

Compressed-Domain Video Processing

Susie Wee, Bo Shen, John Apostolopoulos
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-282
October 6th , 2002*

E-mail: {swee, boshen, japos}@hpl.hp.com

compressed
domain
processing,
transcoding,
video
editing,
MPEG,
splicing,
reverse play,
frame rate
conversion,
interlace to
progressive,
motion vector
resampling

Video compression algorithms are being used to compress digital video for a wide variety of
applications, including video delivery over the Internet, advanced television broadcasting, video
streaming, video conferencing, and video storage and editing. The impressive performance of modern
compression algorithms, combined with the growing availability of video encoders and decoders and
low-cost computers, storage devices, and networking equipment, makes it evident that between video
capture and video playback, video will be handled in compressed video form. The resulting end-to-
end compressed digital video systems motivate the need to develop efficient algorithms for handling
compressed digital video.

Compute- and memory-efficient, quality-preserving algorithms for handling compressed video
streams are called compressed-domain processing (CDP) algorithms. CDP algorithms are useful for a
number of applications. For example, a video server transmitting video over the Internet may be
restricted by stringent bandwidth requirements. In this scenario, a high-rate compressed bitstream may
need to be transcoded to a lower-rate compressed bitstream prior to transmission; this can be achieved
by lowering the spatial or temporal resolution of the video or by more coarsely quantizing the MPEG
data. Another application may require MPEG video streams to be transcoded into streams that
facilitate video editing functionalities such as splicing or fast -forward and reverse play; this may
involve removing the temporal dependencies in the coded data stream. Finally, in a video
communication system, the transmitted video stream may be subject to harsh channel conditions
resulting in data loss; in this instance it may be useful to create a standard-compliant video stream that
is more robust to channel errors and network congestion.

This chapter focuses on developing CDP algorithms for bitstreams that are based on video compression
algorithms that rely on the block discrete cosine transform (DCT) and motion-compensated prediction,
which includes a number of predominant image and video coding standards including JPEG, MPEG-1,
MPEG-2, MPEG-4, H.261, H.263, and H.264/MPEG-4 AVC. These CDP algorithms achieve
efficiency by using techniques that exploit the coding structures used in the original compression
process; these techniques are discussed in detail. Two classes of CDP algorithms are presented--
compressed-domain transcoding algorithms that change the video format and compression format of
compressed video streams and compressed-domain editing algorithms that perform video processing
and editing operations on compressed video streams.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1

COMPRESSED-DOMAIN VIDEO PROCESSING

Susie Wee, Bo Shen, John Apostolopoulos
Streaming Media Systems Group

Hewlett-Packard Laboratories
Palo Alto, CA, USA

{swee,boshen,japos}@hpl.hp.com

1. INTRODUCTION
Video compression algorithms are being used to compress digital video for a
wide variety of applications, including video delivery over the Internet,
advanced television broadcasting, video streaming, video conferencing, as
well as video storage and editing. The performance of modern compression
algorithms such as MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and
H.264/MPEG-4 AVC is quite impressive -- raw video data rates often can be
reduced by factors of 15-80 or more without considerable loss in
reconstructed video quality. This fact, combined with the growing
availability of video encoders and decoders and low-cost computers, storage
devices, and networking equipment, makes it evident that between video
capture and video playback, video will be handled in compressed video form.

End-to-end compressed digital video systems motivate the need to develop
algorithms for handling compressed digital video. For example, algorithms
are needed to adapt compressed video streams for playback on different
devices and for robust delivery over different types of networks. Algorithms
are needed for performing video processing and editing operations, including
VCR functionalities, on compressed video streams. Many of these
algorithms, while simple and straightforward when applied to raw video, are
much more complicated and computationally expensive when applied to
compressed video streams. This motivates the need for developing efficient
algorithms for performing these tasks on compressed video streams.

In this chapter, we describe compute- and memory-efficient, quality-
preserving algorithms for handling compressed video streams. These
algorithms achieve efficiency by exploiting coding structures used in the
original compression process. This class of efficient algorithms for handling
compressed video streams are called compressed-domain processing (CDP)
algorithms. CDP algorithms that change the video format and compression

Chapter 1 2

format of compressed video streams are called compressed-domain
transcoding algorithms, and CDP algorithms that perform video processing
and editing operations on compressed video streams are called compressed-
domain editing algorithms.

These CDP algorithms are useful for a number of applications. For example,
a video server transmitting video over the Internet may be restricted by
stringent bandwidth requirements. In this scenario, a high-rate compressed
bitstream may need to be transcoded to a lower-rate compressed bitstream
prior to transmission; this can be achieved by lowering the spatial or
temporal resolution of the video or by more coarsely quantizing the MPEG
data. Another application may require MPEG video streams to be transcoded
into streams that facilitate video editing functionalities such as splicing or
fast-forward and reverse play; this may involve removing the temporal
dependencies in the coded data stream. Finally, in a video communication
system, the transmitted video stream may be subject to harsh channel
conditions resulting in data loss; in this instance it may be useful to create a
standard-compliant video stream that is more robust to channel errors and
network congestion.

This chapter presents a series of compressed-domain image and video
processing algorithms that were designed with the goal of achieving high
performance with computational efficiency. It focuses on developing
transcoding algorithms for bitstreams that are based on video compression
algorithms that rely on the block discrete cosine transform (DCT) and
motion-compensated prediction. These algorithms are applicable to a
number of predominant image and video coding standards including JPEG,
MPEG-1, MPEG-2, MPEG-4, H.261, H.263, and H.264/MPEG-4 AVC. Much
of this discussion will focus on MPEG; however, many of these concepts
readily apply to the other standards as well.

This chapter proceeds as follows. Section 2 defines the compressed-domain
processing problem. Section 3 gives an overview of MPEG basics and it
describes the CDP problem in the context of MPEG. Section 4 describes the
basic methods used in CDP algorithms. Section 5 describes a series of CDP
algorithms that use the basic methods of Section 4. Finally, Section 6
describes some advanced topics in CDP.

2. PROBLEM STATEMENT
Compressed-domain processing performs a user-defined operation on a
compressed video stream without going through a complete
decompress/process/re-compress cycle; the processed result is a new
compressed video stream. In other words, the goal of compressed-domain
processing (CDP) algorithms is to efficiently process one standard-compliant
compressed video stream into another standard-compliant compressed video
stream with a different set of properties. Compressed-domain transcoding
algorithms are used to change the video format or compression format of
compressed streams, while compressed-domain editing algorithms are used
to perform processing operations on compressed streams. CDP differs from
the encoding and decoding processes in that both the input and output of
the transcoder are compressed video streams.

Compressed-Domain Video Processing 3

A conventional solution to the problem of processing compressed video
streams, shown in the top path of Figure 1, involves the following steps: first,
the input compressed video stream is completely decompressed into its pixel-
domain representation; this pixel-domain video is then processed with the
appropriate operation; and finally the processed video is recompressed into a
new output compressed video stream. Such solutions are computationally
expensive and have large memory requirements. In addition, the quality of
the coded video can deteriorate with each re-coding cycle.

Compressed-domain processing methods can lead to a more efficient solution
by only partially decompressing the bitstream and performing processing
directly on the compressed-domain data. The resulting CDP algorithms can
have significant savings over their conventional pixel-domain processing
counterparts. Roughly speaking, the degree of savings will depend on the
particular operation, the desired performance, and the amount of
decompression required for the particular operation. This is discussed
further in Subsection 3.4 within the context of MPEG compression.

3. MPEG CODING AND COMPRESSED-DOMAIN
PROCESSING

3.1 MPEG FRAME CODING

Efficient CDP algorithms are designed to exploit various features of the
MPEG video compression standards. Detailed descriptions of the MPEG
video compression standards can be found in [1][2]. This section briefly
reviews some aspects of the MPEG standards that are relevant to CDP.

MPEG codes video in a hierarchy of units called sequences, groups of
pictures (GOPs), pictures, slices, macroblocks, and blocks. 16x16 blocks of
pixels in the original video frames are coded as a macroblock, which consists
of four 8x8 blocks. The macroblocks are scanned in a left-to-right, top-to-
bottom fashion, and series of these macroblocks form a slice. All the slices in
a frame comprise a picture, contiguous pictures form a GOP, and all the
GOPs form the entire sequence. The MPEG syntax allows a GOP to contain
any number of frames, but typical sizes range from 9 to 15 frames. Each
GOP refreshes the temporal prediction by coding the first frame in intraframe
mode, i.e. without prediction. The remaining frames in the GOP can be
coded with intraframe or interframe (predictive) coding techniques.

001011011010011001 110001011010110100

Encode

Pixel-Domain
Processing

CDP

Decode

Figure 1. Processing compressed video: the conventional pixel-domain
solution (top path) and the compressed-domain processing solution (bottom
path).

Chapter 1 4

The MPEG algorithm allows each frame to be coded in one of three modes:
intraframe (I), forward prediction (P), and bidirectional prediction (B). A
typical IPB pattern in display order is:

B7 B8 P9 B10 B11 I0 B1 B2 P3 B4 B5 P6 B7 B8 P9 B10 B11 I0 B1 B2 P3
The subscripts represent the index of the frame within a GOP. I frames are
coded independently of other frames. P frames depend on a prediction based
on the preceding I or P frame. B frames depend on a prediction based on the
preceding and following I or P frames. Notice that each B frame depends on
data from a future frame, i.e. future frame must be (de)coded before a
current B frame can be (de)coded. For this reason, the coding order is
distinguished from the display order. The coding order for the sequence
shown above is:

P9 B7 B8 G I0 B10 B11 P3 B1 B2 P6 B4 B5 P9 B7 B8 G I0 B10 B11 P3 B1 B2
MPEG requires the coded video data to be placed in the data stream in
coding order. G represents a GOP header that is placed in the compressed
bitstream.

A GOP always begins with an I frame. Typically, it includes the following
(display order) P and B frames that occur before the next I frame, although
the syntax also allows a GOP to contain multiple I frames. The GOP header
does not specify the number of I, P, or B frames in the GOP, nor does it
specify the structure of the GOP -- these are completely determined by the
order of the data in the stream. Thus, there are no rules that restrict the
size and structure of the GOP, although care should be taken to ensure that
the buffer constraints are satisfied.

MPEG uses block motion-compensated prediction to reduce the temporal
redundancies inherent to video. In block motion-compensated prediction,
the current frame is divided into 16x16 pixel units called macroblocks. Each
macroblock is compared to a number of 16x16 blocks in a previously coded
frame. A single motion vector (MV) is used to represent this block with the
best match. This block is used as a prediction of the current block, and only
the error in the prediction, called the residual, is coded into the data stream.

The frames of a video sequence can be coded as an I, P, or B frame. In I
frames, every macroblock must be coded in intraframe mode, i.e. without
prediction. In P frames, each macroblock can be coded with forward
prediction or in intraframe mode. In B frames, each macroblock can be
coded with forward, backward, or bidirectional prediction or in intraframe
mode. One MV is specified for each forward- and backward-predicted
macroblock while two MVs are specified for each bidirectionally predicted
macroblock. Thus, each P frame has a forward motion vector field and one
anchor frame, while each B frame has a forward and backward motion vector
field and two anchor frames. In some of the following sections, we define Bfor
and Bback frames as B frames that use only forward or only backwards
prediction. Specifically, Bfor frames can only have intra and forward-
predicted macroblocks while Bback frames can only have intra and backward-
predicted macroblocks.

MPEG uses discrete cosine transform (DCT) coding to code the intraframe
and residual macroblocks. Specifically, four 8x8 block DCTs are used to
encode each macroblock and the resulting DCT coefficients are quantized.

Compressed-Domain Video Processing 5

Quantization usually results in a sparse representation of the data, i.e. one
in which most of the amplitudes of the quantized DCT coefficients are equal
to zero. Then, only the amplitudes and locations of the nonzero coefficients
are coded into the compressed data stream.

3.2 MPEG FIELD CODING

While many video compression algorithms, including MPEG-1, H.261, and
H.263, are designed for progressive video sequences; MPEG-2 was designed
to support both progressive and interlaced video sequences, where two fields,
containing the even and odd scanlines, are contained in each frame. MPEG-2
provides a number of coding options to support interlaced video. First, each
interlaced video frame can be coded as a frame picture in which the two
fields are coded as a single unit or as a field picture in which the fields are
coded sequentially. Next, MPEG-2 allows macroblocks to be coded in one of
five motion compensation modes: frame prediction for frame pictures, field
prediction for frame pictures, field prediction for field pictures, 16x8
prediction for field pictures, and dual prime motion compensation. The
frame picture and field picture prediction dependencies are as follows. For
frame pictures, the top and bottom reference fields are the top and bottom
fields of the previous I or P frame. For field pictures, the top and bottom
reference fields are the most recent top and bottom fields. For example, if
the top field is specified to be first, then MVs from the top field can point to
the top or bottom fields in the previous frame, while MVs from the bottom
field can point to the top field of the current frame or the bottom field of the
previous frame. Our discussion focuses on P-frame prediction because the
transcoder described in Subsection 5.1.5 only processes the MPEG I and P
frames. We also focus on field picture coding of interlaced video, and do not
discuss dual prime motion compensation.

In MPEG field picture coding, each field is divided into 16x16 macroblocks,
each of which can be coded with field prediction or 16x8 motion
compensation. In field prediction, the 16x16 field macroblock will contain a
field selection bit which indicates whether the prediction is based on the top
or bottom reference field and a motion vector which points to the 16x16
region in the appropriate field. In 16x8 prediction, the 16x16 field
macroblock is divided into its upper and lower halves, each of which
contains 16x8 pixels. Each half has a field selection bit which specifies
whether the top or bottom reference field is used and a motion vector which
points to the 16x8 pixel region in the appropriate field.

3.3 MPEG BITSTREAM SYNTAX

The syntax of the MPEG-1 data stream has the following structure: A
Sequence header consists of a sequence start code followed by sequence
parameters. Sequences contain a number of GOPs. Each GOP header
consists of a GOP start code followed by GOP parameters. GOPs contain a
number of pictures. Each picture header consists of a picture start code
followed by picture parameters. Pictures contain a number of slices. Each
slice header consists of a slice start code followed by slice parameters. The
slice header is followed by slice data, which contains the coded macroblocks.

The sequence header specifies the picture height, picture width, and sample
aspect ratio. In addition, it sets the frame rate, bitrate, and buffer size for the

Chapter 1 6

sequence. If the default quantizers are not used, then the quantizer matrices
are also included in the sequence header. The GOP header specifies the time
code and indicates whether the GOP is open or closed. A GOP is open or
closed depending on whether or not the temporal prediction of its frames
require data from other GOPs. The picture header specifies the temporal
reference parameter, the picture type (I, P, or B), and the buffer fullness (via
the vbv_delay parameter). If temporal prediction is used, it also describes
the motion vector precision (full or half pixel) and the motion vector range.
The slice header specifies the macroblock row in which slice starts and the
initial quantizer scale factor for the DCT coefficients. The macroblock header
specifies the relative position of the macroblock in relation to the previously
coded macroblock. It contains a flag to indicate whether intra or inter-frame
coding is used. If inter-frame coding is used, it contains the coded motion
vectors, which may be differentially coded with respect to previous motion
vectors. The quantizer scale factor may be adjusted at the macroblock level.
One bit is used to specify whether the factor is adjusted. If it is, the new
scale factor is specified. The macroblock header also specifies a coded block
pattern for the macroblock. This describes which of the luminance and
chrominance DCT blocks are coded. Finally, the DCT coefficients of the
coded blocks are coded into the bitstream. The DC coefficient is coded first,
followed by the runlengths and amplitudes of the remaining nonzero
coefficients. If it is an intra macroblock, then the DC coefficient is coded
differentially.

The sequence, GOP, picture, and slice headers begin with start codes, which
are four-byte identifiers that begin with 23 zeros and a one followed by a one
byte unique identifier. Start codes are useful because they can be found by
examining the bitstream; this facilitates efficient random access into the
compressed bitstream. For example, one could find the coded data that
corresponds to the 2nd slice of the 2nd picture of the 22nd GOP by simply
examining the coded data stream, without parsing and decoding the data.
Of course, reconstructing the actual pixels of that slice may require parsing
and decoding additional portions of the data stream because of the
prediction used in conventional video coding algorithms. However,
computational benefits could still be achieved by locating the beginning of
the 22nd GOP and parsing and decoding the data from that point on thus
exploiting the temporal refresh property inherent to GOPs.

3.4 COMPRESSED-DOMAIN PROCESSING FOR MPEG

The CDP problem statement was described in Section 2. In essence, the goal
of CDP is to develop efficient algorithms for performing processing operations
on compressed bitstreams. While the conventional approach requires
decompressing the bitstream, processing the decoded frames, and re-
encoding the result; improved efficiency, with respect to compute and
memory requirements, can be achieved by exploiting structures used in the
compression algorithms and using this knowledge to avoid the complete
decode and re-encode cycle. In the context of MPEG transcoding, improved
efficiency can be achieved by exploiting the structures used in MPEG coding.
Furthermore, a decode/process/re-encode cycle can lead to significant loss
of quality (even if no processing is performed besides the decode and re-
encode) -- carefully designed CDP algorithms can greatly reduce and in some
cases prevent this loss in quality.

Compressed-Domain Video Processing 7

MPEG coding uses a number of structures, and different compressed-domain
processing operations require processing at different levels of depth. From
highest to lowest level, these levels include:

• Sequence-level processing
• GOP-level processing
• Frame-level processing
• Slice-level processing
• Macroblock-level processing
• Block-level processing

Generally speaking, deeper-level operations require more computations. For
example, some processing operations in the time domain require less
computation if no information below the frame level needs to be adjusted.
Operations of this kind include fast forward recoding and cut-and-paste or
splicing operations restricted to cut points at GOP boundaries. However, if
frame-accurate splicing [3] is required, frame and macroblock level
information may need to be adjusted for frames around the splice point, as
described in Section 5. In addition, in frame rate reduction transcoding, if
the transcoder chooses to only drop non-reference frames such as B frames,
a frame-level parsing operation could suffice.

On the other hand, operations related to the modification of content within
video frames have to be performed below the frame level. Operations of this
kind include spatial resolution reduction transcoding [4], frame-by-frame
video reverse play [5] and many video-editing operations such as fading, logo
insertion, and video/object overlaying [6][7]. As expected, these operations
require significantly more computations, so for these operations efficient
compressed-domain methods can lead to significant improvements.

4. COMPRESSED-DOMAIN PROCESSING METHODS
In this section, we examine the basic techniques of compressed-domain
processing methods. Since the main techniques used in video compression
include spatial to frequency transformation, particularly DCT, and motion-
compensated prediction, we focus the investigation on compressed domain
methods in these two domains, namely, in the DCT domain and the motion
domain.

4.1 DCT-DOMAIN PROCESSING

As described in Section 3, the DCT is the transformation used most often in
image and video compression standards. It is therefore important to
understand some basic operations that can be performed directly in the DCT
domain, i.e. without an inverse DCT/forward DCT cycle.

The earliest work on direct manipulation of compressed image and video data
expectedly dealt with point processing, which consists of operations such as
contrast manipulation and image subtraction where a pixel value in the
output image at position p depends solely on the pixel value at the same
position p in the input image. Examples of such work can be found in Chang
and Messerschmitt [8], who developed some special functions for video
compositing, and in Smith and Rowe [9], who developed a set of algorithms
for basic point operations. When viewing compressed domain manipulation
as a matrix operation, point processing operations on compressed images

Chapter 1 8

and video can be characterized as inner-block algebra (IBA) operations since
the information in the output block, i.e. the manipulated block, comes solely
from information in the corresponding input block. These operations are
listed in Table 1.

Table 1. Mathematical expression of spatial vs. DCT domain algebraic
operations

 Spatial domain

signal – x
Transform domain
signal – X

Scalar addition [] α+f [] 







+

00
0/8 00Q

F
α

Scalar
Multiplication

[]fα []Fα

Pixel Addition [] []gf + [] []GF +
Pixel Multiplication [] []gf • [] []GF ⊗

In this table, lower case f and g are used to represent spatial domain signals,
while upper case F and G represent their corresponding DCT domain signals.
Since compression standards typically use block-based schemes, each block
can be treated as a matrix. Therefore, the operations can be expressed in
forms of matrix operations. In general, the relationship holds as:

XxDCT =)(,
where DCT() represents the DCT function.

Because of the large number of zeros in the block in the DCT domain, the
data manipulation rate is heavily reduced. The speedup of the first three
operations in Table 1 is quite obvious given that the number of non-zero
coefficients in F and G is quite small. As an example of these IBA operations,
consider the compositing operation where foreground f is combined with
background b with a factor of α to generate an output R in DCT
representation. In spatial domain, this operation can be expressed as:

[] []))1((bfDCTR αα −+= . Given the DCT representation of f and b in the
compressed domain, F and B, the operation can be conveniently performed
as: [] []BFR)1(αα −+= . The operation is based on the linearity of the DCT
and corresponds to a combination of some of the above-defined image
algebra operations; it can be done in DCT domain efficiently with significant
speedup. Similar compressed domain algorithms for subtitling and dissolving
applications can also be developed based on the above IBA operations with
computational speedups of 50 or more over the corresponding processing of
the uncompressed data [9].

These methods can also be used for color transformation in the compressed
domain. As long as the transformation is linear, it can be derived in the
compressed domain using a combination of these IBA operations.

Pixel multiplication can be achieved by a convolution in the DCT domain.
Compressed-domain convolution has been derived in [9] by mathematically
combining the decompression, manipulation, and re-compression processes

Compressed-Domain Video Processing 9

to obtain a single equivalent local linear operation where one can easily take
advantage of the energy compaction property in quantized DCT blocks. A
similar approach was taken by Smith [10] to extend point processing to
global processing of operations where the value of a pixel in the output image
is an arbitrary linear combination of pixels in the input image. Shen et al.
[11] have studied the theory behind DCT domain convolution based on the
orthogonal property of DCT. As a result, an optimized DCT domain
convolution algorithm is proposed and applied to the application of DCT
domain alpha blending. Specifically, given foreground f to be blended with
the background b with an alpha channel a to indicate the transparency of
each pixel in f, the operation can be expressed as:

[] [])])[1(]([bafaDCTR •−+•= . The DCT domain operation is performed

as: [] []BAFAR ⊗−+⊗=])[1(][, where A is the DCT representation of a. A
masking operation can also be performed in the same fashion with A
representing the mask in the DCT domain. This operation enables the
overlay of an object in the DCT domain with arbitrary shape. An important
application for this is logo-insertion. Another example where processing of
arbitrarily shaped objects arise is discussed in Section 6.1.

Many image manipulation operations are local or neighborhood operations
where the pixel value at position p in the output image depends on
neighboring pixels of p in the input image. We characterize methods to
perform such operations in the compressed domain as inner-block
rearrangement or resampling (IBR) methods. These methods are based on
the fact that DCT is a unitary orthogonal transform and is distributive to
matrix multiplication. It is also distributive to matrix addition, which is
actually the case of pixel addition in Table 1. We group these two distributive
properties of DCT in Table 2.

Table 2. Mathematical expression of distributiveness of DCT
 Spatial domain

signal – x
Transform domain
signal – X

Matrix Addition [] []gf + [] []GF +
Matrix Multiplication [][]gf [][]GF

Based on above, Chang and Messerschmitt [8] developed a set of algorithms
to manipulate images directly in the compressed domain. Some of the
interesting algorithms they developed include the translation of images by
arbitrary amounts, linear filtering, and scaling. In general, a manipulation
requiring uniform and integer scaling, i.e. certain forms of filtering, is easy to
implement in the DCT domain using the resampling matrix. Since each block
can use the same resampling matrix in space invariant filtering, these kinds
of manipulations require little overhead in the DCT domain. In addition,
translation of images by arbitrary amounts represents a shifting operation
that is often used in video coding. We defer a detailed discussion of this
particular method to Section 4.3.

Another set of algorithm has also been introduced to manipulate the
orientation of DCT blocks [12]. These methods can be employed to flip-flop a
DCT frame as well as rotate a DCT frame at multiples of 90 degree, simply by
switching the location and/or signs of certain DCT coefficients in the DCT

Chapter 1 10

blocks. For example, the DCT transform result of a transposed pixel block f
is equivalent of the transpose of the corresponding DCT block. This operation
is expressed mathematically as:

[] []tt FfDCT =)(.

A horizontal flip of a pixel block ([f]h) can be achieved in the DCT domain by
performing an element-by-element multiplication with a matrix composed of
only two values: 1 or –1. The operation is therefore just sign reversal on some
non-zero coefficients. Mathematically, this operation is expressed as:

[] [] []HFfDCT h •=)(,
where H is defined as follows assuming an 8x8 block operation,





=
=−

=
6,4,2,01
7,5,3,11

j
j

Hij .

For the full set of operations of this type, please refer to [12]. Note that for all
the cases, the DC coefficient remains unchanged because of the fact that
each pixel maintains its gray level while its location within the block is
changed. These flip-flop and special angle rotation methods are very useful
in applications such as image orientation manipulation that is used often in
copy machines, printers and scanners.

4.2 MOTION VECTOR PROCESSING (MV RESAMPLING)

From a video coding perspective, motion vectors are estimated through block
matching in a reference frame. This process is often compute intensive. The
key of compressed-domain manipulation of motion vectors is to derive new
motion vectors out of existing motion vector information contained in the
input compressed bitstream.

Consider a motion vector processing scenario that arises in a spatial
resolution reduction transcoder. Given the motion vectors for a group of four
16x16 macroblocks of the original video (NxM), how does one estimate the
motion vectors for the 16x16 macroblocks in the downscaled video (e.g.,
N/2xM/2)? Consider forward-predicted macroblocks in a forward-predicted
(P) frame, wherein each macroblock is associated with a motion vector and
four 8x8 DCT blocks that represent the motion-compensated prediction
residual information. The downscale-by-two operation requires four input
macroblocks to form a single new output macroblock. In this case, it is
necessary to estimate a single motion vector for the new macroblock from the
motion vectors associated with the four input macroblocks.

The question asked above can be viewed as a motion vector resampling
problem. Specifically, given a set of motion vectors MV in the input
compressed bitstream, how does one compute the motion vectors MV* of the
output compressed bitstream? Motion vector resampling algorithms can be
classified into 5 classes as shown in Figure 2 [5]. The most accurate, but
least efficient algorithm is Class V, in which one decompresses the original
frames into their full pixel representation; and then one performs full search
motion estimation on the decompressed frames. Since motion estimation is
by far the most compute-intensive part of the transcoding operation, this is a
very expensive solution. Simpler motion vector resampling algorithms are

Compressed-Domain Video Processing 11

given in classes I through IV in order of increasing computational
complexity, where increased complexity typically results in more accurate
motion vectors. Class I MV resampling algorithms calculate each output
motion vector based on its corresponding input motion vector. Class II
algorithms calculate each output motion vector based on a neighbourhood of
input motion vectors. Class III algorithms also use a neighbourhood of input
motion vectors, but also consider other parameters from the input bitstream
such as quantization parameters and coding modes when processing them.
Class IV algorithms use a neighbourhood of motion vectors and other input
bitstream parameters, but also use the decompressed frames. For example,
the input motion vectors may be used to narrow the search range used when
estimating the output motion vectors. Finally, Class V corresponds to full
search motion estimation on the decompressed frames.

Figure 2. Classes of motion vector resampling methods.

The conventional spatial-domain approach of estimating the motion vectors
for the downscaled video is to first decompress the video, downscale the
video in the spatial domain then use one of the several widely known spatial-
domain motion-estimation techniques (e.g., [13]) to recompute the motion
vectors. This is computationally intensive. A class II approach might be to
simply take the average of the four motion vectors associated with the four
macroblocks and divide it by two so that the resulting motion vector can be
associated with the 16x16 macroblock of the downscaled-by-two video. While
this operation requires little processing, the motion vectors obtained in this
manner are not optimal in most cases.

Adaptive motion vector resampling (AMVR) is a class III approach proposed
in [4] to estimate the output motion vectors using the original motion
information from the MPEG or H.26x bitstream of the original NxN video
sequence. This method uses the DCT blocks to derive the block-activity
information for the motion-vector estimation. When comparing the
compressed-domain AMVR method to the conventional spatial-domain
method, the results suggest that AMVR generates, with significantly less
computation, motion vectors for the N/2xM/2 downscaled video that are very
close to the optimal motion vector field that would be derived from an
N/2xM/2 version of the original video sequence.

This weighted average motion vector scheme can also be extended to motion
vector downsampling by arbitrary factors. In this operation, the number of
participating macroblocks is not an integer. Therefore, the portion of the area

Class I: Process corresponding MV.

MV
bufferMV MV*Process

Class II: Process local neighborhood of MVs.
MV

bufferMV MV*Process

Class II: Process local neighborhood of MVs.

MV
bufferMV

MV*Adaptive
ProcessData

bufferData

Class III: Adapt processing based on coded data.
MV

bufferMV

MV*Adaptive
ProcessData

bufferData

Class III: Adapt processing based on coded data.

MV
bufferMV

MV*
Partial
Search

Data
bufferData

Frame A

Frame B Frame
Buffer

Frame
Buffer

Class IV: Partial search ME using coded data.

Class V: Full search motion estimation.

MV
bufferMV

MV*
Partial
Search

Data
bufferData

Frame A

Frame B Frame
Buffer

Frame
Buffer

Class IV: Partial search ME using coded data.

Class V: Full search motion estimation.

Chapter 1 12

of the participating macroblock is used to weight the contributions of the
existing motion vectors.

A class IV method for performing motion vector estimation out of existing
motion vectors can be found in [14]. In frame rate reduction transcoding, if a
P-picture is to be dropped, the motion vectors of macroblocks on the next P-
picture should be adjusted since the reference frame is now different. Youn
et al. [14] proposed a motion vector composition method to compute a motion
vector from the incoming motion vectors. In this method, the derived motion
vector can be refined by performing partial search motion estimation within
a narrow search range.

The MV resampling problem for the compressed-domain reverse play
operation was examined in [5]. In this application, the goal was to compute
the “backward” motion vectors between two frames of a sequence when given
the “forward” motion vectors between two frames. Perhaps contrary to
intuition, the resulting forward and backwards motion vector fields are not
simply inverted versions of one another because of the block-based motion-
compensated processing used in typical compression algorithms. A variety of
MV resampling algorithms is presented in [5], and experimental results are
given that illustrate the tradeoffs in complexity and performance.

4.3 MC+DCT PROCESSING

The previous section introduced methodologies for deriving output motion
vectors from existing input motion vectors in the compressed domain.
However, if the newly derived motion vectors are used in conjunction with
the original residual data, the result is imperfect and will result in a drift
error. To avoid drift error, it is important to reconstruct the original reference
frame and re-compute the residual data. This renders the IDCT process as
the next computation bottleneck since the residual data is in the DCT
domain. Alternatively, DCT domain motion compensation methods, such as
the one introduced in [8], can be employed where the reference frames are
converted to a DCT representation so that no IDCT is needed.

Inverse motion compensation is the process of extracting a 16x16 block given
a motion vector in the reference frame. It can be characterised by a group
matrix multiplications. Due to the distributive property of the DCT, this
operation can be achieved by matrix multiplications of DCT blocks.
Mathematically, consider a block g of size 8x8 in a reference frame pointed
by a motion vector (x,y). Block g may lie in an area covered by a 2x2 array of
blocks (f1, f2, f3, f4) in the reference frame. g can then be calculated as:

∑=
=

4

1i
yiixi mfmg , where 7,0 ≤≤ yx .

The shifting matrices mxi and myi are defined as:











=








=








=
− 4,3
00

0

2,1
00

0

8 i
I

i
I

m
x

x

xi , and












=








=








=

−
4,2

0
00

3,1
0
00

8
i

I

i
I

m

y

y
yi ,

Compressed-Domain Video Processing 13

where Iz are identity matrices of size 8x8. In the DCT domain, this operation
can be expressed as:

∑=
=

4

1i
yiixi MFMG , (1)

where Mxi and Myi are the DCT representations of mxi and myi respectively.
Since these shifting matrices are constant, they can be pre-computed and
stored in the memory. However, the computing of Eq (1) may still be CPU-
intensive since the shifting matrices may not be sparse enough. To this end,
various authors have proposed different methods to combat this problem.

Merhav and Bhaskaran [15] proposed to decompose the DCT domain shifting
matrices. Matrix decomposition methods are based on the sparseness of the
factorized DCT transform matrices. Factorization of DCT transform matrix is
introduced in a fast DCT algorithm [16]. The goal of the decomposition is to
replace the matrix multiplication with a product of diagonal matrices, simple
permutation matrices and more sparse matrices. The multiplication with a
diagonal matrix can be absorbed in the quantization process. The
multiplication with a permutation matrix can be performed by coefficient
permutation. And finally, the multiplication with a sparse matrix requires
fewer multiplications. Effectively, the matrix multiplication is achieved with
less computation.

In an alternative approach, the coefficients in the shifting matrix can be
approximated so that floating point multiplication can be replaced by integer
shift and add operation. Work of this kind is introduced in [17]. Effectively,
fewer basic CPU operations are needed since multiplication operations are
avoided. A similar method is also used in [18] for DCT domain downsampling
of images by employing the approximated downsampling matrices.

To further reduce the computation complexity of the DCT domain motion
compensation process, a look-up-table (LUT) based method [19] is proposed
by modelling the statistical distribution of DCT coefficients in compressed
images and video sequences and precomputing all possible combinations of

yiixi MFM as in Eq (1). As a result, the matrix multiplications are reduced to

simple table look-ups. Using around 800KB of memory, the LUT-based
method can save more than 50% of computing time.

4.4 RATE CONTROL/BUFFER REQUIREMENTS

Rate control is another important issue in video coding. For compressed
domain processing, the output of the process should also be confined to a
certain bitrate so that it can be delivered in a constant transmission rate.
Eleftheriadis and Anastassiou [20] have considered rate reduction by an
optimal truncation or selection of DCT coefficients. Since fewer coefficients
are coded, a lower number of bits are spent in coding them. Nakajima et al
[21] achieve the similar rate reduction by re-quantization using a larger
quantization step size.

For compressed domain processing, it is important for the rate control
module to use compressed domain information existing in the original
stream. This is a challenging problem, since the compressed bitstream lacks
information that was available to the original encoder. To illustrate this

Chapter 1 14

problem, consider TM5 rate control, which is used in many video coding
standards. This rate controller begins by estimating the number of bits
available to code the picture, and computes a reference value of the
quantization parameter based on the buffer fullness and target bitrate. It
then adaptly raises or lowers the quantization parameter for each
macroblock based on the spatial activity of that macroblock. The spatial
activity measure as defined in TM5 as the variance of each block:

()∑ −=
=

64

1

2

64
1

i
meani PPV , where ∑=

=

64

164
1

i
imean PP .

However, the pixel domain information Pi may not be available in the
compressed domain processing. In this case, the activity measure has to be
derived from the DCT coefficients instead of the pixel domain frames. For
example, the energy of quantized AC coefficients in the DCT block can be
used as a measure of the variance. It has been shown in [4] that this
approach achieves satisfactory rate control. In addition, the target bit budget
for a particular frame can be derived from the bitrate reduction factor and
the number of bits spent for the corresponding original frame, which is
directly available from the original video stream.

4.5 FRAME CONVERSIONS

Frame conversions are another basic tool that can be used in compressed-
domain video processing operations [22]. They are especially useful in
frame-level processing applications such as splicing and reverse play. Frame
conversions are used to convert coded frames from one prediction mode to
another to change the prediction dependencies in coded video streams. For
example, an original video stream coded with I, P, and B frames may be
temporarily converted to a stream coded with all I frames, i.e. a stream
without temporal prediction, to facilitate pixel-level editing operations. Also,
an IPB sequence may be converted to an IB sequence in which P frames are
converted to I frames to facilitate random access into the stream. Also, when
splicing two video sequences together, frame conversions can be used to
remove prediction dependencies from video frames that are not included in
the final spliced sequence. Furthermore, one may wish to use frame
conversions to add prediction dependencies to a stream, for example to
convert from an all I-frame compressed video stream to an I and P frame
compressed stream to achieve a higher compression rate.

A number of frame conversion examples are shown in Figure 3. The original
IPB sequence is shown in the top. Examples of frame conversions that
remove temporal dependencies between frames are given: specifically P-to-I
frame, B-to-Bfor conversion, and B-to-Bback conversion. These operations are
useful for editing operations such as splicing. Finally, an example of I-to-P
conversion is shown in which prediction dependencies are added between
frames. This is useful in applications that require further compression of a
pre-compressed video stream.

Frame conversions require macroblock-level and block-level processing
because they modify the motion vector and DCT coefficients of the
compressed stream. Specifically, frame conversions require examining each
macroblock of the compressed frame, and when necessary changing its
coding mode to an appropriate dependency. Depending on the conversion,
some, but not all, macroblocks may need to be processed. An example in

Compressed-Domain Video Processing 15

which a macroblock may not need to be processed is in a P-to-I frame
conversion. Since P frames contain i- and p- type macroblocks and I frames
contain only i-type macroblocks; a P-to-I conversion requires converting all
p-type input macroblocks to i-type output macroblocks; however, note that i-
type input macroblocks do not need to be converted. The list of frame types
and allowed macroblock coding modes are shown in the upper right table in
Figure 3. The lower right table shows macroblock conversions needed for
some frame conversion operations. These conversions will be used in the
splicing and reverse play applications described in Section 5. The conversion
of a macroblock from p-type to i-type can be performed with the inverse
motion compensation process introduced in Subsection 4.3.

One should note that in standards like MPEG, frame conversions performed
on one frame may affect the prediction used in other frames because of the
prediction rules specified by I, P, and B frames. Specifically, I-to-P and P-to-I
frame conversions do not affect other coded frames. However, I-to-B, B-to-I,
P-to-B, and B-to-P frame conversions do affect other coded frames. This can
be understood by considering the prediction dependency rules of MPEG.
Specifically, since P frames are specified to depend on the nearest preceding I
or P frame and B frames are specified to depend on the nearest surrounding
I or P frames, it is understandable that frame conversions of certain types
will affect the prediction dependency tree inferred from the frame coding
types.

5. APPLICATIONS
This section shows how the compressed domain processing methods
described in Section 4 can be applied to video transcoding and video
processing/editing applications. Algorithms and architectures are described
for a number of CDP operations.

P Bb Bb I Bb Bb P

P B B I B B P

P B B I B B I

P Bf Bf I Bf Bf P

P to I

B to Bfor

B to Bback

Original

P B B P B B PI to P

Frame
Type

MB
Type

I i
P i, p
B i, bforw, bback, b

Bintra i
Bforw i, bforw

Bback i, bback

Frame
Conversion

MB
Conversion

P → I p → i

B → Bforw
b → bforw

bback → i

B → Bback
b → bback

bforw → i

B → Bintra

b → i
bback → i
bforw → i

Figure 3. Frame conversions and required macroblock conversions.

Chapter 1 16

5.1 COMPRESSED-DOMAIN TRANSCODING APPLICATIONS
With the introduction of the next generation wireless networks, mobile
devices will access an increasing amount of media-rich content. However, a
mobile device may not have enough display space to render content that was
originally created for desktop clients. Moreover, wireless networks typically
support lower bandwidths than wired networks, and may not be able to carry
media content made for higher-bandwidth wired networks. In these cases,
transcoders can be used to transform multimedia content to an appropriate
video format and bandwidth for wireless mobile streaming media systems.

A conceptually simple and straightforward method to perform this
transcoding is to decode the original video stream, downsample the decoded
frames to a smaller size, and re-encode the downsampled frames at a lower
bitrate. However, a typical CCIR601 MPEG-2 video requires almost all the
cycles of a 300Mhz CPU to perform real-time decoding. Encoding is
significantly more complex and usually cannot be accomplished in real time
without the help of dedicated hardware or a high-end PC. These factors
render the conceptually simple and straightforward transcoding method
impractical. Furthermore, this simple approach can lead to significant loss in
video quality. In addition, if transcoding is provided as a network service in
the path between the content provider and content consumer, it is highly
desirable for the transcoding unit to handle as many concurrent sessions as
possible. This scalability is critical to enable wireless networks to handle
user requests that may be very intense at high load times. Therefore, it is
very important to develop fast algorithms to reduce the compute and memory
loads for transcoding sessions.

5.1.1 Compressed-Domain Transcoding Architectures

Video processing applications often involve a combination of spatial and
temporal processing. For example, one may wish to downscale the spatial
resolution and lower the frame rate of a video sequence. When these video
processing applications are performed on compressed video streams, a
number of additional requirements may arise. For example, in addition to
performing the specified video processing task, the output compressed video
stream may need to satisfy additional requirements such as maximum
bitrate, buffer size, or particular compression format (e.g. MPEG-4 or H.263).
While conventional approaches to applying traditional video processing
operations on compressed video streams generally have high compute and
memory requirements, the algorithmic optimizations described in Section 4
can be used to design efficient compressed-domain transcoding algorithms
with significantly reduced compute and memory requirements. A number of
transcoding architectures were discussed in [23][24][25][26].

Figure 4 shows a progression of architectures that reduce the compute and
memory requirements of such applications. These architectures are
discussed in the context of lowering the spatial and temporal resolution of
the video from S0,T0 to S1,T1 and lowering the bitrate of the bitstream from R0
to R1. The top diagram shows the conventional approach to processing the
compressed video stream. First the input compressed bitstream with bitrate
R0 is decoded into its decompressed video frames, which have a spatial
resolution and temporal frame rate of S0 and T0. These frames are then
processed temporally to a lower frame rate T1 < T0 by dropping appropriate

Compressed-Domain Video Processing 17

frames. The spatial resolution is then reduced to S1 < S0 by spatially
downsampling the remaining frames. The resulting frames with resolution
S1,T1 are then re-encoded into a compressed bitstream with a final bitrate of
R1<R0. The memory requirements of this approach are high because of the
frame stores required to store the decompressed video frames at resolution
S0,T0. The computational requirements are high because of the operations
needed to decode, process, and re-encode the frames; in particular, motion
estimation performed during re-encoding can be quite compute intensive.

The middle diagram shows an improved approach to the problem. By
exploiting the picture start codes and frame prediction types used in the
input compressed bitstream, the frame rate of the input bitstream can be
reduced directly at the bitstream level prior to decompression. Specifically,
in order to reduce the temporal frame rate, rather than decoding the entire
bitstream and subsequently dropping frames, one may instead examine the
bitstream for picture startcodes, determine the picture type from the picture
header, and then selectively discard the bits that correspond to B pictures.
The resulting lower-rate R' < R0 bitstream can be decoded into video frames
with resolution S0,T1. The limitation is that the temporal frame rate can only
be reduced by restricted factors because of the prediction dependencies used
in the input bitstream, e.g. in the case where two B frames are used between
the I and P frames, the temporal frame rate can only be reduced by a factor
of 3. The advantages are the reduced processing requirements needed for
MPEG decoding and the reduced memory requirements achieved by
eliminating the need to store the higher frame rate sequence. In this
approach, the computational requirements are still high due to the motion
estimation that must be performed in the encoder.

The bottom diagram shows an improved approach for this transcoding
operation. Once again, the temporal frame rate is reduced at the bitstream
layer by exploiting the picture start codes and picture headers.
Furthermore, deriving the output coding parameters from those given in the
input bitstream can significantly reduce the compute requirements of the
final encode operation. This is advantageous because some of the
computations that need to be performed in the encoder, such as motion

Conventional

Further Improved Approach: Also exploit input coded data

Improved Approach: Exploit bitstream syntax

Decode Temporal
Processing

Spatial
Processing

Encode

Motion
Estimation

Temporal
Processing Decode Spatial

Processing
Encode

Motion
Estimation

Temporal
Processing Decode Spatial

Processing

MV
Resampling

Partial
Encode

Figure 4. Architectural development of CDP algorithms.

Chapter 1 18

estimation, may have already been performed by the original encoder and
may be represented by coding parameters, such as motion vectors, given in
the input bitstream. Rather than blindly recomputing this information from
the decoded, downsampled video frames, the encoder can exploit the
information contained in the input bitstream. In other words, much of the
information that is derived in the original encoder can be reused in the
transcoder. Specifically, the motion vectors, quantization parameters, and
prediction modes contained in the input compressed bitstream can be used
to calculate the motion vectors, quantization parameters, and prediction
modes used in the encoder, thus largely bypassing the expensive operations
performed in the conventional encoder.

Also, when transcoding to reduce the spatial resolution, the number of
macroblocks in the input and output frames can differ; the bottom
architecture can be further improved to consider this difference and achieve
a better tradeoff in complexity and quality [23]. Note that the DCT-domain
methods discussed in Section 4 can be used for further improvements.

5.1.2 Intra-Frame Transcoding

Images and video frames coded with intraframe methods are represented by
sets of block DCT coefficients. When using intraframe DCT coding, the
original video frame is divided into 8x8 blocks, each of which is
independently transformed with an 8x8 DCT. This imposes an artificial
block structure that complicates a number of spatial processing operations,
such as translation, downscaling, and filtering, that were considered
straightforward in the pixel domain.

For spatial downsampling or resolution reduction on an intra-coded frame,
one 8x8 DCT block of the downscaled image is determined from multiple 8x8
DCT blocks of the original image. Efficient downsampling algorithms can be
derived in the DCT domain. Based on the distributed property of the DCT
discussed in Subsection 4.1, DCT-domain downsampling can be achieved by
matrix multiplication. Merhav and Bhaskaran [28] have developed an
efficient matrix multiplication for downscale of DCT blocks. Natarajan and
Bhaskaran [18] also used approximated DCT matrices to achieve the same
goal. The approximated DCT matrices contain only elements of value 0, 1, or
a power of ½. Effectively, the matrix multiplication can be achieved by
integer shifts and additions, leading to a multiplication free implementation.

Efficient algorithms have also been developed for filtering images in the DCT
domain. For example, [29] proposes a method to apply two-dimensional
symmetric, separable filters to DCT-coded images.

5.1.3 Inter-Frame Transcoding

Video frames coded with interframe coding techniques are represented with
motion vectors and residual DCT coefficients. These frames are coded based
on a prediction from one or more previously coded frames; thus, properly
decoding one frame requires first decoding one or more other frames. This
temporal dependence among frames severely complicates a number of spatial
and temporal processing techniques such as translation, downscaling, and
splicing.

Compressed-Domain Video Processing 19

To facilitate efficient transcoding in the compressed domain, one wants to
reuse as much information as possible in the origin video bitstream. The
motion vector information of the transcoded video can be derived using the
motion vector processing method introduced in Subsection 4.2. The
computing of the residual DCT data can follow the guidelines provided in
Subsection 4.3. Specifically, an interframe representation can be transcoded
to an intraframe representation in the DCT domain. Subsequently, the DCT
domain residual data can be obtained based on the derived motion vector
information.

5.1.4 Format Conversion: Video Downscaling

Downscaling, or reducing the spatial resolution, of compressed video streams
is an operation that benefits from the compressed-domain methods described
in Section 4 and the compressed-domain transcoding architectures
presented in Subsection 5.1.1. A block diagram of the compressed-domain
downscaling algorithm is shown in Figure 5. The input bitstream is partially
decoded into its motion vector and DCT domain representation. The motion
vectors are resampled with the MV resampling methods described in
Subsection 4.2. The DCT coefficients are processed with the DCT-domain
processing techniques described in Subsections 4.1 and 4.3. A number of
coding parameters from the input bitstream are extracted and used in the
MV resampling and partial encoding steps of the transcoder. Rate control
techniques, like those described in Section 4.4, are used to adapt the bitrate
of the output stream. This is discussed in more detail below.

The compressed-domain downscaling operation is complicated by the
prediction dependencies used between frames during compression.
Specifically, there are two tracks of dependencies in such a transcoding
session. The first dependency is among frames in the original input video
stream, while the second is among frames in the output downsampled video
stream. The motion vectors for the down-sampled version can be estimated
based on the motion vectors in the original video. However, even when the
motion information in the original video is reused, it is necessary to
reconstruct the reference frames to avoid drift error due to imperfect motion
vector estimation. As described in Subsection 4.3, the reconstruction may be
performed using a DCT domain motion compensation method.

The selection of coding type for macroblock in the interframes is also an
important issue. In the downsampling-by-two case, there may be four
macroblocks each with a different coding type involved in the creation of
each output macroblock; the transcoder may choose the dominant coding
type as the coding type for the output macroblock. In addition, rate control
must be used to control the bitrate of the transcoding result.

Partial
Decode

DCT-Domain
Processing

MV and mode
processing

Partial
Encode

Motion vectors, MV
Input coding modes

Motion vectors, MV*
Output coding modes

Figure 5. Compressed-domain downscaling algorithm.

Chapter 1 20

5.1.5 Format Conversion: Field-to-Frame Transcoding

This section focuses on the problem of transcoding a field-coded compressed
bitstream to a lower-rate, lower-resolution frame-coded compressed
bitstream [26]. For example, conversions between interlaced MPEG-2
sequences to progressive MPEG-1, H.261, H.263, or MPEG-4 simple profile
streams lie within this space. To simplify discussion, this section focuses on
transcoding a given MPEG-2 bitstream to a lower-rate H.263 or MPEG-4
simple profile bitstream [26][30][31]. This is a practically important
transcoding problem for converting MPEG-2 coded DVD and Digital TV video,
which is often interlaced, to H.263 or MPEG-4 video for streaming over the
Internet or over wireless links (e.g. 3G cellular) to PCs, PDAs and cell phones
that usually have progressive displays. For brevity, we refer to the output
format as H.263, however it can be H.261, H.263, MPEG-1, or MPEG-4.

The conventional approach to the problem is as follows. An MPEG bitstream
is first decoded into its decompressed interlaced video frames. These high-
resolution interlaced video frames are then downsampled to form a
progressive video sequence with a lower spatial resolution and frame rate.
This sequence is then re-encoded into a lower-rate H.263 bitstream. This
conventional approach to transcoding is inefficient in its use of
computational and memory resources. It is desirable to have computation-
and memory-efficient algorithms that achieve MPEG-2 to H.263 transcoding
with minimal loss in picture quality.

A number of issues arise when designing MPEG-2 to H.263 transcoding
algorithms. While both standards are based on block motion compensation
and the block DCT, there are many differences that must be addressed. A
few of these differences are listed below:
• Interlaced vs. progressive video format: MPEG-2 allows interlaced video

formats for applications including digital television and DVD. H.263 only
supports progressive formats.

• Number of I frames: MPEG uses more frequent I frames to enable random
access into compressed bitstreams. H.263 uses fewer I frames to achieve
better compression.

• Frame coding types: MPEG allows pictures to be coded as I, P, or B
frames. H.263 has some modes that allow pictures to be coded as I, P, or
B frames; but has other modes that only allow pictures to be coded as I,
P, or optionally PB frames. Traditional I, P, B frame coding allows any
number of B frames to be included between a pair of I or P frames, while
H.263 I, P, PB frame coding allows at most one.

• Prediction modes: In support of interlaced video formats, MPEG-2 allows
field-based prediction, frame-based prediction, and 16x8 field-based
prediction. H.263 only supports frame-based prediction but optionally
allows an advanced prediction mode in which four motion vectors are
allowed per macroblock.

• Motion vector restrictions: MPEG motion vectors must point inside the
picture, while H.263 has an unrestricted motion vector mode that allows
motion vectors to point outside the picture. The benefits of this mode
can be significant, especially for lower-resolution sequences where the
boundary macroblocks account for a larger percentage of the video.

Compressed-Domain Video Processing 21

A block diagram of the MPEG-2 to H.263 transcoder [26][30] is shown in
Figure 6. The transcoder accepts an MPEG IPB bitstream as input. The
bitstream is scanned for picture start codes and the picture headers are
examined to determine the frame type. The bits corresponding to B frames
are discarded, while the remaining bits are passed on to the MPEG IP
decoder. The decoded frames are downsampled to the appropriate spatial
resolution and then passed to the modified H.263 IP encoder.

This encoder differs from a conventional H.263 encoder in that it does not
perform conventional motion estimation; rather, it uses motion vectors and
coding modes computed from the MPEG motion vectors and coding modes
and the decoded, downsampled frames. There are a number of ways that
this motion vector resampling can be done [4][5]. The class IV partial search
method described in Subsection 4.2 was chosen. Specifically, the MPEG
motion vectors and coding modes are used to form one or more initial
estimates for each H.263 motion vector. A set of candidate motion vectors is
generated; this set may include each initial estimate and its neighbouring
vectors, where the size of the neighbourhood can vary depending on the
available computational resources. The set of candidate motion vectors is
tested on the decoded, downsampled frames and the best vector is chosen
based on a criteria such as residual energy. A half-pixel refinement may be
performed and the final mode decision (inter or intra) is then made.

Design considerations

Many degrees of freedom exist when designing an MPEG-2 to H.263
transcoder. For instance, a designer can make different choices in the
mapping of input and output frame types; and the designer can choose how
to vary the temporal frame rate and spatial resolution. Each of these
decisions has different impact on the computational and memory
requirements and performance of the final algorithm. This section presents
a very simple algorithm that makes design choices that naturally match the
characteristics of the input and output bitstreams.

The target format of the transcoder can be chosen based on the format of the
input source bitstream. A careful choice of source and target formats can
greatly reduce the computational and memory requirements of the
transcoding operation.

Spatial and temporal resolutions: The chosen correspondence between the
input and output coded video frames is shown in Figure 7. The horizontal
and vertical spatial resolutions are reduced by factors of two because the
MPEG-2 interlaced field format provides a natural factor of two reduction in
the vertical spatial resolution. Thus, the spatial downsampling is performed
by simply extracting the top field of the MPEG-2 interlaced video frame and
horizontally downsampling it by a factor of two. This simple spatial

Drop
B frames

MPEG IP
Decoder

Spatial
Downsample

H.263 IP
Encoder

Estimate
MV

Refine
SearchMPEG MVs &

Coding Modes
H.263 MVs &
Coding Modes

Figure 6. MPEG-2 to H.263 transcoder block diagram.

Chapter 1 22

downsampling method allows the algorithm to avoid the difficulties
associated with interlaced to progressive conversions. The temporal
resolution is reduced by a factor of three, because MPEG-2 picture start
codes, picture headers, and prediction rules make it possible to efficiently
discard B-frame data from the bitstream without impacting the remaining I
and P frames. Note that even though only the top fields of the MPEG I and P
frames are used in the H.263 encoder, both the top and bottom fields must
be decoded because of the prediction dependencies that result from the
MPEG-2 interlaced field coding modes.

Frame coding types: MPEG-2 allows I, P, and B frames while H.263 allows I
and P frames and optionally PB frames. With sufficient memory and
computational capabilities, an algorithm can be designed to transcode from
any input MPEG coding pattern to any output H.263 coding pattern as in
[31]. Alternatively, one may take the simpler approach of determining the
coding pattern of the target H.263 bitstream based on the coding pattern of
the source MPEG-2 bitstream. By aligning the coding patterns of the input
and output bitstreams and allowing temporal downsampling, a significant
improvement in computational efficiency can be achieved.

Specifically, a natural alignment between the two standards can be obtained
by dropping the MPEG B frames and converting the remaining MPEG I and P
frames to H.263 I and P frames, thus exploiting the similar roles of P frames
in the two standards and exploiting the ease in which B frame data can be
discarded from an MPEG-2 bitstream without affecting the remaining I and P
frames. Since MPEG-2 sequences typically use an IBBPBBPBB structure,
dropping the B frames results in a factor of three reduction in frame rate.
While H.263 allows an advanced coding mode of PB pictures, it is not used in
this algorithm because it does not align well with MPEG's IBBPBBPBB
structure.

The problem that remains is to convert the MPEG-coded interlaced I and P
frames to the spatially downsampled H.263-coded progressive I and P
frames. The problem of frame conversions can be thought of as
manipulating prediction dependencies in the compressed data; this topic was
addressed in [22] and in Subsection 4.5 for MPEG progressive frame
conversions. This MPEG-2 to H.263 transcoding algorithm requires three
types of frame conversions: (1) MPEG I field to H.263 I frame, (2) MPEG I
field to H.263 P frame, and (3) MPEG P field to H.263 P frame. The first is
straightforward. The latter two require the transcoder to efficiently calculate
the H.263 motion vectors and coding modes from those given in the MPEG-2
bitstream. When using the partial search method described in Subsection
4.3, the first step is to create one or more initial estimates of each H.263
motion vector from the MPEG-2 motion vectors. In the following two

I(0,t)
P(0,b)

B(1,t)
B(1,b)

B(2,t)
B(2,b)

P(3,t)
P(3,b)

B(4,t)
B(4,b)

B(5,t)
B(5,b)

i(0) p(1) p(2)

I(6,t)
P(6,b)

B(7,t)
B(7,b)

MPEG-2 Fields

H.263 Frames
Figure 7. Video formats for MPEG-2 to H.263 tranascoding.

Compressed-Domain Video Processing 23

sections, we discuss the methods used to accomplish this for MPEG I field to
H.263 P frame conversions and for MPEG P field to H.263 P frame
conversions. Further details of the MPEG-2 to H.263 transcoder, including
the progressive to interlace frame conversions, are given in [26][30]. These
conversions address the differences between the MPEG-2 and H.263
standards described at the beginning of the section, and exploit the
information in the input video stream to greatly reduce the computational
and memory requirements of the transcoder with little loss in video quality.

5.2 EDITING

This section describes a series of compressed-domain editing applications. It
begins with temporal mode conversion, which can be used to transcode an
MPEG sequence into a format that facilitates video editing operations. It
then describes two frame-level processing operations, frame-accurate
splicing and frame-by-frame reverse play. All these operations use the frame
conversion methods described in Subsection 4.5 to manipulate the prediction
dependencies of compressed frames [22].

5.2.1 Temporal Mode Conversion

The ability to transcode between arbitrary temporal modes adds a great deal
of flexibility and power to compressed-domain video processing. In addition,
it provides a method of trading off parameters to achieve various
rate/robustness profiles. For example, an MPEG sequence consisting of all I
frames, while least efficient from a compression viewpoint, is most robust to
channel impairments in a video communication system. In addition, the all
I-frame MPEG video stream best facilitates many video-editing operations
such as splicing, downscaling, and reverse play. Finally, once an I-frame
representation is available, the intraframe transcoding algorithms described
in Subsection 5.1 can be applied to each frame of the sequence to achieve
the same effect on the entire sequence.

In general, temporal mode conversions can be performed with the frame
conversion method described in Subsection 4.5. For frames that need to be
converted to different prediction modes, macroblock and block level
processing can be used to convert the appropriate macroblocks between
different types.

The following steps describe a DCT-domain approach to transcoding an
MPEG video stream containing I, P, and B frames into an MPEG video
stream containing only I frames. This processing must be performed for the
appropriate macroblocks of the converted frames.
1. Calculate the DCT coefficients of the motion-compensated prediction. This

can be calculated from the intraframe coefficients of the previously coded
frames by using the compressed-domain inverse motion compensation
routine described in Subsection 4.3.

2. Form the intraframe DCT representation of each frame. This step simply
involves adding the predicted DCT coefficients to the residual DCT
coefficients.

3. Requantize the intraframe DCT coefficients. This step must be performed
to ensure that the buffer constraints of the new stream are satisfied.
Requantization may be used to control the rate of the new stream.

Chapter 1 24

4. Reorder the coded data and update the relevant header information. If B-
frames are used, the coding order of the IPB MPEG stream will differ from
the coding order of the I-only MPEG stream. Thus, the coded data for
each frame must be shuffled appropriately. In addition, the appropriate
parameters of the header data must be updated.

5.2.1 Frame-Accurate Splicing

The goal of the splicing operation is to form a video data stream that
contains the first Nhead frames of one video sequence and the last Ntail frames
of another video sequence. For uncoded video, the solution is obvious:
simply discard the unused frames and concatenate the remaining data. Two
properties make this solution obvious: (1) the data needed to represent each
frame is self-contained, i.e. it is independent of the data from other frames;
and (2) the uncoded video data has the desirable property of original
ordering, i.e. the order of the video data corresponds to the display order of
the video frames. MPEG-coded video data does not necessarily retain these
properties of temporal independence or original ordering (although it can be
forced to do so at the expense of compression efficiency). This complicates
the task of splicing two MPEG-coded data streams.

This section describes a flexible algorithm that splices two streams directly in
the compressed domain [3]. The algorithm allows a natural tradeoff between
computational complexity and compression efficiency, thus it can be tailored
to the requirements of a particular system. This algorithm possesses a
number of attributes. A minimal number of frames are decoded and
processed, thus leading to low computational requirements while preserving
compression efficiency. In addition, the head and tail data streams can be
processed separately. Finally, if desired, the processing can be performed so
that the final spliced data stream is a simple concatenation of the two
streams and so that the order of the coded video data remains intact.

The conventional splicing solution is to completely decompress the video,
splice the decoded video frames, and recompress the result. With this
method, every frame in the spliced video sequence must be recompressed.
This method has a number of disadvantages, including high computational
requirements, high memory requirements, and low performance, since each
recoding cycle can deteriorate the video data.

An improved compressed-domain splicing algorithm is shown in Figure 9.
The computational requirements are reduced by only processing the frames
affected by the splice, and by only decoding the frames needed for that
processing. This is also shown in Figure 9. Specifically, the only frames that

10011010101110001010 00101101101001100101 11000101101011010010

Decode Decode Encode

Cut & Paste

Transcode

2,000
MOPS

2,000
MOPS

20,000
MOPS

< 2,000 MOPS
for one splice point every sec

Figure 8. Splicing operation.

Compressed-Domain Video Processing 25

need to be recoded are within in the GOPs affected by the head and tail cut
points; at most, there will be one such GOP in the head data stream and one
in the tail data stream. Furthermore, the only additional frames that need to
be decoded are the I and P frames in the two GOPs affected by the splice.

The algorithm results in an MPEG-compliant data stream with variable-sized
GOPs. This exploits the fact that the GOP header does not specify the
number of frames in the GOP or its structure; rather these are fully specified
by the order of the data in the coded data stream.

Each step of the splicing operation is described below. Further discussion is
included in [3].

1. Process the head data stream. This step involves removing any backward
prediction dependencies on frames not included in the splice. The simplest
case occurs when the cut for the head data occurs immediately after an I or
P frame. When this occurs, there are no prediction dependencies on cut
frames and all the relevant video data is contained in one contiguous portion
of the data stream. The irrelevant portion of the data stream can simply be
discarded, and the remaining relevant portion does not need to be processed.
When the cut occurs immediately after a B frame, some extra processing is
required because one or more B-frame predictions will be based on an
anchor frame that is not included in the final spliced video sequence. In this
case, the leading portion of the data stream is extracted up to the last I or P
frame included in the splice, then the remaining B frames should be
converted to Bfor frames or P frames.
2. Form the tail data stream. This step involves removing any forward
prediction dependencies on frames not included in the splice. The simplest
case occurs when the cut occurs immediately before an I frame. When this
occurs, the video data preceding this frame may be discarded and the
remaining portion does not need to be processed. When the cut occurs

Process
Head

Process
Tail

Match &
Merge

0010110110100100101101101001

1001011001100110010110011001

1100010110101111000101101011

GOP with splice-out frame

Head Input Stream

X X

GOP with splice-in frame

Tail Input Stream

X

Spliced Output Stream

Hn-2 Hn-1 Hn

T0 T1 T2 T3

T1 T2Hn-2 Hn-1 F(Hn,T0)
Figure 9. Compressed-domain splicing and processed bitstreams.

Chapter 1 26

before a P frame, the P frame must be converted to an I frame and the
remaining data remains in tact. When the cut occurs before a B frame, extra
processing is required because one of the anchor frames is not included in
the spliced sequence. In this case, if the first non-B frame is a P frame, it
must be converted to an I frame. Then, each of the first consecutive B
frames must be converted to Bback frames.
3. Match and merge the head and tail data streams. The IPB structure and the
buffer parameters of the head and tail data streams determine the
complexity of the matching operation. This step requires concatenating the
two streams and then processing the frames near the splice point to ensure
that the buffer constraints are satisfied. This requires matching the buffer
parameters of the pictures surrounding the splice point. In the simplest
case, a simple requantization will suffice. However, in more difficult cases, a
frame conversion will also be required to prevent decoder buffer underflow.
Furthermore, since prediction dependencies are inferred from the coding
order of the compressed stream, when the merging step is performed the
coded frames must be interleaved appropriately. The correct ordering will
depend on the particular frame conversions used to remove the dependencies
on cut frames.

The first two steps may require converting frames between the I, P, and B
prediction modes. Converting P or B frames to I frames is quite
straightforward as is B-to-Bfor conversion and B-to-Bback conversion, however,
conversion between any other set of prediction modes can require more
computations to compute new motion vectors. Exact algorithms involve
performing motion estimation on the decoded video -- this process can
dominate the computational requirements of the algorithm. Approximate
algorithms such as motion vector resampling can significantly reduce the
computations required for these conversions.

Results of a spliced video sequence are shown in Figure 10. The right side of
the figure plots the frame quality (in peak signal-to-noise ratio) for original
compressed football and cheerleader sequences, and the spliced result when
splicing between the two sequences every twenty frames. In the spliced
result, the solid line contains the original quality values from the
corresponding frames in the original coded football and cheerleader
sequences, while the dotted line represents the quality of the sequence
resulting from the compressed-domain splicing operation. Note that the
spliced sequence has a slight degradation in quality at the splice points.
This slight loss in quality is due to the removal of prediction dependencies in

Figure 10. Performance of compressed-domain splicing algorithm.

Compressed-Domain Video Processing 27

the compressed video in conjunction with the rate matching needed to satisfy
buffer requirements. However, note that it returns to full quality a few
frames after the splice point (within one GOP). The plots on the left show the
buffer occupancy for the original input sequences and the output spliced
sequence. In the bottom plot, the bottom line shows the buffer usage if the
rate matching operation is not performed; this results in an eventual decoder
buffer underflow. The top line shows the result of the compressed-domain
splicing algorithm with appropriate rate matching. In this case, the buffer
occupancy levels stay consistent with the original streams except in small
areas surrounding the splice points. However, as we saw in the quality
plots, the quality and buffer occupancy levels match those of the input
sequences within a few frames.

5.2.2 Frame-by-Frame Reverse Play

The goal of the compressed-domain reverse-play operation is to create a new
MPEG data stream that, when decoded, displays the video frames in the
reverse order from the original MPEG data stream. For uncoded video the
solution is simple: reorder the video frame data in reverse order. The
simplicity of this solution relies on two properties: the data for each video
frame is self-contained and it is independent of its placement in the data
stream. These properties typically do not hold true for MPEG-coded video
data.

Compressed-domain reverse-play is difficult because MPEG compression is
not invariant to changes in frame order, e.g. reversing the order of the input
frames will not simply reverse the order of the output MPEG stream.
Furthermore, reversing the order of the input video frames does not result in
a ”reversed” motion vector field. However, if the processing is performed
carefully, much of the motion vector information contained in the original
MPEG video stream can be reused to save a significant amount of
computations.

This section describes a reverse-play transcoding algorithm that operates
directly on the compressed-domain data [32][33]. This algorithm is simple
and achieves high performance with low computational and memory
requirements. This algorithm only decodes the following data from the
original MPEG data stream: I frames must be partially decompressed into
their DCT representation and P frames must be partially decompressed to
their MV/DCT representation, while for B frames only the forward and

001011011010011001 110001011010110100

Decode Encode

Pixel-domain
Processing

Transcode

Figure 11. Reverse play operation.

Chapter 1 28

backward motion vector fields need to be decoded, i.e. only bitstream
processing is needed.

The development of the compressed-domain reverse play algorithm is shown
in Figure 12. In the conventional approach shown in the top of the figure,
each GOP in the MPEG stream, starting from the end of the sequence, is
completely decoded into uncompressed frames and stored in a frame buffer.
The uncompressed frames are reordered, and the resulting frames are re-
encoded into an output MPEG stream that contains the original frames in
reverse order.

The middle figure shows an improved approach to the algorithm. This
improvement results from exploiting the symmetry of B frames. Specifically,
it uses the fact that the coding of the reverse-ordered sequence can be
performed so that the same frames are coded as B frames and thus will have
the same surrounding anchor frames. The one difference will be that the
forward and backward anchors will be reversed. In this case, major
computational savings can be achieved by performing simplified processing
on the B frames. Specifically, for B frames only a bitstream-level decoding is
used to efficiently decode the motion vectors and coding modes, swap them
between forward and backward modes, and repackage the results. This
greatly reduces the computational requirements because 2/3 of the frames
are B frames and because typically the processing required for B frames is
greater than that required for P frames, which in turn is much greater than
that required for I frames. Also, note that the frame buffer requirements are
reduced by a factor of three because the B frames are not decoded.

The bottom figure shows a further improvement that can be had by using
motion vector resampling, as described in Subsection 4.2, on the I and P
frames. In this architecture, the motion vectors given in the input bitstream

Decode
(5)

Encode
(5)

Reorder
(5)

Frame
Buffer

Motion
Estimation

Huffman
Decode

Huffman
Encode

Swap
MVs

I, P

B

I, P

B

#2

Exploit symmetry of B frames.

Decode
(15)

Encode
(15)

Reorder
(15)

Frame
Buffer

Motion
Estimation

I, P, BI, P, B

#1

GOP 15

Decode
(5)

Reorder
(5)

Frame
Buffer

Reverse
MVs

Huffman
Decode

Huffman
Encode

Swap
MVs

I, P

B

I, P

B

Encode
(5)

#3

Exploit information in coded data.

Figure 12. Architectures for compressed-domain reverse play.

Compressed-Domain Video Processing 29

are used to compute the motion vectors for the output bitstream, thereby
avoiding the computationally expensive motion estimation process in the re-
encoding process. The computational and performance tradeoffs of these
architectures are discussed in detail in [5].

 • Original

• Convert IP frames to reverse IP frames

• Exchange forward and backward MVs

• Reorder data

I 0 B 1 B 2 P 3 B 4 B 5 P 6 B 7 B 8 I 9

0 B 1 B 2 P’ 3 B 4 B 5 I’ 6 B 7 B 8 I 9

I 0 B 1 B 2 P’ 3 B 4 B 5 P’ 6 B 7 B 8 I 9

P’ 0 B 1 B 2 P’ 3 B 4B 5I’6B 7 B 8 I 9

P’

Figure 13. MPEG compressed-domain reverse play algorithm.

The resulting compressed-domain reverse-play algorithm shown in Figure 13
has the following steps:

1. Convert the IP frames to reverse IP frames. While the input motion vectors

were originally computed for forward prediction between the I and P
frames, the reverse IP frames require output motion vectors to be
converted in the reverse order. Motion vector resampling methods
described in Subsection 4.2 and in [5] can be used to calculate the new
reversed motion vectors. Once the motion vectors are computed, the new
output DCT coefficients can be computed directly in the DCT-domain by
using the compressed-domain inverse motion compensation algorithm
described in Subsection 4.3.

2. Exchange the forward and backward motion vector fields used in each B
frame. This step exploits the symmetry of the B frame prediction process.
In the reversed stream, the B frames will have the same two anchor
frames, but in the reverse order. Thus, the forward prediction field can
simply be exchanged with the backward prediction field, resulting in
significant computational savings. Notice that only the motion vector
fields need to be decoded for the B frames.

3. Requantize the DCT coefficients. This step must be performed to ensure
that the buffer constraints of the new stream are satisfied.
Requantization may be used to control the rate of the new stream.

4. Properly reorder the frame data and update the relevant header
information. If no B frames are used, then the reordering process is quite
straightforward. However, when B frames are used, care must be taken
to properly reorder the data from the original coding order to the
appropriate reverse coding order. In addition, the parameters in the
header data must be updated appropriately.

Chapter 1 30

6. ADVANCED TOPICS

6.1 OBJECT-BASED TO BLOCK-BASED TRANSCODING

This chapter focused on compressed-domain processing and transcoding
algorithms for block-based compression schemes such as MPEG-1, MPEG-2,
MPEG-4 simple profile, H.261, H.263, and H.264/MPEG-4 AVC. These
compression standards represent each video frame as a rectangular array of
pixels, and perform compression based on block-based processing, e.g. the
block DCT and block-based motion estimation and motion compensated
prediction. These compression algorithms are referred to as block- or frame-
based schemes. Recently, object-based representations and compression
algorithms have been developed -- the object-based coding part of MPEG-4 is
the most well known example. These object-based representations
decompose the image or video into arbitrarily shaped (non-rectangular)
objects, unlike the block-based representations discussed above.

Object-based representations provide a more natural representation than
square blocks, and can facilitate a number of new functionalities such as
interactivity with objects in the video and greater content-creation flexibility.
The object-based profiles of MPEG-4 are especially appealing for content
creation and editing. For example, it may be useful to separately represent
and encode different objects, such as different people or foreground or
background objects, in a video scene in order to simplify manipulation of the
scene. Therefore, object-based coding, such as MPEG-4, may become a
natural approach to create, manipulate, and distribute new content. On the
other hand, most clients may have block-based decoders, especially thin
clients such as PDAs or cell phones. Therefore, it may become important to
be able to efficiently transcode from object-based coding to block-based
coding, e.g. from object-based MPEG-4 to block-based MPEG-2 or MPEG-4
simple profile. Efficient object-based to block-based transcoding algorithms
were developed for intraframe (image) and interframe (video) compression in
[7]. These efficient transcoding algorithms use many of the compressed-
domain methods described in Section 4.

At each time instance (or frame), a video object has a shape, an amplitude
(texture) within the shape, and a motion from frame to frame. In object-
based coding, the shape (or support region) of the arbitrarily shaped object is
often represented by a binary mask, and the texture of the object is
represented by DCT transform coefficients. The object-based coding tools are
often designed based on block-based coding tools. Typically in object-based
image coding, such as in MPEG-4, a bounding box is placed around the
object and the box is divided into blocks. The resulting blocks are classified
as interior, boundary, or exterior blocks based on whether the block is
completely within, partially within, or completely outside the object’s
support. For intraframe coding, a conventional block-DCT is applied to
interior blocks and a modified block transform is applied to boundary blocks.
For interframe coding, a macroblock and transform block structure similar to
block-based video coding is used, where motion vectors are computed for
macroblocks and conventional or modified block transforms are applied to
interior and boundary blocks.

Compressed-Domain Video Processing 31

Many of the issues that arise in intraframe object-based to block-based
transcoding algorithms can be understood by considering the simplified
problem of overlaying an arbitrarily shaped object onto a fixed rectangular
image, and producing the output compressed image that contains the
rectangular image with the arbitrarily shaped overlay.

The simplest case occurs when the block boundaries of the fixed rectangular
image and of the overlaid object are aligned. In this case, the output blocks
can be computed in one of three cases. First, output image blocks that do
not contain any portion of the overlay object may be simply copied from the
corresponding block in the fixed rectangular image. Second, output image
blocks that are completely covered by the overlaid object are replaced with
the object’s corresponding interior block. Finally, output image blocks that
partially contain pixels from the rectangular image and the overlaid object
are computed from the corresponding block from the fixed rectangular image
and the corresponding boundary block from the overlaid object. Specifically,
the new output coded block can be computed by properly masking the two
blocks according to the object’s segmentation mask. This can be computed
in the spatial domain by inverse transforming the corresponding blocks in
the background image and object, appropriately combining the two blocks
with a spatial-domain masking operation, and transforming the result.
Alternatively, it can be computed with compressed-domain masking
operations, as described in Subsections 4.1, to reduce the computational
requirements of the operation.

If the block boundaries of the object are not aligned with the block
boundaries of the fixed rectangular image, then the affected blocks need
additional processing. In this scenario, a shifting operation and a combined
shifting/masking operation are needed for the unaligned block boundaries.
Once again, output blocks that do not contain any portion of the overlaid
object are copied from the corresponding input block in the rectangular
image. Each remaining output block in the original image will overlap with 2
to 4 of the overlaid object’s coded blocks (depending on whether one or both
of the horizontal and vertical axes are misaligned). For image blocks with
full coverage of the object and for which all the overlapping object’s blocks
are interior blocks, a shifting operation can be used to compute the new
output “shifted” block. For the remaining blocks, a combined
shifting/masking operation can be used to compute the new output block.
As in the previous example, these computations can be performed in the
spatial domain, or possibly more efficiently in the transform domain using
the operations described in Subsections 4.1 and 4.3.

The object-to-block based interframe (video) transcoding algorithm share the
issues that arise in the intraframe (image) transcoding algorithm with regard
to the alignment of macroblock boundaries between the rectangular video
and overlaid video object, or between multiple arbitrarily shaped video
objects. Furthermore, a number of important problems arise because of the
different prediction dependencies that exist for the multiple objects in the
object-coded video and the desired single dependency tree for the block-
based coded video. This requires significant manipulation of the temporal
dependencies in the coded video. Briefly speaking, given multiple arbitrarily
shaped objects described by shape parameters and motion and DCT

Chapter 1 32

coefficients, the transcoding algorithm requires the computation of output
block-based motion vectors and DCT coefficients. The solution presented
computes output motion vectors with motion vector resampling techniques
and computes output DCT coefficients with efficient transform-domain
processing algorithms for combinations of the shifting, masking, and inverse
motion compensation operations. Furthermore, the algorithm uses
macroblock mode conversions, similar to those described in Subsection 4.5
and [22], to appropriately compensate for prediction dependencies that
originally may have relied upon areas now covered by the overlaid object.
The reader is referred to [7] for a detailed description of the transcoding
algorithm.

6.2 SECURE SCALABLE STREAMING

It should now be obvious that transcoding is a useful capability in streaming
media and media communication applications, because it allows
intermediate network nodes to adapt compressed media streams for
downstream client capabilities and time-varying network conditions. An
additional issue that arises in some streaming media and media
communication applications is security, in that an application may require
the transported media stream to remain encrypted at all times. In
applications where this type of security is required, the transcoding
algorithms described earlier in this chapter can only be applied by decrypting
the stream, transcoding the decrypted stream, and encrypting the result. By
requiring decryption at transcoding nodes, this solution breaks the end-to-
end security of the system.

Secure Scalable Streaming (SSS) is a solution that achieves the challenge of
simultaneously enabling security and transcoding, specifically it enables
transcoding without decryption [34][35]. SSS uses jointly designed scalable
coding and progressive encryption techniques to encode and encrypt video
into secure scalable packets that are transmitted across the network. The
joint encoding and encryption is performed such that these resulting secure
scalable packets can be transcoded at intermediate, possibly untrusted,
network nodes by simply truncating or discarding packets and without
compromising the end-to-end security of the system. The secure scalable
packets may have unencrypted headers that provide hints, such as optimal
truncation points, which the downstream transcoders use to achieve rate-
distortion (R-D) optimal fine-grain transcoding across the encrypted packets.

The transcoding methods presented in this chapter are very powerful in that
they can operate on most standard-compliant streams. However, in
applications that require end-to-end security (where the transcoder is not
allowed to see the bits), SSS can be used with certain types of scalable image
and video compression algorithms to simultaneously provide security and
scalability by enabling transcoding without decryption.

6.3 APPLICATIONS TO MOBILE STREAMING MEDIA SYSTEMS

The increased bandwidth of next-generation wireless systems will make
streaming media a critical component of future wireless services. The
network infrastructure will need to be able to handle the demands of mobility
and streaming media, in a manner that scales to large numbers of users.
Mobile streaming media (MSM) systems can be used to enable media delivery

Compressed-Domain Video Processing 33

over next-generation mobile networks. For example, a mobile streaming
media content delivery network (MSM-CDN) can be used to efficiently
distribute and deliver media content to large numbers of mobile users [36].
These MSM systems need to handle large numbers of compressed media
streams; the CDP methods presented in this chapter can be used to do so in
an efficient and scalable manner. For example, compressed-domain
transcoding can be used to adapt media streams originally made for high-
resolution display devices such as DVDs into media streams made for lower-
resolution portable devices [26], and to adapt streams for different types of
portable devices. Furthermore, transcoding can be used to adaptively stream
content over error-prone, time-varying wireless links by adapting the error-
resilience based on channel conditions [37]. When using transcoding
sessions in mobile environments, a number of system-level technical
challenges arise. For example, user mobility may cause a server handoff in
an MSM-CDN, which in turn may require the midstream handoff of a
transcoding session [38]. CDP is likely to play a critical and enabling role in
next-generation MSM systems that require scalability and performance, and
in many cases CDP will enable next-generation wireless, media-rich services.

Acknowledgment
The authors gratefully acknowledge Dr. Fred Kitson and Dr. Mark Smith of
HP Labs for their support of this technical work throughout the years.

REFERENCES
[1] J. Mitchell, W. Pennebaker, C. Fogg, and D. LeGall, "MPEG Video

Compression Standard", Digital Multimedia Standards Series,
Chapman and Hall, 1997.

[2] V. Bhaskaran and K. Konstantinides, "Image and Video Compression
Standards: Algorithms and Architectures", Kluwer Academic
Publishers, Second Edition, June 1997.

[3] S. Wee and V. Bhaskaran, "Splicing MPEG video streams in the
compressed-domain", IEEE Workshop on Multimedia Signal Processing,
June 1997.

[4] B. Shen, I.K. Sethi, and V. Bhaskaran, “Adaptive Motion Vector
Resampling for Compressed Video Down-scaling”, IEEE Transactions
on Circuits and Systems for Video Technology, vol.9, no.6, pp.929-936,
Sept. 1999.

[5] S. Wee, "Reversing motion vector fields", IEEE International
Conference on Image Processing, Oct. 1998.

[6] B. Shen, I.K.Sethi and V. Bhaskaran, “Closed-Loop MPEG Video
Rendering,” International Conference on Multimedia Computing and
Systems, pp. 286-293, Ottawa, Canada, June1997.

[7] J.G. Apostolopoulos, “Transcoding between object-based and block-
based image/video representations, e.g. MPEG-4 to MPEG-2
transcoding”, HP Labs technical report, May 1998.

[8] S.-F. Chang and D. Messerschmitt, "Manipulation and compositing of
MC-DCT compressed video", IEEE Journal on Selected Areas in
Communications, vol. 13, Jan. 1995.

[9] B.C. Smith and L. Rowe “Algorithms for Manipulating Compressed
Images,” IEEE Computer Graphics and Applications, Sept. 1993.

[10] B.C. Smith, “Fast Software Processing of Motion JPEG Video,” in Proc.
of the Second ACM International Conference on Multimedia, ACM
Press, pp. 77-88, San Francisco, Oct. 1994.

Chapter 1 34

[11] B. Shen, I.K.Sethi and V.Bhaskaran, "DCT convolution and its
applications in compressed video editing", IEEE Trans. Circuits and
Systems for Video Technology, vol.8, no.8, pp.947-952, Dec. 1998.

[12] B. Shen, “Block Based Manipulations on Transform Compressed
Images and Video”, Multimedia Systems Journal, Vol. 6, No. 1, March
1998.

[13] Jaswant R. Jain and Anil K. Jain, “Displacement Measurement and
Its Application in Interframe Image Coding," IEEE Trans.
Communications, vol. com-29, no. 12, pp. 1799-1808, Dec. 1981.

[14] Jeongnam Youn, Ming-Ting Sun, Chia-Wen Lin, “Motion vector
refinement for high-performance transcoding,” IEEE Transactions on
Multimedia, vol.1, no.1, pp. 30-40, March 1999.

[15] N. Merhav and V. Bhaskaran, "Fast algorithms for DCT-domain
image downsampling and for inverse motion compensation", IEEE
Transactions on Circuits and Systems for Video Technology, vol. 7,
June 1997.

[16] Y. Arai, T. Agui and M. Nakajima, “A Fast DCT-SQ Scheme for
Images,” Trans. of The IEICE, vol. E71, no. 11, Nov. 1988.

[17] P. A. Assuncao and M. Ghanbari, “A frequency-domain video
transcoder for dynamic bit-rate reduction of MPEG-2 bit streams,”
IEEE Trans. On Circuits and Systems for Video Technology, vol. 8, no.
8, pp. 953-967, Dec. 1998.

[18] B. Natarajan and V. Bhaskaran, “A fast approximate algorithm for
scaling down digital images in the DCT domain,” IEEE International.
Conference On Image Processing, Washington DC. Oct. 1995.

[19] S. Liu, A.C. Bovik, “Local Bandwidth Constrained Fast Inverse Motion
Compensation for DCT-Domain Video Transcoding,” IEEE Trans. On
Circuits and Systems for Video Technology, vol. 12, no. 5, May 2002.

[20] A. Eleftheriadis and D. Anastassiou, “Constrained and general
dynamic rate shaping of compressed digital video,” IEEE International
Conference on Image Processing, Washington, D.C., 1995.

[21] Y. Nakajima, H, Hori and T. Kanoh, “ Rate conversion of MPEG coded
video by re-quantization process,” IEEE International Conference on
Image Processing, Washington, D.C., 1995.

[22] S.J. Wee, “Manipulating temporal dependencies in compressed video
data with applications to compressed-domain processing of MPEG
video”, IEEE International Conference on Acoustics, Speech, and Signal
Processing, Phoenix, Arizona, March 1999.

[23] H. Sun, W. Kwok, J. Zdepski, “Architectures for MPEG compressed
bitstream scaling”, IEEE Transactions on Circuits Systems and Video
Technology, April 1996.

[24] G. Keesman, R. Hellinghuizen, F. Hoeksema, and G. Heideman,
“Transcoding MPEG bitstreams”, Signal Processing: Image
Communication, September 1996.

[25] N. Bjork and C. Christopoulos, “Transcoder architectures for video
coding”, IEEE International Conference on Image Processing, May
1998.

[26] S.J. Wee, J.G. Apostolopoulos, and N. Feamster, “Field-to-Frame
Transcoding with Temporal and Spatial Downsampling”, IEEE
International Conference on Image Processing, Kobe, Japan, October
1999.

Compressed-Domain Video Processing 35

[27] B. Shen and S. Roy, “A Very Fast Video Spatial Resolution Reduction
Transcoder”, International Conference On Acoustics, Speech, and
Signal Processing, May2002.

[28] N. Merhav and V. Bhaskaran, “A fast algorithm of DCT-domain image
downscaling,” International Conference On Acoustics, Speech, and
Signal Processing, Atlanta GA, May 1996.

[29] N. Merhav and R. Kresch, "Approximate convolution using DCT
coefficient multipliers", IEEE Transactions on Circuits and Systems for
Video Technology, vol. 8, Aug. 1998.

[30] N. Feamster and S. Wee, “An MPEG-2 to H.263 transcoder”, SPIE
Voice, Video, and Data Communications Conference, September 1999.

[31] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding
MPEG:1,2 to H.263”, Packet Video Workshop, April 1999.

[32] S.J. Wee and B. Vasudev, “Compressed-Domain Reverse Play of
MPEG Video Streams”, SPIE Voice, Video, and Data Communications
Conference, Boston, MA, November 1998.

[33] M.-S. Chen and D. Kandlur, "Downloading and stream conversion:
supporting interactive playout of videos in a client station",
International Conference on Multimedia Computing, May 1995.

[34] S.J. Wee and J.G. Apostolopoulos, “Secure Scalable Video Streaming
for Wireless Networks”, IEEE International Conference on Acoustics,
Speech, and Signal Processing, Salt Lake City, Utah, May 2001.

[35] S.J. Wee and J.G. Apostolopoulos, “Secure Scalable Streaming
Enabling Transcoding without Decryption”, IEEE International
Conference on Image Processing, Thessaloniki, Greece, October 2001.

[36] T. Yoshimura, Y. Yonemoto, T. Ohya, M. Etoh, S. Wee, “Mobile
Streaming Media CDN enabled by Dynamic SMIL”, Eleventh
International World Wide Web Conference, May 2002.

[37] G. De Los Reyes, A.R. Reibman, S.-F. Chang, J.C.-I Chuang, “Error-
resilient transcoding for video over wireless channels”, IEEE Journal
on Selected Areas in Communications, June 2000.

[38] S. Roy, B. Shen, V. Sundaram, R. Kumar, “Application Level Hand-
Off Support for Mobile Media Transcoding Sessions”, Workshop on
Network and Operating System Support for Digital Audio and Video,
Miami Beach, Florida, May 2002.

INDEX
compressed-domain editing ...2, 23
compressed-domain processing . 1,

2, 3, 7, 30, 34
compressed-domain transcoding 2,

16, 19
DCT domain processing7, 8, 9, 10,

12, 13, 18, 19, 20, 34
field-to-frame transcoding ...20, 34
Format Conversion..............19, 20
motion vector resampling10, 11,

21, 26, 28, 32
MPEG1, 2, 3, 4, 5, 6, 7, 11, 15,

16, 17, 20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 33, 34, 35

MPEG-2 to H.263 transcoding . 20,
23

object-based to block-based
transcoding........................... 30

reverse-play27, 29
Secure Scalable Streaming (SSS)

... 32
splicing2, 7, 14, 15, 19, 23, 24,

25, 26, 27
transcoding2, 3, 6, 7, 11, 12, 16,

18, 19, 20, 21, 23, 27, 30, 31,
32, 33, 34, 35

video compression2, 3, 5, 7, 30, 32

