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Video compression algorithms are being used to compress digital video for a wide variety of 
applications, including video delivery over the Internet, advanced television broadcasting, video 
streaming, video conferencing, and video storage and editing. The impressive performance of modern 
compression algorithms, combined with the growing availability of video encoders and decoders and 
low-cost computers, storage devices, and networking equipment, makes it evident that between video 
capture and video playback, video will be handled in compressed video form. The resulting end-to-
end compressed digital video systems motivate the need to develop efficient algorithms for handling 
compressed digital video.  
 
Compute- and memory-efficient, quality-preserving algorithms for handling compressed video 
streams are called compressed-domain processing (CDP) algorithms. CDP algorithms are useful for a 
number of applications. For example, a video server transmitting video over the Internet may be 
restricted by stringent bandwidth requirements. In this scenario, a high-rate compressed bitstream may 
need to be transcoded to a lower-rate compressed bitstream prior to transmission; this can be achieved 
by lowering the spatial or temporal resolution of the video or by more coarsely quantizing the MPEG 
data. Another application may require MPEG video streams to be transcoded into streams that 
facilitate video editing functionalities such as splicing or fast -forward and reverse play; this may 
involve removing the temporal dependencies in the coded data stream. Finally, in a video 
communication system, the transmitted video stream may be subject to harsh channel conditions 
resulting in data loss; in this instance it may be useful to create a standard-compliant video stream that 
is more robust to channel errors and network congestion.  
 
This chapter focuses on developing CDP algorithms for bitstreams that are based on video compression 
algorithms that rely on the block discrete cosine transform (DCT) and motion-compensated prediction, 
which includes a number of predominant image and video coding standards including JPEG, MPEG-1, 
MPEG-2, MPEG-4, H.261, H.263, and H.264/MPEG-4 AVC. These CDP algorithms achieve 
efficiency by using techniques that exploit the coding structures used in the original compression 
process; these techniques are discussed in detail. Two classes of CDP algorithms are presented--
compressed-domain transcoding algorithms that change the video format and compression format of 
compressed video streams and compressed-domain editing algorithms that perform video processing 
and editing operations on compressed video streams.  

 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2002 



1 

 
  

 
COMPRESSED-DOMAIN VIDEO PROCESSING  

Susie Wee, Bo Shen, John Apostolopoulos 
Streaming Media Systems Group 

Hewlett-Packard Laboratories 
Palo Alto, CA, USA  

{swee,boshen,japos}@hpl.hp.com 

1. INTRODUCTION 
Video compression algorithms are being used to compress digital video for a 
wide variety of applications, including video delivery over the Internet, 
advanced television broadcasting, video streaming, video conferencing, as 
well as video storage and editing.  The performance of modern compression 
algorithms such as MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and 
H.264/MPEG-4 AVC is quite impressive -- raw video data rates often can be 
reduced by factors of 15-80 or more without considerable loss in 
reconstructed video quality.  This fact, combined with the growing 
availability of video encoders and decoders and low-cost computers, storage 
devices, and networking equipment, makes it evident that between video 
capture and video playback, video will be handled in compressed video form. 
 
End-to-end compressed digital video systems motivate the need to develop 
algorithms for handling compressed digital video.  For example, algorithms 
are needed to adapt compressed video streams for playback on different 
devices and for robust delivery over different types of networks.  Algorithms 
are needed for performing video processing and editing operations, including 
VCR functionalities, on compressed video streams.  Many of these 
algorithms, while simple and straightforward when applied to raw video, are 
much more complicated and computationally expensive when applied to 
compressed video streams.  This motivates the need for developing efficient 
algorithms for performing these tasks on compressed video streams. 
 
In this chapter, we describe compute- and memory-efficient, quality-
preserving algorithms for handling compressed video streams.  These 
algorithms achieve efficiency by exploiting coding structures used in the 
original compression process.  This class of efficient algorithms for handling 
compressed video streams are called compressed-domain processing (CDP) 
algorithms.  CDP algorithms that change the video format and compression 
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format of compressed video streams are called compressed-domain 
transcoding algorithms, and CDP algorithms that perform video processing 
and editing operations on compressed video streams are called compressed-
domain editing algorithms. 
 
These CDP algorithms are useful for a number of applications.  For example, 
a video server transmitting video over the Internet may be restricted by 
stringent bandwidth requirements.  In this scenario, a high-rate compressed 
bitstream may need to be transcoded to a lower-rate compressed bitstream 
prior to transmission; this can be achieved by lowering the spatial or 
temporal resolution of the video or by more coarsely quantizing the MPEG 
data.  Another application may require MPEG video streams to be transcoded 
into streams that facilitate video editing functionalities such as splicing or 
fast-forward and reverse play; this may involve removing the temporal 
dependencies in the coded data stream.  Finally, in a video communication 
system, the transmitted video stream may be subject to harsh channel 
conditions resulting in data loss; in this instance it may be useful to create a 
standard-compliant video stream that is more robust to channel errors and 
network congestion. 
 
This chapter presents a series of compressed-domain image and video 
processing algorithms that were designed with the goal of achieving high 
performance with computational efficiency. It focuses on developing 
transcoding algorithms for bitstreams that are based on video compression 
algorithms that rely on the block discrete cosine transform (DCT) and 
motion-compensated prediction. These algorithms are applicable to a 
number of predominant image and video coding standards including JPEG, 
MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and H.264/MPEG-4 AVC.  Much 
of this discussion will focus on MPEG; however, many of these concepts 
readily apply to the other standards as well. 
 
This chapter proceeds as follows. Section 2 defines the compressed-domain 
processing problem. Section 3 gives an overview of MPEG basics and it 
describes the CDP problem in the context of MPEG. Section 4 describes the 
basic methods used in CDP algorithms.  Section 5 describes a series of CDP 
algorithms that use the basic methods of Section 4. Finally, Section 6 
describes some advanced topics in CDP. 

2. PROBLEM STATEMENT 
Compressed-domain processing performs a user-defined operation on a 
compressed video stream without going through a complete 
decompress/process/re-compress cycle; the processed result is a new 
compressed video stream. In other words, the goal of compressed-domain 
processing (CDP) algorithms is to efficiently process one standard-compliant 
compressed video stream into another standard-compliant compressed video 
stream with a different set of properties.  Compressed-domain transcoding 
algorithms are used to change the video format or compression format of 
compressed streams, while compressed-domain editing algorithms are used 
to perform processing operations on compressed streams. CDP differs from 
the encoding and decoding processes in that both the input and output of 
the transcoder are compressed video streams. 
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A conventional solution to the problem of processing compressed video 
streams, shown in the top path of Figure 1, involves the following steps: first, 
the input compressed video stream is completely decompressed into its pixel-
domain representation; this pixel-domain video is then processed with the 
appropriate operation; and finally the processed video is recompressed into a 
new output compressed video stream. Such solutions are computationally 
expensive and have large memory requirements.  In addition, the quality of 
the coded video can deteriorate with each re-coding cycle. 

 
Compressed-domain processing methods can lead to a more efficient solution 
by only partially decompressing the bitstream and performing processing 
directly on the compressed-domain data.  The resulting CDP algorithms can 
have significant savings over their conventional pixel-domain processing 
counterparts. Roughly speaking, the degree of savings will depend on the 
particular operation, the desired performance, and the amount of 
decompression required for the particular operation.  This is discussed 
further in Subsection 3.4 within the context of MPEG compression. 

3. MPEG CODING AND COMPRESSED-DOMAIN 
PROCESSING 

3.1 MPEG FRAME CODING 

Efficient CDP algorithms are designed to exploit various features of the 
MPEG video compression standards.  Detailed descriptions of the MPEG 
video compression standards can be found in [1][2]. This section briefly 
reviews some aspects of the MPEG standards that are relevant to CDP. 
 
MPEG codes video in a hierarchy of units called sequences, groups of 
pictures (GOPs), pictures, slices, macroblocks, and blocks. 16x16 blocks of 
pixels in the original video frames are coded as a macroblock, which consists 
of four 8x8 blocks.  The macroblocks are scanned in a left-to-right, top-to-
bottom fashion, and series of these macroblocks form a slice. All the slices in 
a frame comprise a picture, contiguous pictures form a GOP, and all the 
GOPs form the entire sequence.  The MPEG syntax allows a GOP to contain 
any number of frames, but typical sizes range from 9 to 15 frames.  Each 
GOP refreshes the temporal prediction by coding the first frame in intraframe 
mode, i.e. without prediction.  The remaining frames in the GOP can be 
coded with intraframe or interframe (predictive) coding techniques. 
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Figure 1. Processing compressed video: the conventional pixel-domain 
solution (top path) and the compressed-domain processing solution (bottom 
path). 
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The MPEG algorithm allows each frame to be coded in one of three modes: 
intraframe (I), forward prediction (P), and bidirectional prediction (B).  A 
typical IPB pattern in display order is: 

B7 B8 P9 B10 B11 I0 B1 B2 P3 B4 B5 P6 B7 B8 P9 B10 B11 I0 B1 B2 P3 
The subscripts represent the index of the frame within a GOP.  I frames are 
coded independently of other frames.  P frames depend on a prediction based 
on the preceding I or P frame.  B frames depend on a prediction based on the 
preceding and following I or P frames. Notice that each B frame depends on 
data from a future frame, i.e. future frame must be (de)coded before a 
current B frame can be (de)coded.  For this reason, the coding order is 
distinguished from the display order.  The coding order for the sequence 
shown above is: 

P9 B7 B8 G I0 B10 B11 P3 B1 B2 P6 B4 B5 P9 B7 B8 G I0 B10 B11 P3 B1 B2 
MPEG requires the coded video data to be placed in the data stream in 
coding order.  G represents a GOP header that is placed in the compressed 
bitstream. 
 
A GOP always begins with an I frame.  Typically, it includes the following 
(display order) P and B frames that occur before the next I frame, although 
the syntax also allows a GOP to contain multiple I frames.  The GOP header 
does not specify the number of I, P, or B frames in the GOP, nor does it 
specify the structure of the GOP -- these are completely determined by the 
order of the data in the stream.  Thus, there are no rules that restrict the 
size and structure of the GOP, although care should be taken to ensure that 
the buffer constraints are satisfied. 
 
MPEG uses block motion-compensated prediction to reduce the temporal 
redundancies inherent to video.  In block motion-compensated prediction, 
the current frame is divided into 16x16 pixel units called macroblocks.  Each 
macroblock is compared to a number of 16x16 blocks in a previously coded 
frame.  A single motion vector (MV) is used to represent this block with the 
best match.  This block is used as a prediction of the current block, and only 
the error in the prediction, called the residual, is coded into the data stream. 
 
The frames of a video sequence can be coded as an I, P, or B frame. In I 
frames, every macroblock must be coded in intraframe mode, i.e. without 
prediction. In P frames, each macroblock can be coded with forward 
prediction or in intraframe mode.  In B frames, each macroblock can be 
coded with forward, backward, or bidirectional prediction or in intraframe 
mode.  One MV is specified for each forward- and backward-predicted 
macroblock while two MVs are specified for each bidirectionally predicted 
macroblock.  Thus, each P frame has a forward motion vector field and one 
anchor frame, while each B frame has a forward and backward motion vector 
field and two anchor frames.  In some of the following sections, we define Bfor 
and Bback frames as B frames that use only forward or only backwards 
prediction.  Specifically, Bfor frames can only have intra and forward-
predicted macroblocks while Bback frames can only have intra and backward-
predicted macroblocks. 
 
MPEG uses discrete cosine transform (DCT) coding to code the intraframe 
and residual macroblocks.  Specifically, four 8x8 block DCTs are used to 
encode each macroblock and the resulting DCT coefficients are quantized. 
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Quantization usually results in a sparse representation of the data, i.e. one 
in which most of the amplitudes of the quantized DCT coefficients are equal 
to zero.  Then, only the amplitudes and locations of the nonzero coefficients 
are coded into the compressed data stream. 

3.2 MPEG FIELD CODING 

While many video compression algorithms, including MPEG-1, H.261, and 
H.263, are designed for progressive video sequences; MPEG-2 was designed 
to support both progressive and interlaced video sequences, where two fields, 
containing the even and odd scanlines, are contained in each frame. MPEG-2 
provides a number of coding options to support interlaced video.  First, each 
interlaced video frame can be coded as a frame picture in which the two 
fields are coded as a single unit or as a field picture in which the fields are 
coded sequentially.  Next, MPEG-2 allows macroblocks to be coded in one of 
five motion compensation modes: frame prediction for frame pictures, field 
prediction for frame pictures, field prediction for field pictures, 16x8 
prediction for field pictures, and dual prime motion compensation.  The 
frame picture and field picture prediction dependencies are as follows.  For 
frame pictures, the top and bottom reference fields are the top and bottom 
fields of the previous I or P frame.  For field pictures, the top and bottom 
reference fields are the most recent top and bottom fields.  For example, if 
the top field is specified to be first, then MVs from the top field can point to 
the top or bottom fields in the previous frame, while MVs from the bottom 
field can point to the top field of the current frame or the bottom field of the 
previous frame.  Our discussion focuses on P-frame prediction because the 
transcoder described in Subsection 5.1.5 only processes the MPEG I and P 
frames.  We also focus on field picture coding of interlaced video, and do not 
discuss dual prime motion compensation. 
 
In MPEG field picture coding, each field is divided into 16x16 macroblocks, 
each of which can be coded with field prediction or 16x8 motion 
compensation.  In field prediction, the 16x16 field macroblock will contain a 
field selection bit which indicates whether the prediction is based on the top 
or bottom reference field and a motion vector which points to the 16x16 
region in the appropriate field.  In 16x8 prediction, the 16x16 field 
macroblock is divided into its upper and lower halves, each of which 
contains 16x8 pixels.  Each half has a field selection bit which specifies 
whether the top or bottom reference field is used and a motion vector which 
points to the 16x8 pixel region in the appropriate field. 

3.3 MPEG BITSTREAM SYNTAX 

The syntax of the MPEG-1 data stream has the following structure: A 
Sequence header consists of a sequence start code followed by sequence 
parameters.  Sequences contain a number of GOPs.  Each GOP header 
consists of a GOP start code followed by GOP parameters.  GOPs contain a 
number of pictures.  Each picture header consists of a picture start code 
followed by picture parameters.  Pictures contain a number of slices.  Each 
slice header consists of a slice start code followed by slice parameters.  The 
slice header is followed by slice data, which contains the coded macroblocks. 
 
The sequence header specifies the picture height, picture width, and sample 
aspect ratio. In addition, it sets the frame rate, bitrate, and buffer size for the 
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sequence. If the default quantizers are not used, then the quantizer matrices 
are also included in the sequence header.  The GOP header specifies the time 
code and indicates whether the GOP is open or closed.  A GOP is open or 
closed depending on whether or not the temporal prediction of its frames 
require data from other GOPs.  The picture header specifies the temporal 
reference parameter, the picture type (I, P, or B), and the buffer fullness (via 
the vbv_delay parameter).  If temporal prediction is used, it also describes 
the motion vector precision (full or half pixel) and the motion vector range. 
The slice header specifies the macroblock row in which slice starts and the 
initial quantizer scale factor for the DCT coefficients.  The macroblock header 
specifies the relative position of the macroblock in relation to the previously 
coded macroblock.  It contains a flag to indicate whether intra or inter-frame 
coding is used.  If inter-frame coding is used, it contains the coded motion 
vectors, which may be differentially coded with respect to previous motion 
vectors. The quantizer scale factor may be adjusted at the macroblock level. 
One bit is used to specify whether the factor is adjusted.  If it is, the new 
scale factor is specified.  The macroblock header also specifies a coded block 
pattern for the macroblock.  This describes which of the luminance and 
chrominance DCT blocks are coded. Finally, the DCT coefficients of the 
coded blocks are coded into the bitstream.  The DC coefficient is coded first, 
followed by the runlengths and amplitudes of the remaining nonzero 
coefficients. If it is an intra macroblock, then the DC coefficient is coded 
differentially. 
 
The sequence, GOP, picture, and slice headers begin with start codes, which 
are four-byte identifiers that begin with 23 zeros and a one followed by a one 
byte unique identifier.  Start codes are useful because they can be found by 
examining the bitstream; this facilitates efficient random access into the 
compressed bitstream.  For example, one could find the coded data that 
corresponds to the 2nd slice of the 2nd picture of the 22nd GOP by simply 
examining the coded data stream, without parsing and decoding the data.  
Of course, reconstructing the actual pixels of that slice may require parsing 
and decoding additional portions of the data stream because of the 
prediction used in conventional video coding algorithms.  However, 
computational benefits could still be achieved by locating the beginning of 
the 22nd GOP and parsing and decoding the data from that point on thus 
exploiting the temporal refresh property inherent to GOPs. 

3.4 COMPRESSED-DOMAIN PROCESSING FOR MPEG 

The CDP problem statement was described in Section 2.  In essence, the goal 
of CDP is to develop efficient algorithms for performing processing operations 
on compressed bitstreams. While the conventional approach requires 
decompressing the bitstream, processing the decoded frames, and re-
encoding the result; improved efficiency, with respect to compute and 
memory requirements, can be achieved by exploiting structures used in the 
compression algorithms and using this knowledge to avoid the complete 
decode and re-encode cycle.  In the context of MPEG transcoding, improved 
efficiency can be achieved by exploiting the structures used in MPEG coding. 
Furthermore, a decode/process/re-encode cycle can lead to significant loss 
of quality (even if no processing is performed besides the decode and re-
encode) -- carefully designed CDP algorithms can greatly reduce and in some 
cases prevent this loss in quality. 
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MPEG coding uses a number of structures, and different compressed-domain 
processing operations require processing at different levels of depth.  From 
highest to lowest level, these levels include: 

• Sequence-level processing 
• GOP-level processing 
• Frame-level processing 
• Slice-level processing 
• Macroblock-level processing 
• Block-level processing 

 
Generally speaking, deeper-level operations require more computations.  For 
example, some processing operations in the time domain require less 
computation if no information below the frame level needs to be adjusted. 
Operations of this kind include fast forward recoding and cut-and-paste or 
splicing operations restricted to cut points at GOP boundaries. However, if 
frame-accurate splicing [3] is required, frame and macroblock level 
information may need to be adjusted for frames around the splice point, as 
described in Section 5. In addition, in frame rate reduction transcoding, if 
the transcoder chooses to only drop non-reference frames such as B frames, 
a frame-level parsing operation could suffice. 
 
On the other hand, operations related to the modification of content within 
video frames have to be performed below the frame level. Operations of this 
kind include spatial resolution reduction transcoding [4], frame-by-frame 
video reverse play [5] and many video-editing operations such as fading, logo 
insertion, and video/object overlaying [6][7]. As expected, these operations 
require significantly more computations, so for these operations efficient 
compressed-domain methods can lead to significant improvements. 

4. COMPRESSED-DOMAIN PROCESSING METHODS 
In this section, we examine the basic techniques of compressed-domain 
processing methods. Since the main techniques used in video compression 
include spatial to frequency transformation, particularly DCT, and motion-
compensated prediction, we focus the investigation on compressed domain 
methods in these two domains, namely, in the DCT domain and the motion 
domain.  

4.1 DCT-DOMAIN PROCESSING 

As described in Section 3, the DCT is the transformation used most often in 
image and video compression standards. It is therefore important to 
understand some basic operations that can be performed directly in the DCT 
domain, i.e. without an inverse DCT/forward DCT cycle. 
 
The earliest work on direct manipulation of compressed image and video data 
expectedly dealt with point processing, which consists of operations such as 
contrast manipulation and image subtraction where a pixel value in the 
output image at position p depends solely on the pixel value at the same 
position p in the input image. Examples of such work can be found in Chang 
and Messerschmitt [8], who developed some special functions for video 
compositing, and in Smith and Rowe [9], who developed a set of algorithms 
for basic point operations. When viewing compressed domain manipulation 
as a matrix operation, point processing operations on compressed images 
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and video can be characterized as inner-block algebra (IBA) operations since 
the information in the output block, i.e. the manipulated block, comes solely 
from information in the corresponding input block. These operations are 
listed in Table 1. 
 

Table 1. Mathematical expression of spatial vs. DCT domain algebraic 
operations 

 
 Spatial domain 

signal – x  
Transform domain 
signal – X  

Scalar addition [ ] α+f  [ ] 







+

00
0/8 00Q

F
α

 

Scalar 
Multiplication 

[ ]fα  [ ]Fα  

Pixel Addition [ ] [ ]gf +  [ ] [ ]GF +  
Pixel Multiplication [ ] [ ]gf •  [ ] [ ]GF ⊗  

 
In this table, lower case f and g are used to represent spatial domain signals, 
while upper case F and G represent their corresponding DCT domain signals. 
Since compression standards typically use block-based schemes, each block 
can be treated as a matrix. Therefore, the operations can be expressed in 
forms of matrix operations. In general, the relationship holds as: 

XxDCT =)( , 
where DCT( ) represents the DCT function. 
 
Because of the large number of zeros in the block in the DCT domain, the 
data manipulation rate is heavily reduced. The speedup of the first three 
operations in Table 1 is quite obvious given that the number of non-zero 
coefficients in F and G is quite small.  As an example of these IBA operations, 
consider the compositing operation where foreground f is combined with 
background b with a factor of α  to generate an output R in DCT 
representation. In spatial domain, this operation can be expressed as: 

[ ] [ ]))1(( bfDCTR αα −+= . Given the DCT representation of f and b in the 
compressed domain, F and B, the operation can be conveniently performed 
as: [ ] [ ]BFR )1( αα −+= . The operation is based on the linearity of the DCT 
and corresponds to a combination of some of the above-defined image 
algebra operations; it can be done in DCT domain efficiently with significant 
speedup. Similar compressed domain algorithms for subtitling and dissolving 
applications can also be developed based on the above IBA operations with 
computational speedups of 50 or more over the corresponding processing of 
the uncompressed data [9]. 
 
These methods can also be used for color transformation in the compressed 
domain. As long as the transformation is linear, it can be derived in the 
compressed domain using a combination of these IBA operations. 
 
Pixel multiplication can be achieved by a convolution in the DCT domain. 
Compressed-domain convolution has been derived in [9] by mathematically 
combining the decompression, manipulation, and re-compression processes 
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to obtain a single equivalent local linear operation where one can easily take 
advantage of the energy compaction property in quantized DCT blocks. A 
similar approach was taken by Smith [10] to extend point processing to 
global processing of operations where the value of a pixel in the output image 
is an arbitrary linear combination of pixels in the input image. Shen et al. 
[11] have studied the theory behind DCT domain convolution based on the 
orthogonal property of DCT. As a result, an optimized DCT domain 
convolution algorithm is proposed and applied to the application of DCT 
domain alpha blending. Specifically, given foreground f to be blended with 
the background b with an alpha channel a to indicate the transparency of 
each pixel in f, the operation can be expressed as: 

[ ] [ ])])[1(]([ bafaDCTR •−+•= . The DCT domain operation is performed 

as: [ ] [ ]BAFAR ⊗−+⊗= ])[1(][ , where A is the DCT representation of a. A 
masking operation can also be performed in the same fashion with A 
representing the mask in the DCT domain. This operation enables the 
overlay of an object in the DCT domain with arbitrary shape. An important 
application for this is logo-insertion. Another example where processing of 
arbitrarily shaped objects arise is discussed in Section 6.1. 
 
Many image manipulation operations are local or neighborhood operations 
where the pixel value at position p in the output image depends on 
neighboring pixels of p in the input image. We characterize methods to 
perform such operations in the compressed domain as inner-block 
rearrangement or resampling (IBR) methods. These methods are based on 
the fact that DCT is a unitary orthogonal transform and is distributive to 
matrix multiplication. It is also distributive to matrix addition, which is 
actually the case of pixel addition in Table 1. We group these two distributive 
properties of DCT in Table 2. 
  

Table 2. Mathematical expression of distributiveness of DCT 
 Spatial domain 

signal – x 
Transform domain 
signal – X 

Matrix Addition [ ] [ ]gf +  [ ] [ ]GF +  
Matrix Multiplication [ ][ ]gf  [ ][ ]GF  

 
Based on above, Chang and Messerschmitt [8] developed a set of algorithms 
to manipulate images directly in the compressed domain. Some of the 
interesting algorithms they developed include the translation of images by 
arbitrary amounts, linear filtering, and scaling. In general, a manipulation 
requiring uniform and integer scaling, i.e. certain forms of filtering, is easy to 
implement in the DCT domain using the resampling matrix. Since each block 
can use the same resampling matrix in space invariant filtering, these kinds 
of manipulations require little overhead in the DCT domain. In addition, 
translation of images by arbitrary amounts represents a shifting operation 
that is often used in video coding. We defer a detailed discussion of this 
particular method to Section 4.3.  
 
Another set of algorithm has also been introduced to manipulate the 
orientation of DCT blocks [12]. These methods can be employed to flip-flop a 
DCT frame as well as rotate a DCT frame at multiples of 90 degree, simply by 
switching the location and/or signs of certain DCT coefficients in the DCT 
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blocks. For example, the DCT transform result of a transposed pixel block f 
is equivalent of the transpose of the corresponding DCT block. This operation 
is expressed mathematically as:  

[ ] [ ]tt FfDCT =)( . 
 
A horizontal flip of a pixel block ([f]h) can be achieved in the DCT domain by 
performing an element-by-element multiplication with a matrix composed of 
only two values: 1 or –1. The operation is therefore just sign reversal on some 
non-zero coefficients. Mathematically, this operation is expressed as: 

[ ] [ ] [ ]HFfDCT h •=)( , 
where H is defined as follows assuming an 8x8 block operation, 





=
=−

=
6,4,2,01
7,5,3,11

j
j

Hij . 

 
For the full set of operations of this type, please refer to [12]. Note that for all 
the cases, the DC coefficient remains unchanged because of the fact that 
each pixel maintains its gray level while its location within the block is 
changed. These flip-flop and special angle rotation methods are very useful 
in applications such as image orientation manipulation that is used often in 
copy machines, printers and scanners. 

4.2 MOTION VECTOR PROCESSING (MV RESAMPLING) 

From a video coding perspective, motion vectors are estimated through block 
matching in a reference frame. This process is often compute intensive. The 
key of compressed-domain manipulation of motion vectors is to derive new 
motion vectors out of existing motion vector information contained in the 
input compressed bitstream. 
 
Consider a motion vector processing scenario that arises in a spatial 
resolution reduction transcoder. Given the motion vectors for a group of four 
16x16 macroblocks of the original video (NxM), how does one estimate the 
motion vectors for the 16x16 macroblocks in the downscaled video (e.g., 
N/2xM/2)? Consider forward-predicted macroblocks in a forward-predicted 
(P) frame, wherein each macroblock is associated with a motion vector and 
four 8x8 DCT blocks that represent the motion-compensated prediction 
residual information. The downscale-by-two operation requires four input 
macroblocks to form a single new output macroblock. In this case, it is 
necessary to estimate a single motion vector for the new macroblock from the 
motion vectors associated with the four input macroblocks. 
 
The question asked above can be viewed as a motion vector resampling 
problem. Specifically, given a set of motion vectors MV in the input 
compressed bitstream, how does one compute the motion vectors MV* of the 
output compressed bitstream? Motion vector resampling algorithms can be 
classified into 5 classes as shown in Figure 2 [5].  The most accurate, but 
least efficient algorithm is Class V, in which one decompresses the original 
frames into their full pixel representation; and then one performs full search 
motion estimation on the decompressed frames.  Since motion estimation is 
by far the most compute-intensive part of the transcoding operation, this is a 
very expensive solution.  Simpler motion vector resampling algorithms are 
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given in classes I through IV in order of increasing computational 
complexity, where increased complexity typically results in more accurate 
motion vectors.  Class I MV resampling algorithms calculate each output 
motion vector based on its corresponding input motion vector.  Class II 
algorithms calculate each output motion vector based on a neighbourhood of 
input motion vectors.  Class III algorithms also use a neighbourhood of input 
motion vectors, but also consider other parameters from the input bitstream 
such as quantization parameters and coding modes when processing them.  
Class IV algorithms use a neighbourhood of motion vectors and other input 
bitstream parameters, but also use the decompressed frames.  For example, 
the input motion vectors may be used to narrow the search range used when 
estimating the output motion vectors.  Finally, Class V corresponds to full 
search motion estimation on the decompressed frames. 

Figure 2.  Classes of motion vector resampling methods. 

The conventional spatial-domain approach of estimating the motion vectors 
for the downscaled video is to first decompress the video, downscale the 
video in the spatial domain then use one of the several widely known spatial-
domain motion-estimation techniques (e.g., [13]) to recompute the motion 
vectors. This is computationally intensive. A class II approach might be to 
simply take the average of the four motion vectors associated with the four 
macroblocks and divide it by two so that the resulting motion vector can be 
associated with the 16x16 macroblock of the downscaled-by-two video. While 
this operation requires little processing, the motion vectors obtained in this 
manner are not optimal in most cases. 
 
Adaptive motion vector resampling (AMVR) is a class III approach proposed 
in [4] to estimate the output motion vectors using the original motion 
information from the MPEG or H.26x bitstream of the original NxN video 
sequence. This method uses the DCT blocks to derive the block-activity 
information for the motion-vector estimation. When comparing the 
compressed-domain AMVR method to the conventional spatial-domain 
method, the results suggest that AMVR generates, with significantly less 
computation, motion vectors for the N/2xM/2 downscaled video that are very 
close to the optimal motion vector field that would be derived from an 
N/2xM/2 version of the original video sequence. 
 
This weighted average motion vector scheme can also be extended to motion 
vector downsampling by arbitrary factors. In this operation, the number of 
participating macroblocks is not an integer. Therefore, the portion of the area 
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of the participating macroblock is used to weight the contributions of the 
existing motion vectors. 
 
A class IV method for performing motion vector estimation out of existing 
motion vectors can be found in [14]. In frame rate reduction transcoding, if a 
P-picture is to be dropped, the motion vectors of macroblocks on the next P-
picture should be adjusted since the reference frame is now different. Youn 
et al. [14] proposed a motion vector composition method to compute a motion 
vector from the incoming motion vectors. In this method, the derived motion 
vector can be refined by performing partial search motion estimation within 
a narrow search range. 
 
The MV resampling problem for the compressed-domain reverse play 
operation was examined in [5].  In this application, the goal was to compute 
the “backward” motion vectors between two frames of a sequence when given 
the “forward” motion vectors between two frames.  Perhaps contrary to 
intuition, the resulting forward and backwards motion vector fields are not 
simply inverted versions of one another because of the block-based motion-
compensated processing used in typical compression algorithms. A variety of 
MV resampling algorithms is presented in [5], and experimental results are 
given  that illustrate the tradeoffs in complexity and performance. 

4.3 MC+DCT PROCESSING 

The previous section introduced methodologies for deriving output motion 
vectors from existing input motion vectors in the compressed domain. 
However, if the newly derived motion vectors are used in conjunction with 
the original residual data, the result is imperfect and will result in a drift 
error. To avoid drift error, it is important to reconstruct the original reference 
frame and re-compute the residual data. This renders the IDCT process as 
the next computation bottleneck since the residual data is in the DCT 
domain. Alternatively, DCT domain motion compensation methods, such as 
the one introduced in [8], can be employed where the reference frames are 
converted to a DCT representation so that no IDCT is needed.  
 
Inverse motion compensation is the process of extracting a 16x16 block given 
a motion vector in the reference frame. It can be characterised by a group 
matrix multiplications. Due to the distributive property of the DCT, this 
operation can be achieved by matrix multiplications of DCT blocks. 
Mathematically, consider a block g of size 8x8 in a reference frame pointed 
by a motion vector (x,y). Block g may lie in an area covered by a 2x2 array of 
blocks (f1, f2, f3, f4) in the reference frame. g can then be calculated as: 

∑=
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where Iz are identity matrices of size 8x8. In the DCT domain, this operation 
can be expressed as: 

∑=
=

4

1i
yiixi MFMG ,                    (1) 

where Mxi and Myi are the DCT representations of mxi and myi respectively. 
Since these shifting matrices are constant, they can be pre-computed and 
stored in the memory. However, the computing of Eq (1) may still be CPU-
intensive since the shifting matrices may not be sparse enough. To this end, 
various authors have proposed different methods to combat this problem. 
 
Merhav and Bhaskaran [15] proposed to decompose the DCT domain shifting 
matrices. Matrix decomposition methods are based on the sparseness of the 
factorized DCT transform matrices. Factorization of DCT transform matrix is 
introduced in a fast DCT algorithm [16]. The goal of the decomposition is to 
replace the matrix multiplication with a product of diagonal matrices, simple 
permutation matrices and more sparse matrices. The multiplication with a 
diagonal matrix can be absorbed in the quantization process. The 
multiplication with a permutation matrix can be performed by coefficient 
permutation. And finally, the multiplication with a sparse matrix requires 
fewer multiplications. Effectively, the matrix multiplication is achieved with 
less computation. 
 
In an alternative approach, the coefficients in the shifting matrix can be 
approximated so that floating point multiplication can be replaced by integer 
shift and add operation. Work of this kind is introduced in [17]. Effectively, 
fewer basic CPU operations are needed since multiplication operations are 
avoided. A similar method is also used in [18] for DCT domain downsampling 
of images by employing the approximated downsampling matrices.  
 
To further reduce the computation complexity of the DCT domain motion 
compensation process, a look-up-table (LUT) based method [19] is proposed 
by modelling the statistical distribution of DCT coefficients in compressed 
images and video sequences and precomputing all possible combinations of 

yiixi MFM  as in Eq (1). As a result, the matrix multiplications are reduced to 

simple table look-ups. Using around 800KB of memory, the LUT-based 
method can save more than 50% of computing time. 

4.4 RATE CONTROL/BUFFER REQUIREMENTS 

Rate control is another important issue in video coding. For compressed 
domain processing, the output of the process should also be confined to a 
certain bitrate so that it can be delivered in a constant transmission rate. 
Eleftheriadis and Anastassiou [20] have considered rate reduction by an 
optimal truncation or selection of DCT coefficients. Since fewer coefficients 
are coded, a lower number of bits are spent in coding them. Nakajima et al 
[21] achieve the similar rate reduction by re-quantization using a larger 
quantization step size. 
 
For compressed domain processing, it is important for the rate control 
module to use compressed domain information existing in the original 
stream. This is a challenging problem, since the compressed bitstream lacks 
information that was available to the original encoder.  To illustrate this 
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problem, consider TM5 rate control, which is used in many video coding 
standards. This rate controller begins by estimating the number of bits 
available to code the picture, and computes a reference value of the 
quantization parameter based on the buffer fullness and target bitrate. It 
then adaptly raises or lowers the quantization parameter for each 
macroblock based on the spatial activity of that macroblock. The spatial 
activity measure as defined in TM5 as the variance of each block: 

( )∑ −=
=
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64
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However, the pixel domain information Pi may not be available in the 
compressed domain processing. In this case, the activity measure has to be 
derived from the DCT coefficients instead of the pixel domain frames. For 
example, the energy of quantized AC coefficients in the DCT block can be 
used as a measure of the variance. It has been shown in [4] that this 
approach achieves satisfactory rate control. In addition, the target bit budget 
for a particular frame can be derived from the bitrate reduction factor and 
the number of bits spent for the corresponding original frame, which is 
directly available from the original video stream. 

4.5 FRAME CONVERSIONS 

Frame conversions are another basic tool that can be used in compressed-
domain video processing operations [22].  They are especially useful in 
frame-level processing applications such as splicing and reverse play.  Frame 
conversions are used to convert coded frames from one prediction mode to 
another to change the prediction dependencies in coded video streams.  For 
example, an original video stream coded with I, P, and B frames may be 
temporarily converted to a stream coded with all I frames, i.e. a stream 
without temporal prediction, to facilitate pixel-level editing operations.  Also, 
an IPB sequence may be converted to an IB sequence in which P frames are 
converted to I frames to facilitate random access into the stream.  Also, when 
splicing two video sequences together, frame conversions can be used to 
remove prediction dependencies from video frames that are not included in 
the final spliced sequence. Furthermore, one may wish to use frame 
conversions to add prediction dependencies to a stream, for example to 
convert from an all I-frame compressed video stream to an I and P frame 
compressed stream to achieve a higher compression rate. 
 
A number of frame conversion examples are shown in Figure 3.  The original 
IPB sequence is shown in the top.  Examples of frame conversions that 
remove temporal dependencies between frames are given: specifically P-to-I 
frame, B-to-Bfor conversion, and B-to-Bback conversion.  These operations are 
useful for editing operations such as splicing.  Finally, an example of I-to-P 
conversion is shown in which prediction dependencies are added between 
frames.  This is useful in applications that require further compression of a 
pre-compressed video stream. 
 
Frame conversions require macroblock-level and block-level processing 
because they modify the motion vector and DCT coefficients of the 
compressed stream.  Specifically, frame conversions require examining each 
macroblock of the compressed frame, and when necessary changing its 
coding mode to an appropriate dependency.  Depending on the conversion, 
some, but not all, macroblocks may need to be processed.  An example in 
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which a macroblock may not need to be processed is in a P-to-I frame 
conversion.  Since P frames contain i- and p- type macroblocks and I frames 
contain only i-type macroblocks; a P-to-I conversion requires converting all 
p-type input macroblocks to i-type output macroblocks; however, note that i-
type input macroblocks do not need to be converted.  The list of frame types 
and allowed macroblock coding modes are shown in the upper right table in 
Figure 3.  The lower right table shows macroblock conversions needed for 
some frame conversion operations.  These conversions will be used in the 
splicing and reverse play applications described in Section 5. The conversion 
of a macroblock from p-type to i-type can be performed with the inverse 
motion compensation process introduced in Subsection 4.3. 

One should note that in standards like MPEG, frame conversions performed 
on one frame may affect the prediction used in other frames because of the 
prediction rules specified by I, P, and B frames.  Specifically, I-to-P and P-to-I 
frame conversions do not affect other coded frames.  However, I-to-B, B-to-I, 
P-to-B, and B-to-P frame conversions do affect other coded frames.  This can 
be understood by considering the prediction dependency rules of MPEG.  
Specifically, since P frames are specified to depend on the nearest preceding I 
or P frame and B frames are specified to depend on the nearest surrounding 
I or P frames, it is understandable that frame conversions of certain types 
will affect the prediction dependency tree inferred from the frame coding 
types. 

5. APPLICATIONS 
This section shows how the compressed domain processing methods 
described in Section 4 can be applied to video transcoding and video 
processing/editing applications.  Algorithms and architectures are described 
for a number of CDP operations. 
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Figure 3. Frame conversions and required macroblock conversions. 
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5.1 COMPRESSED-DOMAIN TRANSCODING APPLICATIONS 
With the introduction of the next generation wireless networks, mobile 
devices will access an increasing amount of media-rich content. However, a 
mobile device may not have enough display space to render content that was 
originally created for desktop clients. Moreover, wireless networks typically 
support lower bandwidths than wired networks, and may not be able to carry 
media content made for higher-bandwidth wired networks. In these cases, 
transcoders can be used to transform multimedia content to an appropriate 
video format and bandwidth for wireless mobile streaming media systems. 
 
A conceptually simple and straightforward method to perform this 
transcoding is to decode the original video stream, downsample the decoded 
frames to a smaller size, and re-encode the downsampled frames at a lower 
bitrate. However, a typical CCIR601 MPEG-2 video requires almost all the 
cycles of a 300Mhz CPU to perform real-time decoding. Encoding is 
significantly more complex and usually cannot be accomplished in real time 
without the help of dedicated hardware or a high-end PC. These factors 
render the conceptually simple and straightforward transcoding method 
impractical. Furthermore, this simple approach can lead to significant loss in 
video quality.  In addition, if transcoding is provided as a network service in 
the path between the content provider and content consumer, it is highly 
desirable for the transcoding unit to handle as many concurrent sessions as 
possible. This scalability is critical to enable wireless networks to handle 
user requests that may be very intense at high load times. Therefore, it is 
very important to develop fast algorithms to reduce the compute and memory 
loads for transcoding sessions. 

5.1.1 Compressed-Domain Transcoding Architectures 

Video processing applications often involve a combination of spatial and 
temporal processing.  For example, one may wish to downscale the spatial 
resolution and lower the frame rate of a video sequence.  When these video 
processing applications are performed on compressed video streams, a 
number of additional requirements may arise.  For example, in addition to 
performing the specified video processing task, the output compressed video 
stream may need to satisfy additional requirements such as maximum 
bitrate, buffer size, or particular compression format (e.g. MPEG-4 or H.263).  
While conventional approaches to applying traditional video processing 
operations on compressed video streams generally have high compute and 
memory requirements, the algorithmic optimizations described in Section 4 
can be used to design efficient compressed-domain transcoding algorithms 
with significantly reduced compute and memory requirements.  A number of 
transcoding architectures were discussed in [23][24][25][26]. 
 
Figure 4 shows a progression of architectures that reduce the compute and 
memory requirements of such applications.  These architectures are 
discussed in the context of lowering the spatial and temporal resolution of 
the video from S0,T0 to S1,T1 and lowering the bitrate of the bitstream from R0 
to R1.  The top diagram shows the conventional approach to processing the 
compressed video stream.  First the input compressed bitstream with bitrate 
R0 is decoded into its decompressed video frames, which have a spatial 
resolution and temporal frame rate of S0 and T0.  These frames are then 
processed temporally to a lower frame rate T1 < T0 by dropping appropriate 
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frames.  The spatial resolution is then reduced to S1 < S0 by spatially 
downsampling the remaining frames.  The resulting frames with resolution 
S1,T1 are then re-encoded into a compressed bitstream with a final bitrate of 
R1<R0.  The memory requirements of this approach are high because of the 
frame stores required to store the decompressed video frames at resolution 
S0,T0.  The computational requirements are high because of the operations 
needed to decode, process, and re-encode the frames; in particular, motion 
estimation performed during re-encoding can be quite compute intensive.  

The middle diagram shows an improved approach to the problem.  By 
exploiting the picture start codes and frame prediction types used in the 
input compressed bitstream, the frame rate of the input bitstream can be 
reduced directly at the bitstream level prior to decompression.  Specifically, 
in order to reduce the temporal frame rate, rather than decoding the entire 
bitstream and subsequently dropping frames, one may instead examine the 
bitstream for picture startcodes, determine the picture type from the picture 
header, and then selectively discard the bits that correspond to B pictures.  
The resulting lower-rate R' < R0 bitstream can be decoded into video frames 
with resolution S0,T1.  The limitation is that the temporal frame rate can only 
be reduced by restricted factors because of the prediction dependencies used 
in the input bitstream, e.g. in the case where two B frames are used between 
the I and P frames, the temporal frame rate can only be reduced by a factor 
of 3.  The advantages are the reduced processing requirements needed for 
MPEG decoding and the reduced memory requirements achieved by 
eliminating the need to store the higher frame rate sequence.  In this 
approach, the computational requirements are still high due to the motion 
estimation that must be performed in the encoder. 
 
The bottom diagram shows an improved approach for this transcoding 
operation.  Once again, the temporal frame rate is reduced at the bitstream 
layer by exploiting the picture start codes and picture headers.  
Furthermore, deriving the output coding parameters from those given in the 
input bitstream can significantly reduce the compute requirements of the 
final encode operation.  This is advantageous because some of the 
computations that need to be performed in the encoder, such as motion 
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Figure 4. Architectural development of CDP algorithms. 
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estimation, may have already been performed by the original encoder and 
may be represented by coding parameters, such as motion vectors, given in 
the input bitstream.  Rather than blindly recomputing this information from 
the decoded, downsampled video frames, the encoder can exploit the 
information contained in the input bitstream.  In other words, much of the 
information that is derived in the original encoder can be reused in the 
transcoder. Specifically, the motion vectors, quantization parameters, and 
prediction modes contained in the input compressed bitstream can be used 
to calculate the motion vectors, quantization parameters, and prediction 
modes used in the encoder, thus largely bypassing the expensive operations 
performed in the conventional encoder.   
 
Also, when transcoding to reduce the spatial resolution, the number of 
macroblocks in the input and output frames can differ; the bottom 
architecture can be further improved to consider this difference and achieve 
a better tradeoff in complexity and quality [23].  Note that the DCT-domain 
methods discussed in Section 4 can be used for further improvements. 

5.1.2 Intra-Frame Transcoding 

Images and video frames coded with intraframe methods are represented by 
sets of block DCT coefficients. When using intraframe DCT coding, the 
original video frame is divided into 8x8 blocks, each of which is 
independently transformed with an 8x8 DCT.  This imposes an artificial 
block structure that complicates a number of spatial processing operations, 
such as translation, downscaling, and filtering, that were considered 
straightforward in the pixel domain.  
 
For spatial downsampling or resolution reduction on an intra-coded frame, 
one 8x8 DCT block of the downscaled image is determined from multiple 8x8 
DCT blocks of the original image.  Efficient downsampling algorithms can be 
derived in the DCT domain. Based on the distributed property of the DCT 
discussed in Subsection 4.1, DCT-domain downsampling can be achieved by 
matrix multiplication. Merhav and Bhaskaran [28] have developed an 
efficient matrix multiplication for downscale of DCT blocks. Natarajan and 
Bhaskaran [18] also used approximated DCT matrices to achieve the same 
goal. The approximated DCT matrices contain only elements of value 0, 1, or 
a power of ½. Effectively, the matrix multiplication can be achieved by 
integer shifts and additions, leading to a multiplication free implementation. 
 
Efficient algorithms have also been developed for filtering images in the DCT 
domain.  For example, [29] proposes a method to apply two-dimensional 
symmetric, separable filters to DCT-coded images.   

5.1.3 Inter-Frame Transcoding 

Video frames coded with interframe coding techniques are represented with 
motion vectors and residual DCT coefficients.  These frames are coded based 
on a prediction from one or more previously coded frames; thus, properly 
decoding one frame requires first decoding one or more other frames.  This 
temporal dependence among frames severely complicates a number of spatial 
and temporal processing techniques such as translation, downscaling, and 
splicing.  
 



Compressed-Domain Video Processing 19

To facilitate efficient transcoding in the compressed domain, one wants to 
reuse as much information as possible in the origin video bitstream. The 
motion vector information of the transcoded video can be derived using the 
motion vector processing method introduced in Subsection 4.2. The 
computing of the residual DCT data can follow the guidelines provided in 
Subsection 4.3. Specifically, an interframe representation can be transcoded 
to an intraframe representation in the DCT domain. Subsequently, the DCT 
domain residual data can be obtained based on the derived motion vector 
information. 

5.1.4 Format Conversion: Video Downscaling 

Downscaling, or reducing the spatial resolution, of compressed video streams 
is an operation that benefits from the compressed-domain methods described 
in Section 4 and the compressed-domain transcoding architectures 
presented in Subsection 5.1.1.  A block diagram of the compressed-domain 
downscaling algorithm is shown in Figure 5.  The input bitstream is partially 
decoded into its motion vector and DCT domain representation.  The motion 
vectors are resampled with the MV resampling methods described in 
Subsection 4.2.  The DCT coefficients are processed with the DCT-domain 
processing techniques described in Subsections 4.1 and 4.3.  A number of 
coding parameters from the input bitstream are extracted and used in the 
MV resampling and partial encoding steps of the transcoder.  Rate control 
techniques, like those described in Section 4.4, are used to adapt the bitrate 
of the output stream.  This is discussed in more detail below. 

The compressed-domain downscaling operation is complicated by the 
prediction dependencies used between frames during compression. 
Specifically, there are two tracks of dependencies in such a transcoding 
session. The first dependency is among frames in the original input video 
stream, while the second is among frames in the output downsampled video 
stream. The motion vectors for the down-sampled version can be estimated 
based on the motion vectors in the original video. However, even when the 
motion information in the original video is reused, it is necessary to 
reconstruct the reference frames to avoid drift error due to imperfect motion 
vector estimation. As described in Subsection 4.3, the reconstruction may be 
performed using a DCT domain motion compensation method. 
 
The selection of coding type for macroblock in the interframes is also an 
important issue. In the downsampling-by-two case, there may be four 
macroblocks each with a different coding type involved in the creation of 
each output macroblock; the transcoder may choose the dominant coding 
type as the coding type for the output macroblock. In addition, rate control 
must be used to control the bitrate of the transcoding result. 
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Figure 5. Compressed-domain downscaling algorithm. 
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5.1.5 Format Conversion: Field-to-Frame Transcoding 

This section focuses on the problem of transcoding a field-coded compressed 
bitstream to a lower-rate, lower-resolution frame-coded compressed 
bitstream [26]. For example, conversions between interlaced MPEG-2 
sequences to progressive MPEG-1, H.261, H.263, or MPEG-4 simple profile 
streams lie within this space.  To simplify discussion, this section focuses on 
transcoding a given MPEG-2 bitstream to a lower-rate H.263 or MPEG-4 
simple profile bitstream [26][30][31].  This is a practically important 
transcoding problem for converting MPEG-2 coded DVD and Digital TV video, 
which is often interlaced, to H.263 or MPEG-4 video for streaming over the 
Internet or over wireless links (e.g. 3G cellular) to PCs, PDAs and cell phones 
that usually have progressive displays.  For brevity, we refer to the output 
format as H.263, however it can be H.261, H.263, MPEG-1, or MPEG-4. 
 
The conventional approach to the problem is as follows. An MPEG bitstream 
is first decoded into its decompressed interlaced video frames. These high-
resolution interlaced video frames are then downsampled to form a 
progressive video sequence with a lower spatial resolution and frame rate.  
This sequence is then re-encoded into a lower-rate H.263 bitstream.  This 
conventional approach to transcoding is inefficient in its use of 
computational and memory resources.  It is desirable to have computation- 
and memory-efficient algorithms that achieve MPEG-2 to H.263 transcoding 
with minimal loss in picture quality. 
 
A number of issues arise when designing MPEG-2 to H.263 transcoding 
algorithms.  While both standards are based on block motion compensation 
and the block DCT, there are many differences that must be addressed.  A 
few of these differences are listed below: 
• Interlaced vs. progressive video format: MPEG-2 allows interlaced video 

formats for applications including digital television and DVD.  H.263 only 
supports progressive formats. 

• Number of I frames: MPEG uses more frequent I frames to enable random 
access into compressed bitstreams.  H.263 uses fewer I frames to achieve 
better compression. 

• Frame coding types: MPEG allows pictures to be coded as I, P, or B 
frames.  H.263 has some modes that allow pictures to be coded as I, P, or 
B frames; but has other modes that only allow pictures to be coded as I, 
P, or optionally PB frames.  Traditional I, P, B frame coding allows any 
number of B frames to be included between a pair of I or P frames, while 
H.263 I, P, PB frame coding allows at most one. 

• Prediction modes: In support of interlaced video formats, MPEG-2 allows 
field-based prediction, frame-based prediction, and 16x8 field-based 
prediction.  H.263 only supports frame-based prediction but optionally 
allows an advanced prediction mode in which four motion vectors are 
allowed per macroblock. 

• Motion vector restrictions: MPEG motion vectors must point inside the 
picture, while H.263 has an unrestricted motion vector mode that allows 
motion vectors to point outside the picture.  The benefits of this mode 
can be significant, especially for lower-resolution sequences where the 
boundary macroblocks account for a larger percentage of the video. 
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A block diagram of the MPEG-2 to H.263 transcoder [26][30] is shown in 
Figure 6.  The transcoder accepts an MPEG IPB bitstream as input.  The 
bitstream is scanned for picture start codes and the picture headers are 
examined to determine the frame type.  The bits corresponding to B frames 
are discarded, while the remaining bits are passed on to the MPEG IP 
decoder.  The decoded frames are downsampled to the appropriate spatial 
resolution and then passed to the modified H.263 IP encoder. 

This encoder differs from a conventional H.263 encoder in that it does not 
perform conventional motion estimation; rather, it uses motion vectors and 
coding modes computed from the MPEG motion vectors and coding modes 
and the decoded, downsampled frames.  There are a number of ways that 
this motion vector resampling can be done [4][5].  The class IV partial search 
method described in Subsection 4.2 was chosen.  Specifically, the MPEG 
motion vectors and coding modes are used to form one or more initial 
estimates for each H.263 motion vector.  A set of candidate motion vectors is 
generated; this set may include each initial estimate and its neighbouring 
vectors, where the size of the neighbourhood can vary depending on the 
available computational resources.  The set of candidate motion vectors is 
tested on the decoded, downsampled frames and the best vector is chosen 
based on a criteria such as residual energy.  A half-pixel refinement may be 
performed and the final mode decision (inter or intra) is then made. 

Design considerations 

Many degrees of freedom exist when designing an MPEG-2 to H.263 
transcoder.  For instance, a designer can make different choices in the 
mapping of input and output frame types; and the designer can choose how 
to vary the temporal frame rate and spatial resolution.  Each of these 
decisions has different impact on the computational and memory 
requirements and performance of the final algorithm.  This section presents 
a very simple algorithm that makes design choices that naturally match the 
characteristics of the input and output bitstreams.  
 
The target format of the transcoder can be chosen based on the format of the 
input source bitstream.  A careful choice of source and target formats can 
greatly reduce the computational and memory requirements of the 
transcoding operation. 
 
Spatial and temporal resolutions: The chosen correspondence between the 
input and output coded video frames is shown in Figure 7.  The horizontal 
and vertical spatial resolutions are reduced by factors of two because the 
MPEG-2 interlaced field format provides a natural factor of two reduction in 
the vertical spatial resolution.  Thus, the spatial downsampling is performed 
by simply extracting the top field of the MPEG-2 interlaced video frame and 
horizontally downsampling it by a factor of two.  This simple spatial 
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Figure 6. MPEG-2 to H.263 transcoder block diagram. 
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downsampling method allows the algorithm to avoid the difficulties 
associated with interlaced to progressive conversions.  The temporal 
resolution is reduced by a factor of three, because MPEG-2 picture start 
codes, picture headers, and prediction rules make it possible to efficiently 
discard B-frame data from the bitstream without impacting the remaining I 
and P frames.  Note that even though only the top fields of the MPEG I and P 
frames are used in the H.263 encoder, both the top and bottom fields must 
be decoded because of the prediction dependencies that result from the 
MPEG-2 interlaced field coding modes. 

Frame coding types: MPEG-2 allows I, P, and B frames while H.263 allows I 
and P frames and optionally PB frames.  With sufficient memory and 
computational capabilities, an algorithm can be designed to transcode from 
any input MPEG coding pattern to any output H.263 coding pattern as in 
[31].  Alternatively, one may take the simpler approach of determining the 
coding pattern of the target H.263 bitstream based on the coding pattern of 
the source MPEG-2 bitstream. By aligning the coding patterns of the input 
and output bitstreams and allowing temporal downsampling, a significant 
improvement in computational efficiency can be achieved. 
 
Specifically, a natural alignment between the two standards can be obtained 
by dropping the MPEG B frames and converting the remaining MPEG I and P 
frames to H.263 I and P frames, thus exploiting the similar roles of P frames 
in the two standards and exploiting the ease in which B frame data can be 
discarded from an MPEG-2 bitstream without affecting the remaining I and P 
frames.  Since MPEG-2 sequences typically use an IBBPBBPBB structure, 
dropping the B frames results in a factor of three reduction in frame rate.  
While H.263 allows an advanced coding mode of PB pictures, it is not used in 
this algorithm because it does not align well with MPEG's IBBPBBPBB 
structure. 
 
The problem that remains is to convert the MPEG-coded interlaced I and P 
frames to the spatially downsampled H.263-coded progressive I and P 
frames.  The problem of frame conversions can be thought of as 
manipulating prediction dependencies in the compressed data; this topic was 
addressed in [22] and in Subsection 4.5 for MPEG progressive frame 
conversions.  This MPEG-2 to H.263 transcoding algorithm requires three 
types of frame conversions: (1) MPEG I field to H.263 I frame, (2) MPEG I 
field to H.263 P frame, and (3) MPEG P field to H.263 P frame. The first is 
straightforward.  The latter two require the transcoder to efficiently calculate 
the H.263 motion vectors and coding modes from those given in the MPEG-2 
bitstream.  When using the partial search method described in Subsection 
4.3, the first step is to create one or more initial estimates of each H.263 
motion vector from the MPEG-2 motion vectors.  In the following two 
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sections, we discuss the methods used to accomplish this for MPEG I field to 
H.263 P frame conversions and for MPEG P field to H.263 P frame 
conversions.  Further details of the MPEG-2 to H.263 transcoder, including 
the progressive to interlace frame conversions, are given in [26][30].  These 
conversions address the differences between the MPEG-2 and H.263 
standards described at the beginning of the section, and exploit the 
information in the input video stream to greatly reduce the computational 
and memory requirements of the transcoder with little loss in video quality. 

5.2 EDITING 

This section describes a series of compressed-domain editing applications.  It 
begins with temporal mode conversion, which can be used to transcode an 
MPEG sequence into a format that facilitates video editing operations.  It 
then describes two frame-level processing operations, frame-accurate 
splicing and frame-by-frame reverse play.  All these operations use the frame 
conversion methods described in Subsection 4.5 to manipulate the prediction 
dependencies of compressed frames [22]. 

5.2.1 Temporal Mode Conversion 

The ability to transcode between arbitrary temporal modes adds a great deal 
of flexibility and power to compressed-domain video processing. In addition, 
it provides a method of trading off parameters to achieve various 
rate/robustness profiles.  For example, an MPEG sequence consisting of all I 
frames, while least efficient from a compression viewpoint, is most robust to 
channel impairments in a video communication system.  In addition, the all 
I-frame MPEG video stream best facilitates many video-editing operations 
such as splicing, downscaling, and reverse play. Finally, once an I-frame 
representation is available, the intraframe transcoding algorithms described 
in Subsection 5.1 can be applied to each frame of the sequence to achieve 
the same effect on the entire sequence. 
 
In general, temporal mode conversions can be performed with the frame 
conversion method described in Subsection 4.5.  For frames that need to be 
converted to different prediction modes, macroblock and block level 
processing can be used to convert the appropriate macroblocks between 
different types. 
 
The following steps describe a DCT-domain approach to transcoding an 
MPEG video stream containing I, P, and B frames into an MPEG video 
stream containing only I frames.  This processing must be performed for the 
appropriate macroblocks of the converted frames. 
1. Calculate the DCT coefficients of the motion-compensated prediction. This 

can be calculated from the intraframe coefficients of the previously coded 
frames by using the compressed-domain inverse motion compensation 
routine described in Subsection 4.3. 

2. Form the intraframe DCT representation of each frame.  This step simply 
involves adding the predicted DCT coefficients to the residual DCT 
coefficients. 

3. Requantize the intraframe DCT coefficients. This step must be performed 
to ensure that the buffer constraints of the new stream are satisfied.  
Requantization may be used to control the rate of the new stream. 
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4. Reorder the coded data and update the relevant header information. If B-
frames are used, the coding order of the IPB MPEG stream will differ from 
the coding order of the I-only MPEG stream. Thus, the coded data for 
each frame must be shuffled appropriately. In addition, the appropriate 
parameters of the header data must be updated. 

5.2.1 Frame-Accurate Splicing 

The goal of the splicing operation is to form a video data stream that 
contains the first Nhead frames of one video sequence and the last Ntail frames 
of another video sequence.  For uncoded video, the solution is obvious: 
simply discard the unused frames and concatenate the remaining data.  Two 
properties make this solution obvious: (1) the data needed to represent each 
frame is self-contained, i.e. it is independent of the data from other frames; 
and (2) the uncoded video data has the desirable property of original 
ordering, i.e. the order of the video data corresponds to the display order of 
the video frames.  MPEG-coded video data does not necessarily retain these 
properties of temporal independence or original ordering (although it can be 
forced to do so at the expense of compression efficiency).  This complicates 
the task of splicing two MPEG-coded data streams. 

This section describes a flexible algorithm that splices two streams directly in 
the compressed domain [3]. The algorithm allows a natural tradeoff between 
computational complexity and compression efficiency, thus it can be tailored 
to the requirements of a particular system. This algorithm possesses a 
number of attributes. A minimal number of frames are decoded and 
processed, thus leading to low computational requirements while preserving 
compression efficiency. In addition, the head and tail data streams can be 
processed separately.  Finally, if desired, the processing can be performed so 
that the final spliced data stream is a simple concatenation of the two 
streams and so that the order of the coded video data remains intact. 
 
The conventional splicing solution is to completely decompress the video, 
splice the decoded video frames, and recompress the result.  With this 
method, every frame in the spliced video sequence must be recompressed.  
This method has a number of disadvantages, including high computational 
requirements, high memory requirements, and low performance, since each 
recoding cycle can deteriorate the video data. 
 
An improved compressed-domain splicing algorithm is shown in Figure 9.  
The computational requirements are reduced by only processing the frames 
affected by the splice, and by only decoding the frames needed for that 
processing.  This is also shown in Figure 9.  Specifically, the only frames that 
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need to be recoded are within in the GOPs affected by the head and tail cut 
points; at most, there will be one such GOP in the head data stream and one 
in the tail data stream.  Furthermore, the only additional frames that need to 
be decoded are the I and P frames in the two GOPs affected by the splice. 

The algorithm results in an MPEG-compliant data stream with variable-sized 
GOPs.  This exploits the fact that the GOP header does not specify the 
number of frames in the GOP or its structure; rather these are fully specified 
by the order of the data in the coded data stream. 
 
Each step of the splicing operation is described below. Further discussion is 
included in [3]. 
 
1. Process the head data stream. This step involves removing any backward 
prediction dependencies on frames not included in the splice.  The simplest 
case occurs when the cut for the head data occurs immediately after an I or 
P frame.  When this occurs, there are no prediction dependencies on cut 
frames and all the relevant video data is contained in one contiguous portion 
of the data stream.  The irrelevant portion of the data stream can simply be 
discarded, and the remaining relevant portion does not need to be processed.  
When the cut occurs immediately after a B frame, some extra processing is 
required because one or more B-frame predictions will be based on an 
anchor frame that is not included in the final spliced video sequence.  In this 
case, the leading portion of the data stream is extracted up to the last I or P 
frame included in the splice, then the remaining B frames should be 
converted to Bfor frames or P frames. 
2. Form the tail data stream. This step involves removing any forward 
prediction dependencies on frames not included in the splice.  The simplest 
case occurs when the cut occurs immediately before an I frame.  When this 
occurs, the video data preceding this frame may be discarded and the 
remaining portion does not need to be processed.  When the cut occurs 
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before a P frame, the P frame must be converted to an I frame and the 
remaining data remains in tact.  When the cut occurs before a B frame, extra 
processing is required because one of the anchor frames is not included in 
the spliced sequence.  In this case, if the first non-B frame is a P frame, it 
must be converted to an I frame.  Then, each of the first consecutive B 
frames must be converted to Bback frames. 
3. Match and merge the head and tail data streams. The IPB structure and the 
buffer parameters of the head and tail data streams determine the 
complexity of the matching operation.  This step requires concatenating the 
two streams and then processing the frames near the splice point to ensure 
that the buffer constraints are satisfied. This requires matching the buffer 
parameters of the pictures surrounding the splice point.  In the simplest 
case, a simple requantization will suffice.  However, in more difficult cases, a 
frame conversion will also be required to prevent decoder buffer underflow.  
Furthermore, since prediction dependencies are inferred from the coding 
order of the compressed stream, when the merging step is performed the 
coded frames must be interleaved appropriately.  The correct ordering will 
depend on the particular frame conversions used to remove the dependencies 
on cut frames. 
 
The first two steps may require converting frames between the I, P, and B 
prediction modes.  Converting P or B frames to I frames is quite 
straightforward as is B-to-Bfor conversion and B-to-Bback conversion, however, 
conversion between any other set of prediction modes can require more 
computations to compute new motion vectors.  Exact algorithms involve 
performing motion estimation on the decoded video -- this process can 
dominate the computational requirements of the algorithm.  Approximate 
algorithms such as motion vector resampling can significantly reduce the 
computations required for these conversions.  
 
Results of a spliced video sequence are shown in Figure 10.  The right side of 
the figure plots the frame quality (in peak signal-to-noise ratio) for original 
compressed football and cheerleader sequences, and the spliced result when 
splicing between the two sequences every twenty frames.  In the spliced 
result, the solid line contains the original quality values from the 
corresponding frames in the original coded football and cheerleader 
sequences, while the dotted line represents the quality of the sequence 
resulting from the compressed-domain splicing operation.  Note that the 
spliced sequence has a slight degradation in quality at the splice points.  
This slight loss in quality is due to the removal of prediction dependencies in 

 
Figure 10. Performance of compressed-domain splicing algorithm. 
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the compressed video in conjunction with the rate matching needed to satisfy 
buffer requirements.  However, note that it returns to full quality a few 
frames after the splice point (within one GOP).  The plots on the left show the 
buffer occupancy for the original input sequences and the output spliced 
sequence.  In the bottom plot, the bottom line shows the buffer usage if the 
rate matching operation is not performed; this results in an eventual decoder 
buffer underflow.  The top line shows the result of the compressed-domain 
splicing algorithm with appropriate rate matching.  In this case, the buffer 
occupancy levels stay consistent with the original streams except in small 
areas surrounding the splice points.  However, as we saw in the quality 
plots, the quality and buffer occupancy levels match those of the input 
sequences within a few frames. 

5.2.2 Frame-by-Frame Reverse Play 

The goal of the compressed-domain reverse-play operation is to create a new 
MPEG data stream that, when decoded, displays the video frames in the 
reverse order from the original MPEG data stream.  For uncoded video the 
solution is simple: reorder the video frame data in reverse order. The 
simplicity of this solution relies on two properties: the data for each video 
frame is self-contained and it is independent of its placement in the data 
stream.  These properties typically do not hold true for MPEG-coded video 
data. 
 
Compressed-domain reverse-play is difficult because MPEG compression is 
not invariant to changes in frame order, e.g. reversing the order of the input 
frames will not simply reverse the order of the output MPEG stream.  
Furthermore, reversing the order of the input video frames does not result in 
a ”reversed” motion vector field.  However, if the processing is performed 
carefully, much of the motion vector information contained in the original 
MPEG video stream can be reused to save a significant amount of 
computations. 
 
This section describes a reverse-play transcoding algorithm that operates 
directly on the compressed-domain data [32][33].  This algorithm is simple 
and achieves high performance with low computational and memory 
requirements.  This algorithm only decodes the following data from the 
original MPEG data stream: I frames must be partially decompressed into 
their DCT representation and P frames must be partially decompressed to 
their MV/DCT representation, while for B frames only the forward and 
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backward motion vector fields need to be decoded, i.e. only bitstream 
processing is needed. 
 
The development of the compressed-domain reverse play algorithm is shown 
in Figure 12.  In the conventional approach shown in the top of the figure, 
each GOP in the MPEG stream, starting from the end of the sequence, is 
completely decoded into uncompressed frames and stored in a frame buffer.  
The uncompressed frames are reordered, and the resulting frames are re-
encoded into an output MPEG stream that contains the original frames in 
reverse order. 
 
The middle figure shows an improved approach to the algorithm.  This 
improvement results from exploiting the symmetry of B frames.  Specifically, 
it uses the fact that the coding of the reverse-ordered sequence can be 
performed so that the same frames are coded as B frames and thus will have 
the same surrounding anchor frames.  The one difference will be that the 
forward and backward anchors will be reversed.  In this case, major 
computational savings can be achieved by performing simplified processing 
on the B frames.  Specifically, for B frames only a bitstream-level decoding is 
used to efficiently decode the motion vectors and coding modes, swap them 
between forward and backward modes, and repackage the results.  This 
greatly reduces the computational requirements because 2/3 of the frames 
are B frames and because typically the processing required for B frames is 
greater than that required for P frames, which in turn is much greater than 
that required for I frames.  Also, note that the frame buffer requirements are 
reduced by a factor of three because the B frames are not decoded. 
 
The bottom figure shows a further improvement that can be had by using 
motion vector resampling, as described in Subsection 4.2, on the I and P 
frames.  In this architecture, the motion vectors given in the input bitstream 
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are used to compute the motion vectors for the output bitstream, thereby 
avoiding the computationally expensive motion estimation process in the re-
encoding process.  The computational and performance tradeoffs of these 
architectures are discussed in detail in [5]. 
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Figure 13. MPEG compressed-domain reverse play algorithm. 

 
The resulting compressed-domain reverse-play algorithm shown in Figure 13 
has the following steps: 
 
1. Convert the IP frames to reverse IP frames. While the input motion vectors 

were originally computed for forward prediction between the I and P 
frames, the reverse IP frames require output motion vectors to be 
converted in the reverse order.  Motion vector resampling methods 
described in Subsection 4.2 and in [5] can be used to calculate the new 
reversed motion vectors.  Once the motion vectors are computed, the new 
output DCT coefficients can be computed directly in the DCT-domain by 
using the compressed-domain inverse motion compensation algorithm 
described in Subsection 4.3. 

2. Exchange the forward and backward motion vector fields used in each B 
frame. This step exploits the symmetry of the B frame prediction process.  
In the reversed stream, the B frames will have the same two anchor 
frames, but in the reverse order.  Thus, the forward prediction field can 
simply be exchanged with the backward prediction field, resulting in 
significant computational savings. Notice that only the motion vector 
fields need to be decoded for the B frames. 

3. Requantize the DCT coefficients. This step must be performed to ensure 
that the buffer constraints of the new stream are satisfied. 
Requantization may be used to control the rate of the new stream. 

4. Properly reorder the frame data and update the relevant header 
information. If no B frames are used, then the reordering process is quite 
straightforward.  However, when B frames are used, care must be taken 
to properly reorder the data from the original coding order to the 
appropriate reverse coding order.  In addition, the parameters in the 
header data must be updated appropriately. 
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6. ADVANCED TOPICS 

6.1 OBJECT-BASED TO BLOCK-BASED TRANSCODING 

This chapter focused on compressed-domain processing and transcoding 
algorithms for block-based compression schemes such as MPEG-1, MPEG-2, 
MPEG-4 simple profile, H.261, H.263, and H.264/MPEG-4 AVC.  These 
compression standards represent each video frame as a rectangular array of 
pixels, and perform compression based on block-based processing, e.g. the 
block DCT and block-based motion estimation and motion compensated 
prediction.  These compression algorithms are referred to as block- or frame-
based schemes.  Recently, object-based representations and compression 
algorithms have been developed -- the object-based coding part of MPEG-4 is 
the most well known example.  These object-based representations 
decompose the image or video into arbitrarily shaped (non-rectangular) 
objects, unlike the block-based representations discussed above. 

Object-based representations provide a more natural representation than 
square blocks, and can facilitate a number of new functionalities such as 
interactivity with objects in the video and greater content-creation flexibility. 
The object-based profiles of MPEG-4 are especially appealing for content 
creation and editing.  For example, it may be useful to separately represent 
and encode different objects, such as different people or foreground or 
background objects, in a video scene in order to simplify manipulation of the 
scene.  Therefore, object-based coding, such as MPEG-4, may become a 
natural approach to create, manipulate, and distribute new content.  On the 
other hand, most clients may have block-based decoders, especially thin 
clients such as PDAs or cell phones.  Therefore, it may become important to 
be able to efficiently transcode from object-based coding to block-based 
coding, e.g. from object-based MPEG-4 to block-based MPEG-2 or MPEG-4 
simple profile. Efficient object-based to block-based transcoding algorithms 
were developed for intraframe (image) and interframe (video) compression in 
[7].  These efficient transcoding algorithms use many of the compressed-
domain methods described in Section 4. 

At each time instance (or frame), a video object has a shape, an amplitude 
(texture) within the shape, and a motion from frame to frame.  In object-
based coding, the shape (or support region) of the arbitrarily shaped object is 
often represented by a binary mask, and the texture of the object is 
represented by DCT transform coefficients.  The object-based coding tools are 
often designed based on block-based coding tools.  Typically in object-based 
image coding, such as in MPEG-4, a bounding box is placed around the 
object and the box is divided into blocks.  The resulting blocks are classified 
as interior, boundary, or exterior blocks based on whether the block is 
completely within, partially within, or completely outside the object’s 
support. For intraframe coding, a conventional block-DCT is applied to 
interior blocks and a modified block transform is applied to boundary blocks. 
For interframe coding, a macroblock and transform block structure similar to 
block-based video coding is used, where motion vectors are computed for 
macroblocks and conventional or modified block transforms are applied to 
interior and boundary blocks. 
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Many of the issues that arise in intraframe object-based to block-based 
transcoding algorithms can be understood by considering the simplified 
problem of overlaying an arbitrarily shaped object onto a fixed rectangular 
image, and producing the output compressed image that contains the 
rectangular image with the arbitrarily shaped overlay. 

The simplest case occurs when the block boundaries of the fixed rectangular 
image and of the overlaid object are aligned.  In this case, the output blocks 
can be computed in one of three cases.  First, output image blocks that do 
not contain any portion of the overlay object may be simply copied from the 
corresponding block in the fixed rectangular image.  Second, output image 
blocks that are completely covered by the overlaid object are replaced with 
the object’s corresponding interior block.  Finally, output image blocks that 
partially contain pixels from the rectangular image and the overlaid object 
are computed from the corresponding block from the fixed rectangular image 
and the corresponding boundary block from the overlaid object.  Specifically, 
the new output coded block can be computed by properly masking the two 
blocks according to the object’s segmentation mask.  This can be computed 
in the spatial domain by inverse transforming the corresponding blocks in 
the background image and object, appropriately combining the two blocks 
with a spatial-domain masking operation, and transforming the result.  
Alternatively, it can be computed with compressed-domain masking 
operations, as described in Subsections 4.1, to reduce the computational 
requirements of the operation. 

If the block boundaries of the object are not aligned with the block 
boundaries of the fixed rectangular image, then the affected blocks need 
additional processing.  In this scenario, a shifting operation and a combined 
shifting/masking operation are needed for the unaligned block boundaries.  
Once again, output blocks that do not contain any portion of the overlaid 
object are copied from the corresponding input block in the rectangular 
image.  Each remaining output block in the original image will overlap with 2 
to 4 of the overlaid object’s coded blocks (depending on whether one or both 
of the horizontal and vertical axes are misaligned).  For image blocks with 
full coverage of the object and for which all the overlapping object’s blocks 
are interior blocks, a shifting operation can be used to compute the new 
output “shifted” block. For the remaining blocks, a combined 
shifting/masking operation can be used to compute the new output block.  
As in the previous example, these computations can be performed in the 
spatial domain, or possibly more efficiently in the transform domain using 
the operations described in Subsections 4.1 and 4.3. 

The object-to-block based interframe (video) transcoding algorithm share the 
issues that arise in the intraframe (image) transcoding algorithm with regard 
to the alignment of macroblock boundaries between the rectangular video 
and overlaid video object, or between multiple arbitrarily shaped video 
objects.  Furthermore, a number of important problems arise because of the 
different prediction dependencies that exist for the multiple objects in the 
object-coded video and the desired single dependency tree for the block-
based coded video.  This requires significant manipulation of the temporal 
dependencies in the coded video.  Briefly speaking, given multiple arbitrarily 
shaped objects described by shape parameters and motion and DCT 
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coefficients, the transcoding algorithm requires the computation of output 
block-based motion vectors and DCT coefficients.  The solution presented 
computes output motion vectors with motion vector resampling techniques 
and computes output DCT coefficients with efficient transform-domain 
processing algorithms for combinations of the shifting, masking, and inverse 
motion compensation operations. Furthermore, the algorithm uses 
macroblock mode conversions, similar to those described in Subsection 4.5 
and [22], to appropriately compensate for prediction dependencies that 
originally may have relied upon areas now covered by the overlaid object.  
The reader is referred to [7] for a detailed description of the transcoding 
algorithm. 

6.2 SECURE SCALABLE STREAMING 

It should now be obvious that transcoding is a useful capability in streaming 
media and media communication applications, because it allows 
intermediate network nodes to adapt compressed media streams for 
downstream client capabilities and time-varying network conditions.  An 
additional issue that arises in some streaming media and media 
communication applications is security, in that an application may require 
the transported media stream to remain encrypted at all times.  In 
applications where this type of security is required, the transcoding 
algorithms described earlier in this chapter can only be applied by decrypting 
the stream, transcoding the decrypted stream, and encrypting the result.  By 
requiring decryption at transcoding nodes, this solution breaks the end-to-
end security of the system. 
 
Secure Scalable Streaming (SSS) is a solution that achieves the challenge of 
simultaneously enabling security and transcoding, specifically it enables 
transcoding without decryption [34][35].  SSS uses jointly designed scalable 
coding and progressive encryption techniques to encode and encrypt video 
into secure scalable packets that are transmitted across the network.  The 
joint encoding and encryption is performed such that these resulting secure 
scalable packets can be transcoded at intermediate, possibly untrusted, 
network nodes by simply truncating or discarding packets and without 
compromising the end-to-end security of the system.  The secure scalable 
packets may have unencrypted headers that provide hints, such as optimal 
truncation points, which the downstream transcoders use to achieve rate-
distortion (R-D) optimal fine-grain transcoding across the encrypted packets. 
 
The transcoding methods presented in this chapter are very powerful in that 
they can operate on most standard-compliant streams. However, in 
applications that require end-to-end security (where the transcoder is not 
allowed to see the bits), SSS can be used with certain types of scalable image 
and video compression algorithms to simultaneously provide security and 
scalability by enabling transcoding without decryption. 

6.3 APPLICATIONS TO MOBILE STREAMING MEDIA SYSTEMS 

The increased bandwidth of next-generation wireless systems will make 
streaming media a critical component of future wireless services.  The 
network infrastructure will need to be able to handle the demands of mobility 
and streaming media, in a manner that scales to large numbers of users.  
Mobile streaming media (MSM) systems can be used to enable media delivery 
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over next-generation mobile networks.  For example, a mobile streaming 
media content delivery network (MSM-CDN) can be used to efficiently 
distribute and deliver media content to large numbers of mobile users [36].  
These MSM systems need to handle large numbers of compressed media 
streams; the CDP methods presented in this chapter can be used to do so in 
an efficient and scalable manner.  For example, compressed-domain 
transcoding can be used to adapt media streams originally made for high-
resolution display devices such as DVDs into media streams made for lower-
resolution portable devices [26], and to adapt streams for different types of 
portable devices.  Furthermore, transcoding can be used to adaptively stream 
content over error-prone, time-varying wireless links by adapting the error-
resilience based on channel conditions [37].  When using transcoding 
sessions in mobile environments, a number of system-level technical 
challenges arise.  For example, user mobility may cause a server handoff in 
an MSM-CDN, which in turn may require the midstream handoff of a 
transcoding session [38].  CDP is likely to play a critical and enabling role in 
next-generation MSM systems that require scalability and performance, and 
in many cases CDP will enable next-generation wireless, media-rich services. 
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