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Building Topology-Aware Overlays using Global Soft-State

Abstract
Recent peer-to-peer (P2P) networks, represented by CAN, Chord,
and Pastry, offer an administration-free and fault-tolerant
application-level overlay network. For these systems to function
efficiently, they must make effective use of the underlying network
topology.

Existing techniques for discovering network proximity infor-
mation, such as landmark clustering and expanding-ring search,
are either inaccurate or expensive. Moreover, the lack of global
proximity information in overlay construction and maintenance
results in either bad proximity approximation or excessive commu-
nication.

To address these problems, we propose the following: (1)
Combining landmark clustering and RTT measurements to identify
the closest node, achieving both efficiency and accuracy. (2) Con-
trolled placement of global proximity information on the system
itself as soft-state, such that nodes can independently access rele-
vant information efficiently. (3) Publish/subscribe functionality
that allows nodes to subscribe to the relevant soft-state and get
notified as the state changes necessitate overlay restructuring.

Keywords: peer-to-peer, overlay, soft-state, network protocol,
topology, landmark, pub/sub system, heterogeneity

1 Introduction
Recent peer-to-peer (P2P) networks, represented by CAN [11],
Chord [15], and Pastry [13], offer an administration-free and fault-
tolerant application-level overlay network. The basic functionality
these systems provide is a distributed hash table (DHT). For these
systems to function efficiently, they must effectively take advan-
tage of the conditions of the underlying physical network. These
conditions include storage capacity, forwarding capacity, and net-
work topology. In this paper, we describe a novel approach that
effectively utilizes physical proximity information.

Effectively utilizing topology information involves two
aspects: techniques to generate proximity information and ways to
use this information. There are three ways to generate proximity
information: expanding-ring search, heuristics, and landmark
clustering. Expanding-ring search has at least two limitations: it
has to blindly flood a large number of nodes to obtain a reasonable
result. In addition, a node needs to measure round-trip time (RTT)
to all the nodes directly or indirectly contacted and hence has the
potential to become a bottleneck. To reduce the degree of blindness
in expanding-ring search, heuristic based approaches such as hill
climbing have been proposed [17]. A common limitation of heuris-
tic approaches is local minimum pitfalls, which may fail the search
for the closest node. Landmark clustering is based on the intuition
that nodes close to each other are likely to have similar distances to

a few selected landmark nodes. In addition to the possibility of
false clustering, it is also not very effective in differentiating nodes
within close distance, according to our study.

Techniques to exploit topology information in overlay routing
include geographic layout, proximity routing and proximity neigh-
bor selection [3]. With geographic layout such as topology-aware
CAN [12], the overlay structure is constrained by underlying net-
work topology. This technique, unfortunately, can create uneven
distribution of nodes in the overlay, increasing the chances of over-
loading nodes and rendering the maintenance cost formidable. Our
study shows that, for a typical 10,000-node topology-aware CAN,
5% nodes occupy 85-98% of the entire Cartesian space, and some
nodes have to maintain 450-1500 neighbors. In Proximity routing,
physical topology is not considered when constructing the overlay.
Instead, a message is forwarded to the topologically closest node
among the next hop candidates in the routing table [15]. The
choices for each routing hop, unfortunately, are limited to entries
in the routing table. In proximity neighbor selection, routing table
entries are selected according to proximity metric among all nodes
that satisfies the constraint of the logical overlay. For instance, in
Pastry, the constraint is the nodeId prefix.

In theory, proximity neighbor selection is superior than the
other two approaches, but existing overlay construction algorithms
taking this approach have their limits. For instance, Pastry assumes
triangle inequality in the topology. It relies on the ability to find
the physically closest node at node join and uses expanding-ring
search or heuristics for this purpose. Studies [14] have shown that
triangle inequality may not hold in Internet topology. In fact, study
from Pastry has shown that the proximity approximation is much
worse when using the Mercator topology that is based on the real
measurements of the Internet [3].

A further problem relates to the dynamism in the overlay. As
nodes join (depart) or network conditions flux, routing tables of
existing nodes need to be repaired to reflect the changes. Finding
all affected nodes is a challenging task. Without timely fixes, the
structure of the overlay will digress from optimal as inefficient
routes gradually accumulate in routing tables. The main limit of
existing approaches is the lack of global state of the system when
constructing and repairing the overlay, which could result in either
bad proximity approximation or excessive communication.

In this paper, we address problems related to both generating
and using proximity information. To eliminate the blindness in
expanding-ring search and heuristic-based approaches, and also
impression of landmark clustering, we propose to use landmark
clustering only as a preselection process to locate nodes that are
possibly close, and then measure RTTs to identify the node that is
actually the closest, achieving both efficiency and accuracy. Our
experiments show that when guided by landmark clustering, 20-30
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RTT measurements can be enough to locate the closest node to a
particular node in a topology with approximately 10,000 nodes.

To effectively use the proximity information generated, we
propose to store information of the system as soft-state in the sys-
tem itself, taking advantage of its self-organizing and fault tolerant
nature. In particular, we use landmark clustering to control the
placement of proximity information such that information about
nodes that are physically close to each other are stored logically
close to each other in the overlay. Each node is assigned a land-
mark number that reflects its physical position in the network. A
node uses its landmark number as the key to access relevant prox-
imity information in the overlay.

In this paper, we make the following contributions:
• Combining both landmark clustering and actual measure-

ments to generate proximity information, achieving both effi-
ciency and accuracy.

• A novel landmark clustering scheme to group nodes close to
each other, and using space-filling curve to reduce the dimen-
sionality of landmark cluster to generate a single landmark
number.

• Using the overlay itself to store proximity information as soft-
state such that nodes in the system act as rendezvous points
for each other to discover nodes that are physically close.

• Publish/subscribe functionality that allows nodes to subscribe
to relevant soft states using its landmark number as the key,
and get notified as state changes necessitate neighbor re-
selection.

• Last, a quantitative breakdown of sources of performance
penalty, including those imposed by the structural constraints
of the overlay, and those due to inaccuracy of proximity gen-
eration techniques.
We evaluate our techniques using eCAN [19], a hierarchical

variation of CAN. The remainder of the paper is organized as fol-
lows. We discuss related work in Section 2, and give background
in Section 3. Section 4 describes our techniques for proximity
search that combines both landmark clustering and actual measure-
ments. In Section 5, we describe how global information of the
system can be stored in the overlay network in a controlled way to
facilitate overlay construction and maintenance. We discuss in
Section 6 other uses of global states. We conclude in Section 7.

2 Related Work
We compare our work with related work in proximity generation
and topology-aware overlay construction.

Several techniques have been proposed to estimate Internet
distance. IDMaps [6] places tracers at key points in the Internet.
These tracers measure the latency among them and advertise the
measurements to clients. The distance between two clients A and
B is estimated as the sum of the following: the distance between A
and its closest tracer A', the distance between B and its closest
tracer B', and the distance between tracer A' and B'. The accuracy
of IDMap improves as the number of tracers increase.

A second approach is the landmark ordering technique used
in topology-aware CAN [12], a node measures its round-rip time
to a set of landmarks and sorts the landmarks in terms of increasing
RTT. Thus, every node has an associated order of landmarks.
Nodes with the same (similar) landmark order(s) are considered

close to each other. This technique cannot differentiate nodes with
the same landmark orders.

A third approach is coordinate-based [5]. In this approach,
landmark nodes measure the RTTs among themselves and use this
information to compute a coordinates in a Cartesian space for each
of the landmark. These coordinates are then distributed to clients,
which measure RTTs to landmark nodes and also compute a coor-
dinates in the Cartesian space for itself, based on the RTT measure-
ments and the coordinates of landmark nodes. The Euclidian
distance between nodes in the Cartesian space is directly used as
an estimation of the network distance.

Comparing with above algorithms, our approach does not rely
on any centralized server or global knowledge, and the landmark
numbers generated using space filling curve [1] can be mapped to
points in overlays of any dimension.

Castro et al [3] divide techniques used to exploit network
proximity into three categories: geographic layout, proximity rout-
ing and proximity neighbor selection. Proximity neighbor selection
is superior in terms of load balancing and proximity approxima-
tion. The existing algorithms that belong to this category, however,
rely on expanding-ring search or heuristics for bootstrap and a gos-
siping protocol for maintenance. Both may require extensive mes-
sage exchanges to achieve reasonable accuracy, especially when
the proximity information kept in the overlay has already digressed
from optimal.

Even with proximity neighbor selection, the nearest neighbor
selection is still constrained by the logical structure of the overlay.
Without this constraint, P2P routing protocol [20] similar to the
distance vector routing algorithm can achieve efficiency compara-
ble to IP routing, but it is not suitable for a very dynamic environ-
ment because of the frequent propagation of routing information.

In existing P2P networks, our contribution of using the archi-
val nature of the system to store and retrieve relevant system infor-
mation to gain performance advantage is unique. Self-archiving of
system information has been explored in other areas, e.g., GLS [9].
However, their goal is to assign an appropriate number of location
servers for each mobile node, rather than efficient routing.

3 Background
This section provides a short description of CAN and eCAN. In
theory, eCAN is equivalent to overlay networks such as Pastry.
The Cartesian space abstraction of CAN and eCAN, however,
makes them more attractive in places where the application
directly demands such an abstraction, e.g., document ranking using
latent semantics [16].

3.1 CAN
CAN stands for content-addressable network. It abstracts the prob-
lem of data placement and retrieval over large scale storage sys-
tems as hashing that maps “keys” onto “values” [4]. CAN
organizes the logical space as a d-dimensional Cartesian space (a
d-torus). The Cartesian space is partitioned into zones, with one or
more nodes serve as owner(s) of a zone. An object key is a point in
the space. The node whose zone contains the point owns the
object. Routing from a source node to a destination node boils
down to routing from one zone to another in the Cartesian space.
Node join corresponds to picking a random point in the Cartesian
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space, routing to the zone that contains the point, and split the zone
with its current owner(s). Node departure amounts to having the
owner(s) of one of the neighboring zone take over the zone owned
by the departing node. In CAN, two zones are neighbors if they
overlap in all but one dimension along which they abut each other.

3.2 eCAN
eCAN auguments CAN’s routing capacity with routing tables of
larger span to achieve logarithmic routing performance. Every
CAN zones represent an order-1 zone, and k order-i zones repre-
sents an order-(i+1) zone. As a result, a node is an owner of a CAN
zone and is also a member of the higher-order zones that encom-
pass the CAN zone. Besides its default routing neighbors that are
CAN zones, a node also has high-order routing neighbors that are
representatives of its neighbors in the high-order zones.

Figure 1 illustrates eCAN with an example. The default CAN
zones are order-1, and each of the CAN zones is 1/64 of the entire
Cartesian space. In this example, four neighboring CAN zones
make one order-2 eCAN zone and four order-2 zones make an
order-3 zone. For example, node 1 owns a CAN zone (the zone
with dark shading in the upper-left corner), and it is also a member
of the order-2 and order-3 eCAN zones that enclose the CAN zone.
The routing table of node 1 consists of the default routing table of
CAN (represented by the thin arrows) that link only to node 1’s

immediate CAN neighbors, and high-order routing tables (repre-
sented by the thick arrows) that link to one node in each of node
1’s neighboring high-order zones. Figure 1 also illustrates how
node 1 can reach node 9 using eCAN routing (1-2-5-9). Figure 2
shows that eCAN with the lowest dimension (d=1) easily outper-
forms the basic CAN up to d=5.

Introducing eCAN is not the main point of the paper, please
refer to [19] for details on eCAN construction as well as its routing
algorithm. Among the current proposals, eCAN is probably the
simplest in reaching O(logN) routing performance by riding on the
basic CAN protocols.

It should be noted that, eCAN is similar to Pastry in that there
exists flexibility in selecting the high-order neighbors. When
selecting a high-order neighbor, it can select the node that is clos-
est to the current node among all nodes that are a member of the
neighboring high-order zone.

4 Generating Proximity Information
Finding an effective way to generate proximity information is cru-
cial for topology-aware overlay networks to work well. The prox-
imity information is usually used to partition nodes into clusters
[12], or to estimate the distance between nodes directly [5].

As described in Section 1, three techniques have been pro-
posed to address this problem: expanding-ring search, heuristics,
and landmark clustering. With expanding-ring search, to find a
node that is closest to a particular node A, node A first contact the
nodes that it knows and then have those contacted nodes in turn
contact nodes they know until a radius (in terms of network hops)
is reached. The major limitation of expanding-ring search is that
node A has to measure RTTs to a large number of nodes to obtain a
reasonable result. Heuristic based approaches are likely to contact
a smaller number of nodes, but they may stumble at local mini-
mum and fail in finding the closest node.

Landmark clustering is based on the intuition that nodes close
to each other are likely to have similar distances to a few selected
landmark nodes, although details may vary from system to system.
With landmark ordering (topology-aware CAN), a node measures
RTTs to each of these landmarks and sorts the landmarks in terms
of increasing RTTs. Nodes with the same or similar landmark order
are considered close to each other. In coordinate-based
approaches[5], the measured RTTs to landmarks are used to com-
pute a position in a Cartesian space for each node. The Euclidian
distance between nodes in the Cartesian space is directly used as
an estimation of network distance.

Because landmark clustering is a coarse-grain approximation,
our study shows that it is not very effective in differentiating nodes
within close distance. To solve this problem, we propose a hybrid
approach that uses landmark clustering only as a preselection pro-
cess to locate relatively close candidates, and then sorts the candi-
dates based on the landmark metric. Finally, it measures RTTs to a
few top candidates to select the closest node.

To evaluate the effectiveness of the various approaches
described above, we compare three approaches with simulation:
expanding-ring search (ERS), landmark only, and our hybrid
“landmark+RTT” approach. The evaluations in topology-aware
CAN show that its performance is comparable to a variant of the
coordinate-based approach. Our study confirms this finding. For

Figure 1: An example of eCAN

Figure 2: eCAN compared with CAN with different d
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the sake of clarity, we present only the result for landmark ordering
here. For heuristic based approaches, there exists a great diversity
among them. Since they can be viewed as a kind of guided flood-
ing, we can get a flavor of their performance from the simple
expanding-ring search. The metric used to evaluate the algorithms
is stretch, defined as the ratio of the distance between a node A and
its nearest neighbor found by the algorithms to the distance
between A and its ideal nearest neighbor.

We use GT-ITM [18] to generate two transit-stub topologies
with approximately 10,000 nodes each. The first topology, “ts10k-
large”, has 228 transit domains, 5 transit nodes per transit domain,
4 stub nodes attached to each transit node, and 2 nodes in each stub
domain. The second topology, “ts10k-small”, differs from “ts10k-

large” in that it has only 25 transit domains, but there are 20 nodes
in each stub domain. Intuitively, “ts10k-large” has a larger back-
bone and sparser edge network (stub) than “ts10k-small”. We
choose “ts10-large” to represent a situation in which the overlay
consists of nodes scattered in the entire Internet and only very few
nodes from the same edge network join the overlay. (The effect of
generating a very small stub domain is similar to first creating a
stub domain with a large number of nodes and then choosing only
a few of them to join the overlay.)

In the landmark approaches, we randomly choose 15 nodes
from the topology as the landmarks. For expanding-ring search, we
construct a 2-dimensional CAN consisting of all nodes in the
topology. We randomly pick 1000 nodes from the topology and
report their average stretch. The results are presented in Figure 3-6,
where “lmk+RTT” is the result of our hybrid approach. The first
points on the “lmk+RTT” series—the one with a single RTT mea-
surement—corresponds to the results for the “landmark only”
approach.

Three conclusions can be drawn from the figures. First,
expanding-ring search is not effective in finding the nearest neigh-
bor unless a large number (thousands) of nodes have been tested,
implying that heuristic approaches are also unlikely to work well
by visiting only a small number of nodes. Second, landmark tech-
niques on its own is not effective in finding the nearest neighbor,
but our hybrid approach greatly improve its accuracy with only a
medium amount of RTT measurements. Finally, finding the nearest
neighbor in a dense edge network is harder than that in a sparse
edge network, but the performance of our hybrid algorithm
improves quickly while the number of RTT measurements
increases.

On the whole, finding the nearest neighbor is a difficult prob-
lem. For the “ts10k-small” topology, even our hybrid algorithm
has to test about 150 nodes to achieve a result close to the ideal
case, because the landmark technique cannot differentiate nodes in
stubs close-by. In designing topology-aware overlays, this property
must be considered. Taking Pastry as an example. It heavily relies
on the ability to find the nearest neighbor for bootstrap, but its
expanding-ring search or heuristic algorithm cannot work well, as
is demonstrated in our experiments. Moreover, because of the lack
of global information, the bootstrap process transitively relies on
every node on the bootstrap route to find its nearest neighbor,
resulting in routes with increasingly accumulated inefficiency.

Figure 3: Comparison of expanding-ring search (ERS) and
our hybrid approach in finding the nearest neighbor, using

topology “ts10k-large”.

Figure 4: The effect of expanding-ring search in finding
nearest neighbor, using topology “ts10k-large”

Figure 5: The effect of our hybrid approach in finding the
nearest neighbor, using topology “ts10k-small”
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Figure 6: The effect of expanding-ring search in finding the
nearest neighbor, using topology “ts10k-small”
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5 Tuning towards Network Conditions
via Global State
Our experiments have shown that combining landmark clustering
with actual measurement is quite effective. The challenge is to
effectively use this information. Although Pastry’s algorithms uti-
lize the proximity information in the overlay’s routing tables, the
gossiping protocol they use for overlay maintenance may require
extensive message exchanges to achieve reasonable accuracy in
proximity approximation, especially when the proximity informa-
tion in the routing tables already digressed from optimal. The
major limitation of their approach, to our opinion, is the lack of
global state.

We propose an alternative approach based on controlled
placement of global state to achieve good proximity approximation
without excessive massaging. In particular, we use landmark clus-
tering to control the placement of proximity information such that
information about nodes that are physically close to each other are
stored logically close to each other in the overlay. Each node is
assigned a landmark number that reflects its physical position in
the network. A node uses its number to access relevant proximity
information in the overlay. Nodes in the system act as rendezvous
points for each other to discover nodes that are physically close. To
allow the overlay to effectively adapt to the dynamism in the net-
work, a node subscribes to relevant soft states using its landmark
number, and get notified as the state changes necessitate neighbor
re-selection. Based on these techniques, we have implemented a
topology-aware overlay, and a scalable simulator on Linux
machines.

In the sections that follow, we first describe the structure and
content of the global state and how nodes use the global state to
perform proximity neighbor selection. We then describe a pub-
lish/subscribe system that enables efficient overlay maintenance.
Last, we present an evaluation of our techniques via simulation. (In
the appendix, we show how a landmark number that approximates
its position in the physical network can be generated.)

5.1 Structure and Contents of Global State
Without loss of generality, we use eCAN as the example, but the
techniques described here can be applied directly to other overlay
networks such as Pastry and Chord.

The basic idea is to use landmarks to generate proximity
information and build “maps” of the proximity information for
various “logical regions” in the overlay. For eCAN, a region is part
of the Cartesian space (e.g., a high-order zone), whereas for over-
lays such as Pastry, a region is a set of nodes sharing a particular
prefix. For each region, a map is constructed. It contains proximity
information about all nodes in the region, and is also stored on
those nodes. When such maps are available, any node y can find its
physically closest neighbor in a particular region Z by consulting
an appropriate map.

As is described in Section 4, we can use a position p in a
coordinate space to approximate a node’s position in the physical
network. We call such coordinate space, the landmark space. We
show a simple way to do this, although more sophisticated tech-
niques [5] can be used. We pick n landmark nodes that are ran-
domly scattered in the Internet. These nodes can be part of the

overlay itself or standalone. Each node measures its latencies to the
n landmarks. For node A, suppose that the measured latencies are
<l1, l2, …, ln>. We then position node A in an n-dimension Carte-

sian space using <l1, l2, …, ln> as its coordinates. We call the

points landmark vectors. Figure 7 shows an example with three
landmarks.

Usually, a sufficient number of landmarks are needed to
reduce the probability of false clustering where nodes that are far
away in network distance are clustered close to each other. As a
result, the dimensionalityof p is typically higher than the dimen-
sionality of the overlay itself. To solve the dimension mismatch
problem, we introduce a hash function

p’= h(p,dp, dz, z)
where dp is the dimensionality of p, z is the region in which p’s
proximity information is to be stored, dz is the dimensionality of
region z, and p’ is a position in region z. We call p’ the landmark
number of the node. With the hash function, if p1 and p2 are two
points close in the landmark space, they will be mapped to two
points that are close in region z. We will show an example hash
function in the appendix.

Figure 8 illustrates this using eCAN as an example. In this
example, we store the information of a node n, whose position in
the landmark space is p, onto zone Z. We first compute n’s position
in Z by invoking the hash function p’=h(p, 3, 2, Z). We
store the triple <Z, n, p> as an object in the node that owns p’.

As describe in Section 3, any node x is an owner of a CAN
zone and is also member of all the high-order zones that enclose its
CAN zone. For other nodes that are physically close to x to select x
as a high-order neighbor, x’s information needs to be published in
maps corresponding to those high-order zones. Therefore, there is

Figure 7: Landmark space for 3 landmark nodes

Figure 8: Compute n’s position in a Map
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one map for each high-order zone in the system. (For Pastry, there
is a map for nodeId prefix for each level of the routing table). It
follows that each node will appear in a maximum of logK N such

maps. Assume that the total number of nodes N is 220 and K is 4,
this number is 10. We believe that this is not a big issue.

The original node join procedure for CAN is slightly modi-
fied, and we refer the readers to our technical report [19] for more
details. Now, when a node is looking for candidates in a high-order
zone Z that is close to it, it uses its own landmark number to index
into Z’s map, as is shown in Table 1

Note the map is stored among the nodes comprising the target
region. When a node uses its own landmark to index into the map,
it’s possible that the portion of the map stored at the target node is
empty. Techniques to deal with this are discussed in [19]. Due to
space limit, we only explain the “condensed map” idea here. Sim-
ply put, the map is stored in a fraction of region it covers. We
define the ratio of map size to the size of the hosting zone as con-
dense rate of coordinate map.

Figure 9 puts everything together with an example. Figure 9-1
depicts 8 nodes (a to h) and their positions in the landmark space
with two landmarks. These nodes are distributed in a 2-d eCAN as
shown in Figure 9-2, where a-d and e-h correspond to two neigh-
boring high-order zones. Each node’s CAN zone are those small
squares with owner’s ID in shaded box. Without using the global
state, each node simply randomly pick one node from the neigh-
boring zone as its high-order neighbor. For instance, a can select
either e, f, g or h, without considering physical locality. With the
global state in place and a map condense rate of 1/4, we can do
much better. In this case, a-d publish their positions in the grid
owned by a, where e-h publish in the grid owned by e. Now when
a selects its high-order neighbor, it uses its own network coordi-

nate and consults the global state of its neighbor which is stored in
e, and find that e is physically closest. Thus a uses e as its repre-
sentative for the zone that comprise e-h. Likewise, c will select f.

5.2 Overlay Maintenance using Publish/Sub-
scribe
Because of the dynamic nature of the network, a node should peri-
odically check the target high-order zone’s map to see whether
more favorable nodes are available. The frequency of the checking
ideally should be conducted in a demand-driven fashion when the
network condition has changed to an extent that necessitates a
node to make a re-selection of the neighbors. To accomplish this
goal, we propose to introduce pub/sub functionality to the global
state. A node specifies the conditions under which it should get
notified. This condition could be “notify me when 5 more nodes
have joined the zone”, etc. With the overlay already in place, when
the conditions are triggered, the notifications can be efficiently dis-
seminated to all subscribers through distribution trees embedded in
the overlay itself.

The accuracy of the global state can be lazily maintained. In
the most reactive case, departed nodes are deleted from the global
state only when they are selected as high-order replacements and
later found un-reachable. Alternatively, each owner of the map
information can periodically poll the liveliness of the nodes. The
most proactive measure is to update the map when a node is about
to depart.

5.3 Evaluation of Algorithms
We use the topologies described in Section 3 to evaluate our algo-
rithms. With a given topology, “ts10k-large” or “to10k-small”, we
experiment with two ways to set latency for links in the graph. The
first one uses the default latency generated by GT-ITM. In the sec-
ond setting, the latency is set manually according to the following
rules: 100ms for cross transit links, 20ms for links connecting
nodes inside a single transit, 5ms for links connecting a transit
node and a stub node, 2ms for links connecting nodes inside a sin-
gle stub.

We choose CAN with d=2 to give a reasonable fault-tolerance
capability. We conduct several sets of experiments. Table 2 sum-
marizes the parameters that we vary, and default values we use
throughout the experiments. The only metric that we use is stretch
defined as the ratio of accumulated latency in the actual routing
path to the shortest path latency from the source to destination.
Unless otherwise stated, measurements are made for twice the
number of nodes in the overlay.

Let px be x’s position in the landmark space;
Map px to px’ in Z;
Route to the node y in Z that owns px’;
If (y’s map content is not empty)

Return map content
Else

Define a TTL to search outside y’s map content range.

Table 1: Procedures for locating the closest node in a zone

Figure 9: Storing and retrieving coordinate maps
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Parameters Default Range

# nodes 4096 512-8192

# landmarks 15 5-15

# RTTs 20 0-30

landmark vector index 5 5

Table 2: Parameters for the experiments
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In the first set of experiments, we study the effectiveness of
varying the number of landmarks and number of RTTs. In Figures
10-13, we show the results for landmarks number 5 and 15, and
varying the number of RTT measurements from 0-30.

Figures 10 and 11 compares the difference between topolo-
gies with latencies set by GT-ITM and manually. The optimal value
corresponds to the results when the number of RTT measurements
is infinity, meaning that the routing neighbor is the closest one in
the target zone. As we can observe from the figures, increasing the
number of landmarks is more effective for topology with latencies
set manually. This is because the landmarks can better cluster the
nodes when the latencies are more regular. For the same reason,
the stretch better approximates the optimal for the topology with
link latencies set manually.

Figures 12 and 13 shows the stretches when varying number
of landmarks and RTT measurements for the topologies with small
transits. As we can see from the figures, varying the number of
landmarks is not as effective for topology with small transits as for
topology with large transits. This is because the distance variation

in a small network is smaller than that in a large network, requiring
smaller number of landmarks to differentiate nodes at a coarse
grain. Because the penalty of choosing a suboptimal route in a
small network is less severe than that in a large network, its perfor-
mance is also closer to optimal. Same as topologies with a larger
transit, topology with latencies set manually tends to perform
better.

In the second set of experiments, while fixing the number of
landmarks to 15, and the number of RTT measurements to 20, we
vary the number of nodes in the system and compare the perfor-

Map condense rate 0.1 0.1

Figure 10: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set by GT-ITM

Figure 11: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set manually
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Table 2: Parameters for the experiments
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Figure 12: 10k nodes with small transits. Number of nodes in
the overlay is 4096. Latencies set by GT-ITM

Figure 13: 10k nodes with large transits. Number of nodes in
the overlay is 4096. Latencies set manually

Figure 14: Topology with latencies set by GT-ITM.
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mance improvement over the default case where routing neighbor
is selected randomly from the target zone. The results are shown in
Figure 14 and Figure 15.

We can observe the following from the two figures: (1) intro-
ducing global state via landmark clustering improves the stretch by
50~75%. (2) The improvement is more significant for topologies
with small transit and large stub graphs. This is because the less
severe penalty for choosing a suboptimal route. (3) The perfor-
mance difference between topologies with small and large transit is
more prominent when the latencies are set manually. This is
because the distance among nodes in a stub graph is more regular.

We also studied the effect of map condense rate and found
that as long as there are about 30 entries on each node, the perfor-
mance impact is negligible. To give the reader a flavour, Figure 16
shows an example for the topology ts10k-large with latency set by
GT-ITM. In the figure, the dashed line shows the number of map
entries per node and the solid line shows the corresponding stretch.
Because landmark clustering tend to cluster nodes together in the
landmark space, we have to set map reduction rate larger than 1 to
actually enlarge the map to cut down number of map entries per
node.

In addition to studying the effectiness of our algorithms, we
also planned to quantitatively compare our results with other topol-
ogy-aware overlays such as Pastry. Unfortunately, the simulator
that we downloaded from the Pastry site ran out of memory when
running configurations comparable to those used in our experi-
ments. The readers may notice that some of the Pastry numbers are

better than ours. This is mainly because of two reasons: First, the
backbone sizes of the topologies we have used are perhaps the
largest in most studies, which is closer to the real Internet. Com-
paring the results for large and small transits in Figure 14 and
Figure 15 conforms that it is easier to achieve good stretches with
smaller backbones. Second, the optimal numbers reported in
Pastry assumes that a node is always able to find the physically
closest node at node join, and the network is able to completely
repair itself as nodes join and depart. This requires excessive mes-
sage exchanges without a global state.

5.4 Pushing Limits of Overlay Performance
In an ideal world, the routes in a topology-aware overlay should
approximate the shortest paths. In reality, we can observe two per-
formance gaps in Figure 10 to Figure 13.

The first gap is between shortest paths and the optimal cases
where eCAN can always find the nearest high-order neighbor that
satisfies the prefix constraint. This is the value of the stretch curve
corresponds to the “optimal.” The increase is about 100~150%.
This is the price for meeting prefix constraint in selecting neigh-
bors. Without this constraint, P2P routing stretch can be reduced to
1, using a protocol [20] similar to the distance vector algorithm,
but it has limitations as described in Section 2. This gap is due to
the DHT abstraction and tolerance for network dynamism.

The “landmark+RTT” approach we used adds the second per-
formance gap on top of the “optimal” stretch imposed by overlay
constraint. The good news is that our technique cuts down 50~75%
latency when compared with random neighbor selection, and
approaches the “optimal” for topology with smaller backbones.
Additional optimizations can only improve this second gap. We
include some of the ideas below.

The first approach is to divide a large number of landmarks
into groups, and each node computes a set of landmark positions.
All these positions are then joined together to eliminate false clus-
tering. A second approach is to perform hierarchical measure-
ments, a small widely scattered landmarks are used to do a
preselection, and localized landmarks are then selected to refine
the result.

In our third approach, we use a large number of random land-
marks and rely on classical data analysis techniques such as Princi-
pal Component Analysis and Singular Value Decomposition to
automatically extract useful information from the large number of
RTTs and to suppress noise. Given the preprocessed landmark
information, we use artificial neural network to automatically learn
an optimal function to estimate Internet distance. Our preliminary
results on this approach has shown one order of magnitude
improvement in the accuracy of distance estimation. We are cur-
rently working on integrating it into our topology-aware overlay
and expect its performance to approximate that of the optimal case.

6 Other Uses of Global States
The advantage of global state can be explored in other areas as
well. Examples include congestion control, meeting quality of ser-
vice (QoS) guarantee, taking advantage of heterogeneity in storage
capacity and forwarding capacity, etc.

Nodes that are situated close to routers and gateways tend to
have better forwarding capacity than other nodes in the system.

Figure 15: Topology with latencies set manually.

Figure 16: Effect of varying number of map entries / node.
4096 measurements are made for 4096 nodes in the overlay
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The dynamic nature of the Internet traffic also causes the load at
nodes to flux, which may cause temporarily congested bottleneck
for the system. To better balance the traffic based on each node's
capacity and current load, a node periodically publishes these sta-
tistics along with its proximity information. Nodes can trade off
network distance with forwarding capacity and current load while
selecting neighbors. A full set of algorithms balancing forwarding
capacity with traffic is offered elsewhere [21].

If a node concerns QoS, it can subscribe not only to proximity
information but also to the load statistics, specifying the conditions
under which it should be notified, e.g., “the selected neighbor is
handling 80% of its maximum load capacity”. When such a condi-
tion is triggered, the node starts a new round of neighbor selection
in order to find better routes.

7 Conclusion
The central concepts of our proposals include the following:

1. Combining landmark clustering and RTT measurement
for proximity information generation.

2. Controlled placement of system information (such as
proximity and load information) as objects stored on
the system itself, in a way that is easy to update and
retrieve.

3. Publish/subscribe functionality that allows nodes to
subscribe to the relevant soft-state using its landmark
number as the key, and get notified as the state changes
necessitate neighbor re-selection.
Our techniques are essential in exploiting the underlying con-

ditions for overlay network construction and maintenance. The
techniques are generic for overlay networks such as Pastry, Chord,
and eCAN, where there exists flexibility in selecting routing neigh-
bors, and for constructing unconstrained auxiliary network as
described by Xu et al which can deliver optimal routing perfor-
mance [20].
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APPENDIX: Space-Filling Curves as
Hash Function
As we mentioned earlier, the difficulty in storing the position in
landmark space of the nodes is that the landmark space is of rela-
tively high dimension, whereas the overlay itself can be of a rela-
tively low dimension. We show an example of how to solve this
problem using space-filling curves.

Space-filling curves map points in the domain R1 (the domain

of real numbers) into Rd (a d-dimension Cartesian space) such that
the closeness relationship among the points is preserved. If two

points are close to each other in R1, they will also be close to each

other in Rd. One example of space-filling curves is the Hilbert
Curve [1]. The Hilbert curve is defined recursively. For an approx-
imation level equal to 1 it is a point. For an approximation level
equal to 3, it looks similar to Figure 17-2. For each higher approxi-
mation level, we subdivide the entire space into four sub-zones and
copy a shrunken and possibly rotated version of the current
approximation into each sub-zone.

We partition the landmark space into 2nx grids of equal size
(where n refers to number of landmarks and x controls the number
of grids used to partition the landmark space), and number each
expressway node according to the grid into which it falls. We call
this number the landmark number of the node. Closeness in land-
mark number indicates physical closeness. The smaller the x, the
larger the likelihood that two nodes will have the same numbering,
and the finer grain the physical proximity information.

Given the landmark numbers, they can be used as keys to
store information of nodes such that information about nodes that
are physically close are stored logically close to each other on the
overlay. For CAN, we can partition a zone into grids, and store the
information about a node in a grid depending on its landmark num-

ber, again using a space-filling curve (see Figure 17-2). In the case
of Chord, we can simply use the landmark number as the key to
store the information of an expressway node on a node whose ID is
equal to or greater than the landmark number. In the case of Pastry,
we can use a prefix of the node IDs to partition the logical space
into grids.

Using space-filling curve to reduce a high dimension land-
mark vector can introduce inaccuracy. As an optimization, in stead
of using the entire landmark vector to generate the corresponding
landmark number, we use only a few components of it (say 5) to
compute a landmark number. We call this subset the landmark vec-
tor index. A node uses its landmark number as key to access a map.
Once it a map lookup request reached the destination node, the full
landmark vector of the requesting node is used to sort the informa-
tion of nodes published on that node. A maximum of X nodes that
are closest to the requesting node is sent back. The requesting node
then measure RTTs to this X nodes and record the node that has the
smallest RTT value.

Figure 17: Mapping 3-dimensional landmark space to 2-
dimension using space curve filling
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