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Recent computer worms pose a major threat to large computer 
networks, and it is a general belief that understanding their means 
of propagation will help to devise efficient control strategies. This 
dissertation proposes a new epidemiological model to account for 
particular characteristics of computer worm epidemics. This new 
model, termed the Progressive Susceptible-Infected-Detected-
Removed (PSIDR) epidemiological model, incorporates new 
aspects related to the availability of antivirus signatures, to the 
existence of direct immunization, and to the presence of a curing 
phase. Various costs are incorporated in the model, which allow us 
to determine the best strategies to fight worms. The model 
undergoes an extensive series of validation tests, its properties 
being evaluated mostly numerically. The model shows good 
agreement with empirical data. The paper then investigates current 
response strategies as well as the effect of virus throttling. The 
model yields both practical recommendations and new insights 
about the observed low prevalence of worms over the Internet. 
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1. INTRODUCTION

Lately, computer worms have become a major problem for large computer net-
works, causing considerable amounts of resources and time to be spent recover-
ing from large-scale attacks [31]. It is believed that understanding the factors
influencing worm propagation in technological networks (such as the Internet,
the World Wide Web, phone networks, IP networks, etc.) will suggest useful
ways to control them. So far, a few studies have employed simple epidemiolog-
ical models to understand general characteristics of virus1 spreading.

Epidemiological models have traditionally been used to understand and pre-
dict the outcome of virus outbreaks in human [35] or animal populations [11].
However, the same models were recently applied to the analysis of computer
virus epidemics [26]. For example, using a simple model it has been shown that
networks that have a topology similar to the Internet are highly vulnerable to
viral attacks [44].

This dissertation introduces a new model that accounts for important char-
acteristics of technological outbreaks. Indeed, a new model had to be invented
because older models incorporate false assumptions about the basic dynamics
of technological epidemics. The new model, based on the typical course of a
worm infection, captures several important aspects not previously mentioned:

• Direct immunization Whenever a user installs an antivirus software (or
updates it) on a machine, this machine is automatically immunized to
a certain group of viruses. In previous models, machines could become
immune to a virus only by first being infected by it. In the real world, this
would imply that users wait to become infected, and then (when its too
late), install the antivirus. The new model allows for machines to become
immune before they are infected by a virus. Simulations of this model
show that the outcome of the epidemic event differs from what had been
predicted by older models.

• Antivirus availability Most of the times, the antivirus is not available when
the epidemic event starts. It is only after a certain period of time that
an efficient method to deal with the worm is made available. Simulation
results indicate that the duration of this period (called the response time)
can have drastic consequences on the magnitude of the damage caused by
a worm.

1 In this dissertation, the terms virus and worm are used interchangeably unless mentioned
otherwise. See [13] and [36] for definitions of virus and worm respectively.
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• Curing process Once it is realised that a particular machine is infected,
the machine is disconnected from the network, cleaned up, equipped with
a new antivirus and then is reintroduced in the network. Note that the
machine is isolated from the network to ensure that it does not contam-
inate other computers. In a theoretical model, it means that computers
do not jump directly from being infected to being cleaned up and good to
go: there is a period in the middle where the computer is in the process of
being cured. Normally, cleaning up a computer involves manual labour,
which consumes significant amount of time and other resources (especially
in large corporations). Therefore, the new model includes a transitionary
state between that of being infected and being cleaned up. By calculating
how many machines are in this transition state at any instant in time, it
is possible to estimate the cost involved in fixing the computer. Previous
models, because of their very fundamental structure, cannot estimate this
cost.

The new model was tested on a series of experiments in order to answer
three kinds of questions.

First, is the model a good account of real epidemics? Very little data exists
on the epidemics of computer worms. Nonetheless, simulations of the model
agree with existant data. Moreover, the model can account for the gener-
ally low prevalence of worms on the Internet, an observation that has puzzled
researchers[44].

Second, is the new model significantly better than previous models, and is
the increase in complexity necessary? Explicit comparisons with an older model
suggests that this is the case. Moreover, the fact that various costs are easily
estimated with the model allows it to define what the best antiviral response is
in terms of costs. In this respect, simulations indicate that the best strategy to
reduce various costs is to keep the response time as low as possible. Note that
previous models could only evaluate the efficacy of a curing strategy by looking
at the number of infected machines over time.

Finally, the model also yields interesting predictions about new strategies
to control computer worms. In this dissertation, the effect of virus throttling
(slowing the speed at which the virus can spread to other computers) [53, 54] is
shown to have a positive effect on the outcome of an outbreak.

In addition, the basic dynamics of the model were validated by an extensive
series of simulations on simpler models. Confirmations of earlier results and
predictions suggests that the basic dynamics of the simulations are not corrupted
by implementation artifacts.

The main contribution of this study is the introduction of a new—more
realistic—epidemiological model meant to target technological outbreaks. Not
only is this work important for a proper evaluation of current methods used to
fight against worms, but also for the design of new control strategies.

The dissertation starts with a quick review of epidemiological models and
computer networks. The new epidemiological model is presented in Chapter 3.
Following a series of validation experiments in Chapter 4, the results for various
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simulations are then reported in Chapter 5. The dissertation ends with a general
discussion about implications of the results.



2. EPIDEMIOLOGICAL MODELS IN NETWORKS

This chapter separately reviews epidemiological models and network topologies.
A more detailed review of the various models and results concerning the different
topologies is presented in Appendix A.

2.1 Elements of epidemiological models

Epidemic models study the propagation of a virus in a population of individuals
(hosts) [35]. One fundamental assumption of all models is that the time-scale of
the viral infection is much smaller than the normal lifespan of hosts [34]. This
means that the size of the population of hosts is taken to be constant.

In general, epidemic models assume that individuals go through a series
of states at a certain constant set of rates. Therefore, the elaboration of a
model requires the definition of a set of possible states and of a set of transition
rates. The simplest model, referred to as the SIS model (for Susceptible-Infected-
Susceptible) and illustrated in Figure 2.1, is taken here as an example:

• Set of states of the SIS model. In this simple model composed of two
different states, each individual can be in either the Susceptible (S) or the
Infectious (I) state. Susceptible individuals are simply healthy individu-
als that can potentially be infected by a virus. Infectious individuals are
thoses that have contracted the virus and can now infect the remaining
susceptible ones (by direct contact with susceptible individuals, for exam-
ple). After a variable period of time, infected (≡infectious) individuals
may naturally recover from the disease, and then go back to the suscep-
tible state. Once they are back in the susceptible state, they can become
infected again: thus in the limit, any particular individual will perpetually
move between the two states as in S → I → S → I → S → I → S....

• Set of rates of the SIS model. Two rates of transition are needed to
describe the model. The first one (termed the birth rate, and symbolised
by the letter β) controls transitions from the S to the I state, and the
second one (termed the cure or death rate, and symbolised by the letter δ)
regulates transitions from the I to the S state. The rates can be conceived
of as probabilities: susceptible individuals become infected by the virus
with probability β and infected individuals recover with probability δ.
Thus, if β is large relative to δ (say, β = 0.9 and δ = 0.1), most individuals
will tend to be in the infected state.
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Fig. 2.1: The SIS model. Each individual oscillates between the Susceptible (S)
state and the Infectious (I) state. The susceptible individual becomes infec-
tious at a rate β (birth rate) if it is connected to one or more neighbours.
The infectious individual becomes susceptible at a rate δ, independent of its
neighbours.

Other more complex models include the Susceptible-Infected-Removed (SIR)
[34] model and the Susceptible-Exposed-Infected-Removed (SEIR) model[14].
The former states that individuals cannot go through a perpetual loop as in
the SIS model (S → I → S → I → S → I → S...). Instead, susceptible individ-
uals that have been infected once and then recover from the virus are considered
immune (or simply dead) to further infections. Once the individual is immune,
it can no longer transmit the disease to other neighbours. The chain of events
is thus of the type S → I → R. Note that, as in the SIS model, the same
fixed rates (birth rate β, and cure(death) rate δ) are assigned to the transitions
between states.

The SEIR model is very similar to the SIR model, but it accounts for the fact
that some viruses go through a latent period before the host becomes infectious.
Typically, a virus will infect a susceptible host (S) before going in the latent
period. During the latent period, the host is infected but is not infectious, a state
called exposed (E). After some time, the same host becomes infectious (I), and
later becomes immune or dead (R). The SEIR model requires the definition of
an additional transition rate, meant to regulate transitions between the exposed
and the infected states.

2.2 Network topologies

As mentioned above, susceptible individuals become infected at a certain rate
β if they are in contact with an infectious individual[44]. This implies that the
patterns of contacts between individuals are known.

Patterns of contact are represented with graph models. Graphs are composed
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Pajek

Fig. 2.2: Fully connected graph with 16 vertices. Each individual (vertex) can in-
fect each of the other 15 individuals through a direct physical contact (edge).
All graph drawings in this thesis were performed using Pajek [5].

of a set of nodes (≡ vertices) connected by a set of edges. Vertices connected to
a given node (each through a different edge) are called the neighbours of that
node. The number of neighbours of a given node is called its degree[19]. Two
individuals (each represented by a different node), are said to have some sort of
direct contact if an edge exists that links the two nodes.

2.2.1 Homogeneous graphs

The simplest possible graph is the fully-connected graph: each node is connected
to every other node (see Figure 2.2). Fully connected graphs are also called
homogeneous graphs (HM)[26].

In this dissertation, HM graphs are considered to be good models of some
technological network topologies. It has been argued that fully-connected graphs
do not offer a realistic account of computer networks [26]. Users tend to com-
municate with a subset of users, not with everyone in the network. Therefore,
the pattern of connections is not really fully-connected. Other graphs have
been proposed to model technological networks. The tree network, for example,
models technological nets as being an ensemble of communities with many con-
nections intra-community but few connections inter-community. Lattice graphs
and random graphs have also been proposed as alternatives [25]. It was true that
network topology diverged from the HM graph in the case of ancient viruses,
since they could only spread via exchanges between users. However, in re-
cent large corporate networks, where massive mailing lists are stored in each
employee’s address book, the topology of the network truly resembles a fully-
connected graph. For example, many email worms send a copy of themselves
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to every email address that they find on an infected host. If one of those email
address is in fact a mailing list (as in corporate networks), the worm sends itself
to everyone in the mailing list. IP networks are also thought to be homogeneous,
since it is possible to reach all IP adresses from any particular IP address [48].
Thus, some technological networks display a homogeneous topology.

2.2.2 Scale free graphs

Recent studies have shown that the topology of some technological networks is
represented by a class of graphs called scale-free networks (SF). In SFs, most
machines have very few connections to other neighbours. However, a few nodes
have a very large number of connections [3]. A typical SF is shown in Figure 2.3.
For example, the graph of links between web pages in the World Wide Web [4]
and the Internet router map are both SF networks [1]. A SF graph can be
constructed by starting with a fixed set of nodes, and then adding new nodes
one at a time for an arbitrary number of timesteps, a principle called incremen-
tal growth. Each new node is connected to the existing network by randomly
selecting one or more neighbours according to their degree, a principle called
preferential connectivity. In real networks, these phenomena of incremental
growth and preferential connectivity are also present, which probably explains
their scale free structure [3].

SF networks are part of the superclass of small world networks [2]. In gen-
eral, small world networks have a small diameter, which means that very few
hops are necessary to travel between any two nodes [39]. The map of human
contacts (both social and sexual contacts) is a small world network [52, 1]. That
is, some people have many contacts with other people, but some have few con-
tacts. Moreover, it is the case that any two people are related by a relatively
small number of intermediate acquaintances[52] (small diameter). Similarly, in
email networks (not corporate email networks, but email networks in general),
some people have a lot of email addresses in their address book, while some
have just a few. Unsurprisingly, the email network has been found to be a SF
network[18]. Mobile phone networks may also be SF networks [50]. Therefore,
in this dissertation, the scale free topology is taken to be an adequate model
of some technological networks topologies. The scale-free structure appears to
be pervasive in a wide range of technological (and biological) phenomena [16],
probably because most realistic networks turn out to be built according to the
principles of incremental growth and preferential connectivity. A method that
uses those principles to create scale-free graphs is presented in Appendix B.

2.3 Epidemics and network topologies

Various network topologies exist and each has different properties. It has been
shown that the particular topology of a network (i.e. whether it is a SF or a HM
network) influences the propagation of a virus. For example in a HM network,
using the SIS model of virus propagation, it is possible to show the existence
of an epidemic threshold λ = β/δ [25]. That is, if the birth rate (β) of a virus
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Pajek

Fig. 2.3: Scale free graph with 100 vertices. Graphs such as this are thought
to represent many technological networks including the Internet, the WWW
and email networks.

is high enough compared to the cure rate (δ), the virus will infect a substantial
fraction of nodes in the network. However, if the cure rate is higher than the
birth rate, the virus will die out until no one is infected. Formally, if β > δ, an
outbreak occurs; if β < δ, no major outbreak will happen.

In other graphs like the random network (ER), the tree, or even the lattice
model, the threshold behaves differently [25]. Recent studies show that SFs
don’t have an epidemic threshold [44]. Thus, when modelling virus propagation,
it is important to consider not only the epidemic model but also the network
topology.

2.4 Summary

Epidemiological models are described as a set of states with transitions rates
between states. Different models have different predictions about the evolution
and outcome of an outbreak.

The topology of a network also plays a role in determining the outcome of an
outbreak. Technological networks appear to be best approximated using scale
free graphs or homogeneous graphs in some cases.

In the next chapter, a new model is proposed to account for technological epi-
demics. As for any epidemiological model, it is described as a set of states with
transition rates. In the following chapters, analytical predictions and numeri-
cal simulations will be conducted on both homogeneous and scale free graphs
since they span the whole range of technological networks. This means that the
results of the new model will be extensible to a broad variety of technological
networks.



3. THE PROGRESSIVE SIDR MODEL

In this chapter, based on ideas gained from previous models, a new epidemi-
ological model is presented that models real processes going on in computer
epidemics. The chapter starts by looking at characteristics of a typical out-
break. In the second section, aspects of real outbreaks are included in the
PSIDR (Progressive Susceptible-Infected-Detected-Removed) model, first in an
informal way and then analytically. The definition of the PSIDR model is also
accompanied with a discussion about relevant details of its various parameters.
A third section mentions aspects not included in the model. The chapter ends
with a brief summary.

3.1 Time course of a technological outbreak

Let’s imagine the sequence of events that happen when a worm tries to infect a
technological network. For simplicity, the network considered here is the email
network of a large corporation. One assumption is that all computers in the
network have some sort of antivirus software. This software can be updated at
a regular rate, say once a day, to make sure that the latest virus signatures are
included in the antivirus (AV) software1.

The first event to happen is the primary infection. For example, an em-
ployee opens a file (executable) attached to an email sent from someone from
outside the company. This program, once executed, sends itself to some of the
employee’s contacts (say, the first ten addresses in the address book). Unfor-
tunately, if some of these contacts are in fact mailing lists (lists of contacts),
then the worm has the potential of infecting all the contacts listed on it. Once
the other users receive the sent emails, some of them may or may not open it
immediately, depending on various factors (such as personal habits, etc.).

Before the worm can be cleaned from computers, it has to be detected first.
Detection will be particularly difficult when the worm doesn’t inflict any direct
payload to the machines. Moreover, AV software will only detect worms for
which it has the signatures. Therefore, once a few instances of a virus have
been noticed, antivirus companies will strive to extract the virus signature and
make it available so that all computers can update their AV software. The first

1 A virus signature is a pattern of instructions, specific to the virus, that is always found
in infected files. To know if a file is infected by a virus, the AV scans the file to try to find
patterns that correspond to the virus’ signature. If the file turns out to be infected, the AV
software indicates to the user that there might be an infected file on his computer. Then,
depending on the virus, appropriate action is taken by the user.
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instances of the worm will be noticed for various reasons. In some cases, the
performance of the network is hampered because the various copies of the worm
take too much bandwith. In some other cases, the payload inflicted clearly
indicates that there is an infection. Note that there are many other ways one
could detect an outbreak, such as having “vigilent staff” or even monitoring from
AV vendors. At this crucial instant, the users are aware of the actual threat,
and start to elaborate a scheme to stop it. Once the signature is available, any
user that logs into his computer can automatically update his AV software with
the last signature.

As more user integrate the new AV, uninfected computers will then be im-
munized against the worm, and infected computers will gradually be detected.
In a large corporate network, the typical reaction when a machine is found to
be infected is to call the technical support and ask for a complete clean-up.
Usually, the first thing to do at this time is to isolate the host so that it cannot
infect other hosts: the user pulls the cables and shuts the computer down to
prevent further effects of the payload. That is, the infected computer goes from
an infectious state to an infected but not infectious state (here called detected
state).

The duration of this state depends now on how quick the technical expert is
at cleaning-up the computer. It can take a few minutes to up to a few hours (or
even days). Once the computer is cleaned, it is put back into the network and is
already immunized to further infections because it has the new virus signature
included in its AV definitions.

The worm is eradicated (or extremely infrequent) when all computers are
immunized. In practice, there always are a few infections due to incomplete
immunization or to some users being unaware of the threat. If the prevalence
of the virus is plotted over time, it would look something like what is shown in
Figure 3.1.

It is the sequence of events just described that forms the basis of the PSIDR
model.

3.2 The PSIDR model

In this section, it is shown how aspects mentioned above are integrated in the
model. According to the Progressive Susceptible-Infected-Detected-Removed
model, epidemic events in computer networks can be divided into two chrono-
logical periods (see Figure 3.2):

1. The Pre-response period. First, an initial worm infects one machine in the
network. For the next few days (or hours), the worm propagates freely
in the network without being noticed by most users. In PSIDR terms,
this is modelled as a positive birth rate β and no cure. Susceptible nodes
therefore become infectious with probability β if they are in contact with
an infected node.

2. The Response period. After some time, the worm is detected on some
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Fig. 3.1: Time course of an epidemic outbreak. In the initial phase, the worm
spreads unoticed at a fast rate. At some time, users realise that there is an
outbreak, and take appropriate action. A virus signature is isolated and made
available to computers in the network (at time t = pi). One the one hand,
uninfected computers are directly immunized. Secondly, infected computers
are gradually cleaned-up and immunized so that the prevalence decreases
smoothly.
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Fig. 3.2: The PSIDR model for technological networks. In the pre-response
period, the virus spreads at a rate β without being cured from infected hosts.
At time=π (start of the response period), new infections are still made at a
rate β, susceptible hosts are immunized at a rate µ, and infected hosts are
detected at a rate µ and then cured at a rate δ.

machines and immediate action is taken to prevent further spread and
to cure infected computers. A worm signature is extracted and included
at a certain rate in the antivirus (AV) software of most machines in the
network. Machines that were not infected then become automatically
immune to the worm, and previously infected machines are being detected
at a certain rate (depending on how often the AV update is made). These
machines are then isolated, cured and immunized against further infection.
Again, in the PSIDR model this period is modelled with the same birth
rate as before, but this time susceptible nodes are immunized at a rate µ,
and infectious nodes are detected at a rate µ and then cured at a rate δ.
The rate µ represents the speed of the distribution of the AV signature.

The only detail left is the time when the system goes from the Pre-response
period to the Response period. In the PSIDR model, this time is represented by
a parameter π, which can take an arbitrary value. This parameter represents
the time it takes to have an AV signature since the first worm infection occured.

3.2.1 Specific contributions of the PSIDR model

As for the SIS, SIR and SEIR models, the PSIDR model is best described as a
sequence of states with rates of transitions between the states. The description
above highlights several factors that should be taken into account when mod-
elling virus propagation in computer networks. These are the main contributions
of the PSIDR model to epidemiological models in general.

• Variability of the cure rate. Originally, no infected computers are cured.
It is only after a certain period of time that instances of the worm start
to be identified and cleared from infected hosts. In the PSIDR model, the
epidemic event is thus divided into two chronological periods respectively
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termed pre-response and response periods. In the first period, viruses
spread at a rate β and are not cleared (the detection (µ) and cure (δ)
rates have zero value). Then, at some time determined by a parameter π,
the system jumps to the second period where infected hosts can now be
cured (the detection and cure rates respectively take fixed nonzero values).
Previous epidemic models did not account for this kind of variability of
the cure rate.

• Straight transitions from S to R. From the time the virus signature is avail-
able, susceptible computers can become immune without going through
the infected state if the AV software on susceptible hosts are updated be-
fore the virus could infect them. In the PSIDR model, this is represented
by possible straight transitions from S to R during the response period.
Specifically, in the response period, a susceptible host becomes removed
at a rate µ. Direct transitions like this were not included in older models.

• Detection state. In the response period, an infected (but still functional)
computer is identified only when the AV software is updated with the new
signature. Once it is detected, the user (or technician) isolates it from
the network and spends some time curing it. In the PSIDR model, this is
modelled by inserting a new state (called “D” for detected) between the I
and R states. In the response period, infected computers become detected
at a rate µ (since it depends on AV update), and then removed at a rate
δ. The D state stands for the period when the infected computer is in
the process of being cured by a technical expert (or by other means). The
inclusion of this state is a proper characteristic of the PSIDR model, never
mentioned in other models.

Note that the traditional SIS, SIR and SEIR models do not take these three
aspects into account 2. In the PSIDR model, the epidemic event is thus modelled
as a S → I system that becomes, after time t = π, a S → I → D → R system
with possible transitions of the type S → R. The reason why the model is
called Progressive is now clear: it is because of the Progression (or change) in
the system’s dynamics. The model is formally presented in the next section.

3.2.2 Formal definition of the PSIDR model

In this formal model, it is assumed that the number of computers in the network
(N) is constant.

The Pre-response period

For t < π, the following constraint must be satisfied:
2 Although it could be said that the SEIR model includes a state similar to the D state

(where individuals are infected but no infectious) major differences between both models reside
in the order of the states and the straight S→R transitions.
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S(t) + I(t) = N (3.1)

and the differential equations that govern the system are given by:

dS

dt
= −βSI (3.2)

dI

dt
= βSI (3.3)

In fact it is possible to deduce the second equation from the first one and vice-
versa.

The Response period

At time t ≥ π the following constraint now holds:

S(t) + I(t) + D(t) + R(t) = N (3.4)

Since there are more than two states, we can represent the evolution of the
network by a system of coupled differential equations:

dS

dt
= −βSI − µS (3.5)

dI

dt
= βSI − µI (3.6)

dD

dt
= µI − δD (3.7)

dR

dt
= δD + µS (3.8)

We can verify that dS
dt + dI

dt + dD
dt + dR

dt = 0 which implies that the system satisfies
Eq 3.4.
Finally, the starting conditions for the system are: S(0) > 0, I(0) > 0, D(0) = 0,
and R(0) = 0.

3.2.3 Estimation of costs

One advantage of the current model is that it suggests a natural and efficient
way of calculating various costs related to the epidemic event.

1. Fixing cost. The cost related to fixing the computers is related to how
long it takes to cure computers and to how many computers are infected
(i.e. were infected and now are in the D state). Therefore, this cost is
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measured as the sum of the number of detected computers over each time
step (the area under the curve calculated as a Riemann integral):

Fixing cost =
∫ T

π

D(t)dt ≈
T∑
π

D(t) (3.9)

2. Disruption cost. The cost of disruption is given by the area under the
curve of the number of infected nodes at each time step. It represents
how much of the network was affected throughout the outbreak. It is a
compound measure of how many computers are infected and of how long
they are infected. It thus captures a lot of information about the costs of
the outbreak. As for the fixing cost, the disruption is given by:

Disruption cost =
∫ T

t0

I(t)dt ≈
T∑
t0

I(t) (3.10)

3. Maximum number of infected nodes. This is also an interesting variable
since it gives an idea about the worst state of the system. Indeed, the
disruption can yield similar values for very different epidemic events, where
the maximum number of infected nodes can differentiate more between
types of events.

Maximum number of infected nodes = max(I(t))|t=T
t=t0 (3.11)

4. Time to immunization. Real networks are seldom completely immunized
(indeed, in large networks, it is not trivial to ensure that all machines have
been immunized), but they can become mostly completely immune to a
worm. Thus, the time it takes to immunize 95% of the network’s comput-
ers is calculated instead: note that this level of 95% is chosen somewhat
arbitrarily; levels of 90% or 99% could also have been chosen. It can be
advantageous to immunize the network as quickly as possible to prevent
any large outbreak. The time taken to mostly complete immunization is
thus measured as a function of the parameter configurations.

In addition to measuring traditional quantities, such as the number of sus-
ceptible and/or infected individuals at each time step, these four costs can be
measured and used to suggest the best response strategies. Note that models
such as SIS, SIR or SEIR cannot provide any indication regarding the fixing
cost.
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3.2.4 Model details

In this section, various aspects of the model are examined in more details to
show how it relates to real epidemic events.

The rate β is assumed to be constant and depends on how fast the virus can
propagate itself to new hosts. For example, the Code Red Virus (CRv2) could
probe hundreds of IP addresses per second [33]. In contrast, email worms are
thought to be much slower.

The parameter π represents the time taken to find a signature. Obviously,
in the current context, this parameter depends on how fast we are at finding a
good countermeasure to the viral attack. However, this is a parameter whose
value would likely be reduced by the use of automated systems for computer
security. It makes sense therefore to simulate the outbreak for different values
of π in order to estimate the relative merits of autonomous security systems.

If t < π, the rate µ = 0, when t ≥ π, µ takes a specific positive value where
µ << β. This is because often the anti-virus update is made only once or twice
a day, while the worm spreads a lot faster (hundreds of addresses per second
for example). The detection rate will also be influenced by the fact that not all
computers are switched on every day. In the present context, we could evaluate
the effect of a proactive policy where anti-virus update would be more frequent,
or of a relaxed one where update would be performed once a week for example.

As of now, the cure rate depends mainly on the number of technical staff
available to deal with the epidemic, the time it takes to cure a computer, and
the amount of time each staff member can spend on the problem. Also, since
cures are not always effective, some computers may not be cured the first time.
In today’s networking reality, most cures are performed manually, which means
that the cure rate will be much lower than the birth rate. Here again, the effect
of autonomous security systems can be evaluated, where the cure rate δ would
likely be increased.

3.3 Limits of the PSIDR model

The PSIDR model extends previous models to offer a better account of techno-
logical epidemics. However, here are some aspects that it does not capture.

• Variabilty in cure rate δ Indeed, the more infected machines there are,
the more people are assigned to fighting it. That is, δ ∝ I which is likely
to influence the time needed to get rid of the worm. The exact relation
between I and δ may be linear or non-linear. More data is needed in order
to settle this issue. The PSIDR model is easily extendable to a variable
cure rate.

• Variability in birth rate β In the case of self-launching worms, the spread-
ing rate is partly determined by how fast the worm will probe new IP
adresses. For example, in the case of CodeRed, the worm was programmed
to stop probing new hosts at midnight on the 20th of July. Other worms
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also had this stopping feature, causing the birth rate to be variable. Ap-
parently, the outcome of the epidemic outbreak was largely determined
by this feature [33]. Examples of models with periodicity include [6] for a
modelling of computer viruses, and [14] for measles epidemics.

• Other periodical parameters Some worms inflict damage periodically. For
example, the Klez.e worm only damages infected machines on the 6th of
every odd number month (January, March, May, etc.)[20]. It is not clear
how this aspect should be incorporated in the model, but it is likely to
play on the probability of detecting instances of the worm.

3.4 Summary

The PSIDR model is an alternative to traditonal models. Unlike previous mod-
els, it encompasses part of the variability in the cure rate δ, direct transitions
from S to R, as well as the isolation period (the D state) between the infectious
and removed states. In order to assess the relative benefits of the new model,
simulations are conducted with various parameter configurations. In addition,
the PSIDR model is explicitely compared to the SIR model in order to show
the influence of straight S→R transitions.

However, before this is done, simulations of simpler models are performed
in order to provide a good understanding of simpler dynamics, and to validate
the subsequent results. In return, this may facilitate the understanding of the
more complex PSIDR model.



4. SIMPLE EPIDEMICS IN HOMOGENEOUS AND
SCALE-FREE NETWORKS

In this chapter, four series of experiments are reported that serve both as a
reality check for further simulations, and as a way to get a good grasp of the
dynamics of simple models.

The first set of experiments shows that very few repetitions are necessary
to yield a reliable estimate of the average behaviour of homogeneous (HM)
networks. The SI (Susceptible-Infected) model is used for this purpose. The SI
model can be considered as SIS model with a cure rate of zero, or as the PSIDR
model in the Pre-response period. The fact that few repetitions are necessary
implies that simulation time can be reduced for HM networks.

Moving on to a more complex model, the second section reports simulations
on the SIS model in HM networks. It is possible to derive a prediction relating to
the prevalence (fraction of infected nodes) at steady-state (when the prevalence
does not change over time). The effect of timeslicing (dividing each timestep in
smaller periods) is also illustrated in this section.

The third set of simulations explores more complex issues related to the SIS
model in scale-free (SF) networks. In SF networks, the situation is not as trivial
as it is in HM networks. Work by Pastor-Satorras [44] offers some predictions
about the SIS model in SF networks of different sizes, for various birth rates
(β), and for various network densities (as determined by m). Some of these
predictions are validated by current results.

Finally, more complete simulations of the SI model are conducted in HM
and SF networks. The purpose of this is twofold: because it allows for a reality
check of simple dynamics, and because the SI model corresponds in fact to the
PSIDR model in its first phase (The Pre-response phase). The results reported
in this final section pave the way for the second phase of the PSIDR model in
the next chapter.

The method for creating SF networks is reported in Appendix B.

4.1 Variability in HM networks

A few experiments are conducted on the SI model to illustrate the fact that the
true behaviour of HM networks can be approximated with a relatively small
number of trials.

It is expected that the number of repetitions will not influence the average
prevalence recorded over time since the HM network is by definition not af-
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fected by any heterogeneities. For example, let’s consider the Y =
(
N
x

)
ways of

infecting x nodes at random in a network of N nodes. In a HM network, these
Y configurations are in fact the same configuration. In a SF network however,
due to heterogeneities in the network, these Y configurations are likely to be
different. Heterogeneities in the SF graph are present in two forms: large vari-
ations in the number and in the identity of neighbouring nodes. Therefore, in
a SF graph, it is important to average over a large number of trials in order to
smooth out the effects of heterogeneities. While there are a priori reasons to
run many repetitions on the SF network, it may not be necessary to do as many
repetitions for HM networks.

4.1.1 Method

One HM network of 6250 nodes is simulated for 100 timesteps. At each timestep,
each node is infected at a rate β if it is connected to at least one infected
neighbour (i.e. if one of its edges leads to an infected node). There is no cure in
the SI model, thus all nodes become infected given enough time. The number
of infected individuals is recorded at each timestep. Each timestep is divided in
ten small timeslices for continuous approximation (see next section). Update is
performed in parallel (the state of all nodes is updated at each timestep).

The simulations are run for 10, 50, 100, 200 and 1000 repetitions. Thus, it
is possible to see how well the behaviour of the system is approximated as a
function of the number of trials.

4.1.2 Results and discussion

The number of infected individuals is plotted over time in Figure 4.1. The
number of repetitions does not influence the average prevalence. Therefore,
when simulating the PSIDR model, the simulation time for HM networks is
reduced by setting the number of repetitions to around 100 (a conservative
number) for most simulations of homogeneous networks.

4.2 SIS model in HM networks

This section and the next cover the SIS model in HM and SF networks respec-
tively. A large number of recent studies [34, 44, 42, 43, 46, 7, 45] assume that
the number of infected neighbours does not significantly affect the probability of
infection. For simplicity, the same assumption is used here and in all subsequent
simulations. In HM networks, this has the important consequence of changing
the differential equation governing the spread of the worm from

dρ

dt
= βρ(1 − ρ) − δρ (4.1)

to the somewhat simpler
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Fig. 4.1: Average number of infected machines as a function of the number
of repetitions. All lines completely overlap each other and are not easily
distinguished. Since there is no noticeable difference between the averages
obtained with few or many trial, it is possible to cut simulation time by
performing only a few repetitions (10 to 50 repetitions).

dρ

dt
= β(1 − ρ) − δρ (4.2)

This model is valid as long as there is at least one infected node in the system.
The prevalence at equilibrium (ρeq) can be determined by setting dρ

dt = 0 and
solving for ρ:

ρeq =
λ

1 + λ

where λ = β
δ . The parameters β and δ are the birth and cure rates respectively.

As the birth rate is increased comparatively to the cure rate, it is observed that
limλ→∞ = 1. Conversely, if the cure rate is increased and the birth rate lowered,
limλ→0 = 0. Thus, in this recent version of the SIS model (on HM networks
only), there does not seem to be any epidemic threshold (except for the critical
point at λ = 0).

4.2.1 Method

A methodology similar to the one employed in [44] is used here. A single node
is infected at the beginning of each simulation run, and the propagation is made
according to the SIS model. The state of all nodes is updated at each iteration
(in parallel) for a total of 100 iterations. If a node has at least one infected
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neighbour, it becomes infected at a rate β. At the same time, infected nodes
are cured at a rate δ. Each simulation run is repeated 10 times. The birth
rate is varied ( 1

10 ≤ β ≤ 6
10 ) across simulations. In all simulations, the cure

rate δ = 0.4. The system reaches a stable state in the very first trials, and the
prevalence at equilibrium is recorded and plotted in Figure 4.2 as a function of
1/λ (λ = β/δ) and network size. Networks used are composed of N = 6.25×103,
N = 1.25 × 104 and N = 2.5 × 104 nodes.

Equation 4.2 is a continuous model of the system. However, numerical simu-
lations are based on discrete timesteps, which is generally considered an inexact
way to simulate real processes: discretization can induce error in the approxi-
mation of the continuous case. To clean this artifact, timesteps are divided in
small timeslices, and the values of the various transition probabilities (i.e. β, δ,
etc.) are divided by the number of slices. For example, if timesteps are divided
in n slices, then, over one full timestep, the birth rate equals n × β

n = β. The
effect of timeslicing on the accuracy of numerical results is also studied by run-
ning simulations with different number of timeslices (1, 10 or 100 slices). The
differences between the theoretical (continuous) prediction and the numerical
(discrete) results are reported in Figure 4.3.

4.2.2 Results and discussion

Numerical results confirm the theoretical predictions (see Figure 4.2). This im-
plies that the SIS model, as it was recently proposed, is accurately instantiated
in the current simulations. Note in Figure 4.3 how substantial improvements
in accuracy are achieved by using even a small number of timeslices (10 slices).
Moreover, using 100 fine slices is too computationally expensive for large-scale
simulations. Therefore, in subsequent simulations of the PSIDR model, simula-
tions will be run using 10 timeslices.

4.3 SIS model in scale-free networks

In this section, the SIS model is studied in SF networks. It has been shown
elsewhere [44] that SF networks updated according to the SIS model quickly
reach a steady state. At steady-state, the virus prevalence does not change
over time. If the simulated worm spreads quickly enough, the system reaches
a nonzero steady-state. However, if the worm spreads slowly, the prevalence
tends to zero (another steady-state called absorbing state)1. In this section, the
first experiments concern the effects of network size and spreading rate on the
prevalence at steady-state in SF networks.

In the SF networks used here (Barabási-Albert model), nodes have an aver-
age degree of 2m, where m is a free parameter (its value is chosen arbitrarily
when creating the network). This parameter can be thought of as the network
density. For a low m, most nodes will have very few connections (low density

1 This is only true for finite networks. Theoretical results indicate that, in infinite SF
networks, a nonzero state is always reached, independently of the spreading rate [44].
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Fig. 4.2: SIS model in HM networks. Prevalence at steady-state in HM networks
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of connections), but for a high m, most nodes will have many neighbours (high
density). The second set of experiments explores the effects of network density
and network size in SF (BA) networks.

4.3.1 Prevalence at stable state

Method

For simplicity, the same methodology used in [44] applies here. At the beginning
of each simulation run, half of the nodes are infected, and the propagation made
according to the SIS model. The state of all nodes is updated at each iteration
(in parallel) for a total of 100 iterations. If a node has at least one infected
neighbour, it becomes infected at a rate β. At the same time, infected nodes
are cured at a rate δ. In all simulations, δ = 1. Each simulation run is repeated
at least 1000 times (to allow for at least 1000 different starting configurations).
The birth rate is varied ( 1

20 ≤ β ≤ 1
8 ) across simulations. The system reaches a

stable state in the very first trials, the prevalence at equilibrium is recorded and
plotted as a function of 1/λ and network size. The major difference between the
current experiments and the ones reported in [44] resides in the network sizes
used: here the networks will be of N = 6.25×103, N = 1.25×104, N = 2.5×104

and N = 1 × 105 nodes. Larger networks were used in the original report, and
as such they bring a different analysis because they are susceptible to finite-
size effects to a lesser extent. Also, since timeslicing was not mentioned in the
original report, timesteps are not divided in fine slices.

Results and Discussion

Figure 4.4 shows the data currently obtained, and the data obtained by Pastor-
Satorras and Vespignani [44]. Since no numerical value is available, their data
was retrieved by taking two points from their figure, and fitting a curve of the
form y = Ce−x between the points.

The first result of interest is the relation between the final prevalence and
the spreading rate. Prevalence decreases as a function of 1/λ, which is indicated
by theoretical results ρ ≈ 2e

−1
mλ reported by Pastor-Satorras [44].

The second important result is the independence of the final prevalence from
the network size. Although it is true for high birth rates, it is obviously false
for smaller λ (smaller β). This difference in network size was not observed in
Pastor-Satorras’s paper. Indeed, in his report, data for all network sizes lie on
the dotted line. It is useful to note that he used larger networks to plot his
data. The discrepancy between the current results and their results might thus
be related to finite-size effects.

This brings up the third point: the critical threshold where the outbreak dies
out. The striking fact about scale free networks is the absence of an epidemic
threshold as demonstrated by ρ ≈ 2e

−1
mλ . However, this relation holds only if the

the size of the network is assumed to be infinite. Indeed, as it was demonstrated
later by Pastor-Satorras [43], the critical threshold in BA networks is given by
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Fig. 4.4: SIS model in SF networks. Final prevalence as a function of network size
and 1/λ. The original data of Pastor-Satorras is plotted as a dotted line. For
low 1/λ, prevalence is independent of network size. However, for high 1/λ,
larger networks display a higher prevalence than smaller networks. In general,
prevalence decreases with the inverse spreading rate (1/λ). Discrepancies
between current data and previous results are explained by finite-size effects
(see Figure 4.5)

λc = <s>
<s2> , where λ = β

δ , s is the average degree, and s2, the degree variance.
In an infinite network, s2 → ∞, hence λc → 0. However, in a finite network the
variance is finite and the epidemic threshold is introduced again. The average
epidemic threshold was calculated for each network size and plotted against the
same results in Figure 4.5. As predicted, the epidemic threshold tends to zero as
network size increases. Also, the prevalence reaches the absorbing state (ρ = 0)
in the neighbourhood of the epidemic threshold (especially for 6250 and 25000
nodes). One exception seems to be the network with 12500 nodes, where there
still is a nonzero (albeit very low) prevalence after the epidemic threshold. The
threshold for 100000 nodes is even lower and is not plotted on this graph.

Inconsistencies might be attributed to noise in the region of low spreading
rate (instability of the prevalence). It could also be due to a too small number of
repetitions (1000 for each network): since there are high heterogeneities in the
network’s connectivity, sampling just a few possible starting points can affect
the average. Finally, finite networks differ from infinite networks in two ways:

1. The finiteness of the variance

2. Departures from the theoretical distribution which strictly holds only for
infinite networks.

Pastor-Satorras’ analysis of finite-size effects only takes into account the first
type of effect [43]. Considering all these factors, it is not surprising that the
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Fig. 4.5: SIS model in SF networks with threshold. Final prevalence as a func-
tion of network size and 1/λ with thresholds. The epidemic thresholds for
each network size are plotted as straight lines. Departures from previous
data (dotted line) are explained by finite size effects. As the spreading rate
approches the epidemic threshold, prevalence tends to zero.

observed results for finite nets only partially agree with the finite threshold
prediction.

In general, the results for final prevalence can be explained by the existing
theoretical framework. This implies that the outcome of an outbreak will likely
be worse in large networks, than in small networks. This is obviously bad news
for large networks like the internet.

4.3.2 Evolution of prevalence and network density

Another prediction from the relation ρ ≈ 2e
−1
mλ is that the prevalence should

be higher in dense networks (density is determined by the parameter m). One
restriction imposed by the BA algorithm is that m ≤ m0. This means that m is
always finite and hence the prevalence can never reach 1 (unless the spreading
rate is itself infinite).

Method

Simulations of the SIS model were performed as before on networks where m=3,
4, 5 for a higher spreading rate (necessary to attain an endemic state in small
networks) to verify that the obtained prevalence would follow the prediction
(simulations were run on 10 SF networks, for 100 iterations and 1000 repeti-
tions).
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Fig. 4.6: Density and network size in the SIS model on SF networks for
densities of m=3, 4 and 5 and network sizes of N=6250, 12500 and 25000
(β = 0.125, δ = 1). Upper graph) The final prevalence is independent of
network size but scales with density. Lower graph) The time to reach the
steady-state is independent of network size but is inversely related to density.

Results and Discussion

The plot in Figure 4.6 (top) generally confirms a higher prevalence for larger
m. Moreover, the final prevalence is independent of network size.

Previous numerical and theoretical work offered no clues about the progres-
sion of prevalence over time. Current data suggests that the time taken to reach
the steady-state is independent of network size but is inversely related to density
(see Figure 4.6 (bottom)).

4.3.3 Discussion

The data obtained here confirms earlier results and predictions2. Finite-size
effects appear to be less prominent for high spreading rates (λ = β

δ ≈ 0.125). In
the PSIDR model, there is no straightforward definition of the spreading rate
(since there is also a µ parameter to consider). Nonetheless, the ratio of the
birth rate β to the cure rate δ should remain at a high value in order to minimize
artifacts: the following simulations of the PSIDR model are made accordingly.

4.4 SI model in HM and SF networks

The SIS and PSIDR models cannot be analysed in the same way since they
do not contain the same parameters, and the dynamics are inherently different

2 Although there were some problems concerning the replication of other aspects of the
data reported in [44]. The details are reported in Appendix C.
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(the SIS can reach a nonzero steady-state, while the PSIDR will always tend
to zero). The Pre-response period of the PSIDR model (formally equivalent
to a SI model) is covered in this section. The results obtained serve both as
a reality check and as a way of predicting virus prevalence when the response
starts. Homogeneous and scale-free networks are used since the PSIDR model
targets both kinds of technological networks.

4.4.1 Method

The SI model is simulated on HM and SF networks of 6250 and 25000 nodes.
The state of all nodes is updated at each timestep (in parallel) for a total of 150
iterations. If a node has at least one infected neighbour, it becomes infected
at a rate β. Timesteps are divided in 10 small timeslices to minimize effects
of time discretization. The number of infected individuals is recorded at each
timestep. Simulations are repeated 100 times in the case of HM networks, and
1000 times for SF networks. Results for both kinds of networks are treated in
separate sections.

4.4.2 Results

Fully connected (HM) graph

In a homogeneously mixed finite network, since δ = 0, the equation governing
the spread corresponds to the logistic growth:

∂ρ

∂t
= βρ(1 − ρ) (4.3)

Thus, for any spreading rate β > 0, given enough time, the virus will spread
to every computer in the network if there is no response. The solution to this
equation is given by:

ρ(t) = 1 − (1 − ρ0)e−βt (4.4)

In the simulations, ρ0 = 1
N , where N corresponds to the network size. Figure 4.7

displays the prevalence (fraction of infected nodes) in homogeneous networks of
different sizes and with different values for β. The time to 95% prevalence
is independent of network size, which is explained by the fact that the virus
spreads faster in larger networks. The predictions from the differential equation
are plotted in full lines. The predictions agree well with the data. In general,
this plot shows that the growth model is simulated adequately. Note that this
also constitutes a sanity check for the SIS model where δ = 0.

Virus spreading in homogeneous networks is rather quick due to the fact that
a virus can reach all the computers from a single node. This is alarming for
corporate email networks (some of which have a fully-connected topology), and
in some popular peer-to-peer networks, where each individual can potentially
connect to every other individual [12].
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Fig. 4.7: Pre-response phase in HM networks. Virus prevalence over time in HM
networks as a function of network size and birth rate (predictions plotted as
the full lines). The predictions are confirmed by the data. Given enough
time, all nodes become infected by the virus, independent of network size.
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The fact that analytical predictions and numerical results agree well with
each other suggests that simulations are not corrupted by implementation de-
tails. Moreover, the solution to the differential equation allows us to predict how
many machines are infected when the antiviral response comes into play, hence
we do not need to simulate the period before t = π in the case of homogeneous
networks.

Barabási-Albert (SF) model

In the case of scale free networks, the work of Pastor-Satorras gives indications
about the final state of the system, but it does not provide clues about the
progression of prevalence in time. Moreover, he assumes a cure rate of 1, while
the cure rate here is zero.

The number of infected individuals, as shown in Figure 4.8, follows a logistic
growth (V erhülst growth [35]). This classical shape is given by the solution to
the differential equation dρ

dt = βρ(1 − ρ). However this last equation assumes a
homogeneous mix hypothesis, where nodes have approximately the same number
of neighbours. What the figure shows is that the V erhülst growth still holds
in cases with high heterogeneity and with various birth rates. Although it may
not be possible to prove it analytically, it is easy to see how the growth in a
heterogeneous network relates to that in a homogeneous network.

The equation for the relative prevalence is:

∂ρk

∂t
= βk(1 − ρk)θ(β) (4.5)

In this version of Pastor-Satorras’ original formulation, the cure rate has
been set to zero. The θ(β) term represent the probability of a node to become
infected. It is analogous to the ρ term in the classical logistic growth func-
tion. Therefore, since all ρk progress similarly to the logistic growth, the total
prevalence ρ =

∑
k ρk follows the same course.

Contrary to the homogeneous case, there seems to be a slight difference in
the evolution of prevalence due to different network sizes. In the HM net, the
average number of neighbours increases directly with network size, while the
diameter remains the same (diameter=1). The speed of infection is therefore
the same whatever the network size. However, in the SF net, the average degree
remains the same for all network sizes, but the diameter increases logarithmically
with the size. In SF networks, the speed of infection is slower at the beginning
for larger networks, but gets faster than smaller networks after some point in
time (around t=33 for β = 0.05). The outbreak’s speed may become faster
because highly connected nodes in large networks have a higher degree than
their counterpart in small network: therefore, once these nodes are infected,
they can reach a larger number of nodes in a short time. But at the beginning
it is slower because a few more hops are needed to first reach them. Note that
the difference between small and large nets is increased by lowering the birth
rate.
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Fig. 4.8: Pre-response phase in SF networks. Virus prevalence in SF networks
over time as a function of network size and birth rate. Slight differences in
network size may be attributed to the topology.
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Fig. 4.9: The Pre-response phase and the initial prevalence. Different starting
conditions correspond to different timesteps. In HM networks, starting a
simulation at time t = 0 with one infected node and running the updating
until time step t1 is equivalent to starting at time t1 and infecting ρ1 nodes
at random.

4.4.3 Discussion

To summarize the results, the growth of the virus population is faster in ho-
mogeneous networks than in scale free networks, and follows a different growth
curve. It is possible to predict the prevalence in HM networks using the solution
given for the differential equation. The simulation time is thus reduced for the
full PSIDR model. Indeed, the initial period (before t = π) can be skipped by
setting the initial number of infected nodes to a predefined value. For example
in PSIDR, at time t = 1, perhaps only one computer will be infected, and at
t=10, 100 computers may be infected. By setting the initial number of infected
nodes at 100 (randomly selected nodes) we could start simulating the epidemic
as if it had started 10 time steps before (the situation si illustrated in 4.9).

In practice, this equivalence relation allows us to cut the simulation time
by π steps for homogeneous networks, as long as we acknowledge that differ-
ent initial conditions correspond to a different time in the epidemic event for
the introduction of the virus signature. This is an important results because
simulations of the PSIDR are surprinsingly computationally intensive and any
reduction in the simulation time deserves consideration.

The same cannot be said of heterogeneous networks. Pastor-Satorras has
indeed demonstrated that the probability of a node to be infected is proportional
to its degree [42] in the SIS model at stable state. Even if the assumption of
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stable state is removed, and in the PSIDR model, it is still true that a node
with many neighbours is more likely to become infected than a node with few
neighbours: since infection can only occur via transmission of the virus by a
neighbour. That is, the probability of a node with k links to be infected is
proportional to k. However, in a simulation started by infecting N nodes at
random, the probability of a node with k links to be infected is proportional to
P (k) (the fraction of nodes with k links). In a BA network, these two quantities
are inversely related as shown by P (k) = 2m2

k3 [3]. The distribution of the
fraction of infected nodes of degree k will not be the same if the simulation
is started by infecting 1 node and iterating the model π steps, than if the
simulation is started at time t = π with N infected nodes.

Moreover, if we want to test the effect of a virus slowing policy3, we may
need to simulate the period before t = π.

4.5 Summary

This chapter sets the foundations for further simulations on the PSIDR model.
It was shown that numerical accuracy could be greatly improved by dividing
timesteps in ten fine slices: this general principle is applied to all subsequent
simulations. It was demonstrated that very few repetitions are necessary to
obtain reliable estimations of the properties of HM networks. The simple dy-
namics of the SI model also imply that the Pre-response period does not have
to be simulated in those networks. This can result in a significant reduction
in simulation time. In SF networks, however, the Pre-response period must be
included in the simulations. Finally, results on the SIS model confirm various
predictions and indicate that a high birth rate β should be used in subsequent
simulations to minimize the magnitude of finite-size effects. Indeed, simulations
on the PSIDR model are more computationally intensive than other simula-
tions (due to the complexity of the model), and will therefore be run only on
small networks. Subsequent work could address the issue of network size on the
behaviour of the model.

3 Such mechanisms are active at any time, like in the virus throttling concept [54].



5. SIMULATIONS OF THE PSIDR MODEL

This chapter reports various simulation experiments made with the PSIDR
model. Let’s recapitulate the chain of events included in the PSIDR model,
shown again in Figure 5.1:

1. The Pre-response period (S → I). First, an initial worm infects one ma-
chine in the network. For the next few days (or hours), the worm propa-
gates freely in the network without being noticed by most users.

2. The Response period (S → I → D → R, S → R). After some time,
the worm is detected on some machines and immediate action is taken to
prevent further spread and to cure infected computers. A worm signature
(see Chapter 3) is extracted and included at a certain rate in the antivirus
(AV) software of most machines in the network. Machines that were not
infected then become automatically immune to the worm, and previously
infected machines are being detected at a certain rate (depending on how
often the AV update is made). These machines are then isolated, cured
and immunized against further infection.

The last section of the previous chapter concerned the Pre-response period.
It was shown (both numerically and analytically) that, given enough time, the
worm will infect all computers. Faster worms require less time to infect all
machines. In this chapter, properties of the second period are investigated
numerically. Since the PSIDR model contains many free parameters, many
different configurations can be tried in order to gain an adequate understanding
of the model. Here only a subset of values are explored to show basic dynamics
of the model.

The first set of experiments is meant to give a general overview of the model.
The time to initial detection (π) is set to different values to illustrate the main
effect of this factor.

In the second part, values for different parameters - time to initial detection
(π), detection and immunization rate (µ), and cure rate (δ) - are varied across
simulations. The emphasis is put on the interactions involving the π and µ,
π and δ, and µ and δ parameters. Current strategies to cope with computer
worms are modelled with these parameters, and one of the main goals of this
paper is to evaluate the efficiency of these methods.

A new way to cope with epidemics is to slow down the spread of the worm
[54]. In the present context, this strategy can be tested by simulating slower
birth rates (β). A third set of experiments investigates this issue. A proper
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Fig. 5.1: The PSIDR model for technological networks. In the pre-response
period, the virus spreads at a rate β without being cured from infected hosts.
At time=π (start of the response period), new infections are still made at a
rate β, susceptible hosts are immunized at a rate µ, and infected hosts are
detected at a rate µ and then cured at a rate δ.

study of this effect should involve simulations of the interactions between β and
the parameters π, δ, and µ. Only basic dynamics are shown here due to the
computational demands of these simulations.

Finally, the SIR model is compared to the PSIDR model when π = 0 in
order to show the influence of the direct transitions from S to R (one of the
main features of the PSIDR model).

Unlike for the SIS model, the focus is not explicitly put on the existence of a
possible epidemiological threshold. Indeed, it is not clear how the four different
parameters should be related to each other in order to represent an epidemic
threshold.

5.1 Method

Ten different scale-free (SF) networks of 6250 nodes and one homogeneous (HM)
network are used in the simulations. The state of all nodes is updated at every
timestep (parallel update) for at least 150 iterations. Timesteps are divided
in 10 small timeslices in order to approximate continuity and asynchrony in
the system. As in [44], simulations are repeated at least 100 times (to up to
1000 times) in the case of SF networks. Due to their robustness to noise (see
Chapter 4), only 50 repetitions are made for HM networks.

At each timestep, the numbers of infected, detected and removed machines
are respectively counted to provide the raw data. The four different costs men-
tioned in Chapter 3 (fixing cost, disruption, maximum number of infected nodes,
time to immunization) are calculated from this data.

5.1.1 Update rule

The update is performed according to the PSIDR model:
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1. In the Pre-response period (t < π), a node is infected at a rate β if it is
connected to at least one infected node.

2. In the Response period (t ≥ π), susceptible nodes become either infected
at a rate β or removed at a rate µ. At the same time, already infected
nodes become detected at a rate µ and detected nodes are removed at a
rate δ.

5.1.2 Estimation of parameters

Instead of calculating specific values for each of the parameters β, δ, µ and π,
their values are approximated in the following manner.

• Spreading rate Since worms spread considerably faster than they are de-
tected or removed, the value of β should be higher than the detection (µ)
and cure (δ) rates.

• Response time The number of timesteps before an initial detection (π),
is not constrained by any of the other parameters. Thus, values in the
interval 0 ≤ π ≤ 20 and also π = 40 are used to provide a general estimate
of the effect of this parameter.

• Detection rate The value of the detection rate is in between that of the
birth and cure rates due to the fact that it is partially automated (the AV
update is made automatically at least once daily by the software).

• Cure rate Since curing requires manual labour, it is rather slow: curing a
few dozens of computers can take days. Therefore, the cure rate is set to a
low value. In the following simulations, various values for δ are simulated
between δ = 0.03 and δ = 0.10. The actual cure rate (i.e. in real networks)
is probably somewhere near the lowest boundary δ = 0.03.

5.2 Results

5.2.1 General overview of the model

Figure 5.2 shows the behaviour of the PSIDR model over time.
The number of infected individuals increases steadily, peaks near t = π, and

then slowly decreases to zero. In contrast, the number of detected individuals
remains zero until the Response period, then increases until it reaches a certain
peak, following what it slowly goes down to zero. Finally, the number of immu-
nized/cured individuals increases from the time t = π until it saturates over all
the network.

The number of infected machines in the PSIDR model follows a similar course
than in the SIR model (see [34]). That is, there is a sharp increase followed by a
slow decrease, ending ultimately to zero. The exponential increase in prevalence
has been observed in the case of the Code Red (Crv2) worm [10] outbreak of
July 2001.
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Fig. 5.2: Overview of the PSIDR model. HM nets are displayed on the left and
SF nets are on the right. From top to bottom, π = 5, 20, 40 (β = 0.1, δ =
0.05, µ = 0.07). Initially, one node is infected, and the virus propagates freely
in the network. At t = π, the numbers of detected and removed machines
start to increase as the antiviral response comes in action. At the same time,
the number of infected machines decreases. Overall, SF networks are less
affected by the virus than HM networks for small π.
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Another interesting feature is the sharpness of the peak at the maximum
number of infected individuals. Indeed, the peak appears smoother when few
machines are infected, and sharper when almost all machines are infected. The
presence of this peak is important since in real computer epidemics, such a
strong peak is not observed [9]. Therefore, it could be an artifact created by
the model, which would suggest that the PSIDR model does not appropriately
capture real outbreaks. This peak may be due to two different factors:

1. The number of newly infected machines is small when most machines are
already infected. Thus, in practice, the birth rate is really small in these
cases. Also, if the birth rate itself is small compared to the other rates,
this kind of peak may occur even when the number of infected machines
is low.

2. The number of machines that go to the curing stage (transit from I to
D) follows a binomial law with probability µ. Therefore the number of
machines cured in a single timestep is expected to be D(t+1)−D(t) = Iµ.
As the number of infected machines approaches the network size, I reaches
its maximum value, hence the number of newly detected computers in a
single time step is the greatest at this time.

In the simulations, the combination of these two factors probably generates
this peak. This effect is expected in any finite networks, but should not be
present in an infinite network. In a real finite network (like the Internet), it is
often observed that worms have a low prevalence [44]. Moreover, typical worms
spread a lot faster than they are cured. Therefore, the absence of the sharp
peak may be explained by the first factor mentioned above (small number of
infected machines and higher birth rate than detection/cure rates).

Finally, for a relatively low π, the number of infected computers is smaller
in SF networks than in HM networks. Indeed, it takes longer for the worm
to infest the SF network because, in this network, the worm cannot reach all
neighbouring nodes from any infected node. However, when the time to initial
detection is longer, the worm has enough time to span over all the network, and
then the decay in prevalence follows a similar course for HM and SF networks
(see two bottom plots). This is due to the fact that the probabilities of detection
and of cure are unrelated to the topology.

In general, the PSIDR model seems to conform to the intuistic picture of
how real outbreaks occur in technological networks. In addition, it is compatible
with existing data about worm prevalence.

5.2.2 Effects of control parameters (π, µ, δ) on costs

Interactions between π and µ

This section concerns the interactions between the response time (π) and de-
tection rate (µ). Figures 5.3 and 5.4 report the values for HM and SF networks
respectively.
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Fig. 5.3: Costs as a function of π and µ in 6250 nodes HM nets (β = 0.1,
δ = 0.03) in the intervals 0 ≥ π ≥ 20 and 0.03 ≥ µ ≥ 0.10 (from top to
bottom). Interactions are clearly present. In order to benefit from the effect
of increasing µ, the response time π has to be kept as low as possible.
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Fig. 5.4: Costs as a function of π and µ in 6250 nodes SF networks (β = 0.1,
δ = 0.03) for π = 0, 2, 5, 10, 12, 15, and, 20 and µ = 0.03, 0.04, 0.05, 0.07
and 0.10 (from top to bottom). A similar situation than in HM networks is
observed, although costs tend to be smaller.
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The main effect on costs is due to the response time (π). That is, decreasing
response time decreases all costs.

Increasing the detection rate will also decrease all costs. A slight increase
in the detection rate µ (say from µ = 0.03 to µ = 0.04) greatly improves the
disruption cost and immunization time. The effect of µ is present on the fixing
costs and maximum prevalence only for low values of π in HM networks. The
same interaction between µ and π is observed for SF networks, although to a
lesser extent. This is because HM networks cannot benefit from immunization
when most nodes are already infected.

Applying these results to the real world, it is important to make the antivirus
signature available as soon as possible after the first few worm infections. Also,
costs will be improved by distributing faster the antivirus signature.

Interactions between π and δ

This section concerns the interactions between the response time (π) and cure
rate (δ). Figures 5.5 and 5.6 report the values for HM and SF networks respec-
tively.

In general, decreasing the response time (π) decreases all the costs. The cure
rate (δ) does not influence either the disruption or the maximum prevalence.
However, an increase in cure rate reduces the fixing cost and time to immu-
nization. This is intrinsically coded in the PSIDR model: the cure rate is not
meant to control transitions to or from the I state: it only transits units from
the D state to the R state. The two factors interact nonlinearly for the fixing
cost. That is, decreasing the response time has a greater effect on the fixing
cost for low values of δ. Again, keeping the response time as low as possible is
a priority, but a large increase in cure rate (say from δ = 0.03 to δ = 0.10) will
greatly improve some of the costs.

The maximum prevalence is higher in HM than in SF networks. The opposite
is also true for disruption. It indicates that the infection is more scattered
in time for SF networks but is never as acute as it is in HM networks. A
similar phenomenon has previously been observed in the case of the SIS model
[42]. It reflects the fact that infection is inherently slow in SF networks. This
phenomenon would probably be attenuated by using a higher detection rate,
because susceptible machines would then transit to the removed state instead
of waiting to be infected by the worm. In return, this explanation also accounts
for the longer immunization time observed in SF networks than in HM networks
(see bottom right plot in Figures 5.5 and 5.6).

Applying these results to the real world, it is again important to make the
worm signature available as soon as possible. If the fixing cost and immunization
time are the main concerns, curing infected computers faster will drastically
improve those costs.
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Fig. 5.5: Costs as a function of π and δ in 6250 nodes HM networks (β = 0.1,
µ = 0.05) for the intervals 0 ≥ π ≥ 20 and 0.03 ≥ δ ≥ 0.10 (from top
to bottom).The cure rate does not influence the disruption and maximum
prevalence as expected by the model. Response time and cure rate interact
on the other costs.
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Fig. 5.6: Costs as a function of response time π and cure rate δ in 6250 nodes
SF networks (β = 0.1, µ = 0.03) for π = 0, 2, 5, 10, 12, 15, and 20 and
µ = 0.03, 0.04, 0.05, 0.07 and, 0.10. The cure rate does not influence the
disruption and maximum prevalence as expected by the model. Except for
the time to immunization and disruption, the costs are lower in SF than in
HM networks. This is due to the fact that, in SF networks, the outbreak is
more scattered in time but never as acute as in HM networks.
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Interactions between µ and δ

This section concerns the interactions between the detection (µ) and cure (δ)
rates. Figures 5.7 and 5.8 report the values for HM and SF networks respectively.

In general, increasing the cure rate δ decreases the fixing cost, and increasing
the detection rate µ reduces the disruption cost. Both factors seem to have
a lowering effect on the time to immunization. This suggests that efficient
improvement in security strategies cannot be delimited to only one mechanism,
but have to be made in both aspects of the response (detection and cure),
in order to reduce most costs. Different topologies seem to respond in different
ways to the various parameters. In HM networks, the detection rate has no effect
at all on the fixing cost, but this is due to the response time π = 20 used in the
simulation, which cancels the effect of µ in HM networks (see Figure 5.3). Since
SF networks take more time to become infected, they can still benefit from an
increase in the detection rate (most nodes are available for direct immunization).
This explanation also accounts for the observed maximum number of infected
nodes, which does not change as a function of µ in HM networks, but does
in SF networks. Finally, the disruption may be accounted for by the same
explanation. However, it does not explain the really big improvement observed
when increasing µ from 0.03 to 0.05 in SF networks for the disruption cost. This
considerable improvement might be attributed to the increased probability of
immunizing highly connected nodes: it has been shown elsewhere that, once
those nodes are immunized, virus prevalence drops really quickly [15].

Applying these results to the real world, it is important to act on both
the antivirus distribution and the cure to have an effect on all costs. While a
faster cure will reduce the fixing cost, a faster antivirus distribution will reduce
the disruption. By increasing the speed of either factor, the network will be
immunized more quickly. In respect to network topology, it is important to
immunize highly connected nodes.

5.2.3 Spreading rate and virus throttling

Virus throttling refers to a strategy whereby monitoring network connections
allows for a reduction in speed of propagation of the infectious worm. Here,
for simplicity, the main effect of throttling is taken to be a reduction in the
birth rate to a low value (β = 0.05). The benefits of virus throttling (slowing)
are likely to be greater for fast worms. This hypothesis is tested by simulating
various birth rates (in the range 0.05 < β < 0.14) on HM and SF networks. The
course of the outbreak over time is shown in Figure 5.9.

SF networks appear to be more affected than HM networks by throttling.
Figure 5.10 clearly illustrates the effects on costs.

Slowing the propagation has the general effect of reducing the different costs.
The figure shows that throttling is most effective for faster worms, and in par-
ticular for SF networks. The time to immunization and the fixing costs are
the most improved by the slowing strategy. This is probably due to a single
phenomenon, that is, more computers are available for immunization when the
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Fig. 5.7: Costs as a function of the µ and δ in 6250 nodes HM networks
(β = 0.1, π = 20) for the interval 0.03 ≥ δ ≥ 0.10 and 0.03 ≥ µ ≥ 0.10
(from top to bottom). Different parameters act similarly on different costs,
but interact on the time to immunization. Both factors do not influence the
maximum number of infected machines.



5. Simulations of the PSIDR model 54

0.03 0.06 0.08 0.1

0.5

1

1.5

2

2.5
x 10

5 Fixing cost (D)

δ

M
a

c
h

in
e

s
 ×

  
ti
m

e
s
te

p
s

0.03 0.06 0.08 0.1
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5 Disruption cost(I)

δ

M
a

c
h

in
e

s
 ×

 t
im

e
s
te

p
s

0.03 0.06 0.08 0.1

3500

4000

4500

5000

Max number of infected nodes

δ

N
o

. 
o

f 
m

a
c
h

in
e

s

0.03 0.06 0.08 0.1
60

80

100

120

140

160

180
Time to 95% immunization

δ

T
im

e
s
te

p
s

+µ 

+µ 

+µ 

+µ 

Fig. 5.8: Costs as a function of the µ and δ in 6250 nodes SF net-
works (β = 0.1, π = 20) for δ = 0.03, 0.06, 0.08 and 0.10 and µ =
0.03, 0.05, 0.07, 0.09 and 0.10 (top to bottom). Contrary to what is observed
in HM networks, the detection rate µ influences the maximum number of
infected machines.
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Fig. 5.9: The PSIDR model as a function of spreading rate in HM (left) and SF
(right) networks (π = 20,µ = 0.07, δ = 0.05). Reducing the spreading rate
(β) affects the evolution of the outbreak. The effect of reducing the worm’s
speed is clearer in SF networks.
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Fig. 5.10: Effect of virus throttling on costs in HM and SF networks of 6250
nodes (δ = 0.05, µ = 0.07, π = 20). Bars represent the cost after throttling
as a percentage of the original cost (without throttling). In general, virus
throttling is most effective for SF networks and for higher β.
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spreading rate is slow (they are immunized before they are infected). Although
the benefits appear limited in HM networks, it must not be forgotten that the
value chosen for the birth rate after throttling (β = 0.05) is rather conservative
(high). The actual rate is likely to be smaller than the one assumed here, and
improvements in cost are likely to be more considerable.

5.2.4 Comparison with the SIR model

The PSIDR model is perhaps the most complex epidemiological model that has
attempted to capture technological epidemics. This beneficial increase in com-
plexity makes it more appropriate to describe the behaviour of real outbreaks.
However, it also complicates the analysis of the model due to interactions be-
tween different parameters. In this section, the effect of straight transitions
S → R is studied separately by comparing the PSIDR model to the SIR model.
It is shown that the PSIDR model can account for the general low prevalence
of worms over the Internet, which makes it a more powerful model than the
SIR model. One way to compare both models is to set π = 0 in the PSIDR
model. If the number of infected individuals is the only quantity of interest, the
D state can be assimilated to the R state. If the cure rate in the SIR model is
set to equal the µ parameter (detection and cure) in the PSIDR, the difference
observed between the SIR and PSIDR models should therefore reflect the pro-
cess of transiting some nodes directly from S to R. Immunization should have
the effect of reducing the total number of infected individuals by limiting the
number of susceptibles. There doesn’t seem to be any example of such kind of
immunization in the relevant literature: some work [45] used static immuniza-
tion (performed before the simulation) while here dynamic immunization is the
one at test.

The shape of the SIR model appears similar to what was observed in [34].
The SIR model appears to overestimate the number of infected machines, even
when detection in the PSIDR model is low. The difference is particularly large in
the case of scale free networks. The general low prevalence of computer viruses
over the Internet was attributed to its scale-free nature in [44]. However, this
explanation was flawed since the scale free structure of the Internet is valid only
for the router maps. Indeed, worms spread not on the router topology, but
really from one address to another, as in IP and email networks. Figure 5.11
shows that the low prevalence could be attributed to the existence of direct
transitions from S to R.

5.3 Summary of the results

5.3.1 Model validity and improvements over previous models

The general behaviour of the mode conforms to the intuitive picture of worm
outbreaks and to existing data on worm prevalence. Moreover, the low preva-
lence of worms on the Internet can be easily explained by the PSIDR model (as
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Fig. 5.11: The SIR model compared to the PSIDR model in HM (left) and SF
(right) networks of 6250 nodes (β = 0.1). Direct transitions from S to R
result in a lower prevalence, especially in SF networks.
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opposed to the SIR model). Costs defined by the PSIDR model, especially the
fixing cost, allow us to define the best strategies to fight worms.

5.3.2 Best control strategies

In general, it will be preferable to keep the response time (π) as low as possible.
This implies that the first instances of a worm must be detected really quickly,
and the worm signature made available in a very short time. Automated security
systems are advisable since their speed of action in this phase is a lot greater
than manual labour.

If the fixing cost is the main concern, augmenting the cure rate (δ) will reduce
it considerably. Again, as of now, curing is mostly manual. An automated curing
process would be very helpful to reduce this cost.

If the disruption cost is more important, then the detection rate (µ) will have
to be augmented. That is, the antivirus will have to be distributed more quickly.
Trying to immunize highly connected computers may also help in bringing down
prevalence.

The time to immunization is influenced by all control factors (π, µ and
δ) since it captures the evolution of the quantity of machines in the removed
(immune) state. Therefore, it is affected by what happens in all previous states
(Susceptible, Infected and Detected). Any improvement in control strategies
will thus have some effect on the time to immunization.

In addition to automated control systems, the effect of virus throttling is
a promising avenue for computer security. The combined effects of throttling
with various control strategies deserves consideration.



6. GENERAL DISCUSSION

Recent worms pose a major threat to computer networks, and as such they
have to be understood in order to reduce the costs associated with them. In
this dissertation, an epidemiological model (the PSIDR model) was proposed to
account for the spread of computer worms in technological networks.

The PSIDR model includes new features that have a significant impact on
the outcome of worm outbreaks. First, the existence of direct immunization
(some machines are immunized before they are infected) generally has the effect
of lowering worm prevalence. Second, the length of the Pre-response phase (an
initial phase when the antivirus is not available) is crucial to the various costs
and to the effect of various other control parameters. Finally, the existence of a
detected state (when the machine is in the process of being cured), in addition
to influencing the system’s dynamics, allows us to measure the cost related to
the cure of infected computers.

Most technological networks display either a homogeneous topology or a
scale free topology. Therefore, evaluation of the new model was based on those
topologies. Results can thus be extended to most technological networks. The
properties of the model were evaluated mostly numerically.

The PSIDR model underwent an extensive series of validation tests. The
tests revealed that the basic dynamics of the model were not corrupted by
simulation artifacts.

Three types of questions were asked about the model:
First, does the model offer a realistic account of real outbreaks? To answer

this question, empirical data about computer prevalence was compared against
the global behaviour of the model. It was found that the exponential increase
as well as the general evolution of prevalence was compatible with the model.

Second, is the increase of complexity in the model beneficial, or are other
simpler models already sufficient? To answer this, the PSIDR model was com-
pared to the SIR model. It was shown that the PSIDR model could account
for the general low prevalence of computer worms over the Internet, a fact not
accounted for by earlier models.

Moreover, the different costs defined on the model allow us to determine
the best antiviral strategy. It was shown that the best practice is to make the
antiviral signature available as soon as possible. Distributing the signature and
curing computers more quickly also decreases costs although each strategy does
so in a different way. The use of automatic antiviral systems was also advocated
as a general mean to reduce the reponse time and increase the distribution and
cure rates. Taking into account the topology of the network may also help in
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making the antiviral signature distribution effective.
Finally, is virus throttling an efficient strategy to reduce costs? It was shown

that slowing worms could significantly reduce costs especially in SF networks.
Note that simulations reported here are conservative (slowing was simulated as
having a limited effect) and may not illustrate the full potential of this strategy.

6.1 Future Directions

Here is a list of interesting directions that deserve consideration:

• Different network sizes Comparisons with larger networks are helpful to
disantangle finite-size effects and properties of the different topologies.

• Antivirus spreading One idea advanced by Kephart is to propagate the
virus signature in the same way that the virus propagates in the network
[24]. The signature would be injected to the computer that started the
infection, and then would be left by itself to propagate to neighbouring
computers. This strategy would have the advantage of attacking the out-
break at its core.

• Analytical predictions Properties of the network in the Response phase
could also be studied analytically, especially the possible existence of an
epidemic threshold as a function of the various parameters.

6.2 Conclusion

As noted in [6], models can be either complex or simple. Complex models have
the advantage of offering realistic test cases, and to allow for more accurate
predictions. However, simpler models may lead to important insights difficult
to get with a complex model.

In the case of computer epidemics, it is possible to build experiments on
real worms (eg. [49]), although it can be difficult to understand the system’s
dynamics. On the other hand, there is a growing body of literature focusing
on models such as the SIS, SIR and SEIR models. The PSIDR model shows
that more complex models can easily be built and analyzed in details to confer a
better characterization of real epidemics. In return, results on the PSIDR model
give a better understanding of the mechanisms that will lead to an efficient
control of worm attacks.



APPENDIX



A. RELATED WORK

This appendix starts with a review of epidemiological models. Results about
epidemic models in simple networks are discussed in the second section. The
third section is concerned with the same models but in scale-free (SF) networks.
The appendix concludes with a brief summary.

A.1 Epidemiological models

Epidemiological models are useful in that they capture essential properties of the
spread of diseases in a simplifed way. From such models it is possible to derive
important information such as, for example, the maximum prevalence (fraction
of infected individuals) of an infection. One popular assumption underlying
most epidemiological models is the so-called homogeneous mixing hypothesis
[26]. That is, every individual has a non-zero probability of directly transmit-
ting the disease to every other individual. In the language of graph theory, this
is exemplified by the class of fully connected graphs [25] (see Figure A.1). In
a homogeneous graph, an individual is represented by a vertex, and a phys-
ical contact between two individuals is displayed as an edge. Each vertex is
connected to all other vertices.

The simplest epidemiological model is the so-called SIS model, where S
stands for Susceptible and I for Infected. An individual goes from the S state
to the I state at a rate β if at least one of its neighbours is infected (that is,
individuals in the I state can infect their neighbours, they are infectious). The
individual then goes back to the S state at a rate δ, which corresponds to the
individual being cured but not immune to a further infection. The parame-
ters β and δ are referred to as the birth rate and the death rate (or cure rate)
respectively. In the world of computers the SIS model states that users that
recently restored their infected machine are not more alert to computer viruses
than before the attack. The equation governing the spread of a virus for the
SIS model in a homogeneous network is given by:

dρ

dt
= βρ(1 − ρ) − δρ

where ρ = I
S+I represents the fraction of infected individuals (prevalence). The

first term expresses the increase in the number of infected individuals, while the
second term stands for its decrease. The solution of this differential equation
yields the prevalence at time t:
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Pajek

Fig. A.1: Fully connected graph with 16 vertices. Each individual (vertex) can
infect each of the other 15 individuals through a direct physical contact
(edge). All drawings in this thesis were performed using Pajek [5].

ρ(t) =
ρ0(1 − λ)

ρ0 + (1 − λ − ρ0) exp (−(β − δ)t)

where λ = β
δ .

As t → ∞, the value ρ(t) converges to (1−λ) iff β > δ. However, if β < δ, the
fraction of infected individuals converges to zero. This is one of the fundamental
results of classical epidemiology, namely, the existence of an epidemic threshold
λ = λc for the occurence of an endemic state1. Interestingly, the same value
that determines the occurence of an outbreak defines the final prevalence of the
disease.

One problem with the SIS model is the assumption that individuals go back
from the I state to the S state. A model that attempts to capture the im-
munization of individuals after infection is the SIR model, where R stands for
Removed. In this model, individuals leave the state I at a fixed rate as is the
case for the SIS model. However, instead of going back to the I state, individ-
uals go to the R state, where they are considered immune to a future infection
or simply dead, which is a more common scenario in biological epidemics [29].
In the world of computers, the R conditions corresponds roughly to the immu-
nization of computers by the introduction of antivirus software. The system of
differential equations representing the SIR model is shown below, where S and
R represent the fraction of susceptible and removed individuals respectively.

1 An endemic state is defined as an equilibrium state where prevalence is greater than 0.
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dS

dt
= −βIS

dI

dt
= βIS − δI

dR

dt
= δI

As for the SIS model, an epidemic threshold λ = β
δ = λc does exist and

determines the presence of an endemic state. The SIR model has been applied
to analyze real outbreaks and has shown good agreement with existing data [35].
One natural consequence of the SIR model is that the virus prevalence decreases
due to the gradual reduction in the number of susceptible units throughout the
epidemic [29].

A third epidemiological model is the SEIR model, which takes into account
the fact that many viruses have an incubation period. During the incubation
period, the disease does not inflict any visible damages to the host, but the latter
is nonetheless contagious. In this model, E stands for Exposed and represents
the incubation period. The SEIR model has been successfully applied to the
analysis of foot-and-mouth disease outbreaks that happened recently in the UK
and Taiwan [11]2.

It is possible to translate models such as the SIS, SIR or SEIR into the
language of percolation theory. Newman and coworkers [40, 37, 38, 32] have used
percolation models to study epidemics on different kinds of complex networks.
Their work has consistently pointed to the existence of a percolation threshold,
similar to the epidemic threshold, that depends on network configuration.

Finally, epidemics have been analyzed using a discrete Markov model, and
shown again to have an epidemiological threshold [30]. Although this approach
seems to be very recent (May 2002) and more work needs to be done on complex
networks, it may prove to be useful by making analytical derivations simpler
than in other models (mean field or percolation).

A.2 Network topologies and epidemiology

A.2.1 Simple networks

It was shown empirically that the topology of many computer networks largely
diverges from a homogeneous graph (see [1] for a review). The first serious at-
tempt to understand the interaction between topology and computer epidemics
in a complex graph model is due to Jeffrey Kephart [26]. In this original work,
it was demonstrated both analytically and empirically that different networks
show different patterns of epidemics.

2 However, the acronym SLIR was used instead of SEIR, where L stands for latency. Appart
from this literary distinction, the model remains the same.
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Pajek

Fig. A.2: ER random graph with average degree 3.

Kephart investigated the properties of the Erdös-Rényi (ER) graph (Fig-
ure A.2) whose degree distribution follows a Poisson distribution. If a spe-
cific ER graph is denoted by G, and its set of vertices and edges by V and
E respectively, then G = (V, E) has a maximum of |V |(|V |−1)

2 possible undi-
rected edges. Vertices are connected together according to a probability p.
Thus, the probability that vertex i has k neighbours is given by the binomial
P (ki = k) =

(|V |−1
k

)
pk(1 − p)|V |−1−k. Therefore, on average there should be

λk =| V | P (k) vertices with k neighbours. When | V |→ ∞ the degree distri-
bution is well approximated by the Poisson distribution P (k) = e−λλ

k! where λ
is given by | V | P (k) [1].

In a random graph, the probability of having a vertex connected to another
spatially contiguous node is the same as that of having the vertex connected to
a far node: there is no local neighbourhood in a ER model.

If a number of nodes are initially infected and the propagation simulated
according to the SIS model, the outcome (ie. whether there will be an endemic
state or not) can be accurately predicted by the solution to the usual differential
equations of the SIS model. This is because there are no irregularities in the
network, which makes it suitable to a similar treatment to that for a fully
connected graph. It is critical to note that the epidemic threshold in a ER
graph tends to increase as the average degree of the vertices is lowered. From a
percolation point of view, the probability of connection of any two vertices p is
strongly related to the critical threshold pc.

Kephart also investigated properties of the hierarchical model [26] (see Fig-
ure A.3), which is a loop-free and cycle-free graph [19]. The advantage of the
tree model over previous ones is that it intrinsically encapsulates the tendency
of users — represented by nodes — to share programs with only a limited num-
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Pajek

Fig. A.3: Tree graph with l = 3 levels. A communitity is composed of the nodes
of a same subtree.

ber of users. That is, a user will often share programs with users in the same
subtree, creating a small community. This ultimately results in the probability
of infectious spreading among users in a single community to be higher than
the probability of spreading between users pertaining to different communities.
The epidemic threshold is also higher in the case of the tree model compared to
both the ER and the homogenous graphs [26].

Finally, Kephart investigated the properties of a regular lattice (Figure A.4
and Figure A.5), or spatial model since nodes can be thought of as being dis-
tributed spatially. Nodes in a lattice are only connected in local neighbourhoods.
The spread of a disease in a spatial model turns up to be quadratic [26].

These examples clearly demonstrate that a network’s topology influences
the spread of virus and argue for the study of their interaction. Although tree
models may capture part of the structure of real networks, small world models
are considered an even better approximation.

A.2.2 Small worlds and scale-free networks

It has been noticed some time ago that any pair of persons can be connected
through a rather small number of intermediate acquaintances [39]. In terms of
graph theory this phenomenon reflects the small value of the average path length
of many social nets, comparatively to the number of individuals. Networks that
display this property have been called small worlds [39]. In some sense, since the
average path length of the ER graph increases proportionally to the logarithm
of its size, it is also a small world [1]. However, the ER graph is not a small
world strictly speaking since another defining characteristic of small worlds is
their clustering coefficient which is of lesser value than in lattice models, but
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Pajek

Fig. A.4: Two dimensional regular lattice. Virus propagation in the lattice model
is quadratic due to the fact that nodes can only infect their direct neighbour.

Pajek

Fig. A.5: Three dimensional lattice. In general, it is possible to construct a d-
dimensional lattice.
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greater than in an ER graph. The definition of the clustering coefficient is given
in the next paragraph.

If ki is the number of neighbours of vertex i, then there are ki(ki−1)
2 possible

undirected connections between them. Let Ei be the actual number of such
connections, then the clustering coefficient can be formally defined as the average
over all i of Ci = 2Ei

ki(ki−1) . This coefficient takes its smallest value in ER
models, and its largest value in lattice models. Small worlds are networks with
a short average path length and a clustering coefficient between that of regular
lattices (maximum clustering) and random graphs (minimum clustering). The
clustering coefficient indicates if neighbouring nodes tend to connect to the same
neighbours.

According to one classification, there are three classes of small world net-
works: broad scale networks, single scale networks, and scale free networks [2].
The first type is characterised by a degree distribution (the distribution of the
number of neighbours) that is a mixture of a power law and an exponential
distributions. An example of such graph can be found in [37]. Graphs of the
second type follow a sharp distribution, which means that nodes with a very
high connectivity are not present. One such example is the Watz and Strogatz
(WS) model [52]. Finally, scale free networks (SFNs) strictly follow a power law
distribution, implying that nodes with a large connectivity have a statistically
significant probability of being present. The most popular example of a SFN is
the Barabási and Albert (BA) model [3]. The second and third types of graphs
have been most extensively studied in the past few years.

Small world networks, especially of the third type, appear to be pervasive in
a wide range of phenomena, including the graph of actor/scientist collaborations
[2], sexual contacts [28], metabolic networks [21], the WWW [4], the internet
router map [1] and the email network [18]. Although it is not certain if mobile
phone networks3 are scale-free, one paper shows that the topology of phone
calls in one day follows a power-law (often taken as indication of a SF graph)
[50]. More research on phone networks could be done to determine the exact
topology of the graph.

The prototype SFN is represented by the Barabasi-Albert (BA) model [3].
The BA algorithm for the creation of a SFN incorporates the assumptions of
incremental growth and preferential connectivity [17]. Incremental growth sig-
nifies that a network increases in size by the natural inclusion of additional
nodes, which is obvious in cases like the Internet or the WWW. Preferential
connectivity implies that newly added nodes tend to get connected with exist-
ing nodes that already have a high number of connections, which is also true in
the Internet architecture. The BA model is thus considered a reasonably good
model of the Internet router and WWW networks [4] as well as of many other
real networks [1]. The exact algorithm to create BA networks is reported in
Appendix B.

3 Phone networks are maps of who has the phone number of who. Individuals are nodes,
and edges link nodes when two individuals exchange phone numbers.
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Epidemics in small world networks

A number of studies have investigated the properties of the WS network in
simulated viral epidemics [11, 32, 38, 34, 42, 27, 47]. These studies have generally
shown that there exists an epidemic threshold. In fact, the behaviour of the WS
model can be approximated using equations for the homogeneous model due to
the small fluctuations in the connectivity distribution [34, 42].

Most epidemiological studies on the BA network have been conducted by
Pastor-Satorras and co-workers [44, 41, 42, 43]. Results obtained for the BA
network with the SIS model indicate the surprising absence of an epidemic
threshold [44] in both infinite size [29] and finite size networks [43]. Analytically,
the threshold λc for the occurence of an outbreak in a BA network is found to
follow 1

logN , indicating that as N grows infinite, the threshold tends to zero.
Also, the survivability in time of an epidemic is largely augmented as N grows
large. Pastor-Satorras and al. [42] attribute this to the decrease in probability
that all nodes be cured at the same time.

In practical terms, it means that an outbreak will occur, whatever the value
of λ the spreading rate λ. A second result however, states that the final preva-
lence of the outbreak will be lower than what would be observed in a homoge-
neous network. In fact, the final prevalence in the BA network is given by

ρ � 2 exp
( −1

mλ

)

This equation shows that, whenever λ is greater than 0, a fraction of the
susceptible individuals will be infected, showing the absence of the epidemic
threshold. For small values of λ, the prevalence will be small [44].

Lloyd and May [29] explain this result using the basic reproductive num-
ber R0 = κ0(1 + (CV )2) familiar to epidemiologists. In this equation, CV
represents roughly the variation in degree across vertices. κ0 stands for β ∗
duration of infection ∗ average connectivity . In a homogeneous net, CV ≡ 0,
and R0 ≡ κ0. However, in a SFN, CV is potentially infinite, which means that
the basic reproductive number is very large, ultimately lowering the epidemic
threshold [29]. Also, the same authors argue that the smooth increase in preva-
lence for small values of λ are due to the fast saturation of infected individuals
in highly affected subgraphs of the net. Further increases in prevalence are due
to infection over less active subregions of the network [29].

Results for the BA networks were extended to the GSFN model (Generalised
Scale-Free Network)[42]. In short, the GSFN model is a BA model but with
an arbitrary power (determined by a parameter γ) in the distribution. When
0 < γ < 1, as in the BA network, the epidemic threshold is absent. However,
for increasing γ, the threshold reappears suddenly, reflecting the fact that the
connectivity distribution becomes bounded as in WS, ER and other models [42].
Importantly, similar analytical results were reported for the SIR model [34]. In
epidemiological terms, the high value of γ annihilates the CV term. Although
not studied here, the GSFN is important because it represents the entire class
of SF networks, not just a particular instantiation such as the BA network.
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The relation between the epidemic threshold and the bound on the con-
nectivity distribution has also been studied by Newman [37] on a broad scale
network having the degree distibution P (k) ∼ Ck−αexp−k

κ using percolation
theory and generating functions. The purpose of the constant C is to ensure
that the distribution is normalised to one. This particular distribution can ap-
proximate a SFN when κ → ∞, otherwise the distribution is bounded and an
epidemic threshold appears again. Moreover, as shown in [37], when the value
of α is up to a certain level, the connectivity distribution becomes bounded and
the epidemic threshold reappears. However, when α < 3 the epidemic threshold
disappears.

In brief, virus propagation in complex networks seems to be highly reliant
on the existence of highly connected nodes.

A.3 The control of outbreaks

Surprisingly, very little attention has been paid to the control of epidemic out-
breaks in epidemiological models of computer viruses. Control can be exerciced
in two ways, prevention and cure. Prevention deals specifically with the ade-
quate immunization of computers inside a network. One paper shows that the
immunization of nodes with high connectivity is likely to reduce the chances of
an outbreak [46]. Conversely, it has been demonstrated in [15] that a similar
strategy applied during the curing phase could dramatically reduce the perva-
siveness of an outbreak. It is worth noting that, in this study, the individual
curing of computers was modelled as having a certain probability of success,
which makes the simulation more realistic since cures are not always successful.

One possible avenue for future research is to look at dynamical properties of
the immunization process. That is, the effect of immunization might be different
whether it is made statically (before the epidemic event) or dynamically (during
the epidemic event). This question is addressed in chapter 5.

A.4 Other related work

A recent topic of interest is the effect of correlation in complex networks. A cor-
related complex network is one where the probably for a node to be connected
to a neighbour of degree k’ depends on its own degree k. Results of epidemic
spreading on correlated complex networks suggest that they have different char-
acteristics [7].

Recent work [6] suggests that chaos can be induced by simply adding noise
to various parameters. In the same spirit, it is shown in [51] that adding noise
in the transmissibility of each edge leads to an increased transition region in
the neighbourhood of the epidemic threshold: the probability of reaching an
endemic state does not grow extremely quick near the epidemic threshold but
rather follows a smooth curve, as in real phenomenons. This highlights to the
importance of noise in models.
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A.5 Summary

So far, useful biological models have been used to understand computer epi-
demics. Any study about virus propagation needs to mention what kind of
network (ex: ER, WS, SF, etc.) it uses, and which epidemiological model (SIS,
SIR, SEIR, etc.).

Indeed, network topology influences the outcome of an outbreak. Scale-
free graphs are thought to reflect some real networks like the email network
or the World Wide Web. Kephart argued that homogeneous graphs could not
model patterns of communications between the users: indeed each user tends to
exchange emails (or programs, etc.) frequently only with a subgroup of people,
not with the entire network. Therefore, a random graph is a better model.
However, with the advent of new worms that can propagate using corporate
mass-mailing lists (reaching potentially all the network), this argument is no
longer valid. Homogeneous networks can still be taken as models of some real
phenomena. Thus, in this dissertation, simulations will be conducted on both
homogeneous and scale-free networks, which means that the results will have
the potential to be applied to a broad range of technological networks.

Different models like the SIS, SIR and SEIR could be used to model different
aspects of virus propagation. However, they necessarily leave out some details.



B. SCALE-FREE NETWORKS

This section contains a description of the algorithm used to create BA networks,
it is described in more details in [3].

The algorithm devised by Barabási and Alberts creates networks with a
distribution following P (k) = k−2.9±0.1. It works in the following way:

1. Start with m0 number of nodes, not linked by any edge.

2. For t iterations, add one node, and link it with m previously existing nodes.
The neighbours are chosen according to their connection probability: the
more connections a node already has, the more likely it is to be selected
as neighbour for the newly added node.

What this algorithm does not mention is how to connect the m0 + 1th node:
the m0 first vertices have no neighbours assigned at this time, thus their prob-
ability of being selected is zero. The algorithm here works by assigning the
neighbours of the m0 + 1th node at random among the m0 first nodes. Note
that this would not solve the case where m0 > m: here m0 ≡ m in all networks.

In fact, the distribution of the BA network can be extended to the Gener-
alised Scale Free Network P (k) = (1+γ)m1+γk−2−γ where γ > 0. The purpose
of using the GSFN instead of the BA is that it allows for the study of SFN with
different values for γ. GSFNs are not investiguated here.

It is noteworthy that a similar algorithm has been proposed long ago by
Simon, although in this earlier model the newly added edges were not necessarily
connected to the newly added node [8, 17]. Both models can generate a similar
degree distribution [8].

At the end of the creation process, the networks contains t + m0 nodes;
therefore, the size of the network can be controlled by modifying the t parameter.
The average degree in a network created with this procedure is equal to 2m,
and the minimum degree in large networks is m.

Using this recipe, scale free networks of 6250, 12500, 25000, 100000, 500000
and 1000000 nodes were created. The slope of the degree distribution, the av-
erage and minimum degrees were checked against the expected values to ensure
that the networks are adequate. Although not all sizes were used in the virus
simulations, the large sizes help to make sure that the algorithm is performed
correctly since large networks contain less noise due to lesser finite size effects.

The distribution in Figure B.1 clearly shows the existence of a few highly
connected nodes. The slope of the distribution is approximately λ = 3.
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Fig. B.1: Degree distribution of a BA network with 1 000 000 vertices. The
X-axis stands for the degree of the node, the Y-axis, for the frequency. The
full line shows the theoretical slope of 3.

A sample network is displayed in Figure B.2, where small world character-
istics can easily be observed:

1. The existence of a small number of highly connected nodes.

2. A relatively small average distance from any two nodes. This feature can
be appreciated by selecting any two nodes and noting that few hops are
necessary to link the two nodes. Exact calculations can be conducted to
show that the diameter in BA networks is smaller than in lattice models
with the same number of nodes.

If m is set to 3, in the limit of large networks, all vertices will have at
least 3 neighbours. In small networks however, it is possible that the m0 first
vertices be connected with less than m neighbours. At the extreme, a vertex
could be completely isolated from the rest of the nodes. This situation never
occured in the present networks. A sample network where m = 3 is displayed
in Figure B.3. The structure displayed does not really look like a real network
because real networks are unlikely to have a minimum degree of 3 (and a mode of
3). This argument holds for any arbitrary value of m (except perhaps m = 1).
It thus comes as a surprise that most simulations of epidemics on scale free
networks were conducted on the BA networks with m = 3.

In all simulations involving the BA models, the network is represented using
its adjacency matrix encoded as a sparse matrix in Matlab. Since the network is
undirected, the matrix is symmetrical. Moreover, since no reccurent connections
are allowed, the diagonal is composed uniquely of zeros.
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Pajek

Fig. B.2: Barabasi-Albert model with m = m0 = 1. The graph is plotted using
the algorithm defined in [22].

Pajek

Fig. B.3: Barabasi-Albert model with m = m0 = 3.



C. SURVIVAL PROBABILITY IN SIS MODEL AND BA
NETWORKS

The data concerning the survival probability reported in [44] could not be repli-
cated well enough to be considered as an exact replication. Although it is of
little interest to get acquainted with the SIS model or for the PSIDR model,
the discrepant results are reported here.

C.1 Method

BA Networks of N = 6.25×103, N = 1.25×104, N = 2.5×104 and N = 5×105

nodes are used in the original paper. At the beginning of each simulation run, 1
node is infected at random and the propagation performed as in the SIS model.
Again, simulations are done for 100 iterations and repeated 100 times from
different starting configurations. In these simulations, β = 0.065 and δ = 1.
The survival probability is calculated at each iteration: it is given by the ratio
of the number of trials where there still is at least one infected node, over the
total number of trials. The survival probability is plotted against time and as
a function of network size.

The same parameters are used here, except for the network sizes, where
networks of N = 1 × 105 replace the larger N = 5 × 105 network.

C.2 Results

The problem is that the survival probability drops too quickly to zero in the
current results (as shown in Figure C.1).

One possible source of error could lie in the discretization of time, differ-
ent time steps could result in different results. The simulations were ran using
various timeslices (1, 0.1 and 0.01) on 10 networks of 6250 nodes, for 100 it-
erations and 1000 repetitions. There is no significant improvement in survival
probability experiments whatever the timeslice (see Figure C.2).

In fact it looks like the prevalence and survival probability are even lower
than expected when the system is simulated with a small timeslice. One pos-
sibility could be that the nodes were not updated all at once in [44]: only one
node is updated at each time step. This would result in a slower decrease, but
the same end state. However it is mentioned that parallel updating of nodes
is used [44], which strongly suggests that all nodes were updated at each time
step.
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Fig. C.1: Survival Probability in SF nets as a function of network size (β =
0.065). Only 400 repetitions were made for the 100000 nodes network. This
figure is meant to replicate fig.3a in [44] except for the data on 100000 and
500000 nodes networks.
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Fig. C.2: Effect of timeslice on prevalence (ρ) and survival probability (Ps(t)) in
SF networks of 6250 nodes. Timeslices do not make current data closer to
the original data.
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Fig. C.3: Survival probability as a function of the degree of the originally
infected node. The survival probability drops too quickly even for highly
connected starting nodes.

One reason why the survival probability drops so quickly might as well be
that the starting nodes were not infected independently of their degree. For
exemple, starting the epidemic with the most highly connected node might allow
the outbreak to survive long enough to support Pastor-Satorras’ data. This idea
was tested in 10 networks of 6250 nodes, each simulated for 100 iterations and
10000 trials.

The degree of the initially infected node seems to influence the initial spread.
In the first few iterations, epidemics started on a highly connected node (actually
the maximum degree) all survive which makes the survival probability of 1.
The survival probability then decreases at a rate similar independently of the
degree of the initially infected node, ultimately reaching the absorbing state of
0 prevalence. In the random starting condition, the 682th trial led to a nonzero
survival probability until iteration 87. It could be that the outbreak is worst
when the starting node is not necessarily the most connected, but the one in
the best location (has many highly connected neighbours). But it could also
be due to a random effect: the outbreak was just particularly strong in one
repetition. To clarify the issue a subsequent simulation was run on the same
networks with 100000 repetitions. This long-lasting effect was not observed,
which suggests that it was just a random effect. In brief, the starting node can
affect the survival probability in the short term, but the system always tends
to the same state, whatever the starting condition, which is a good indication
that the system simulated is not chaotic1. In Pastor-Satorras’ data, the survival
probability is even higher than what is observed here with the starting condition
being the mostly connected node.

1 This is true in the sense that one hallmark of chaos is sensitivity to initial conditions [23].
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Fig. C.4: Prevalence in a SF network of 6250 nodes. The infection probability
is proportional to the number of infected neighbours. Noisy oscillations can
be observed in the data.

In [44] it is understood that a node becomes infected with rate β if it is con-
nected to one or more infected nodes. This suggests, counter-intuitively, that the
probability of infection is not proportional to the number of infected neighbours.
All simulations performed here are based on this assumption. If the infection
probability followed the number of infected neighbours, the outbreak could po-
tentially be more persistent. To discard the possibility that Pastor-Satorras used
an infection rate proportional to the number of infected neighbours, simulations
using proportional infection were performed on 10 networks of 6250 nodes, for
100 iterations and 100 repetitions.

The survival probability is one at each time step, so the prevalence is re-
ported to give more details. The system behaves in a totally different way than
what is observed in Pastor-Satorras’ work. This strongly suggests that his data
was not obtained with the infection probability proportional to the number of
infected neighbours. Interestingly, the prevalence data shows some kind of noisy
periodicity. Periodicity was also observed in [27], where infection was propor-
tional to the number of infected neighbours. The data in the latter paper is
less noisy, which could be due to many differences in the parameters that were
used (even the topology was different). Nonetheless, the periodicity may be an
important characteristics of these systems, somewhat independent of topology.

Finally, there is a possibility that the survival probability is not calculated
properly, which would explain the fact that only the prevalence data is compat-
ible.

In conclusion, the results concerning the survival probability do not agree
enough with the original data to say that they replicate them. Different aspects
were investiguated and seemed to corroborate the existing theoretical and ex-
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perimental (in the case of periodicity) literature. An exact replication of the
data in [44] would be greatly facilitated by comparison of the source codes.



D. SOURCE CODE

The choice of Matlab as the programming language for the various simulations
rather shortened the source code. Morevover, the source codes that implement
the various epidemiological models varies very little between the models. This is
because most epidemiological models have a similar structure. Instead of writing
a single function that would encompass all the models, separate functions were
written to optimize performance (by reducing the number of if statements etc.).

D.1 SF networks

The function netsp2 is used to create SF networks of NbIterations vertices. The
variables m, m0 can determine the density of the network. The output variables
pK and vout are the degree distribution and the adjacency matrix respectively.
The function bin sear performs binary search to accelerate the algorithm.

D.1.1 Netsp2

function [ pK, vout ] = netsp2 ( NbI t e r a t i on s )
%Creates networks with sparse adjacency matrices

%In i t i a l i z a t i o n : create the f i r s t few ve r t i c e s
m = 3;
m0 = 3;

myOnes = ones (m, 1 ) ;

i = [ 1 :m0 ] ;
j = [ (m0+1) ∗ ones (1 ,m0 ) ] ;

mk = NbI t e ra t i on s ;
nk = NbI t e ra t i on s ;

s = ones (m0, 1 ) ;

%The t o t a l nb of connections i s 2 ∗ m ∗ NbIterat ions
Net = sparse ( i , j , s , mk , nk , NbI t e r a t i on s ∗ m) ;

clear i j mk nk s ;

pK = zeros ( NbIte rat ions , 1 ) ; %Vector contains the degree of nodes

%Connects the m0+1’ th ve r t e x
pK( 1 :m0) = myOnes ;
pK(m0+1) = m;

%bu f f e r s
n i = zeros (1 ,m) ;
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tn i = zeros (1 ,m) ;

$Incrementa l growth o f the network
for i = 2 : NbIte rat ions−m0

%Se le c t ion of the m neighbours for the new node , using r ou l e t t e wheel s t y l e method

ProbC = pK / ( 2 ∗ m ∗ ( i −1)) ;

tmpID = rand(m, 1 ) ;

Go = 0;
tmpSum = cumsum(ProbC ) ;

n i (1) = b i n s e a r (tmpSum, tmpID ( 1 ) ) ;
n i (2) = b i n s e a r (tmpSum, tmpID ( 2 ) ) ;
n i (3) = b i n s e a r (tmpSum, tmpID ( 3 ) ) ;
%ni (4) = b in sear (tmpSum, tmpID (4 ) ) ;
%ni (5) = b in sear (tmpSum, tmpID (5 ) ) ;

%Ensure tha t a node has not been s e l e c t e d twice
while ˜Go

dNi = di f f ( sort ( n i ) , 1 ) ;
cNi = find ( dNi == 0) ; %Finds the zero elements

i f ( cNi )

l cN i = length ( cNi ) ;
t n i = zeros ( lcNi , 1 ) ;

tmpID = rand( lcNi , 1 ) ;

for j =1: l cN i
tn i ( j ) = b i n s e a r (tmpSum, tmpID( j ) ) ;

end

n i ( [ cNi ] ) = [ tn i ] ;

else
Go=1;

end

end

%Adds the ones to the r i gh t p laces in the adjacency and degree matrix
Net ( [ n i ] , i+m0) = myOnes ;
pK( [ n i ] ) = pK( [ n i ] ) + myOnes ;
pK( i+m0) = pK( i+m0) + m;

end

vout = Net ; %Outputs the net

D.1.2 Bin sear

Performs binary search and return the index of the element just below the threshold. This function
is a modification of the original function written by Eran O. Ofek (1994).

function i=b i n s e a r (x , v ) ;
% This vers ion i s a modif icat ion of the o r i g i na l source code writ ten by
% Eran O. Ofek ( September 1994)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N = length (x ) ;

i f N˜=0,
i 1 = 1;
i 2 = N;
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while x ( i 1 )˜=v ,
i f i 1==i2 ,

break ;
e l s e i f ( i 2 − i 1 )==1,

i f ( x ( i 2 ) + x( i 1 )) <2.∗v ,
i 1 = i2 ;

end
break ;

end
mdi = round ( ( i 1 + i2 ) . / 2 ) ;

mdv = x(mdi ) ;

i f v>mdv,

i 1 = mdi ;
e l s e i f v<mdv,

i 2 = mdi ;

i f x(mdi−1) < v
i = mdi ;
return

end
else

i 1 = mdi ;

break ;
end

end
i = i 1 ;

else
i =0;

end

D.2 SIS model
D.2.1 Updatehm

The function updatehm performs the update of the SIS model on HM networks.

function varargout = updatehm( vararg in )
%varargout = UPDATEHM(NBVERTICES,TIMESLICE,ITERATIONS,CURERATE,BIRTH, INIT)

%setup
nbVert i c e s = vararg in {1} ;
t im e s l i c e = vararg in {2} ;
I t e r a t i o n s = vararg in {3} ;
c u r e ra t e = vararg in {4} ;
b i r th = vararg in {5} ;
i n i t = vararg in {6} ; %’ hal f ’ or ’ unique ’

s t a t e = sparse ( nbVertices , I t e r a t i o n s ) ;
per iod = ce i l (1/ t i m e s l i c e ) ;
tmpstate = sparse ( nbVertices , pe r iod +1);

d e l t a = 1− cu r e ra t e ∗ t i m e s l i c e ;
beta = bi r th ∗ t im e s l i c e ; %Prob of in fe c t ion

%In i t i a l i s a t i o n
i f strcmp ( ’ ha l f ’ , i n i t )

tmpstate ( : , 1 ) = rand( nbVertices , 1 ) <0 . 5 ; %In i t i a l l y , h a l f the nodes are in fe c t ed for graph2
else

tmpstate ( ce i l (rand(1)∗ nbVert i c e s ) , 1 ) = 1 ; %In i t i a l l y , i n f e c t only one node
end
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%Process
s t a t e ( : , 1 ) = tmpstate ( : , 1 ) ; %Useful i f no t imes l i c e

for i =2: I t e r a t i o n s
for qq = 1 : per iod

tmp = tmpstate ( : , qq ) & rand( nbVertices ,1)< de l t a ;
tmpstate ( : , qq+1) = tmp | ( rand( nbVertices ,1)<beta ) ;

end

s t a t e ( : , i ) = tmpstate ( : , end ) ;
tmpstate ( : , 1 ) = tmpstate ( : , end ) ;

end

varargout {1} = sum( s t a t e ) ’ ; %Nb of in fe c t ed nodes
varargout {2} = any( s t a t e ) ’ ; %Surv iva l p r o b a b i l i t y

D.2.2 Batchupdatehm

This script is executed to perform large-scale simulations with many repetitions and on many HM
networks.

function time = batchupdatehm(NETS,NETSIZE,REPS, ITERS,TIMESLICE,BETA,DELTA,START,FILENAME)
%BATCHUPDATE3
% TIME = batchupdate3 (NETS,NETSIZE,REPS,ITERS,TIMESLICE,BETA,DELTA,START,FILENAME) ;
% The parameters are :
% NETS: number of networks
% NETSIZE : Size of each network
% REPS: the number of r ep e t i t i on s
% ITERS: the number of t imesteps
% TIMESLICE : the t imes l i c e between each t imestep ( ex : 0 .1 , 0 .001)
% BETA, DELTA: the b i r th and death ra te s
% START: the s t a r t i ng conf ig ( ha l f in fe c t ed or unique in fe c t ed )
% FILENAME: f i l e to s tore the r e s u l t s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Setup

nets = NETS ; %The number of networks simulated
n e t s i z e = NETSIZE;
reps = REPS; %The number of r ep e t i t i on s of the s imulat ion
i t e r s = ITERS ; %The number of i t e r a t i on s
netype = [ ’ net ’ ,num2str( n e t s i z e ) ] ; %The s i z e of network simulated
t im e s l i c e = TIMESLICE;%change in update2 a l so
topo logy = ’ homogeneous ’ ;
i n i t = START;
beta = BETA;
de l t a = DELTA;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t o t r e l t = sparse ( i t e r s , 1 ) ;
totprev = sparse ( i t e r s , 1 ) ;

t = sparse ( i t e r s , 1 ) ;
d = sparse ( i t e r s , 1 ) ;
denom = ones ( i t e r s , 1 ) ∗ ( reps ∗ nets ) ;

s t a r t = cputime ;

n e t l oad = [ ’ Net ’ ,num2str( n e t s i z e ) ] ;

for j =1: ne ts

disp ( ’ S imulat ing Network . . . ’ ) ; disp ( j ) ;

for i =1: reps
eval ( [ ’ [ d , t ] = updatehm( ’ num2str( n e t s i z e ) ’ , ’ num2str( t im e s l i c e ) ’ , ’\

num2str( i t e r s ) ’ , ’ num2str( d e l t a ) ’ , ’ num2str(beta ) ’ , i n i t ) ; ’ ] ) ;
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t o t r e l t = t o t r e l t + t ;
totprev = totprev + d ;

end

clear net pK ; %Prepare for next network

end

t o t r e l t = t o t r e l t . / denom ;
totprev = totprev . / denom ;

totprev = totprev . / ( n e t s i z e ∗ ones ( i t e r s , 1 ) ) ;

parameters = s t r u c t ( ’ beta ’ ,beta , ’ d e l t a ’ , de l ta , ’ nbnetworks ’ , nets , ’ n e t s i z e ’ , n e t s i z e ,\
’ n b i t e r a t i o n s ’ , i t e r s , ’ n b r ep l i c a t i o n s ’ , reps , ’ topo logy ’ , topology , ’ t i m e s l i c e ’ ,\
t im e s l i c e , ’ s t a r t c o n f i g ’ , i n i t ) ;

save (FILENAME, ’ totprev ’ , ’ t o t r e l t ’ , ’ parameters ’ ) ;

time = cputime−s t a r t ;

D.2.3 Update3

The function update3 is used to perform the update of the SIS model. It is basically a slightly
more complex version of the function updatehm, except that it is meant to perform the update on
SF networks. There are two types of updates included in it: one is for updates with no timeslices,
the other is for updates with timeslices. The second can mimick exactly the first type as long
as the parameter timeslice is set to 0. However, the first type of update is faster to compute.
Presently, the second type is being used (the % sign disables the first type). The output argument
is a variable-length list, so more quantities can be output depending on the interest.

The code for simulations where the number of infected neighbours influences the probability of
infection is not included here: it involves only minor changes.

function varargout = update3 ( vararg in )
%varargout = UPDATE3(MAT,TIMESLICE,ITERATIONS,CURERATE,BIRTH, INIT)

%setup
mat = vararg in {1} ;
nbVert i c e s = length (mat ( 1 , : ) ) ;
t im e s l i c e = vararg in {2} ;
I t e r a t i o n s = vararg in {3} ;
c u r e ra t e = vararg in {4} ;
b i r th = vararg in {5} ;
i n i t = vararg in {6} ; %’ hal f ’ or ’ unique ’

s t a t e = sparse ( nbVertices , I t e r a t i o n s ) ;
per iod = ce i l (1/ t i m e s l i c e ) ;
tmpstate = sparse ( nbVertices , pe r iod +1);

d e l t a = 1− cu r e ra t e ∗ t i m e s l i c e ;
beta = bi r th ∗ t im e s l i c e ; %Prob of in fe c t ion

%In i t i a l i s a t i o n
i f strcmp ( ’ ha l f ’ , i n i t )

tmpstate ( : , 1 ) = rand( nbVertices , 1 ) <0 . 5 ; %In i t i a l l y , i n f e c t only one node
else

tmpstate ( ce i l (rand(1)∗ nbVert i c e s ) , 1 ) = 1 ; %In i t i a l l y , i n f e c t only one node
end

%Process
s t a t e ( : , 1 ) = tmpstate ( : , 1 ) ; %Useful i f no t imes l i c e

for i =2:( I t e r a t i o n s )

%backwards update
% s t a t e ( : , i +1) = (mat∗ s t a t e ( : , i )) & ( rand ( nbVertices ,1)< beta ) ; % without t imes l i c e
% Backward update ( with t imes l i c e )
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for qq = 1 : per iod
tmp = tmpstate ( : , qq ) & rand( nbVertices ,1)< de l t a ;
tmpstate ( : , qq+1) = tmp | ( ( mat∗ tmpstate ( : , qq )) & rand( nbVertices ,1)<beta ) ;

end

s t a t e ( : , i ) = tmpstate ( : , end ) ;
tmpstate ( : , 1 ) = tmpstate ( : , end ) ;

end

varargout {1} = sum( s t a t e ) ’ ; %Nb of in fe c t ed nodes
varargout {2} = any( s t a t e ) ’ ; %Surv iva l p r o b a b i l i t y

D.2.4 Batchupdate3

This script is executed to perform large-scale simulations with many repetitions and on many net-
works. It loads the mat-files containing the networks and calls the update3 function. It saves the
output as a mat-file and includes a structure where the values of all parameters are stored for us-
ability. Other scripts named Batchupdate4 and Batchupdate5 are used to simulate SF networks
with m=4 and m=5 respectively.

function time = batchupdate3 (NETS,NETSIZE,REPS, ITERS ,TIMESLICE,BETA,DELTA,START,FILENAME)
%BATCHUPDATE3
% TIME = b a t c h u p d a t e 3 (NETS , NETSIZE , REPS , ITERS , TIMESLICE , BETA,DELTA , START , FILENAME ) ;
% The p a r a m e t e r s a r e :
% NETS : number o f n e t w o r k s
% NETSIZE : S i z e o f e a c h n e t w o r k
% REPS : t h e number o f r e p e t i t i o n s
% ITERS : t h e number o f t i m e s t e p s
% TIMESLICE : t h e t i m e s l i c e b e t w e e n e a c h t i m e s t e p ( e x : 0 . 1 , 0 . 0 0 1 )
% BETA , DELTA : t h e b i r t h and d e a t h r a t e s
% START : t h e s t a r t i n g c o n f i g ( h a l f i n f e c t e d o r u n i q u e i n f e c t e d )
% FILENAME : f i l e t o s t o r e t h e r e s u l t s

%The s u f f i x e s o f t h e names o f e a c h n e t w o r k ( S t o r e d a s a Mat−F i l e )
networks = [

’A3 ’
’B3 ’
’C3 ’
’D3 ’
’E3 ’
’F3 ’
’G3 ’
’H3 ’
’ I3 ’
’ J3 ’
’K3 ’
’L3 ’
’M3 ’
’N3 ’
’O3 ’
’P3 ’
’Q3 ’
’R3 ’
’ S3 ’
’T3 ’
’U3 ’
’V3 ’
’W3’
’X3 ’
’Y3 ’

] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% S e t u p

nets = NETS ; %The number o f n e t w o r k s s i m u l a t e d
n e t s i z e = NETSIZE;
reps = REPS ; %The number o f r e p e t i t i o n s o f t h e s i m u l a t i o n
i t e r s = ITERS ; %The number o f i t e r a t i o n s
netype = [ ’ net ’ ,num2str ( n e t s i z e ) ] ; %The s i z e o f n e t w o r k s i m u l a t e d
t im e s l i c e = TIMESLICE ;%chan g e i n u p d a t e 2 a l s o

i n i t = START;
beta = BETA;
de l ta = DELTA;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t o t r e l t = sparse ( i t e r s , 1 ) ;
totprev = sparse ( i t e r s , 1 ) ;

t = sparse ( i t e r s , 1 ) ;
d = sparse ( i t e r s , 1 ) ;
denom = ones ( i t e r s , 1 ) ∗ ( reps ∗ nets ) ;
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s t a r t = cputime ; %Take s t h e s t a r t i n g t im e

ne t load = [ ’Net ’ ,num2str ( n e t s i z e ) ] ;

for j =1: nets

disp ( ’ Loading Network . . . ’ ) ; disp ( networks ( j ) ) ;

eval ( [ ’ cd networks \m=3\ ’ n e t l oad ] ) ;

eval ( [ ’ load ’ n e t load networks ( j , : ) ’ ; ’ ] ) ;

cd . . \ . . \ . . %Chang e s d i r e c t o r y t o u s e t h e f c t u p d a t e 3

disp ( ’ P a r a l l e l Updating ’ ) ;

net = net | net ’ ;

for i =1: reps
eval ( [ ’ [ d , t ] = update3 ( net , ’ num2str ( t ime s l i c e ) ’ , ’ num2str ( i t e r s ) ’ , ’ \

num2str ( de l ta ) ’ , ’ num2str (beta ) ’ , i n i t ) ; ’ ] ) ; % I f we a r e n o t i n t e r e s t e d i n S
t o t r e l t = t o t r e l t + t ;
totprev = totprev + d ;

end

clear net pK ; %P r e p a r e f o r n e x t n e t w o r k

end

t o t r e l t = t o t r e l t . / denom ;
totprev = totprev . / denom ;

totprev = totprev . / ( n e t s i z e ∗ ones ( i t e r s , 1 ) ) ;

%The p a r a m e t e r s s t r u c t u r e c o n t a i n s t h e v a l u e s o f s i m u l a t i o n p a r a m e t e r s
parameters = st r uc t ( ’ beta ’ ,beta , ’ d e l t a ’ , de l ta , ’ nbnetworks ’ , nets , ’ n e t s i z e ’ , n e t s i z e ,\

’ nb i t e r a t i o n s ’ , i t e r s , ’ nb r ep l i c a t i o n s ’ , reps , ’ topology ’ , topology ,\
’ t im e s l i c e ’ , t ime s l i c e , ’ s t a r t c o n f i g ’ , i n i t ) ;

cd s imul at i on s\m=3 %Chang e s d i r e c t o r y t o s t o r e t h e r e s u l t s

save (FILENAME, ’ totprev ’ , ’ t o t r e l t ’ , ’ parameters ’ ) ; %s a v e s t h e r e s u l t s a s mat− f i l e

cd . . \ . .

time = cputime−s t a r t ;

D.3 PSIDR simulations
The function update2 serves to update networks according to the PSIDR model. It can perform updating for both
HM and SF networks, depending on the option specified in the argument list. The output is also a variable argument
list.

The function Batchupdate2 executes the repetitions over all networks, where m=3, and calls update2 to perform
the updating. It stores the results and a structure with the parameters used in a mat-file.

D.3.1 Update2

function varargout = update ( vararg in )
%UPDATE2 p e r f o r m s p a r a l l e l u p d a t e
% [ I n f e c t e d , D e t e c t e d , Removed ] = UPDATE2 (NET ) p e r f o r m s t h e u p d a t e on NET f o r 1 0 0 i t e r a t i o n s
% I t r e t u r n s t h e number o f i n f e c t e d , d e t e c t e d and r emo v e d i n d i v i d u a l s a t e a c h t i m e s t e p i n
% a v a r i a b l e l e n g t h a r g um en t l i s t .
% UPDATE2 (NET , IT ) p e r f o r m s t h e u p d a t e f o r IT i t e r a t i o n s .
% UPDATE2 (NET , IT , ST ) p e r f o r m s t h e u p d a t e f o r IT i t e r a t i o n s s t a r t i n g w i t h i n i t i a l s t a t e ST .
% UPDATE2 (NET , IT , PI , BETA,MU, DELTA , TIMESLICE ,TOPOLOGY) i n c l u d e s t h e i n i t i a l PI p e r i o d and u s e s
% d e f i n e d p a r a m e t e r s . I f PI == IT , we o n l y s i m u l a t e t h e p e r i o d p r e c e d i n g t h e a n t i v i r u s . TOPOLOGY
% can t a k e e i t h e r t h e v a l u e ’ homogene ous ’ o r ’ s c a l e f r e e ’ .

%S e t u p
mat = vararg in {1} ;
mat = mat | mat ’ ; %T r a n s p o s e s t h e m a t r i x s i n c e t h e n e t w o r k i s u n d i r e c t e d

nbVert i ces = length (mat ( 1 , : ) ) ;

t im e s l i c e = 1 ; % d e f a u l t v a l u e

%d e f a u l t p a r a m e t e r s
beta = 0.2∗ t im e s l i c e ;
mu = 0.1∗ t im e s l i c e ;
d e l t a = 0.1∗ t im e s l i c e ;%1− c u r e r a t e ∗ t i m e s l i c e ;
pi=0;

i n i t s t a t e = sparse ( nbVertices , 1 ) ;

switch length ( va ra rg in )
case 1
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maxI terat ion = 100;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i ces ) , 1 ) = 1 ;

case 2
maxI terat ion = vararg in {2} ;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i ces ) , 1 ) = 1 ;

case 3
maxI terat ion = vararg in {2} ;
i n i t s t a t e ( : , 1 ) = vararg in {3} ;

case 8
maxI terat ion = vararg in {2} ;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i ces ) , 1 ) = 1 ;
t ime s l i c e = vararg in {7} ;
pi = vararg in {3} ;
beta = vara rg in {4} ∗ t ime s l i c e ;
mu = vararg in {5} ∗ t ime s l i c e ;
d e l t a = vara rg in {6} ∗ t ime s l i c e ;
topology = vararg in {8} ;

o therwi se
error ( ’ I n co r r e c t number of parameters ’ ) ;

end

i f maxIteration <pi
error ( ’The number of i t e r a t i o n s cannot be smal l e r than pi ’ ) ;

end

per iod = 1/ t im e s l i c e ;

s ta t e = sparse ( nbVertices , maxI terat ion ) ; %S t o r e s t h e s t a t e ( S , I , e t c . ) o f a l l n o d e s a t e a c h t i m e s t e p
tmpstate = sparse ( nbVertices , per iod +1); %t h i s s t o r e s t h e d a t a b e t w e e n t i m e s t e p s ( when s l i c e <1)
tmpstate ( : , 1 ) = i n i t s t a t e ;

s ta t e ( : , 1 ) = tmpstate ( : , 1 ) ;

pI (1) = length ( f ind ( s ta t e ( : , 1)==1)) ;

b u f f s t a t e = sparse ( nbVertices , 1 ) ;

% I n i t i a l i n f e c t e d node mus t b e t r a n s f e r e d i n b u f f s t a t e
s t a r t i ndex = f ind ( tmpstate ( : , 1 ) ) ;
b u f f s t a t e ( s t a r t i ndex ) = 1 ;

%I f a HM n e t w o r k i s s i m u l a t e d
i f strcmp ( topology , ’ homogeneous ’ )

% I n i t i a l p e r i o d w i t h o u t DETECTION ( S−>I )
for i =1:pi−1

for qq=1 : per iod

%S−>I
idS = f ind ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

bu f f s t a t e ( idS ) = ( rand ( length ( idS ) ,1) <beta ) ; %Use f o r HM n e t w o r k
end
tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s ta t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( f ind ( b u f f s t a t e ==1));

pD( i +1) = 0;
pR( i +1) = 0;

end

%P e r i o d w i t h DETECTION and CURE
for i=pi : maxIteration −1

for qq=1 : per iod

%S−>I
idS = f ind ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

bu f f s t a t e ( idS ) = ( rand ( length ( idS ) ,1) <beta ) ; %Use f o r HM n e t w o r k
end

%S−>R
idS2 = f ind ( ˜ ( tmpstate ( : , qq ) | bu f f s t a t e ) ) ;
i f idS2 ˜= [ ]

bu f f s t a t e ( idS2 ) = 3∗( rand( length ( idS2 ) ,1) <mu) ;
end

%I−>D
i d I = f ind ( tmpstate ( : , qq)==1);
i f i d I ˜= [ ]

bu f f s t a t e ( i d I ) = bu f f s t a t e ( i d I ) + ( rand( length ( i d I ) ,1) <mu) ;
end

%D−>R
idD = f ind ( tmpstate ( : , qq)==2);
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i f idD ˜= [ ]
bu f f s t a t e ( idD ) = bu f f s t a t e ( idD ) + ( rand( length ( idD) ,1) < de l ta ) ;

end

tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s ta t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( f ind ( b u f f s t a t e ==1));
pD( i +1) = length ( f ind ( b u f f s t a t e ==2));
pR( i +1) = length ( f ind ( b u f f s t a t e ==3));

end

el se %S i m u l a t e s a h e t e r o g e n e o u s n e t w o r k

% I n i t i a l p e r i o d w i t h o u t DETECTION ( S−>I )
for i =1:pi−1

for qq=1 : per iod

%S−>I
idS = f ind ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

s t = ( tmpstate ( : , qq )==1); %Use f o r SF n e t w o r k
bu f f s t a t e ( idS ) = (mat ( [ idS ] , : ) ∗ s t ) & ( rand ( length ( idS ) ,1) <beta ) ; %f o r SF n e t w o r k

end
tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s ta t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( f ind ( b u f f s t a t e ==1));

pD( i +1) = 0;
pR( i +1) = 0;

end

%P e r i o d w i t h DETECTION and CURE
for i=pi : maxIteration −1

for qq=1 : per iod

%S−>I
idS = f ind ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

s t = ( tmpstate ( : , qq )==1); %Use f o r SF n e t w o r k
bu f f s t a t e ( idS ) = (mat ( [ idS ] , : ) ∗ s t ) & ( rand ( length ( idS ) ,1) <beta ) ; %f o r SF n e t w o r k

end

%S−>R
idS2 = f ind ( ˜ ( tmpstate ( : , qq ) | bu f f s t a t e ) ) ;
i f idS2 ˜= [ ]

bu f f s t a t e ( idS2 ) = 3∗( rand( length ( idS2 ) ,1) <mu) ;
end

%I−>D
i d I = f ind ( tmpstate ( : , qq)==1);
i f i d I ˜= [ ]

bu f f s t a t e ( i d I ) = bu f f s t a t e ( i d I ) + ( rand( length ( i d I ) ,1) <mu) ;
end

%D−>R
idD = f ind ( tmpstate ( : , qq)==2);
i f idD ˜= [ ]

bu f f s t a t e ( idD ) = bu f f s t a t e ( idD ) + ( rand( length ( idD) ,1) < de l ta ) ;
end

tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s ta t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( f ind ( b u f f s t a t e ==1));
pD( i +1) = length ( f ind ( b u f f s t a t e ==2));
pR( i +1) = length ( f ind ( b u f f s t a t e ==3));

end

end

%Chec k t h e r e l a t i v e p r e v a l e n c e s ( c an b e m o d i f i e d )

varargout {1} = pI ’ ; %Nb o f i n f e c t e d i n d i v i d u a l s
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varargout {2} = pD ’ ; %Nb o f d e t e c t e d i n d i v i d u a l s
varargout {3} = pR ’ ; %Nb o f r emo v e d i n d i v i d u a l s

D.3.2 Batchupdate2

function varargout = batchupdate2 (NETS,NETSIZE,REPS, ITERS ,TOPOLOGY,TIMESLICE,BETA,DELTA,MU, PI ,FILENAME) ;
%BATCHUPDATE2
% TIME = b a t c h u p d a t e 2 (NETS , NETSIZE , REPS , ITERS , TOPOLOGY, TIMESLICE , BETA,DELTA ,MU, PI , FILENAME ) ;
% The p a r a m e t e r s a r e :
% NETS : number o f n e t w o r k s
% NETSIZE : S i z e o f e a c h n e t w o r k
% REPS : t h e number o f r e p e t i t i o n s
% ITERS : t h e number o f t i m e s t e p s
% TOPOLOGY : c an t a k e e i t h e r ’ homogene ous ’ o r a n y t h i n g e l s e f o r a h e t e r o g e n e o u s n e t w o r k
% TIMESLICE : t h e t i m e s l i c e b e t w e e n e a c h t i m e s t e p ( e x : 0 . 1 , 0 . 0 0 1 )
% BETA , DELTA , MU : t h e b i r t h , d e a t h and d e t e c t i o n r a t e s
% PI : t h e number o f t i m e s t e p s b e f o r e any r e s p o n s e i s made
% FILENAME : f i l e t o s t o r e t h e r e s u l t s

%C o n t a i n s t h e s u f f i x o f t h e names o f t h e n e t w o r k s
networks = [

’A3 ’
’B3 ’
’C3 ’
’D3 ’
’E3 ’
’F3 ’
’G3 ’
’H3 ’
’ I3 ’
’ J3 ’
’K3 ’
’L3 ’
’M3 ’
’N3 ’
’O3 ’
’P3 ’
’Q3 ’
’R3 ’
’ S3 ’
’T3 ’
’U3 ’
’V3 ’
’W3’
’X3 ’
’Y3 ’

] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% S e t u p

nets = NETS ; %The number o f n e t w o r k s s i m u l a t e d
n e t s i z e = NETSIZE;
reps = REPS ; %The number o f r e p e t i t i o n s o f t h e s i m u l a t i o n
i t e r s = ITERS ; %The number o f i t e r a t i o n s
netype = [ ’ net ’ ,num2str ( n e t s i z e ) ] ; %The s i z e o f n e t w o r k s i m u l a t e d
topology = TOPOLOGY; %can b e s c a l e f r e e o r h omog en e o u s
t im e s l i c e = TIMESLICE ;%chan g e i n u p d a t e 2 a l s o

beta = BETA;
de l ta = DELTA;
mu = MU;
pi = PI ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s t a r t = cputime ; %Take s t h e s t a r t i n g t i m e

dI = zeros ( i t e r s , 1 ) ;
meanI = zeros ( i t e r s , 1 ) ;

denom1 = reps ∗ ones ( i t e r s , 1 ) ;
denom2 = nets ∗ ones ( i t e r s , 1 ) ;

i f pi˜= i t e r s %Means we want o t h e r i n f o a s w e l l s i n c e we s i m u l a t e n o t o n l y t h e p e r i o d < p i
sumI = zeros ( i t e r s , 1 ) ;
sumD = zeros ( i t e r s , 1 ) ;
sumR = zeros ( i t e r s , 1 ) ;

dD= zeros ( i t e r s , 1 ) ;
meanD = zeros ( i t e r s , 1 ) ;
dR = zeros ( i t e r s , 1 ) ;
meanR = zeros ( i t e r s , 1 ) ;

end

for i =1: nets %For e a c h n e t w o r k . . .

%Load n e t w o r k
cd networks
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i f ˜ strcmp( topology , ’ homogeneous ’ )
disp ( ’ Loading Network . . . ’ ) ; disp ( networks ( i ) ) ;
eval ( [ ’ load ’ netype networks ( i , : ) ’ ; ’ ] ) ;
net = net | net ’ ; %The m a t r i x i s s ymme t r i c c u z u n d i r e c t e d

e lse
net = sparse ( n e t s i ze , n e t s i z e ) ;
disp ( networks ( i ) )

end

disp ( ’ P a r a l l e l Updating . . . ’ ) ;
cd . .

i f pi==i t e r s %Means we o n l y wan t i n f o r e l e v a n t t o b e f o r e PI
for j =1: reps

%Che c k s o n l y t h e v i r u s p r e v a l e n c e
eval ( [ ’ [ dI ] = dI + update2 ( net , ’ num2str ( i t e r s ) ’ , ’ num2str ( pi ) ’ , ’\

num2str (beta ) ’ , ’ num2str (mu) ’ , ’ num2str ( d e l ta ) ’ ,TIMESLICE,TOPOLOGY) ; ’ ] ) ;
end

dI = dI . / denom1 ;
meanI = meanI + dI ;
dI = zeros ( i t e r s , 1 ) ;

e lse %We do f u l l PSIDR
for j =1: reps

%Che c k s a l l p a r a m e t e r s
eval ( [ ’ [ dI ,dD,dR] = update2 ( net , ’ num2str ( i t e r s ) ’ , ’ num2str ( pi ) ’ , ’\

num2str (beta ) ’ , ’ num2str (mu) ’ , ’ num2str ( d e l ta ) ’ ,TIMESLICE,TOPOLOGY) ; ’ ] ) ;

sumI = sumI + dI ;
sumD = sumD + dD;
sumR = sumR + dR;

end
end

end

i f pi˜= i t e r s
sumI = sumI . / denom1 ;
sumD = sumD . / denom1 ;
sumR = sumR . / denom1 ;

end

disp ( ’ Analys i s . . . ’ ) ;

l im95 = (19∗ n e t s i z e ) / 2 0 ; %The 9 5% l i m i t

i f pi == i t e r s
meanI = meanI . / denom2 ;

%Get maximum s l o p e o f t h e I p r o g r e s s i o n f o r e x p e r i m e n t s b e f o r e p i
s l ope = d i f f (meanI ) ;
maxslope = max( s l ope ) ;

time95 = f ind (meanI>=lim95 ) ;

i f time95 ˜= [ ]
time95 = time95 ( 1 ) ;

e lse
time95 = 0;

end
el se

meanI = sumI . / denom2 ;
meanD = sumD . / denom2 ;
meanR = sumR . / denom2 ;

maxI = max(meanI ) ; %The maximum number o f i n f e c t e d c o mp u t e r s

costD = sum(meanD) ; %The r i emann i n t e g r a l o f D f o r c o s t o f f i x i n g c om pu t e r s

d i s r = sum(meanI ) ; %The r i emann i n t e g r a l o f I f o r t o t a l d i s r u p t i o n

%He r e we want t h e t im e t o 9 5% remov e d ma ch i n e s
time95 = f ind (meanR>=lim95 ) ;

i f time95 ˜=[ ]
time95 = time95 ( 1 ) ;

e lse
time95 = 0;

end
end

disp ( ’Done ’ ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% Sa v i n g

cd ps id r s ims

%Sa v e p a r a m e t e r s
parameters = st r uc t ( ’ beta ’ ,beta , ’ d e l t a ’ , de l ta , ’mu ’ ,mu, ’ p i ’ ,pi , ’ nbnetworks ’ , nets ,\

’ n e t s i z e ’ , ne t s i z e , ’ nb i t e r a t i o n s ’ , i t e r s , ’ nb r e p l i c a t i on s ’ , reps ,\



D. Source Code 92

’ topology ’ , topology , ’ t ime s l i c e ’ , t ime s l i c e ) ;

i f pi==i t e r s
save (FILENAME, ’meanI ’ , ’ s l ope ’ , ’ maxslope ’ , ’ time95 ’ , ’ parameters ’ ) ;

el se
save (FILENAME, ’meanI ’ , ’meanD ’ , ’meanR ’ , ’ costD ’ , ’maxI ’ , ’ d i s r ’ , ’ time95 ’ , ’ parameters ’ ) ;

end

cd . .

varargout {1} = (cputime−s t a r t ) ; %o u t p u t s t im e t a k e n t o s i m u l a t e

D.4 SIR model
As in other simulations, there is a function to perform the updating (updatesir) and a function to repeat the updating
over all networks (batchupdatesir). These functions work in a similarly to previous functions.

D.4.1 Updatesir

function varargout = updat e s i r ( vararg in )
%UPDATESIR performs p a r a l l e l update of the SIR model
% [ Infec ted , Detected ,Removed] = UPDATESIR(NET) performs the update on NET for 100 i t e r a t i on s
% I t re turns the number of infec ted , de tec ted and removed ind i v i dua l s at each t imestep in
% a var iab l e l eng th argument l i s t .
% UPDATESIR(NET, IT ) performs the update for IT i t e r a t i on s .
% UPDATESIR(NET, IT ,ST) performs the update for IT i t e r a t i on s s t a r t i n g with i n i t i a l s t a t e ST.
% UPDATESIR(NET, IT ,BETA,DELTA,TIMESLICE,TOPOLOGY) uses dde f ined parameters . I f PI == IT , we
% only s imulate the period preceding the ant i v i ru s . TOPOLOGY can take e i the r the va lue
% ’homogeneous ’ or ’ sca l e f r e e ’ .

%setup
mat = vararg in {1} ;
nbVert i c e s = length (mat ( 1 , : ) ) ;
t im e s l i c e = 1 ; %de fau l t va lue

%de f au l t parameters
beta = 0.2∗ t im e s l i c e ;
mu = 0.1∗ t i m e s l i c e ;
d e l t a = 0.1∗ t i m e s l i c e ;%1−curerate∗ t imes l i c e ;

i n i t s t a t e = sparse ( nbVertices , 1 ) ;

swi tch length ( vararg in )
case 1

maxIte rat ion = 100 ;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i c e s ) , 1 ) = 1 ;

case 2
maxIte rat ion = vararg in {2} ;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i c e s ) , 1 ) = 1 ;

case 3
maxIte rat ion = vararg in {2} ;
i n i t s t a t e ( : , 1 ) = vararg in {3} ;

case 6
maxIte rat ion = vararg in {2} ;
i n i t s t a t e ( c e i l (rand ( 1 ) ∗ nbVert i c e s ) , 1 ) = 1 ;
t im e s l i c e = vararg in {5} ;
beta = vararg in {3} ∗ t im e s l i c e ;
d e l t a = vararg in {4} ∗ t i m e s l i c e ;
topo logy = vararg in {6} ;

o the rwi se
error ( ’ I n c o r r e c t number o f parameters ’ ) ;

end

i f maxIteration<pi
error ( ’The number o f i t e r a t i o n s cannot be sma l l e r than p i ’ ) ;

end

per iod = 1/ t im e s l i c e ;

s t a t e = sparse ( nbVertices , maxIte rat ion ) ;
tmpstate = sparse ( nbVertices , pe r iod +1) ; %th i s s to re s the data between t imesteps (when s l i c e <1)
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tmpstate ( : , 1 ) = i n i t s t a t e ;

s t a t e ( : , 1 ) = tmpstate ( : , 1 ) ;

pI (1) = length ( find ( s t a t e ( : ,1 )==1)) ;

b u f f s t a t e = sparse ( nbVertices , 1 ) ;

%In i t i a l in fe c t ed node must be t rans fe red in b u f f s t a t e
s t a r t i ndex = find ( tmpstate ( : , 1 ) ) ;
b u f f s t a t e ( s t a r t i ndex ) = 1 ;

%I f a HM network i s simulated
i f strcmp ( topology , ’ homogeneous ’ )

for i =1: maxIterat ion −1
for qq=1 : per iod

%S−>I
idS = find ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

b u f f s t a t e ( idS ) = ( rand( length ( idS ) ,1) <beta ) ; %Use for HM network
end

%I−>R
i d I = find ( tmpstate ( : , qq)==1);
i f i d I ˜= [ ]

b u f f s t a t e ( i d I ) = bu f f s t a t e ( i d I ) + ( rand( length ( i d I ) ,1) < de l t a ) ;
end

tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s t a t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( find ( bu f f s t a t e ==1));
pR( i +1) = length ( find ( bu f f s t a t e ==2));

end

else %Simulates a heterogeneous network

for i =1: maxIterat ion −1
for qq=1 : per iod

%S−>I
idS = find ( tmpstate ( : , qq)==0);
i f idS ˜= [ ]

s t = ( tmpstate ( : , qq )==1); %Use for SF network
bu f f s t a t e ( idS ) = (mat ( [ idS ] , : ) ∗ s t ) & ( rand( length ( idS ) ,1) <beta ) ; %for SF network

end

%I−>R
i d I = find ( tmpstate ( : , qq)==1);
i f i d I ˜= [ ]

b u f f s t a t e ( i d I ) = bu f f s t a t e ( i d I ) + ( rand( length ( i d I ) ,1) < de l t a ) ;
end

tmpstate ( : , qq+1) = bu f f s t a t e ;

end

tmpstate ( : , 1 ) = bu f f s t a t e ;
s t a t e ( : , i +1) = bu f f s t a t e ;

pI ( i +1) = length ( find ( bu f f s t a t e ==1));
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pR( i +1) = length ( find ( bu f f s t a t e ==2));

end

end

%Check the r e l a t i v e preva lences

varargout {1} = pI ’ ; %Nb of in fe c t ed ind i v i dua l s
varargout {2} = pR ’ ; %Nb of removed ind i v i dua l s

D.4.2 Batchupdatesir

function varargout = batchupdates i r (NETS,NETSIZE,REPS, ITERS ,TOPOLOGY,TIMESLICE,BETA,DELTA,FILENAME) ;
%BATCHUPDATESIR
% TIME = b a t c h u p d a t e s i r (NETS , NETSIZE , REPS , ITERS , TOPOLOGY, TIMESLICE , BETA,DELTA , FILENAME ) ;
% The p a r a m e t e r s a r e :
% NETS : number o f n e t w o r k s
% NETSIZE : S i z e o f e a c h n e t w o r k
% REPS : t h e number o f r e p e t i t i o n s
% ITERS : t h e number o f t i m e s t e p s
% TOPOLOGY : c an t a k e e i t h e r ’ homogene ous ’ o r a n y t h i n g e l s e f o r a h e t e r o g e n e o u s n e t w o r k
% TIMESLICE : t h e t i m e s l i c e b e t w e e n e a c h t i m e s t e p ( e x : 0 . 1 , 0 . 0 0 1 )
% BETA , DELTA : t h e b i r t h , d e a t h r a t e s
% FILENAME : f i l e t o s t o r e t h e r e s u l t s

networks = [
’A3 ’
’B3 ’
’C3 ’
’D3 ’
’E3 ’
’F3 ’
’G3 ’
’H3 ’
’ I3 ’
’ J3 ’
’K3 ’
’L3 ’
’M3 ’
’N3 ’
’O3 ’
’P3 ’
’Q3 ’
’R3 ’
’ S3 ’
’T3 ’
’U3 ’
’V3 ’
’W3’
’X3 ’
’Y3 ’

] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% S e t u p

nets = NETS ; %The number o f n e t w o r k s s i m u l a t e d
n e t s i z e = NETSIZE;
reps = REPS ; %The number o f r e p e t i t i o n s o f t h e s i m u l a t i o n
i t e r s = ITERS ; %The number o f i t e r a t i o n s
netype = [ ’ net ’ ,num2str ( n e t s i z e ) ] ; %The s i z e o f n e t w o r k s i m u l a t e d
topology = TOPOLOGY; %can b e s c a l e f r e e o r h omog en e o u s
t im e s l i c e = TIMESLICE ;%chan g e i n u p d a t e 2 a l s o

beta = BETA;
de l ta = DELTA;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s t a r t = cputime ;

dI = zeros ( i t e r s , 1 ) ;
meanI = zeros ( i t e r s , 1 ) ;

for i =1: nets

%Load n e t w o r k
cd networks

i f ˜ strcmp( topology , ’ homogeneous ’ )
disp ( ’ Loading Network . . . ’ ) ; disp ( networks ( i ) ) ;
eval ( [ ’ load ’ netype networks ( i , : ) ’ ; ’ ] ) ;
net = net | net ’ ; %The m a t r i x i s s ymme t r i c c u z u n d i r e c t e d

e lse
net = sparse ( n e t s i ze , n e t s i z e ) ;
disp ( networks ( i ) )
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end

disp ( ’ P a r a l l e l Updating . . . ’ ) ;
cd . .

for j =1: reps
%Chec k s o n l y t h e v i r u s p r e v a l e n c e
eval ( [ ’ dI = dI + updates i r ( net , ’ num2str ( i t e r s ) ’ , ’ num2str (beta ) ’ , ’\
num2str ( de l ta ) ’ ,TIMESLICE,TOPOLOGY) ; ’ ] ) ;

end

dI = dI . / ( reps ∗ ones ( i t e r s , 1 ) ) ;

meanI = meanI + dI ;
dI = zeros ( i t e r s , 1 ) ;

end

disp ( ’ Analys i s . . . ’ ) ;

meanI = meanI . / ( nets ∗ ones ( i t e r s , 1 ) ) ;

%Get maximum s l o p e o f t h e I p r o g r e s s i o n f o r e x p e r i m e n t s b e f o r e p i
s l ope = d i f f (meanI ) ;
maxslope = max( s l ope ) ;

l im95 = (19∗ n e t s i z e ) / 2 0 ; %The 9 5% l i m i t
time95 = f ind (meanI>=lim95 ) ;

i f time95 ˜= [ ]
time95 = time95 ( 1 ) ;

el se
time95 = 0;

end

disp ( ’Done ’ ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% Sa v i n g

cd ps id r s ims

%Sa v e p a r a m e t e r s
parameters = st r uc t ( ’ beta ’ ,beta , ’ d e l t a ’ , de l ta , ’ nbnetworks ’ , nets , ’ n e t s i z e ’ ,\

ne t s i z e , ’ n b i t e ra t i on s ’ , i t e r s , ’ n b r e p l i c a t i o n s ’ , reps , ’ topology ’\
, topology , ’ t im e s l i c e ’ , t im e s l i c e ) ;

save (FILENAME, ’meanI ’ , ’ s l ope ’ , ’ maxslope ’ , ’ time95 ’ , ’ parameters ’ ) ;

cd . .

varargout {1} = (cputime−s t a r t ) ;
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