength, trainingSize);
trainingSet = featureExtractor—>trainingSet;
testSet = featureExtractor—>testSet ;

cout << "xxx trial 7 << i << 7 x¥x\n";

// initialise

conceptLearner—>reset ();
conceptLearner—>trainingSet = trainingSet;
conceptLearner—>testSet = testSet ;
conceptLearner—>addRandomSpecies ();

// evolve classifier
conceptLearner—>evolveClassifier (generations );

// output data

printf (7*xx final %—.10f\t%—.10f\t%—2d **x\n”,
conceptLearner—>classifierTrainingFitness, \
conceptLearner—>classifierTestFitness, \
conceptLearner—>classifierSize \
);

fprintf(datafile ,”%—.10f\t%—.10f\ t%—2d\n"” ,
conceptLearner—>classifierTrainingFitness, \
conceptLearner—>classifierTestFitness, \
conceptLearner—>classifierSize \

)

conceptLearner—>createFromBestTraining ();

printf (7s%x train %—.10f\t%—.10f\t%—2d **%\n”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTrainingSize \
)

fprintf(datafile, "%—.10f\t%—.10f\ t%—2d\n”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTrainingSize \

)

conceptLearner—>createFromBestTest ();

printf (7sxx test %—.10f\t%—.10f\t%—2d **%\n”, \
conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTestSize \
)5

fprintf(datafile, "%—.10f\t%—.10f\ t%—2d\n”, \
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conceptLearner—>testOnTrainingSet (), \
conceptLearner—>testOnTestSet (), \
conceptLearner—>bestClassifierTestSize \

)

// train naive bayesian classifier

naiveBayesianClassifier—>train (trainingSet );

printf (”s%% nbc train %—.10f\ttest %—.10f %%x\n\n", \
naiveBayesianClassifier—>test (trainingSet ), \
naiveBayesianClassifier—>test (testSet ));

fprintf(datafile, "%—.10f\t%—.10f\n", \
naiveBayesianClassifier—>test (trainingSet ), \
naiveBayesianClassifier—>test (testSet ));

// flush data file
fflush (datafile);

}

fclose (datafile );
// output time info
time (end_time );

printf (”xx done (%d minutes) =xx\a\n”, \
(unsigned int) (difftime (xend_time, xstart_time) / 60.0));

return (EXIT_SUCCESS);
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B.2.3 Classifier.h

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/* artificial immune system concept learner v1.0 * /
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net x/
/+ released under the gnu general public license * /

/******************************************************************************/

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/* classifier routines */
[ KK o R R R KKK R R R R KR KK SRR R KK SR R R R OR KK R R R KK K R R RO KK KR R KKK SRR O KKK R R KKK R ok ok ok [

#ifndef CLASSIFIER H
#define CLASSIFIER H

// headers
#include <iostream>
#include <stdio.h>

// constants

#define SELF 0 // self class
#define NONSELF 1 // nonself class
#define MASKVALUE 2 // mask value

/]

// detector class

/]

class Detector
{
public:
Detector (const unsigned int length);
Detector::” Detector(void);

unsigned int length; // length of detector vector
unsigned int xvalue; // vector values

double threshold; // detector threshold

unsigned int type; // detector type

// save to stream

void save (FILE xoutputStream );
t); }; // output to stdout

void show(void) { save(stdou

}s

#endif
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B.2.4 Classifier.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* classifier routines * /
/******************************************************************************/

// headers
#include ” Classifier .h”

//

// detector class public methods

/]

// constructor — initialise detector
// length — length of detector
Detector:: Detector (const unsigned int length)
{
this—>length = length;
threshold = 0.0;
value = new unsigned int [length ];
type = 0;

}

// destructor
Detector::” Detector(void)

{
}

// save to stream
// outputStream — stream to save to
void Detector::save(FILE xoutputStream)

{

delete [] value;

register unsigned int i;

fprintf (outputStream, \
"%—3d %—.10f %—1d\n”, \

length, \
threshold, \
type \

)

for(i = 0; i < length; i++)
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fprintf(outputStream , "%—1d ”, value[i]);
fprintf (outputStream, ”"\n”);

fflush (outputStream );
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B.2.5 ConceptLearner.h

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* concept learner routines x/
/******************************************************************************/

#ifndef CONCEPTLEARNERH
#define CONCEPTLEARNERH

// headers

#include ”EvolutionaryAlgorithm .h”
#include ” Classifier .h”

#include ”DataSet.h”

#include <stdio.h>

// constants

#define DEF_SPECIES_SIZE 100 // default species size
#define DEF MAX FEATURE VECTOR LENGTH 256 // default max feature vector len
#define DEF_MAX_CLASSIFIER_SIZE 20 // default max classifier size

//

// concept learner class

/]

class ConceptLearner
{
public:
ConceptLearner(const unsigned int speciesSize = DEF_SPECIES SIZE, \
const unsigned int maxFeatureVectorLength =\
DEF MAX FEATURE VECTORLENGTH, \
const unsigned int maxClassifierSize = DEF_MAX_CLASSIFIER_SIZE);
“ConceptLearner(void);

unsigned int maxClassifierSize;
unsigned int maxFeatureVectorLength;

double generalityBias;

double detectorTypeBias;

short unsigned int outputData; // output data to file (flag; def = 0)
FILE *outputStream; // stream to output data to

unsigned int featureVectorLength;
unsigned int speciesSize;
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double removalThreshold ;

unsigned int removalCount, removalGenerations;
double creationThreshold;

unsigned int creationCount, creationGenerations;

double lastClassifierTrainingFitness;

unsigned int numSpecies; // current number of species
unsigned int classifierSize; // current classifier size
unsigned int bestClassifierTrainingSize, bestClassifierTestSize;

double classifierTrainingFitness, classifierTestFitness;
double bestClassifierTrainingFitness, bestClassifierTestFitness ;
unsigned int falsePositives, falseNegatives;

Species x%parent; // parent population
Species x%child; // child population
DataSet xtrainingSet ;

DataSet xtestSet ;

void evolveClassifier (const unsigned int generations = 1);
double testOnTrainingSet();
double testOnTestSet ();
void save (FILE xoutputStream );
void saveEvolutionData(FILE xoutputStream );
void saveEvolutionData(FILE xoutputStream , const unsigned int index);
void addRandomSpecies(void);
void reset (void);
void createFromBestTraining(void);
void createFromBestTest (void);
void setGeneralityBias(const double generalityBias);
void setDetectorTypeBias (const double detectorTypeBias);
void setFeatureVectorLength (const unsigned int featureVectorLength);
void saveClassifier (FILE xoutputStream );
void restoreEvolvedClassifier (void);
void show(void) { save(stdout); };
void showEvolutionData (void) { saveEvolutionData(stdout); };
void showEvolutionData (const unsigned int index)
{ saveEvolutionData(stdout, index); };

private:
Species kx%xspeciesl, x*xspecies2;
Detector xxdetector ;
unsigned int xdetectorActivity;
Genome *xbestTrainingGenome ;
Genome #*xbestTestGenome ;

void evaluateCCA (void);
void evaluateSpecies(const unsigned int index);
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}s

#endif

void breedCCA (void);
void breedSpecies(const unsigned int index);
void handleCCAStagnation(void);
void removeStagnatedSpecies (void);
unsigned int classify (FeatureVector xfeatureVector);
void swapPopulations(void)
{ Species x*tmp = parent; parent = child; child = tmp; };
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B.2.6 ConceptLearner.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* concept learner routines x/
/******************************************************************************/

// headers

#include ”ConceptLearner.h”
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib .h>
#include <math.h>

#include <string.h>

//

// concept learner class public methods

/]

// constructor — create concept learner

// speciesSize — max num of species

ConceptLearner:: ConceptLearner (const unsigned int speciesSize, \
const unsigned int maxFeatureVectorLength, \
const unsigned int maxClassifierSize)

register unsigned int i = maxClassifierSize;
this—>speciesSize = speciesSize;
this—>maxFeatureVectorLength = featureVectorLength = maxFeatureVectorLength;

this—>maxClassifierSize = maxClassifierSize;

// set defaults

classifierSize = numSpecies = 0;

lastClassifierTrainingFitness = 0.0;

classifierTrainingFitness = classifierTestFitness = 0.0;
bestClassifierTrainingFitness = bestClassifierTestFitness = 0.0;
bestClassifierTrainingSize = bestClassifierTestSize = 0;

outputData = 0;

removalThreshold = creationThreshold = 0.001;
removalGenerations = creationGenerations = removalCount = creationCount = 2;

)
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generalityBias = 0.5;
= 0.

detectorTypeBias 5;

// allocate memory

parent = new Species % [maxClassifierSize ];
child = new Species % [maxClassifierSize];
detector = new Detector % [maxClassifierSize |;

detectorActivity = new unsigned int [maxClassifierSize];

bestTrainingGenome = new Genome * [maxClassifierSize |;

bestTestGenome = new Genome % [maxClassifierSize |;

while(i—-—)

{
parent[i] = new Species(speciesSize, maxFeatureVectorLength);
child[i] = new Species(speciesSize, maxFeatureVectorLength );
detector [i] = new Detector(maxFeatureVectorLength);
bestTrainingGenome [i] = new Genome(maxFeatureVectorLength);
bestTestGenome [1] = new Genome(maxFeatureVectorLength );

}

// destructor
ConceptLearner::” ConceptLearner(void)

{

register unsigned int i = maxClassifierSize;

while(i—-)
{
delete parent[i];
delete child[i];
delete detector [i];
delete bestTrainingGenome [i];
delete bestTestGenome[i];

}

delete [] bestTestGenome;
delete [] bestTrainingGenome;
delete [] detectorActivity;
delete [] detector;

delete [] child;

delete [] parent;

}

// evolve concept learner
// generations — generation to evolve for
void ConceptLearner:: evolveClassifier (const unsigned int generations)

{

register unsigned int i = 0;
register unsigned int ngens = generations;
register short unsigned int flag = outputData;
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// output some info

printf ("%—4d\t%—.10f\t%—.10f\ t%—2d\ t %—.10f\ t%—2d\ t %—.10f\ t%—2d\n” , \
i, classifierTrainingFitness, classifierTestFitness, \
classifierSize, \
bestClassifierTrainingFitness, bestClassifierTrainingSize, \
bestClassifierTestFitness, bestClassifierTestSize);

// output data if required
if (flag)
saveEvolutionData(outputStream, 0);

// evolve cca
for(i = 1; i <= ngens; i++)

{

// output some info

printf ("%—4d\t%—.10f\t%—.10f\ t%—2d\ t %—.10f\ t%—2d\ t %—.10f\ t%—2d\n" , \
i, classifierTrainingFitness, classifierTestFitness, \
classifierSize, \
bestClassifierTrainingFitness, bestClassifierTrainingSize, \
bestClassifierTestFitness, bestClassifierTestSize);

// breed cca
breedCCA ();

// handle cca stagnation
handleCCAStagnation ();

// output data if required
if (flag)
saveEvolutionData(outputStream, i);

}

// calculate predictive accuracy of concept learner on training set
double ConceptLearner::testOnTrainingSet()

{

register unsigned int i = classifierSize, tmp, fpos, fneg;

// reset detector activities
while(i—-—)
detectorActivity [i] = 0;

// classify each training example
fpos = fneg = 0;

i = trainingSet—>size;

while(i—-—)
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if ((tmp = classify (trainingSet—>featureVector[i])) != trainingSet—>\
vectorClass[i])
{

if (tmp == 0)
fneg++;
else
fpos++;

}

return(double(trainingSet—>size — fpos — fneg) / double(trainingSet—>size));

}

// calculate predictive accuracy of concept learner on test set
double ConceptLearner::testOnTestSet ()

{

register unsigned int i = classifierSize, tmp, fpos, fneg;

// reset detector activities
while(i—-)
detectorActivity [i] = 0;

// classify each test example
fpos = fneg = 0;
i = testSet—>size;

while(i—-)
if ((tmp = classify (testSet—>featureVector[i])) != testSet—>\
vectorClass[i])
{
if (tmp == 0)
fneg++;
else
fpos++;
}

return(double(testSet—>size — fpos — fneg) / double(testSet—>size));

}

// save concept learner to stream

void ConceptLearner::save(FILE xoutputStream)

{

fprintf (outputStream, \

"%—3d %—3d %—3d %—3d %—.5f %—3d %—3d %—.5f %—2d %—2d %—.5f %—2d %—2d\n”
numSpecies, \
classifierSize, \
maxClassifierSize, \
maxFeatureVectorLength, \
generalityBias, \
featureVectorLength, \
speciesSize, \
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removalThreshold, \
removalGenerations, \
removalCount, \
creationThreshold, \
creationGenerations, \
creationCount
)5

}

// save evolution data to stream
void ConceptLearner::saveEvolutionData(FILE xoutputStream)

{

register unsigned int i;

fprintf (outputStream, \
"% —.10f %—.10f %—2d %—.10f %—2d %—.10f %—2d %—.10f\n", \
classifierTrainingFitness,
classifierTestFitness, \
classifierSize, \
bestClassifierTrainingFitness, \
bestClassifierTrainingSize , \
bestClassifierTestFitness , \
bestClassifierTestSize, \
lastClassifierTrainingFitness \

);
for(i = 0; i < numSpecies; i++)

fprintf (outputStream, \

"%—4d\ t%—3d\ t %—.10f\ t %—10.10f\n” , \
i\
parent [i]->fittestIndividual, \
parent [ i]—->genome[parent [i]->fittestIndividual]->fitness, \
parent [i]->meanSpeciesFitness \
)5

}

fflush (outputStream );

}

// save evolution data with index to stream

void ConceptLearner::saveEvolutionData(FILE %outputStream, \
const unsigned int index)

{

fprintf (outputStream , "%—4d 7, index);
saveEvolutionData (outputStream );

}

// add a new random species
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void ConceptLearner:: addRandomSpecies(void)

{

register unsigned int i;

// if less than maximum species size
if (numSpecies < maxClassifierSize)
{
// add new parent species
parent [numSpecies]—>randomise ();
numSpecies++;
evaluateSpecies(numSpecies — 1);

// update statistics
i = numSpecies;
while (i—-)
parent [ i]—>genome[parent [i]->fittestIndividual]—>\
setDetector (detector [1]);
classifierSize = numSpecies;

// calculate fitness on training and test sets
classifierTestFitness = testOnTestSet ();
classifierTrainingFitness = testOnTrainingSet();

// save fitnesses and genomes if best

if ((classifierTrainingFitness > bestClassifierTrainingFitness ) || \
((classifierTrainingFitness == bestClassifierTrainingFitness) && \
(classifierSize < bestClassifierTrainingSize)))

// save as best fitness on training set

bestClassifierTrainingFitness = classifierTrainingFitness;
bestClassifierTrainingSize = classifierSize;

i = classifierSize;

while(i—-—)

{

bestTrainingGenome [ i]—>copyGenome (parent [i]—> \
genome | parent [i]->fittestIndividual]);

}

if ((classifierTestFitness > bestClassifierTestFitness ) || \
((classifierTestFitness == bestClassifierTestFitness) && \
(classifierSize < bestClassifierTestSize)))

// save as best fitness on test set

bestClassifierTestFitness = classifierTestFitness;
bestClassifierTestSize = classifierSize;

i = classifierSize;

while(i——)

{

bestTestGenome [ i]—>copyGenome (parent [i]—> \
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genome [ parent [i]->fittestIndividual]);

}

// reset concept learner

void ConceptLearner::reset (void)

{
classifierSize = numSpecies = 0;
lastClassifierTrainingFitness = 0.0;
classifierTrainingFitness = classifierTestFitness = 0.0;
bestClassifierTrainingFitness = bestClassifierTestFitness = 0.0;
bestClassifierTrainingSize = bestClassifierTestSize = 0;
removalCount = removalGenerations;
creationCount = creationGenerations;

}

// create a classifier from best solution on training set so far
void ConceptLearner:: createFromBestTraining(void)

{

register unsigned int i = bestClassifierTrainingSize ;
while(i—-)

bestTrainingGenome [ i]—>setDetector (detector [i]);
classifierSize = bestClassifierTrainingSize ;

}

// create a classifier from best solution on test set so far
void ConceptLearner:: createFromBestTest (void)

{

register unsigned int i = bestClassifierTestSize;
while(i—-—)

bestTestGenome [i]—>setDetector (detector [i]);
classifierSize = bestClassifierTestSize;

}

// set generality bias
void ConceptLearner:: setGeneralityBias(const double generalityBias)

{

register unsigned int i = maxClassifierSize, j;

// set for all genomes
this—>generalityBias = generalityBias;
while(i—-)
{

j = speciesSize;

while (j——)
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parent [i]—>genome[j]->generalityBias =\

child [i]->genome[j]->generalityBias = generalityBias;

}
bestTrainingGenome [ i]—>generalityBias = generalityBias;
bestTestGenome [ i]—>generalityBias = generalityBias;

}

// set detector type bias

void ConceptLearner::setDetectorTypeBias (const double detectorTypeBias)

{

register unsigned int i = maxClassifierSize, j;

// set for all genomes
this—>detectorTypeBias = detectorTypeBias;

while(i—-—)
j = speciesSize;
while(j——)

{
parent [ i]—>genome[j]->typeBias =\
child [i]—>genome[j]—>typeBias = detectorTypeBias;
}
bestTrainingGenome [ i]->typeBias = detectorTypeBias;
bestTestGenome [ i]—>typeBias = detectorTypeBias;

}

// set feature vector length

void ConceptLearner::setFeatureVectorLength ( \
const unsigned int featureVectorLength)

{

register unsigned int i = maxClassifierSize, j;

this—>featureVectorLength = featureVectorLength;
// set for all genomes
while(i—-)
{
j = speciesSize;
while(j——)
{

parent [i]—>genome[j]->patternLength = \

child [i]->genome[j]->patternLength = featureVectorLength;

parent [i]—>genome[j]—>size = 2 % featureVectorLength + \
child [i]—>genome[j]—>thresholdLength;
child [i]->genome[j]—>size = 2 % featureVectorLength + \
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child [i]—>genome[j]—>thresholdLength;
}
bestTrainingGenome [i]->patternLength = featureVectorLength;
bestTestGenome [i]—>patternLength = featureVectorLength;
bestTrainingGenome [i]—>size = 2 % featureVectorLength + \
bestTrainingGenome [ i]->thresholdLength;
bestTestGenome [i]—>size = 2 % featureVectorLength + \
bestTestGenome [i]—>thresholdLength;

}

// save classifier to stream
void ConceptLearner:: saveClassifier (FILE xoutputStream)

{

register unsigned int i;

for(i = 0; i < numSpecies; i++)

parent [ i]—>genome[parent [i]—>fittestIndividual]->save (outputStream );
for(i = 0; i < bestClassifierTrainingSize ; i++)

bestTrainingGenome [i]—>save (outputStream );
for(i = 0; i < bestClassifierTestSize; i++)

bestTestGenome [i]—>save (outputStream );

}

// create classifier from last evolved classifier
void ConceptLearner::restoreEvolvedClassifier (void)

{

register unsigned int i = numSpecies;
while(i—-)

parent [ i]—>genome[parent [i]->fittestIndividual]->setDetector (detector [i]);
classifierSize = numSpecies;

}
//

// concept learner class private methods

/]

// evaluate concept learner
void ConceptLearner::evaluateCCA (void)

{

register unsigned int i, oldFittestIndividual;

// evaluate species
i = numSpecies;
while(i—-)

{

// save new fittest as fitness update synchronous
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oldFittestIndividual = parent[i]->fittestIndividual;
evaluateSpecies(i);

child [i]->fittestIndividual = parent[i]—>fittestIndividual;
parent [i]->fittestIndividual = oldFittestIndividual;

}

i = numSpecies;
while(i—-)
{
// copy new fittest and create classifier of best individuals
parent [i]->fittestIndividual = child[i]—->fittestIndividual;
parent [ i]->genome[parent [i]->fittestIndividual]->setDetector (detector [i]);

classifierSize = numSpecies;

// calculate fitness on training and test sets
classifierTestFitness = testOnTestSet ();
classifierTrainingFitness = testOnTrainingSet ();

// save fitnesses and genomes if best

if ((classifierTrainingFitness > bestClassifierTrainingFitness) || \
((classifierTrainingFitness == bestClassifierTrainingFitness) && \
(classifierSize < bestClassifierTrainingSize)))

// save as best fitness on training set

bestClassifierTrainingFitness = classifierTrainingFitness;
bestClassifierTrainingSize = classifierSize;

i = classifierSize;

while (i—-)

{
>\

bestTrainingGenome [ i]—>copyGenome (parent [i]—
genome [ parent [i]—>fittestIndividual ]);

}

if ((classifierTestFitness > bestClassifierTestFitness ) || \
((classifierTestFitness == bestClassifierTestFitness) && \
(classifierSize < bestClassifierTestSize)))

// save as best fitness on test set

bestClassifierTestFitness = classifierTestFitness;
bestClassifierTestSize = classifierSize;

i = classifierSize;

while (i—-—)

{

bestTestGenome [ i]—>copyGenome (parent [i]—> \
genome [ parent [i]—>fittestIndividual ]);
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// evaluate a species

// index — index of species to evaluate

void ConceptLearner:: evaluateSpecies(const unsigned int index)

{
register unsigned int i, newFittestIndividual ;
register double bestIndividualFitness, worstIndividualFitness;
register double meanSpeciesFitness, speciesScaledFitnessSum ;
register double individualFitness;

// calculate fitness of each individual
newFittestIndividual = parent[index]->fittestIndividual = 0;
i = numSpecies;
while(i—-)
parent [ i]—>genome[parent[i]—>fittestIndividual]->setDetector (detector [i]);
classifierSize = numSpecies;
parent [index]—>genome[0]—>fitness = \
meanSpeciesFitness =\
bestIndividualFitness = worstIndividualFitness = \
testOnTrainingSet ();
i = speciesSize;
while(——1i)
{
parent [index]—>genome[i]->setDetector (detector [index]);
parent [index]—>genome[i]—>fitness = individualFitness = \
testOnTrainingSet ();
if(individualFitness >= bestIndividualFitness)

{

newFittestIndividual = i;
bestIndividualFitness = individualFitness;
}
else
if(individualFitness < worstIndividualFitness)
worstIndividualFitness = individualFitness;

meanSpeciesFitness += individualFitness;

}

parent [index]—>fittestIndividual = newFittestIndividual;

// scale fitnesses

parent [index]—>meanSpeciesFitness = meanSpeciesFitness = \
meanSpeciesFitness / double(speciesSize );

speciesScaledFitnessSum = 0.0;

i = speciesSize;

while(i—-)

{

// fitness proportionate scaling with linear balancing
if (parent [index]—>genome[i]—>fitness == worstIndividualFitness)

{

parent [index]—>genome[i]->scaledFitness = 0.0;
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continue;

if (parent[index]—>genome[i]—>fitness == bestIndividualFitness)
parent [index]—>genome[i]->scaledFitness = 2.0;
speciesScaledFitnessSum += 2.0;
continue;

if (parent[index]—>genome[i]—>fitness == meanSpeciesFitness)

{
parent [index]—>genome[i]—>scaledFitness = 1.0;
speciesScaledFitnessSum += 1.0;
continue;

if (parent [index]—>genome[i]—>fitness > meanSpeciesFitness)
{
parent [index]|->genome[i]—>scaledFitness = 1.0 + ( \
(parent [index]—>genome[i]—->fitness — \
meanSpeciesFitness) / \
(bestIndividualFitness — \
meanSpeciesFitness) \
)
speciesScaledFitnessSum += parent [index]—>genome[i]->scaledFitness;
continue;
}
parent [index]—>genome[i]->scaledFitness = 1.0 — ( \
(meanSpeciesFitness — \
parent [index]—>genome[i]—->fitness) / \
(meanSpeciesFitness — \
worstIndividualFitness) \
)5
speciesScaledFitnessSum += parent [index]—>genome[i]->scaledFitness;

}

parent [index]—>speciesScaledFitnessSum = speciesScaledFitnessSum ;

}

// breed current parent population
void ConceptLearner:: breedCCA (void)

{

register unsigned int i = numSpecies;

// save current training fitness
lastClassifierTrainingFitness = classifierTrainingFitness;

// elitism — keep best individual
while(i—-)
{
child [i]->genome[0]—>copyGenome (parent [i]—> \
genome [ parent [i]->fittestIndividual]);
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child [i]->fittestIndividual = 0;

}

i = numSpecies;
while(i—-—)
breedSpecies(i);

// make child population new parent population and evaluate
swapPopulations ();
evaluateCCA ();

}

// breed a species
// index — index of species to breed
void ConceptLearner:: breedSpecies(const unsigned int index)
{
register unsigned int i = speciesSize;
register Genome *xparentl, % parent2;

// create children
while(——1i)
{
// selection
parentl = parent[index]—>FPSelection();
parent2 = parent[index]—>FPSelection();
// crossover
child [index]—>genome[i]->uniformCrossover (parentl, parent2);
// mutation
child [index]—>genome[i]->mutateBinary ();

}

// handle creation and deletion of stagnated species
void ConceptLearner:: handleCCAStagnation(void)

{

register double fitnessStep;

// calculate difference in fitnesses
fitnessStep = fabs(classifierTrainingFitness — \
lastClassifierTrainingFitness);

// handle removal of stagnated species
if (fitnessStep < removalThreshold)
{
if (removalCount)
removalCount ——;
else

{
// stagnated
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removeStagnatedSpecies ();

removalCount = removalGenerations;
}
}
else
// not stagnated
removalCount = removalGenerations;

// handle creation of new species
if (fitnessStep < creationThreshold)
{
if (creationCount)
creationCount ——;
else
{
// stagnated
addRandomSpecies ();

creationCount = creationGenerations;
}
}
else
// not stagnated
creationCount = creationGenerations;

}

// remove stagnated species
void ConceptLearner:: removeStagnatedSpecies (void)
{
register unsigned int i = numSpecies, j;
register short unsigned int flag = 0;

// for each species
while(i—-—)
{
// stop if only one species left
if (numSpecies == 1)
break;

// remove if detector not active
if (!detectorActivity [i])

for(j = i; j < classifierSize; ++j)
parent [ j]->copySpecies(parent[j + 1]);

numSpecies——;

flag = 1;
}

}

// if species removed

if (flag)
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// update statistics
i = numSpecies;
while (i—-)
parent [ i]->genome[parent [i]->fittestIndividual]—>\
setDetector (detector [1]);
classifierSize = numSpecies;

// calculate fitness on training and test sets
classifierTestFitness = testOnTestSet ();
classifierTrainingFitness = testOnTrainingSet();

// save fitnesses and genomes if best

if ((classifierTrainingFitness > bestClassifierTrainingFitness ) || \
((classifierTrainingFitness == bestClassifierTrainingFitness) && \
(classifierSize < bestClassifierTrainingSize)))

// save as best fitness on training set

bestClassifierTrainingFitness = classifierTrainingFitness;
bestClassifierTrainingSize = classifierSize;

i = classifierSize;

while(i—-—)

{

bestTrainingGenome [ i]—>copyGenome (parent [i]—> \
genome | parent [i]->fittestIndividual]);

}

if ((classifierTestFitness > bestClassifierTestFitness ) || \
((classifierTestFitness == bestClassifierTestFitness) && \
(classifierSize < bestClassifierTestSize)))

// save as best fitness on test set

bestClassifierTestFitness = classifierTestFitness;
bestClassifierTestSize = classifierSize;

i = classifierSize;

while(i——)

{

bestTestGenome [ i]—>copyGenome (parent [i]—> \
genome [ parent [i]->fittestIndividual]);

}

// classify a feature vector
unsigned int ConceptLearner:: classify (FeatureVector xfeatureVector)

{

register unsigned int i = classifierSize, j, maskBits, matchingBits;
register double affinity ;
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// for each detector
while(i—-)

{

}

// count num of matching non—mask bits
maskBits = matchingBits = 0;

j = detector [i]—->length;

while(j——)

if (detector [i]->value[j] == MASKVALUE)
maskBits++;
else
if (detector [i]->value[j] == featureVector—>value[j])
matchingBits++;
}
// calculate affinity
if (detector [i]->length == maskBits)
affinity = 1.0;
else
affinity = double(matchingBits) / double(detector [i]->length \
— maskBits);
if(affinity > detector[i]->threshold)
{
// a match
detectorActivity [1]++;
if (detector [i]->type == SELF)
return (SELF);
else
return (NONSELF ) ;

}

// no match
return (SELF);
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B.2.7 DataSet.h

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/* artificial immune system concept learner v1.0 * /
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net x/
/+ released under the gnu general public license * /

/******************************************************************************/

[ 35 ok s s s s s s s o ok ok oK oK oK oK oK SR SR SR SR SR SR K K K K SR K R S K S KR R K R KKK KK KKK KK K K K K K K R SR K K K R R K K R kKoK ok [
/* data set routines * /
/] 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok o SR SR R K K R SRR R KRR KRR R R R R sk sk sk sk ok ok ok R ok SR R SR R SR R R R K K Kk ok sk sk sk ok /

#ifndef DATASETH
#define DATASETH

// headers
#include <string>
#include <stdio.h>

/]

// feature vector class

/]

class FeatureVector
{
public:
FeatureVector (const unsigned int length );
“FeatureVector (void);

unsigned int length; // vector length
unsigned int xvalue; // vector values

/ save to stream

void save(FILE xoutputStream ); /
t); }; // output to stdout

void show(void) { save(stdou

}s
/]

// data set class

/]

class DataSet
{
public:
DataSet(const unsigned int size, const unsigned int vectorLength);
DataSet(string *infile);
“"DataSet (void);

unsigned int size; // num of samples

unsigned int vectorLength; // sample vector length
FeatureVector sxfeatureVector; // sample vectors
string sxfilename; // filenames of input documents
unsigned int xvectorClass; // vector classes
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void save (FILE xoutputStream );

void show(void) { save(stdout); };

void copySample(DataSet xdataSet, const unsigned int fromIndex, \
const unsigned int tolndex);

void swapSample(DataSet xdataSet, const unsigned int fromIndex, \
const unsigned int tolndex);

void split (DataSet xdataSetl, DataSet xdataSet2, \
const unsigned int dataSetlSize);

void randomise(void);

}s
//

// crossvalidation set class

/]

class CrossvalidationSet

{

public:
CrossvalidationSet(DataSet xdataSet, const unsigned int cvsets);

unsigned int cvsets; // num of crossvalidation sets
DataSet xxtrainingSet, % testSet;

void randomise(void);

I
#endif
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B.2.8 DataSet.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/+ data set routines * /
/******************************************************************************/

// headers

#include ”DataSet.h”
#include <fstream>
#include <iostream>
#include ” Classifier .h”

// constants
#define MAXLINELEN 1000 // max input line length

//

// feature vector class public methods

/]

// constructor — create feature vector
// length — length of vector
FeatureVector :: FeatureVector (const unsigned int length)

{

value = new unsigned int [length |;
this—>length = length;

}

// destructor
FeatureVector::” FeatureVector (void)

{
}

// save to stream
void FeatureVector::save(FILE xoutputStream)

{

delete [] value;

register unsigned int i;

fprintf (outputStream , "%—4d”, length );
for(i = 0; i < length; i++)

fprintf (outputStream, ” %—2d”, value[i]);
fprintf (outputStream, ”"\n”);
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fflush (outputStream );

data set class public methods

constructor — create data set
size — num of vectors in data set
vectorLength — len of feature vectors

taSet :: DataSet (const unsigned int size, const unsigned int vectorLength)

register unsigned int i;

this—>size = size;

this—>vectorLength = vectorLength;

featureVector = new FeatureVector x [size];

vectorClass = new unsigned int [size |;

i = size;

while(i—-)

featureVector[i] = new FeatureVector(vectorLength );

}
// constructor — create dataset from input file

DataSet :: DataSet (string *infile)

{

register unsigned int i, j, lines = 0, featureVectorLength;
char line [MAXLINELEN |;
ifstream sinstream = new ifstream ();;

instream—>open (infile—>c_str ());

// count num of lines
instream—>getline (line , MAXLINELEN ) ;
featureVectorLength = vectorLength = strlen(line) — 1;
while (instream—>getline (line , MAXLINELEN))

lines++;
instream—>close ();

// initialise memory
featureVector = new FeatureVector % [size = lines];
vectorClass = new unsigned int [lines];

// read in data

instream—>open (infile—>c_str ());

for(i = 0; i < lines; i++)

{
instream—>getline (line , MAXLINELEN ) ;
// swap classes here
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vectorClass[i] = atoi(line + featureVectorLength);

featureVector[i] = new FeatureVector(featureVectorLength);
j = featureVectorLength;
while(j——)

{
line[j + 1] = "\07;
featureVector[i]—->value[j] = atoi(line + j);

}

instream—>close ();
delete instream;

}

// destructor
DataSet::” DataSet (void)

{

register unsigned int i = size;

while(i—-—)

delete featureVector[i];
delete [] vectorClass;
delete [] featureVector;

}

// save to stream
void DataSet ::save (FILE xoutputStream)

{

register unsigned int i;

fprintf (outputStream, \
"%—3d %—5d\n” , \
size, \
vectorLength \

’

for (i = 0; i < size; i++4)
fprintf (outputStream , "%—1d ”, vectorClass[i]);
fprintf (outputStream, ”"\n”);

for (i = 0; i < size; i++4)
featureVector[i]—>save (outputStream );

fflush (outputStream );

}

// copy sample from one dataset to another
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//
/]
/]

dataSet — dataset to copy from
fromIndex — index of sample in from data set
toIndex — index of sample to copy to

void DataSet :: copySample (DataSet xdataSet, const unsigned int fromIndex, \

{

Q ~"— T

}
/]

const unsigned int tolndex)
register unsigned int i = dataSet—>vectorLength;

featureVector [toIndex]—>length = dataSet—>featureVector [fromIndex]|—>length ;

while(i—-—)
featureVector [tolndex]—>value[i] = \
dataSet—>featureVector [fromIndex]—>value[i];
vectorClass [toIndex] = dataSet—>vectorClass [fromIndex];

swap samples between datasets

dataSet — dataset to copy from

fromIndex — index of sample in from data set
toIndex — index of sample to copy to

id DataSet ::swapSample(DataSet xdataSet, const unsigned int fromIndex, \

const unsigned int tolndex)
register unsigned int i, tmpLength, tmpVectorClass;

tmpLength = featureVector[toIndex]—>length ;
tmpVectorClass = vectorClass[toIndex];
unsigned int xtmpValue = new unsigned int [tmpLength];
i = tmpLength;
while(i—-)

tmpValue[i] = featureVector [toIndex]—>value[i];

copySample(dataSet, fromIndex, tolndex);
vectorLength = dataSet—>vectorLength;

dataSet—>featureVector [fromIndex]—>length = tmpLength;
dataSet—>vectorClass [fromIndex] = tmpVectorClass;
i = tmpLength;
while(i—-—)
dataSet—>featureVector [fromIndex]->value[i] = tmpValue[i];

delete [] tmpValue;

split dataset

void DataSet:: split (DataSet xdataSetl, DataSet xdataSet2, \

{

const unsigned int dataSetlSize)

register unsigned int i, index;
static unsigned int xused = new unsigned int [size] = {0};
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dataSetl—>size = dataSetlSize;

dataSetl—>vectorLength = vectorLength;
dataSet2—>size = size — dataSetlSize;
dataSet2—>vectorLength = vectorLength;

// create random training set
i = dataSetlSize;
while(i—-)
{
do
index = int ((double(rand()) * size) / double(RANDMAX + 1.0));
while (used [index]);
dataSetl—>copySample(this, index, i);
used [index] = 1;

}

i = size;
index = 0;
while(i—-)
{
if (lused[i])
dataSet2—>copySample(this, i, index++);
used [i] = 0;
}

dataSetl—>randomise ();
dataSet2—>randomise ();

}

// randomise dataset
void DataSet ::randomise(void)

{

register unsigned int i = size;

while(i—-)
swapSample(this, int ((double(rand()) * size) / double(RANDMAX + 1.0)), \
int ((double(rand ()) % size) / double(RANDMAX + 1.0)));

crossvalidation set class public methods

constructor — create crossvalidation set

dataSet — dataset to create from

cvsets — num of crossvalidation sets to create
CrossvalidationSet:: CrossvalidationSet (DataSet =dataSet, \
const unsigned int cvsets)

}

//
//
//
/]
/]
//
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register unsigned int i, oddSize, evenSize, testStart, testEnd;
register unsigned int datalndex, testIndex, traininglndex;

this—>cvsets = cvsets;
evenSize = dataSet—>size / cvsets;
oddSize = evenSize + dataSet—>size — evenSize x cvsets;

trainingSet = new DataSet % [cvsets];
testSet = new DataSet % [cvsets];

if (cvsets == 1)
{
trainingSet [0] = new DataSet(dataSet—>size, dataSet—>vectorLength);
testSet [0] = new DataSet(dataSet—>size, dataSet—>vectorLength );
datalndex = dataSet—>size;
while (datalndex——)
{
trainingSet[0]—>featureVector [datalndex] = new FeatureVector(\
dataSet—>vectorLength);
trainingSet [0]—>copySample(dataSet, datalndex, datalndex);
testSet [0]—>featureVector [datalndex] = new FeatureVector(\
dataSet—>vectorLength);
testSet [0]—>copySample(dataSet, datalndex, datalndex);
}
}
else
{
trainingSet [0] = new DataSet(dataSet—>size — oddSize, \
dataSet—>vectorLength );
testSet [0] = new DataSet(oddSize, dataSet—>vectorLength);

testIndex = traininglndex = datalndex = 0;
while (datalndex < oddSize)
{
testSet [0]—>featureVector[testIndex] = new FeatureVector(\

dataSet—>vectorLength);
testSet [0]—>copySample(dataSet , datalndex++, \
testIndex++);

}

while (datalndex < dataSet—>size)

{

trainingSet[0]—>featureVector [trainingIndex] = new FeatureVector(\

dataSet—>vectorLength );
trainingSet [0]—>copySample(dataSet, datalndex++, \
trainingIndex++);

}

for (i = 1; i < cvsets; i++)
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trainingSet [i] = new DataSet(dataSet—>size — evenSize, \
dataSet—>vectorLength );
testSet [i] = new DataSet(evenSize, dataSet—>vectorLength);

testStart = oddSize + (i — 1) * evenSize;
testEnd = testStart + evenSize;
testIndex = traininglndex = datalndex = 0;
while (datalndex < testStart)
{
trainingSet [i]->featureVector[trainingIlndex]| = new FeatureVector(\
dataSet—>vectorLength );
trainingSet [i]—>copySample(dataSet, datalndex++, \
trainingIndex ++);

}

while (datalndex < testEnd)

{
testSet [i]->featureVector[testIndex] = new FeatureVector(\
dataSet—>vectorLength );
testSet [i]—>copySample(dataSet, datalndex++, \
testIndex ++);
}
while (datalndex < dataSet—>size)
{
trainingSet [i]—->featureVector [trainingIndex] = new FeatureVector(\
dataSet—>vectorLength);
trainingSet [ i]->copySample(dataSet, datalndex++, \
trainingIndex++);
}

}

randomise ();

}

// randomise order of feature vectors in crossvalidation set
void CrossvalidationSet:: randomise(void)
{

register unsigned int i, j, indexl, index2;

register short unsigned int flag, redo;

DataSet xsetl, xset2;

i = cvsets * (trainingSet[0]—>size + testSet[0]—>size);
while(i—-)
{
if (drand48() < 0.5)
setl = trainingSet [int ((double(rand ()) * cvsets) / \
double (RANDMAX + 1.0))];
else
setl = testSet [int ((double(rand ()) * cvsets) / \
double (RANDMAX + 1.0))];
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if (drand48() < 0.5)
set2 = trainingSet [int ((double(rand ()) * cvsets) / \
double (RANDMAX + 1.0))];
else
set2 = testSet [int ((double(rand ()) * cvsets) / \
double (RANDMAX + 1.0))];

indexl = int ((double(rand()) % setl—>size) / \
double (RANDMAX + 1.0));

index2 = int ((double(rand()) * set2—>size) / \
double (RANDMAX + 1.0));

setl—>swapSample(set2, index2, indexl);

}
redo = 0;
i = cvsets;
while(i—-—)
{
flag = trainingSet [i]->vectorClass [0];
j = trainingSet [i]—->size;
while(——j)
if (flag !'= trainingSet[i]—->vectorClass[j])
break;
if (1))
{
redo = 1;
break;
}
}
if (redo)

randomise ();
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B.2.9 EvolutionaryAlgorithm.h

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* cooperative coevolutionary algorithm routines * /
/******************************************************************************/

#ifndef EVOLUTIONARYALGORITHMH
#define EVOLUTIONARYALGORITHMH

// headers
#include ” Classifier .h”
#include <stdio.h>

//

// genome class

/]

class Genome
{
public:
Genome (const unsigned int length);
“Genome (void ) ;

unsigned int size; // num of genes
unsigned int xlocus; // loci values
unsigned int type; // genome type

double mutationProbability ;

double crossoverProbability;

double fitness, scaledFitness;

unsigned int thresholdLength, patternLength;
double generalityBias;

double typeBias;

void copyGenome (Genome *genome );

void uniformCrossover (Genome *genomel, Genome xgenome2);
void mutateBinary (void);

void randomiseBinary (void);

void save (FILE xoutputStream );

void setDetector (Detector xdetector);

void show(void) { save(stdout); };

}s
//

// species class
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/]

class Species
{
public:
Species (const unsigned int speciesSize, const unsigned int genomeLength);
“Species (void);

unsigned int speciesSize;

Genome #kgenome; // genomes in species
unsigned int fittestIndividual;

double speciesScaledFitnessSum ;

double meanSpeciesFitness;

Genome *x FPSelection(void);

void randomise(void);

void save (FILE xoutputStream );

void copySpecies(Species xspecies);
void show(void) { save(stdout); };

}s

#endif
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B.2.10 EvolutionaryAlgorithm.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* cooperative coevolutionary algorithm routines * /
/******************************************************************************/

// headers
#include ”EvolutionaryAlgorithm .h”
#include <stdlib .h>

/]

// genome class public methods

/]

// constructor — create genome
// length — length of genome
Genome : : Genome (const unsigned int length)
{
thresholdLength = 8;
patternLength = length;
size = thresholdLength + 2 % patternLength;
locus = new unsigned int [size];
mutationProbability = 2.0 / double(size );
crossoverProbability = 0.6;
generalityBias = typeBias = 0.5;
fitness = 0.0;
type = 0;

}

// destructor
Genome : : ~ Genome (void)

{
}

// copy genome
// genome — genome to copy from
void Genome :: copyGenome (Genome *genome )

{

delete [] locus;

register unsigned int i = size;
register unsigned int xfrom = genome—>locus;
register unsigned int xto = locus;
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while(i—-—)

to[i] = from[i];
mutationProbability = genome—>mutationProbability ;
crossoverProbability = genome—>crossoverProbability;
fitness = genome—>fitness;
scaledFitness = genome—>scaledFitness;
generalityBias = genome—>generalityBias;
size = genome—>size ;

patternLength = genome—>patternLength;
thresholdLength = genome—>thresholdLength;
type = genome—>type;

}

// uniform crossover
// genomel, genome2 — genome to create from
void Genome:: uniformCrossover (Genome *genomel, Genome *genome2)
{
register unsigned int i = size;
register unsigned int xfroml = genomel—>locus;
register unsigned int xfrom2 = genome2—>locus;
register unsigned int xto = locus;
register double cp = crossoverProbability;

while(i—-)

{
if (drand48() < cp)

to[i] = froml[i];
else
to[i] = from2[i];

}
if (drand48() < cp)

type = genomel—>type;
else

type = genome2—>type;

}

// binary bit—flip mutation

void Genome :: mutateBinary (void)

{
register unsigned int i = size;
register unsigned int xloci = locus;
register double mp = mutationProbability ;

while(i—-—)
if (drand48() < mp)
loci[i] =1 |
if (drand48() < mp)
type = 1 — type;

oci[i];
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// randomise binary genome
void Genome:: randomiseBinary (void)

{

register unsigned int index, i;
index = 0;

i = thresholdLength;
while(i—-—)
locus [index++] = int ((double(rand ()) * 2.0) / double(RANDMAX + 1.0));
i = patternLength;
while(i—-)
locus[index++] = int ((double(rand ()) * 2.0) / double(RANDMAX + 1.0));
i = patternLength;
while(i—-—)
if (drand48() < generalityBias)
locus [index++] = 0;
else
locus [index++] = 1;
if (drand48() < typeBias)
type = SELF;
else
type = NONSELF;

}

// save to stream
void Genome:: save (FILE xoutputStream)
{
register unsigned int i;
Detector xdetector = new Detector(patternLength);

fprintf (outputStream, \
"%—3d %—3d %—3d %—1d %—10f %—10f %—10f %—10f %—10f %—10f\n”, \
size, \
thresholdLength, \
patternLength, \
type, \
fitness, \
scaledFitness, \
mutationProbability , \
crossoverProbability, \
generalityBias, \

typeBias \
);
for(i = 0; i < size; i++)
fprintf(outputStream, "%—2d ”, locus[i]);

fprintf (outputStream, ”\n”);
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setDetector (detector );
detector—>save (outputStream );

delete detector;

fflush (outputStream );

}

// create detector from genome
// detector — detector to create
void Genome:: setDetector (Detector xdetector)

{

register unsigned int i, loci = 0, sum, lastLoci;

// set activation threshold
// gray coding for threshold gene
sum = lastLoci = locus[loci++];
while(loci < thresholdLength)
{
sum = (sum << 1) | (lastLoci ~ locus[loci]);
lastLoci = locus[loci++];
}
detector—>threshold = double(sum) / 255.0; // ttitrinrrrrrntrrrnt!
for(i = 0; i < patternLength; i++)
detector—>value[i] = locus[loci++];
for(i = 0; i < patternLength; i++)
if (!locus[loci++])
detector—>value[i] = MASKVALUE;
detector—>type = type;
detector—>length = patternLength;

species class public methods

~ N~
~ T

// constructor — create species

// genomeLength — length of individuals’ genomes

Species :: Species (const unsigned int speciesSize, \
const unsigned int genomeLength)

{

register unsigned int i = speciesSize;
this—>speciesSize = speciesSize;

fittestIndividual = 0;

speciesScaledFitnessSum = meanSpeciesFitness = 0.0;
genome = new Genome * [speciesSize];

while(i—-—)
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genome[i] = new Genome (genomeLength );

}

// destructor
Species::” Species (void)

{

register unsigned int i = speciesSize;

while(i—-)
delete genome|i];
delete genome;

}

// fitness proportionate selection
Genome * Species :: FPSelection(void)

{
register unsigned int i = 0;
register double dtmpl, dtmp2;

dtmpl = drand48() * speciesScaledFitnessSum ;

dtmp2 = 0.0;
while ((i < speciesSize) && ((dtmp2 = dtmp2 + genome[i]—>scaledFitness) \
< dtmpl))
i++;
return((i < speciesSize) ? genome[i] : genome[i — 1]);

}

// randomise all species
void Species ::randomise(void)

{

register unsigned int i = speciesSize;

while(i—-—)
genome|[ i]—>randomiseBinary ();

}

// save to stream

void Species ::save(FILE xoutputStream)

{

fprintf (outputStream, \

"%—4d %—4d %—5.10f %—.10f\n", \
speciesSize, \
fittestIndividual, \
speciesScaledFitnessSum , \
meanSpeciesFitness \

)

genome [ fittestIndividual]->save (outputStream );
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fflush (outputStream );

}

// copy species
// species — species to copy from
void Species :: copySpecies(Species *xspecies)

{

register unsigned int i = species—>speciesSize;
speciesSize = i;
while(i—-—)

genome [ i]—>copyGenome (species—>genome[i]);
fittestIndividual = species—>fittestIndividual;
speciesScaledFitnessSum = species—>speciesScaledFitnessSum ;
meanSpeciesFitness = species—>meanSpeciesFitness;
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B.2.11 FeatureExtractor.h

/************************>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<********************/

/* artificial immune system concept learner v1.0 * /
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net x/
/+ released under the gnu general public license * /

/******************************************************************************/

/************************>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<********************/

/* feature extractor routines * /
/] 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok o SR SR R K K R SRR R KRR KRR R R R R sk sk sk sk ok ok ok R ok SR R SR R SR R R R K K Kk ok sk sk sk ok /

#ifndef FEATUREEXTRACTORH
#define FEATUREEXTRACTORH

// headers

#include <string>
#include ”"DataSet.h”
#include <stdio.h>

// constants

#define FIELDSEPERATOR "|” /] seperator for file input
#define SELF 0 // self

#define NONSELF 1 // nonself

#define MAX VECTORILENGTH 256 // default max vector len
#define MAXWORDS 10000 // default max words
#define MAXDOCUMENTS 200 // default max documents

/]

// feature extractor class

/]

class FeatureExtractor
{
public:
FeatureExtractor(string =infile, \
const unsigned int maxVectorLength = MAX VECTORLENGTH, \
const unsigned int maxWords = MAXWORDS, \
const unsigned int maxDocuments = MAXDOCUMENTS) ;
“FeatureExtractor(void);

unsigned int numDocuments ;

unsigned int numWords;

unsigned int vectorLength;

unsigned int maxVectorLength, maxWords, maxDocuments;

unsigned int numSelf, numNonself;

unsigned int numTrainingExamples, numTrainingSelf, numTrainingNonself;
string xxdocumentFilename;

string xxdocumentName;
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unsigned int x*documentClass;
DataSet xdataSet;

DataSet xtrainingSet ;
DataSet xtestSet ;

string xsxword;

unsigned int xxwordTable;
char sxxstopList;

unsigned int stopListLength;
unsigned int xtrainingVector;
unsigned int xtrainingWords;

// data set statistics

unsigned int xpresent, xabsent;

double pSelf, pNonself;

double x*pPresent, xpAbsent;

unsigned int *presentSelf, xpresentNonself;
unsigned int xabsentSelf, xabsentNonself;
double xpSelfPresent, x*pNonselfPresent, xpSelfAbsent, x pNonselfAbsent ;
double IS; // I(S)

double *EIG; // E(w,S)

short unsigned int xflag;

unsigned int *xtrainingSetIndex;

void createDataSet(const unsigned int vectorLength, \
const unsigned int numTrainingExamples);

void createDataSet(const unsigned int vectorLength, \
const unsigned int numTrainingExamples, \
unsigned int xtrainingExamples);

void save (FILE xoutputStream );

void show(void) { save(stdout); };

void createTrainingSets (const unsigned int cvSets);

void createFromTrainingSet (const unsigned int set);

private:

int onStopList (char *xword);
void calculateStatistics(void);

}s

#endif
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B.2.12 FeatureExtractor.cpp

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* feature extractor routines %/
/******************************************************************************/

// headers

#include ”"FeatureExtractor.h”
#include <fstream>

#include <stdio.h>

#include <math.h>

// constants
#define MAXLINELEN 1000 // max input line length

// the default stop list

#define DEFSTOPLISTLEN 80

static char =defaultStopList [DEFSTOPLISTLEN] = {"WWW , "HIML’, "HTTP”, "GIF”,
77EDU77 , 77AND77 , ”I_H{EF” , 77TI_E]77 , 77]MG77 , W SRC77 , 77FOR77 , 77FONT77 , an” , W ALIGN77 , 77ALT77 ,
W SIZE77 , 77INDEX77 , 77HTM77 , W TITLE77 , ”GOPI—IEIR,” , 77ORG77 , 77NA1\/JE]77 , ” THIS77 , 77WEB77 , 77YOU77 ,
77H01\/JE]77 , 77ABOUT77 , 77]NTERNET77 , 77WIDTH77 , 77PAGE77 , 77FTP77 , 77BODY77 , 77ARE77 , W LIST77 ,
"NET”, "HEIGHT”, ”LINKS”, "NEWS®, "FROM’, "HEAD”, "STRONG”, "WELCOME’, »WITH"
"TOP”, "MAILTO” , "YOUR’, "GIFS”, "BOTTOM’, "MAIL”, *CGI”, *THAT”, "BIN”, "ALL”,
"CENTER” , "WUSIL”, "GDB”, ”"GOV”, "OTHER’, "ANY”, "HAS”, "NOTI”, "TOC”, "GNN”,
"WIC” , "SERVER”, "AVAILABLE” , "IBC”, "ADDRESS”, "INFORMATION” , "HERE’, "CAN”,
77WHATV7 , 77MORE77 , 770[JR77 , W WILL77 , 77HAVE77 , 77@M1\4E1\]VI‘S77 , 77“][_07 , ” PLEASE77 , 77ALSO77 };

// quick log and abs macros
#define log2(a) (((a) == 0.0) ? (0.0) : (log(a) / log(2.0)))
#define qfabs(a) (((a) < 0.0) 2 (1.0 = (a)): (a))

//

// feature extractor class public methods

//

// constructor — create feature extractor
// infile — input file
FeatureExtractor:: FeatureExtractor(string xinfile, \
const unsigned int maxVectorLength, const unsigned int maxWords, \
const unsigned int maxDocuments)

register unsigned int i, j, lines, dirend;

char line [MAXLINELEN ] ;
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register char c;
register short unsigned int flag;
ifstream sinstream = new ifstream ();;

// count num of lines

instream—>open (infile—>c_str ());

lines = 1;

while (instream—>getline (line , MAXLINELEN))
lines++;

instream—>close ();

// initialise memory and set defaults

numDocuments = lines;

numWords = vectorLength = numSelf = numNonself = 0;
this—>maxVectorLength = maxVectorLength;

this—>maxWords = maxWords;

this—>maxDocuments = maxDocuments;

numTrainingExamples = numTrainingSelf = numTrainingNonself = 0;

documentFilename = new string = [numDocuments ];
documentName = new string * [numDocuments ];

documentClass = new unsigned int [numDocuments ];

dataSet = new DataSet(numDocuments, maxVectorLength);
trainingSet = new DataSet (numDocuments , maxVectorLength);
testSet = mew DataSet (numDocuments, maxVectorLength);

word = new string * [maxWords];
wordTable = new unsigned int * [maxDocuments];

trainingSetIndex = new unsigned int x [maxDocuments];

i = maxDocuments;

while(i—-)

{
wordTable[i] = new unsigned int [maxWords];
trainingSetIndex [i] = new unsigned int [maxDocuments];

}

stopList = defaultStopList;

stopListLength = DEFSTOPLISTLEN;

trainingVector = new unsigned int [maxDocuments];
trainingWords = new unsigned int [maxWords];

present = new unsigned int [maxWords];

absent = new unsigned int [maxWords];

IS = pSelf = pNounself = 0.0;

pPresent = new double [maxWords];

pAbsent = new double [maxWords];

presentSelf = new unsigned int [maxWords];
presentNonself = new unsigned int [maxWords];
absentSelf = new unsigned int [maxWords];
absentNonself = new unsigned int [maxWords];
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pSelfPresent = new double [maxWords];
pNonselfPresent = new double [maxWords];
pSelfAbsent = new double [maxWords];
pNonselfAbsent = new double [maxWords];

EIG = new double [maxWords];

this—>flag = new short unsigned int [maxWords];

// find path of input files
dirend = infile—>find_last_of (’/’) + 1;
cout << dirend <<”\n”;

// read in file data

instream—>open (infile—>c_str ());

for(i = 0; i < numDocuments; i++)

{
instream—>getline (line , MAXLINELEN, FIELD_SEPERATOR);
documentFilename[i] = new string(xinfile, 0, dirend);
documentFilename[i]—>append (line);
instream—>getline (line , MAXLINELEN, FIELD_SEPERATOR);
switch(strcmp (line, "hot”))

{

case 0:
documentClass [i] = SELF;
numSelf++;
break;

default :
documentClass [i]
numNonself++;
break;

NONSELF;

}
instream—>getline (line , MAXLINELEN ) ;

documentName[i] = new string(line);

}

instream—>close ();

// create word table

numWords = 0;

for (i = 0; i < numDocuments; i++)

{
instream—>open (documentFilename[i]—>c_str ());
flag = 1;

while(flag)
{
while (((c¢ = instream—>get()) != EOF) && !isalpha(c))
if (¢ == EOF)
flag = 0;
else
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j =0

while ((c¢ != EOF) && isalpha(c))

{
line[j++] = toupper(c); // convert to upper case
¢ = instream—>get ();

}

line[j] = "\0’;

if (onStopList (line))

continue;
for(j = 0; j < numWords; j++)
if (strcmp (word[j]->c_str (), line) == 0)

wordTable[i][j]++;
break ;

}
if (j == numWords)

word [numWords] = new string(line);
wordTable[i ] [ numWords++]++;

}
}
instream—>close ();

}

delete instream;

}

// destructor
FeatureExtractor::” FeatureExtractor(void)

{

register unsigned int i;

delete dataSet;
delete trainingSet ;
delete testSet;

delete [] documentClass;
delete [] trainingVector;
delete [] trainingWords;
delete [] present;

delete [] absent;

delete [] pPresent;
delete [] pAbsent;

delete [] presentSelf;
delete [] presentNounself;
delete [] absentSelf;
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delete [] absentNonself;
delete [] pSelfPresent;
delete [] pNonselfPresent;
delete [] pSelfAbsent ;
delete [] pNonselfAbsent ;
delete [] EIG;

delete [] flag;

i = maxWords;
while(i—-—)

delete word[i];
delete [] word;

i = maxDocuments;

while(i—-)

{
delete documentName[1i];
delete documentFilename]i];
delete [] wordTable[i];

}

delete [] wordTable;
delete [] documentFilename;
delete [] documentName;

}

// create data set

// vectorLength — length of feature vectors to extract

void FeatureExtractor:: createDataSet(const unsigned int vectorLength, \
const unsigned int numTrainingExamples)

{

register unsigned int i, j, index;
register short unsigned int flag;

this—>numTrainingExamples = numTrainingExamples;
this—>vectorLength = vectorLength;

// create random training set

numTrainingSelf = numTrainingNonself = 0;
i = numTrainingExamples;
while (1)
{
do
{
flag = 0;
index = int ((double(rand()) * numDocuments) / double(RANDMAX + 1.0));
j = numTrainingExamples — i;
while(j——)
if (trainingVector[j] == index)

{

129



flag = 1;

continue;

}
} while(flag);

trainingVector [numTrainingExamples — 1] = index;

if (documentClass [trainingVector[i]] == SELF)
numTrainingSelf++;

else

numTrainingNonself++;
==

}

calculateStatistics ();

}

// create data set
// vectorLength — length of feature vectors to extract
// trainingExamples — indices of training examples to create dataset from
void FeatureExtractor:: createDataSet(const unsigned int vectorLength, \
const unsigned int numTrainingExamples, \
unsigned int xtrainingExamples)

register unsigned int i;

this—>numTrainingExamples = numTrainingExamples;
this—>vectorLength = vectorLength;

// create random training set

numTrainingSelf = numTrainingNonself = 0;
i = numTrainingExamples;
while(i—-)
{
trainingVector [i] = trainingExamples [i];
if (documentClass [trainingVector[i]] == SELF)
numTrainingSelf++;
else

numTrainingNonself++;

}

calculateStatistics ();

}

// save to stream
void FeatureExtractor::save(FILE xoutputStream)

{

register unsigned int i, j;

fprintf (outputStream, \
"%—3d %—5d %—3d %—3d %—5d %—3d %—3d %—3d %—3d %—3d %—3d %—10f %—10f %—10f\n”
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numDocuments , \
numWords, \
vectorLength, \
maxVectorLength, \
maxWords, \
maxDocuments, \
numSelf, \
numNonself , \
numTrainingExamples, \
numTrainingSelf, \
numTrainingNonself, \

pSelf, \
pNonself, \
IS
E
for(i = 0; i < numDocuments; i++)

fprintf(outputStream, \
"%—3d %—30s %—30s %—1d\n”, \
i, \
documentFilename[i]->c_str (), \
documentName[i]—>c_str (), \
documentClass [i] \
)5

for(i = 0; i < numTrainingExamples; i++)
fprintf (outputStream , "%—3d\n”, trainingVector[i]);

for (i = 0; i < vectorLength; i++)
fprintf (outputStream, \
"%—3d %—5d\n” , \

i, \
trainingWords[i] \
)5

for(i = 0; i < numWords; i++)

fprintf(outputStream, \
"%—3d %—20s %—.10f %—3d %—3d %—3d %—3d %—3d %—3d %—.10f %—.10f 7, \

i\
word[i]->c_str (), \
EIG[i], \

present[i], \

absent [i], \
presentSelf[i], \
absentSelf[i], \
presentNonself [i], \
absentNonself [i], \
pPresent[i], \
pAbsent[i] \
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)5

fprintf (outputStream, \
"%—.10f %—.10f %—.10f %—.10f\n", \
pSelfPresent [i], \
pSelfAbsent [i], \
pNonselfPresent[i],
pNonselfAbsent [i] \

)

\

}

for (i = 0; i < numDocuments; i++)
{
fprintf (outputStream , "%—5d "7, i);
for(j = 0; j < numWords; j++)
fprintf (outputStream, ” %—3d”, wordTable[i][j]);
fprintf(outputStream, ”\n”);

}

fprintf (outputStream , "%—5d” , stopListLength);
for (i = 0; i < stopListLength; i++)

fprintf(outputStream, ” %—20s”, stopList[i]);
fprintf (outputStream, ”\n”);

fflush (outputStream );

}

// extract training sets

// cvSets — num of training sets to create

void FeatureExtractor::createTrainingSets (const unsigned int cvSets)

{
register unsigned int i, index;
register unsigned int testSetSize, trainingSetIndex, evenNumDocuments;
register unsigned int tolndex, tmpValue;

testSetSize = int(numDocuments / cvSets);
evenNumDocuments = testSetSize *x cvSets;
numTrainingExamples = testSetSize % (cvSets — 1);
i = evenNumDocuments;
while(i—-)

trainingVector [i] = 1;
i = evenNumDocuments;
while(i—-—)

{

toIndex = int ((double(rand()) * evenNumDocuments) / \
double (RANDMAX + 1.0));

tmpValue = trainingVector [i];

trainingVector [i] = trainingVector [toIndex];
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trainingVector [tolndex] = tmpValue;

}

i = cvSets;

while(i—-—)

{
trainingSetIndex = index = 0;
toIndex = i x testSetSize;

while (toIndex——)
this—>trainingSetIndex [i][trainingSetIndex ++] =\
trainingVector [index++];
index += testSetSize;
toIndex = (cvSets — i — 1) % testSetSize;
while (toIndex——)
this—>trainingSetIndex [i][ trainingSetIndex++] = \
trainingVector [index++];

}

// create dataset from training set
// set — training set index
void FeatureExtractor::createFromTrainingSet (const unsigned int set)

{
}
/]

// feature extractor class private methods

/1l

// check if word on stop list
int FeatureExtractor::onStopList (char *word)

{

createDataSet (vectorLength, numTrainingExamples, trainingSetIndex [set]);

register unsigned int i = stopListLength;

while(i—-)
if (strcmp (stopList[i], word) == 0)
return(1);
return (0);

}

// calculate statistics for dataset
void FeatureExtractor:: calculateStatistics (void)
{
register unsigned int i, j, k;
register short unsigned int flag;
register double currentBestEIG, lastBestEIG;
register unsigned int currentBestEIGIndex, traininglndex, testIndex;
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// calculate statistics
pSelf = double(numTrainingSelf) / double(numTrainingExamples);
pNonself = double(numTrainingNonself) / double(numTrainingExamples);

IS = —1.0 = (pSelf % log2(pSelf) + pNonself % log2(pNonself));
// reset statistics
i = numWords;
while(i—-)
{
present[i] = absent[i] = presentSelf[i] = absentSelf[i] =\
presentNonself[i] = absentNonself[i] = this—>flag[i] = 0;
EIG[i] = pPresent[i] = pAbsent[i] = pSelfPresent[i] = \
pNonselfPresent[i] = pSelfAbsent [i] = pNonselfAbsent [i] = 0.0;

}

for(i = 0; i < numTrainingExamples; i++)
for(j = 0; j < numWords; j++)
if (documentClass [trainingVector[i]] == SELF)

{

if (wordTable[trainingVector [i]][j])

presentSelf[j]++;
present [j]++;

else

absentSelf [j]++;
absent [ j]++;

}

else

{
if (wordTable[trainingVector [i]][j])

presentNonself [ j]++;
present [j]++;

else

{

absentNonself [ j]++;
absent [j]++;

}

(i = 0; i < numTrainingExamples; i++)
for(j = 0; j < numWords; j++)
{

if (present[j])

{
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pPresent[j] = double(present[j]) / double(numTrainingExamples);
pSelfPresent [j] = double(presentSelf[j]) / double(present[j]);
pNonselfPresent[j] = double(presentNonself[j]) / double(present[j]);

}
if (absent[j])

pAbsent[j] = double(absent[j]) / double(numTrainingExamples);
pSelfAbsent [j] = double(absentSelf[j]) / double(absent[j]);
pNonselfAbsent [j] = double(absentNonself[j]) / double(absent[j]);

}

EIG[j] = IS + pPresent[j] * (pSelfPresent[j] * \
log2 (pSelfPresent [j]) + \
pNonselfPresent[j] * log2(pNonselfPresent[j])) + \
pAbsent[j] * (pSelfAbsent [j] x log2(pSelfAbsent[j]) + \
pNonselfAbsent [j] * log2(pNonselfAbsent [j]));

}

lastBestEIG = 200.0;
currentBestEIGIndex = 0;
for (i = 0; i < vectorLength; i++)

{
currentBestEIG = —100.0;
for(j = 0; j < numWords; j++)
if ((EIG[j] > currentBestEIG) \
&& (EIG[j] <= lastBestEIG) \
&& Tthis—>flag[j])
{
flag = 0;
for(k = 0; k < numTrainingExamples; k++)
if (wordTable[trainingVector [k]][j] != 0)
{
flag = 1;
break;
}
if (flag)
currentBestEIG = EIG[j];
currentBestEIGIndex = j;
}
}
// add to list
trainingWords[i] = currentBestEIGIndex ;
this—>flag [currentBestEIGIndex] = 1;
lastBestEIG = currentBestEIG ;
}
trainingSet—>size = numTrainingExamples;
testSet—>size = numDocuments — numTrainingExamples;
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trainingSet—>vectorLength = testSet—>vectorLength =
dataSet—>vectorLength = vectorLength;

trainingIndex = testIndex = 0;
for (i = 0; i < numDocuments; i++)
{

for(j = 0; j < vectorLength; j++)
if (wordTable[i][trainingWords[j]])

dataSet—>featureVector[i]->value[j] = 1;
else
dataSet—>featureVector [i]->value[j] = 0;
dataSet—>vectorClass[i] = documentClass[i];

dataSet—>featureVector[i]->length = vectorLength;

flag = 0;
j = numTrainingExamples;
while(j——)
if (i == trainingVector[j])
{
flag = 1;
break;
}
if (flag)

for(j = 0; j < vectorLength; j++)
if (wordTable[i][trainingWords[j]])

vectorLength ;

trainingSet—>featureVector [trainingIndex]->value[j] = 1;
else
trainingSet—>featureVector [trainingIndex]->value[j] = 0;
trainingSet—>vectorClass [trainingIndex] = documentClass[i];
trainingSet—>featureVector [trainingIndex]—>length = vectorLength;
trainingIndex++;
}
else
{
for(j = 0; j < vectorLength; j++)
if (wordTable[i][trainingWords[j]])
testSet—>featureVector[testIndex]|—>value[j] = 1;
else
testSet—>featureVector[testIndex]|—>value[j] = 0;
testSet—>vectorClass[testIndex] = documentClass[i];
testSet—>featureVector [testIndex]—>length = vectorLength;
testIndex++;
}
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B.2.13 NaiveBayesianClassifier.h

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/*******************************>l<>l<>k>k>k>l<>l<>l<>l<>k>k>k>l<>l<>l<*******>l<>k>k>k>l<********************/

/******************************************************************************/
/* naive bayesian classifier routines * /
/******************************************************************************/

#ifndef NAIVEBAYESIANCLASSIFIER H
#define NAIVEBAYESIANCLASSIFIER H

// headers
#include ”DataSet.h”

/]

// naive bayesian classifier class

/]

class NaiveBayesianClassifier
{
public:
NaiveBayesianClassifier (const unsigned int classifierSize);
“NaiveBayesianClassifier(void);

unsigned int classifierSize;

unsigned int totself, totnonself; // total self/nonself
double pself, pnonself; // probabilities

unsigned int xpresent, xabsent;

unsigned int xpresself, xabsself;

unsigned int xpresnonself, xabsnonself;

double xpselfpres, xpnonselfpres, *pselfabs, % pnonselfabs;
double xppres, *pabs;

void train (DataSet xdataSet);
double test (DataSet xdataSet);

}s

#endif
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B.2.14 NaiveBayesianClassifier.cpp

/************************>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<********************/

/+ artificial immune system concept learner v1.0 */
/* copyright (c) 2002 jamie twycross, jamie@milieu3.net */
/+ released under the gnu general public license */

/************************>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<>I<********************/

/******************************************************************************/
/* naive bayesian classifier routines * /
/******************************************************************************/

// headers
#include ”"NaiveBayesianClassifier.h”
#include 7" Classifier .h”

// constructure — create naive bayesian classifier

NaiveBayesianClassifier:: NaiveBayesianClassifier( \
const unsigned int classifierSize)

{

this—>classifierSize = classifierSize;

pself = pnonself = 0.0;

totself = totnonself = 0;

pselfpres = new double [classifierSize ];
pselfabs = new double [classifierSize ];
pnonselfpres = new double [classifierSize ];

pnonselfabs = new double [classifierSize];
present = new unsigned int [classifierSize |;
absent = new unsigned int [classifierSize];

presself = new unsigned int [classifierSize|;
presnonself = new unsigned int [classifierSize];
absself = new unsigned int [classifierSize ];
absnonself = new unsigned int [classifierSize |;
ppres = new double [classifierSize ];

pabs = new double [classifierSize];

}

// destructor
NaiveBayesianClassifier::” NaiveBayesianClassifier(void)

{

delete [] pselfpres;
delete [] pselfabs;
delete [] pnonselfpres;
delete [] pnonselfabs;
delete [] present;
delete [] absent;
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delete [] presself;
delete [] presnonself;
delete [] absself;
delete [] absnonself;
delete [] ppres;
delete [] pabs;

}

// train naive bayesian classifier
// dataSet — dataset to train on
void NaiveBayesianClassifier:: train (DataSet *dataSet)

{

register unsigned int i, j;

totself = totnonself = 0;

i = classifierSize;
while(i—-—)
present[i] = absent[i] = absself[i] = absnonself[i] = presself[i] = \
presnonself[i] = 0;
}
i = dataSet—>size;
while(i—-)

{

switch(dataSet—>vectorClass[i])

{
case SELF':

totself++;
break;

default :

totnonself++;
break;

}

pself = double(totself) / double(dataSet—>size );
pnonself = double(totnonself) / double(dataSet—>size);

i = dataSet—>size;

while(i—-)

{
j = classifierSize;
while(j——)

{

switch(dataSet—>featureVector[i]—->value[j])

{

case 0:
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switch(dataSet—>vectorClass[i])

{

case SELF:
absself [j]++;
break;

default :
absnonself [j]++;
break ;
}
present [j]++;
break;

case 1:
switch(dataSet—>vectorClass[i])

{
case SELF:

presself [j]++;
break ;

default :
presnonself [j]++;
break;

}

absent [j]++;

break ;
default :
break ;
}
}
}
i = classifierSize;
while(i—-)
{
ppres[i] = double(present[i]) / double(dataSet—>size);
pabs[i] = double(absent[i]) / double(dataSet—>size );
if (present[i])
pselfpres[i] = double(presself[i]) / double(present[i]);
pnonselfpres[i] = double(presnonself[i]) / double(present[i]);
if (absent[i])
pselfabs[i] = double(absself[i]) / double(absent[i]);
pnonselfabs[i] = double(absnonself [i]) / double(absent[i]);
¥
}
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}

// test mnaive bayesian classifier

// dataSet — dataset to test on

// returns predictive accuracy

double NaiveBayesianClassifier:: test (DataSet *dataSet)

{

register unsigned int i = dataSet—>size, j;
register unsigned int correct = 0;
register double selfval, nonselfval;

correct = 0;

while(i—-)
selfval = pself;
nonselfval = pnonself;
j = classifierSize;
while(j——)

selfval x= ((dataSet—>featureVector[i]->value[j]) ? (pselfpres[j])

(pselfabs[j]));
nonselfval = ((dataSet—>featureVector[i]->value[j]) 7 \

(pnonselfpres[j]) : (pnonselfabs[j]));

if(selfval > nonselfval)

{

if (dataSet—>vectorClass [i] == SELF)
correct++;
}
else
if (dataSet—>vectorClass [i] == NONSELF)
correct+-+;

return(double(correct ) / double(dataSet—>size));
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