

User-Centric Appliance Aggregation

Rajnish Kumar1, Vahe Poladian2, Ira Greenberg
Alan Messer, Dejan Milojicic
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-277
October 2nd , 2002*

aggregation,
personalized,
preference,
context,
history

As intelligent devices become affordable and as wireless
infrastructure becomes pervasive, the potential to combine, or
aggregate, device functionality to provide users with a better
experience grows. However, even a small number of devices can be
aggregated in many ways to perform a task. Currently, the user
must choose among these aggregations without understanding
essential information such as the properties of the devices. The
problem is more severe in environments with devices that are
unfamiliar to the user. A system for combining the functionality of
devices in an ad-hoc environment to achieve a users desired
experience is not available.

We present the design and implementation of a system for the user-
centric aggregation of appliance functionality in an ad-hoc
environment. This work supports the automated aggregation of
functionality using predefined descriptions of devices, facilitates the
selection of the best aggregation using declarative policies, and
allows the user to express trade-offs between the quality of device
attributes, user distraction, and aggregation stability. This approach
enables a user to have a richer experience when using devices
without having to worry about their details.

* Internal Accession Date Only Approved for External Publication
1 Rice University, Houston, TX
2 Carnegie Mellon University, Pittsburgh, PA
 Copyright Hewlett-Packard Company 2002

User-Centric Appliance Aggregation

Rajnish Kumar
�
, Vahe Poladian

�
, Ira Greenberg � , Alan Messer � , and Dejan Milojicic �

�
Rice University, Houston, TX,�

Carnegie Mellon University, Pittsburgh, PA,
� HP Labs, Palo Alto, CA.

Abstract

As intelligent devices become affordable and as wireless
infrastructure becomes pervasive, the potential to com-
bine, or aggregate, device functionality to provide users
with a better experience grows. However, even a small
number of devices can be aggregated in many ways to per-
form a task. Currently, the user must choose among these
aggregations without understanding essential information
such as the properties of the devices. The problem is more
severe in environments with devices that are unfamiliar to
the user. A system for combining the functionality of de-
vices in an ad-hoc environment to achieve a users desired
experience is not available.

We present the design and implementation of a sys-
tem for the user-centric aggregation of appliance func-
tionality in an ad-hoc environment. This work supports
the automated aggregation of functionality using prede-
fined descriptions of devices, facilitates the selection of
the best aggregation using declarative policies, and allows
the user to express trade-offs between the quality of de-
vice attributes, user distraction, and aggregation stability.
This approach enables a user to have a richer experience
when using devices without having to worry about their
details.

1 Introduction

Mobile consumer electronic devices are becoming ubiqui-
tous. It is common for a user to own multiple computing
devices, such as a laptop, a PDA, a digital camera, and a
smart phone. In addition, a user often has access to fixed
computing devices such as a desktop computer, speakers,
a room projector, and a keyboard. These devices are avail-
able in the home, in the office, and in public places such
as airport kiosks and coffee shops. Individually, these de-
vices offer a wide range of computing capabilities. Com-
bined together, however, they offer much greater function-
ality and can significantly enhance a users experience.

Imagine that Alice, a traveling consultant, visits one of
her clients on a business trip. She has access to a con-

ference room during her visit that is equipped with a wall
projector, a flat-screen monitor, a surround-sound system,
and a set of tabletop subwoofer speakers. She has a per-
sonal laptop with built-in speakers, a PDA, and personal
earphones. Alice wants to watch a company video using
an application from her laptop (e.g., NetMeeting). One
obvious choice is to watch the video entirely on the lap-
top, using it to decode the media stream, display the video,
and play the sound. However, she prefers a large screen
with sufficient color depth to ensure that similar colors can
be differentiated. In addition, the presentation is confiden-
tial, and she would prefer to listen to the sound privately,
but without compromising its quality.

The available devices allow sixteen possible aggrega-
tions that satisfy her requirements. The number of possi-
ble aggregations would increase combinatorially if more
devices joined her ensemble or if she tried to perform an
additional task, as shown in Figure 1. To select the best
aggregation, she has to know the properties of the devices,
such as the size and color depth of the displays and the
quality of the sound. It is not obvious whether the projec-
tor is the best choice for displaying the clip. Although it
has the largest available screen, its color depth is some-
what limited. Choosing the correct sound device presents
similar challenges. Alice had not even noticed the speak-
ers in the conference room. While the earphones provide
the best privacy, their sound quality is only optimized for
stereo music. The laptops built-in speaker is optimized for
playing digital streamed media, but it offers less privacy.
Finally, the desktop speakers and the surround-sound sys-
tem, although much better in terms of quality, are poten-
tially too loud.

Suppose that Alice has an intelligent device aggrega-
tion system running on her laptop. Instead of considering
possible device combinations herself, Alice simply issues
a task request to the system. Further, she selects high-level
policies, such as policies that favor user-oriented factors
like privacy and a good display, and the system determines
the aggregation that best matches Alices preferences. In-
terestingly, the system suggests that Alice should use the
projector as the display even though it doesnt have the best
quality because the system has discovered that the laptops

battery is low and will not last for the complete video. Al-
ice accepts the systems suggestion, and feels relieved to
know that she did not have to worry about the details of
the device properties.

Now Alice is returning from her visit and she is at the
airport. She realizes that she has to access her email and
communicate with her friend. She uses her PDA to handle
these tasks. The aggregation system, now running on the
PDA, discovers the closest devices that are available to be
aggregated in the way that Alice likes. The system knows
Alices preferences by looking at her preference and exe-
cution history. Comfortable with the familiar aggregation
that the system selects, Alice feels at home even at the
airport as she accomplishes her tasks.

This scenario presents the key functionality of an ag-
gregation system that can be employed by users in their
everyday tasks. First, appliance functionality can be auto-
matically aggregated to provide a user with a richer expe-
rience. Second, an intuitive mechanism helps a user select
the best aggregation. The obvious aggregation may not be
best for the user, and it could be complex for a user to
determine the best aggregation even with a small number
of devices because the number of possible aggregations
can be large. Combined together, these features allow the
user to have a familiar experience even in an unfamiliar
environment with a minimal amount of interaction.

This report presents CAFE (Composition of Appliance
Functionality in an Ensemble), a system that realizes the
above scenario by employing a user-centric approach to
automatically aggregate the devices available to a user.
Using CAFE, a user can interact with the system declar-
atively at a high level by presenting preferences for the
quality of aggregation that is desired. User preferences
are captured as a set of predefined policies, which are then
used to select an aggregation from several candidates, re-
solve resource conflicts that can arise when a user makes
multiple requests, and adapt an aggregation if the environ-
ment changes.

CAF has the following highlights.

� Policies are used to capture user preferences about
devices and aggregations as high-level abstractions.
This allows the user to focus on the desired experi-
ence rather than understand the details of the devices
and the system.

� The metric of user distraction is used to compare
candidate aggregations when performing reconfigu-
rations. Mechanisms for specifying and quantify-
ing distraction have been identified. This informa-
tion allows the user to specify trade-offs between the
amount of distraction the user is willing to tolerate
and the quality of aggregation the user desires.

� Policies can be suggested to the user based on con-

0

10

20

30

40

50

60

70

80

90

Power-

point

E-mail
 Video
 Power-

point &

email

User Tasks

N
u

m
b

er
 o

f
A

g
g

re
g

at
io

n
s
 For devices:

 1 Laptop

 1 PDA

 1 Projector

 1 Keyboard

 1 Speaker

Figure 1: The number of possible aggregations increases
combinatorially with an increase in the number of devices
or tasks. The number of aggregations were computed by
applying simple composition rules over the devices listed
in the diagram.

text and the users aggregation history. This allows
aggregation to be similar and predictive across differ-
ent environments, and requires even less input from
the user.

� Optimizations are used to reduce the cost of selecting
aggregations when a user simultaneously requests
multiple tasks.

This report is organized as follows. Section 2 and 3
present the design goals and the architecture of the sys-
tem. Section 4 describes the implementation. Results, in
terms of evaluation of the system and lessons learned are
included in Section 5. Related work is described in Sec-
tion 6. In Section 7, we summarize the report and suggest
possible future work.

2 CAFE System Model

In this section, we present CAFs design goals. This dis-
cussion is preceded by definitions of important terms and
key assumptions.

2.1 Definitions

The following terms are used throughout the report.
Ensemble: A set of appliances that can be accessed and
controlled by the user. These appliances are either owned

2

by the user or borrowed temporarily, and can be consid-
ered available for the purpose of performing a users tasks.
Aggregation: A subset of the appliances in an ensemble
that are used together to perform a high-level user task.
For example, a projector, ear-buds, and a PDA can be
combined to form an aggregation for the purpose of play-
ing an mpeg movie.
Distraction: The inconvenience caused to a user by
changing an aggregation. For example, a user will experi-
ence some distraction if the display moves from the laptop
to the wall projector, even if the quality of the display is
improved. This inconvenience can distract the user from
the users current task.
Stability: A metric that quantifies how well an aggrega-
tion will be able to perform a task to completion. For
example, if a devices battery will be exhausted before a
certain task is completed, then any aggregation that uses
that device will have lower stability than an aggregation
that uses another device with a longer battery life. Sim-
ilarly, an aggregation will have relatively low stability if
contains a borrowed device that is likely to become un-
available before the task is completed.
Context: Any information that can be used to character-
ize an ensembles environment citeDey2001. Examples in-
clude the user task, the ensemble devices, the users loca-
tion, and the time of day.
Policy: A group of numerical weights and a high-level
description that encode a users preferences for various de-
vice attributes, types of devices, and types of tasks. An
example of a policy would be: “Prefer a Large Screen and
Prefer a Flat Screen”, which encodes a preference that
gives a high weight to display devices that have a large,
flat screen.

2.2 System Assumptions

Device and Service Model
A device provides functionality that can be combined

with the functionality of other devices in an ensemble.
Devices are described in terms of the functionality they
offer. Every device has a representative process that is
responsible for announcing the devices availability and
functionality, and for providing information about the de-
vices dynamic properties. This representative can execute
on the device itself, or on some other device.

Application Service Model
CAFE is designed to handle user requests that can profit

from the aggregation of multiple devices in an ensemble.
Its user-centric focus will be useful when there are many
possible aggregations for a particular user request. We as-
sume that applications are component-based and that they
expose interfaces for remote activation and easy integra-
tion with other components or devices. Application com-

ponents are remotely activated by the system to initialize
an aggregation. The interfaces should clearly define the
signature of the activation methods, and the interface def-
initions should be specified in a device-independent lan-
guage.

An applications control logic should be decoupled from
its input and output devices. This will allow the appli-
cation to work with other devices in the ensemble trans-
parently, without any user intervention. To support this
decoupling, application requirements for external devices
should be expressed in a language that can be understood
by other devices and the system.

Network Model
To make the decoupling between an applications con-

trol logic and its input and output devices more realistic,
we assume that all devices are connected wirelessly. We
believe that the set of devices that comprise an ensemble
can change relatively frequently. For example, devices
can be turned on and off, can be borrowed and returned,
can run out of power, can lose network connectivity, and
can break.

Infrastructure Support
We assume the existence of middleware that allows ap-

plications to be remotely started on devices, similar to
what is provided by systems like Metaglue [8]. CAFE will
determine the aggregation that is closest to a users prefer-
ences for a requested task, and will use the middleware
to instantiate the aggregation. CAFE will not manage the
flow of data or control among the participating devices
while the task is running.

2.3 Design Goals

CAFE provides support for the automatic aggregation of
devices and for the user-centric selection of an optimal
aggregation. Here, we discuss the design goals for these
objectives.

Goal: Allow automatic aggregation of devices, and
among all possible aggregations, allow selection of the
one that best matches user preference.
Design: To allow automatic aggregation, we view each
kind of functionality provided by a device as a service
and we describe devices as the services it can handle and
the services it will need. We represent a service as a data-
action pair. This approach is similar in approach to MIME
types used in Internet messaging. For example, data types
are specified using simple file types such as mpeg or mp3
and actions are specified with simple descriptions such as
edit or play. This approach is simple and allows devices
to be grouped into types.

We propose a simple mechanism to obtain user prefer-
ences, requiring little input from the user. It is difficult

3

to obtain user preferences, and a good solution must bal-
ance accuracy against the amount of input required from
the user. We propose using declarative policies that are
user friendly and encode numerical weights for various
properties. A user then only has to choose among poli-
cies, which have user-friendly names and hide (encode)
the weights for the various properties. The policies are
organized into a hierarchy, which further simplifies pref-
erence specification for the user.

Goal: Minimize user distraction.
Design: We achieve this goal by employing stability and
distraction as metrics in the selection of the best aggrega-
tion. When selecting an aggregation, we quantify the sta-
bility of candidate devices and allow the user to balance
stability against quality to minimize the possibility of a
costly re-aggregation. The composition of an ensemble
can change for predictable reasons such as the consump-
tion of battery power or the end of a borrowing agree-
ment. These factors should be considered when selecting
an aggregation because a user would like to have a stable
working environment for the duration of a task. Thus, it
is important to be able to consider stability and balance it
against aggregation quality. Sometimes the user will con-
sider the gain in quality to be large enough to outweigh
the loss of stability.

When we are forced to re-aggregate, we quantify and
penalize changes that are potentially disruptive to the user,
and allow the user to specify trade-offs between aggrega-
tion quality and distraction. We believe that once a user
is engaged in a task it is potentially disruptive to switch a
device that is being used, and that it should be possible to
penalize such switches. The penalties should depend on
the type of device that is switched and the type of task that
is running. Further, the user should be able to specify how
the penalties relate to the quality scores. If a device that
is part of a running aggregation becomes unavailable, we
must re-aggregate, and do so in such a way that distrac-
tion is minimized. If a new device becomes available that
has better quality than a device in a running aggregation,
re-aggregation will occur only if the quality improvement
outweighs the distraction penalty, as specified by the user.

Goal: Ensure acceptable system response time.
Design: The overhead of the system itself should be ac-
ceptable to the user for the system to be useful. Users
are generally willing to tolerate delays of up to 10 sec-
onds for responses to interactive queries. Ensuring this
response time presents challenges on resource-contrained
platforms such as PDAs. From personal communication
with members of the Rascal project, we anticipated that
handling multiple simultaneous requests in an acceptable
amount of time is especially desirable. We propose using
optimized heuristics to handle the case of two concurrent
requests.

Policy

Recommender

SLP

User

Interface

Preference

History

 Proxy

The Coordinator Device
Participating

Devices

Aggregator

Aggregation

Evaluator

Policy

Repository

Service

Repository

Figure 2: The CAFE Architecture.

No

Yes

Request Task

Elicit

Preference

Score/Rank

Aggregations

Specify

Policies

Recommend

Policies

Choose

Aggregation

Browse For

All Devices

Generate

Aggregations

Identify

Policy

Choices

Figure 3: Steps involved in finding the best aggregation.

3 CAFE System Architecture

CAFE is designed to provide an infrastructure for appli-
ance functionality aggregation in a user-centric way. In
this section, we present the CAFE architecture and explain
the mechanisms used to calculate candidate aggregations
and select the optimal one.

The CAFE architecture is shown in Figure 2. The en-
tire system infrastructure runs on a specifically selected
device that we call the Coordinator. Any member of the
ensemble can act as the Coordinator and is responsible for
running the five components shown in Figure 2. Shaded
(blue) boxes represent run-time components that we have
developed. The components inside the dotted box repre-
sent the entire system. One of the devices, for example
user’s PDA or laptop, is selected to run this system. We
call this device the Coordinator. Following are the main
components of CAFE system :

1. SLP Provider: registers and discovers services

2. User Interface: provides a Web-based user interface

3. Aggregator: calculates all possible aggregation can-
didates for a given user task

4

4. Candidate Selector: selects the best aggregation
among the candidates based on user preferences

5. Policy Suggestion Engine: predicts the user’s pref-
erences based on user preference and execution his-
tory

3.1 Major Activities

Figure 3 presents the high-level flow of the system in-
cluding interactions with the user and major computation
steps. We now discuss these major activities.

User request presentation
We have developed a simple, Web-based interface for

user request entry. A user requests a task by specifying a
data-action pair. For example, to request that the system
play the movie “The Matrix”, the user would specify the
directive “play” and the data source “TheMatrix.mpeg”.
Further, the user has the option to guide the system in the
selection of the optimal aggregation. But the user does
not have to specify preferences, as the system is capable
of predicting user’s preferences based on history.

Device description and registration
A Service Lookup Protocol (SLP) is used for device

registration. Currently, devices register their functional-
ity with the Coordinator application by posting their ser-
vice description file and length of availability. The co-
ordinator then makes the registration to SLP registration
on the behalf of the devices. Implementation choice was
made to allow the system to be notified of new registra-
tions and (de-registrations). We use a simple XML format
for describing the services offered by the device, various
attributes of the device, and parameters required for exe-
cution.

Devices are described in terms of the functionality they
support, in particular, by a data-action pair. For example,
a device that can play mpeg movies is described as being
able to handle the “play, mpeg” pair. Further, for each
directive supported, devices also describe their needs. A
device supporting a “play, mpeg” directive may need a
sound device and a video device to function. Using this
information, the system can automatically generate aggre-
gations.

Device descriptions also contain the values of various
attributes. We say that devices are of the same type if
they support the same data-action directive. Devices of
the same type have the same set of attributes.

Further, device descriptions contain runtime invocation
information, such as the handle of the executable that
needs to be run.

Automatic Aggregation Generation
The Aggregator module of the Coordinator is respon-

sible for generating all of the candidate aggregations that

can satisfy a user request.
Aggregations are automatically generated by the sys-

tem using the existing device descriptions. The data-
action pair in the user’s request is taken as an unsatisfied
need, and expanded. The expansion of an aggregation in-
cludes adding a device that is able to handle an unsatisfied
need in the current state of the aggregation. As new de-
vices are added to the aggregation, some needs become
satisfied, but new needs may also be added. Aggregation
expansion stops when all the needs are satisfied. At this
point aggregation is complete, or final. If at some point
we run out of devices, and the aggregation is not final,
then the request cannot be satisfied.

The core of the Aggregator module is Jave Expert Shell
System (JESS), a rule-based engine written entirely in
Java [6]. Device functionality is expressed as facts, and
rules are used to allow the aggregation of compatible de-
vices. As mentioned earlier, device functionality descrip-
tions contain needs, which are used to generate aggre-
gations. A user’s request is also described as a fact that
needs to be satisfied. Asserting the user’s requests starts
the chaining of rules, which ultimately completes with the
generation of aggregations that completely satisfy the user
request.

Candidate Selection
Once the Aggregator generates all candidate aggrega-

tions, the Selector module is invoked to rank the aggrega-
tions according to the preferences of the user. User pref-
erence is captured by high-level, declarative policies that
describe the device properties abstractly. Section 4.3 de-
scribes the policy mechanism that is used to rank the ag-
gregations. Once the aggregations are ranked according
to user preference, they can be displayed to the user to
allow one to be selected, or the system can automatically
instantiate the best candidate.

3.2 Scoring Mechanism

CAFE uses declarative policies to capture user prefer-
ences. These policies encode preferences of the user with
respect to device and properties. CAFE employs a hierar-
chy of policies, which simplifies a user’s task of commu-
nicating preferences to the system. There are three pol-
icy levels: device-level policies that capture information
about device properties, aggregation-level policies that
capture information about how the devices are scored rel-
ative to each other, and ensemble-level policies that cap-
ture less tangible information such as aggregation stabil-
ity, user distraction, and multiple tasks.

Figure 4 gives a high level picture of the scoring mech-
anism. Devices are scored according to the values of their
attributes and user’s preference. Aggregations are scored
by combining the scores of the participating devices and

5

D
1
S

Final

Score
D
2
S

D
3
S

Device

Policy
 Aggregation

Policy

Ensemble

Level

Policy

Figure 4: Scoring hierarchy. The final score of the aggre-
gation is the weighted sum of the participating devices’
scores according to the aggregation policy. If this ag-
gregation is the result of re-aggregation because of some
change, the final score is adjusted to account for user dis-
traction. This adjustment is applied by using an ensemble-
level policy.

user’s preferences. And ensemble score is computed by
combining the scores of the aggregations and less tangi-
ble metric such as inconvenience to the user. In the next
few sections we describe the details of the scoring.

Device Policies and Device Scoring
Device-level policies allow the scoring of the devices

and comparing of two devices, which provide the same
type of service. Examples of devices offering the same
type of service are: a room speaker, a desktop speaker, an
earphone. For each type of device, we have identified a
set of properties that are used for scoring. As an example,
for sound devices, we have selected the quality of sound,
whether or not sound can be heard in privacy, whether or
not speaker has sub-woofers, and whether or not sound is
surround.

We have identified a number of discrete values for each
attribute, at a coarse level of granularity. For example, for
sound quality we have chosen five values ranging from
“low” to “very high”. For each value, we assign a score
between zero and one hundred. We use common sense
when assigning scores to the values. For example, when
scoring sound quality, higher is considered better. When
scoring a binary attribute, the availability of the attribute
is considered better than its absence.

Notice that these scores are system-wide. This means
that the same set of scores is applied regardless of time,
place, context. This approach avoids asking for user in-
put for every value of each attribute, which may be te-
dious and take a long time. Further, because users do not
generally think in terms of scoring different values, elic-
iting scores for every possible value of each attribute may
not yield meaningful results. Instead, we obtain a user’s

preferences by asking the user to select a policy from a
pre-defined group.

A device scoring policy captures user preference. We
have created several sample policies. In addition, the sys-
tem allows creation of new policies. This can be done by
developers and users.

A device scoring policy specifies a weight between zero
and one for each of the key attributes of a device. These
weights are normalized to add up to one. The score of a
given device D according to policy P is computed as the
dot product of the vector weights specified by the policy
with the vector of scores that the device gets for its at-
tributes. A device score is computed as:

�����������
	���
��� � �������
� ���
	���������� � � �"!#�

where $&% is the overall score of device $ according to
device scoring policy $(' ,) is the number of attributes
for the type of device, *,+�- ./$('�0 is the weight of attribute 1
according to policy $2' , and $3.�45-60 is the score for the de-
vice’s value .�47-60 for attribute 1 . Figure 5 gives an example
of applying device scoring policies to compare the sound
devices. Notice that depending on the choice of policy, the
best device varies. When the quality of sound is preferred,
the room speaker is best; when privacy is most important,
the earphones are best; when both privacy and quality are
equally preferred, the desktop speaker is the best.

Aggregation Policies and Aggregation Scoring
Aggregation-level policies are used to indicate that

some devices are more important to the user than others
when forming an aggregation for a particular user request
in a particular user context. This is accomplished by hav-
ing the policies provide weights to the devices. For exam-
ple, when watching an action movie, a user may want a
very good display and may be much less interested in the
sound quality. On the other hand, when watching a mu-
sic album, the user may be more interested in the sound
quality than the quality of the display. Similar to device
level policies, aggregation level policies are described us-
ing high-level names so that the user does not have to deal
with numbers. Several aggregation-level policies are pro-
vided with the system for various common tasks.

An aggregation score is computed as:

8 �9� 8 � 8 	��:
<;� � ����= �
� ����� 8 	��>�9?@��� � ������� � �����A�
	 � � �/BC�

where D is the aggregation, DE' is the aggregation policy
to be applied, DF% is the aggregation score, G is the num-
ber of devices that are included in the scoring, HI+J- is the
weight assigned to the device of type 1 according to ag-
gregation policy DE' , and $&%�- is the score that the device
of type 1 (in this case $) gets when scored using formula.AKC0 . LM./$ - 0 is a percentage indicating the availability of

6

Prefer Privacy

50

100

Prefer Quality
 Half and Half

Policies

90
 70

30
 65

0
 50
100

 Quality: “Very High” 100

Attribute
 Value Score

 Privacy: “No” 0

 Quality: “High” 90

 Privacy: “Small” 50

 Quality: “Low” 40

 Privacy: “Yes” 100

Figure 5: Example for scoring sound devices using a ser-
vice scoring policy for playing sound when quality and
privacy are the issues being considered. The numbers in
the ovals give the score for the device after applying the
service policy.

device $ - . We will discuss this metric further in the next
section.

Stability and Future Planning
Once an aggregation is instantiated, changing it will in-

convenience the user. Therefore, it might be worthwhile
to sacrifice the quality of the aggregation to minimize the
probability of change. For example, if a device uses some
resource such as bandwidth near its capacity, then it might
be better to choose a different device so that unexpected
variations do not necessitate re-aggregation. Similarly, if
a device is expected to become unavailable before a task
is completed, say because its lease will end, then it might
be better to start with a different device.

While we do not compute a stability metric, we believe
that such a metric can be computed in several ways. One
approach is to collect history of the availability of devices,
and to use this information to predict future availability.
Another approach is to determine the expected length of
the task, say from the mpeg file, the advertised length of
the conference, or by asking the user, and then compute
availability accordingly.

In formula (2), LM. $�-"0 the term that accounts for sta-
bility. It expresses the probability that the device will be
available throughout the duration of the task. Intuitively,
this weight reduces the contribution of the device score
by some percentage that is equal to the probability of that
device becoming unavailable.

To account for possible user inconvenience when there
is a change in devices that are participating in a running
aggregation, we weigh each device’s score based on sta-
bility. Stability is the probability that an aggregation will
be able to perform a task for the desired amount of time.
We multiply the quality score of the devices by a percent-
age indicating its stability, and use this product in scoring
the device in an aggregation.

Adaptation to Changes
Although CAFE is future planning and it attempts to

minimize the effect of changes, an ensemble is expected to
be dynamic enough to require an efficient way to adapt ex-
isting aggregations. An aggregation may need to change
because one of its devices becomes unavailable, because
a new device becomes available, or because the user re-
quests a new task. Some of the new aggregations may
provide better quality or may better satisfy the user’s pref-
erences. When ranking new candidates, we use penalties
to account for any inconvenience that the user incurs when
an existing aggregation changes. This type of inconve-
nience creates distraction for the user.

Note the connection between stability and distraction.
Stability is considered when an aggregation is created, and
represents the probability that the aggregation will have to
change. Distraction is considered when an event occurs
that requires re-aggregation to be considered. Also, note
that re-aggregation may not actually occur, e.g., if the dis-
traction penalty exceeds the increase in quality.

We believe that minimizing a user’s inconvenience is
an important factor to consider while adapting an aggre-
gation. For example, a user may want to avoid having
the display change, or a user may want to avoid moving
to use a different microphone. On the other hand, moving
the MPEG decoder from one computer to another may not
bother the user much. We believe that changes to some
devices may cause more inconvenience to the user than
changes to others. In particular, devices that directly in-
teract with the user present the highest potential for in-
convenience. Further, the extent of the inconvenience de-
pends on the kind of task being performed. For exam-
ple, when watching a movie, the inconvenience associated
with changing the display device is probably more severe
than the inconvenience of changing the sound device.

In order to compute user’s inconvenience, we compute
a penalty score, which quantifies the amount of inconve-
nience that the user has to incur. We call this aggregation
difference penalty. The formula for computing that mea-
sure is:

8 ����� 8 � 8 �:
��� � ��� �
� �/� � �A� � � ���
�
	 � ��� �

where the sum is taken over all of the devices that have
non-zero penalties, � - equals zero if $ - and $�- are the
same device and one otherwise, and $($2'�- is the penalty
score for switching the 1 th device type. The sum of all2(' scores is calibrated to add to 100.

This difference penalty captures the inconvenience that
the user has to incur, should the change in devices occur.
Notice that there are situations, in which the user may like
to minimize the amount of change at the expense of qual-
ity. In other situations, user may prefer better quality at
the expense of change. Thus it is intuitive to allow the
user to specify trade-offs between quality and change.

7

We propose a re-aggregation mechanism that consid-
ers a user’s tolerance for changing the devices that are
included in the current aggregation. We define policies
that specify varying trade-offs between distraction and ag-
gregation quality. These policies are declarative and can
be selected by the user, or they can be selected automati-
cally by the system based on the context. They are applied
when an event occurs raising the possibility of a change.

A user’s tolerance for change is represented by weights
for distraction penalties and aggregation quality.

� %�� ./DF0�� DE% . D���DE'�0��
	���
 DE$2% . D���DF0��C.��,0
where DF% is the aggregation score for D according to ag-
gregation policy DJ' , 	�� is a weight between 0 and 1 given
to the inconvenience factor, and DJ$&% ./D���DE0 is the differ-
ence score between the new candidate aggregation D and
the currently running aggregation D .

As an example, when the user chooses a policy to em-
phasize quality, 	 � is zero. On the other hand, if the user
wants to minimize difference, 	 � is 0.5.

Adaptation to handle multiple user requests
Sometimes the user wants to execute multiple tasks si-

multaneously. When this occurs, the system needs to ar-
bitrate the use of devices among the tasks.

To support this arbitration, the user needs to specify the
importance of the tasks relative to each other. For now,
we consider only two tasks, and there are five choices:
“Favor first task strongly”, “Favor first task”, “Equal”,
“Favor second task”, and “Favor second task strongly”.
These choices represent different weights for the tasks.
For strong preference the ratio is 0.9 to 0.1, for weak pref-
erence the ratio is 0.7 to 0.3, and for equal preference the
ratio is 0.5 to 0.5. Note that the weights always add to
one.

We compute an ensemble-wide score as follows:
� %�� . � '���D���� D��C0���	���
�DE% . D�� 0���. K�� 	��#0�
@DE%�./D��I0��C."!50
where

� ' is the ensemble’s favoring policy, DF% ./D�� 0
is the aggregation score for candidate aggregation D � ,DE%�./D � 0 is the aggregation score for candidate aggrega-
tion D � , 	 � is the weight assigned to the first task, and 	 �
is the weight assigned to the second task.

We have two approaches for generating optimal aggre-
gations for two tasks. The first approach is naive, and
enumerates all possible aggregation pairs using nested
loops. It is possible to slightly optimize this approach
by running the outer loop for the more favored aggrega-
tion. Nevertheless, unless the user is willing to settle for
a sub-optimal choice, ensuring that the best aggregation
has been found requires complete enumeration of all can-
didates.

In the second approach, that we call greedy heuristic,
the JESS engine is used to generate aggregation templates

for each task. These aggregation templates contain the
types of services that are needed to satisfy a particular
type of request. Next, the services that are needed by both
tasks are identified. Arbitration is needed only for these
types of services.

Notice that the formulae involved in calculating the de-
vice, aggregation, and ensemble scores are linear. Using
this observation, we can compute the potential contribu-
tion of a given device to the final ensemble-wide score, if
that device is used to satisfy a particular request (e.g. first
request, second request, etc). Consequently, we can arbi-
trate device of the same type among different requests by
computing each devices contribution, and then by calcu-
lating the most efficient allocation. This calculation takes
considerably less time, then the naive approach.

Policy Recommendation Engine
Policy recommendation engine provides support for

predicting user’s preferred policies for devices, aggrega-
tion, and ensemble levels. This allows CAFE to aggregate
devices even when the user chooses not to specify poli-
cies. The policy engine selects policies that represent the
user’s preferences based on the choices that the user has
made in the past (history), the task being requested, and
other aspects of the current context such as the time of
day.

A decision tree algorithm is used to predict the poli-
cies. User past preferences and contexts are stored in his-
tory files, and these files are used as the learning set by
the decision tree algorithms. Context contains the fac-
tors that may influence user’s choice of policies, e.g. user
task, or location. The history files are updated whenever
the user provides her preferences manually. Hence, in
the beginning the history files may not be rich enough
to help the decision tree algorithm to provide consistent
prediction. When the user’s history is not rich enough to
make a meaningful decision, default policies that are pre-
specified for each of the three policy levels are used. More
about this will be discussed in implementation section.

4 Implementation

In this section, we will describe the implementation of
the components of the system and the experience learned
from the implementation.

The system is implemented in Java and runs within a
Java servlet engine. The interface of the system is Web-
based and can be used from any device within the en-
semble. The system component itself is centralized. It
is discoverable, which makes the system more flexible in
ad-hoc environments.

System Components and Initialization
The bulk of the system is composed of Java code, XML

8

configuration files, and a JESS template file. Upon initial-
ization, the system loads the JESS file and initializes the
JESS engine. It then loads the XML configuration files,
and prepares to accept requests.

The JESS template file contains definitions for fact tem-
plates and several rules for expanding aggregations. There
are templates for the following objects: requests, ser-
vices, aggregations, and final-aggregations. More details
on these templates are forthcoming.

All of the XML files are kept in a repository. These
files include service descriptions, policies, and history.

Service Description and Registration
A device registers by POST-ing service description

XML files to the registration URL. A service description
XML file specifies the data type and action directive pair
that the service can handle, the other services that the ser-
vice requires, and additional information such as values
for attributes that are appropriate for that service type.
Here is a sample service description file.

�
service name=“MPEG Handler Splitter Application - Splits Sound

and Video Into Separate Streams” uniqueId=“MPEGPlayerSplitter” ��
handles mime=“mpeg” action=“play”/ ��
virtualLocation � polian.hpl.hp.com

�
/virtualLocation ��

executableHandle � splitter.bat
�

/executableHandle ��
serviceReqParameters � mp3player=$serviceReq:mp3:

input
�

/serviceReqParameters ��
serviceReqParameters � aviPlayer=$serviceReq:avi:

input
�

/serviceReqParameters ��
requires ��

serviceReq mime=“mp3” action=“play”/ ��
serviceReq mime=“avi” action=“play”/ ��

/requires ��
/service �

The system runs an XSLT [3] transformation on a ser-

vice description file to generate registration information

for SLP. (We use OpenSLP, a freeware implementation of

SLP.) Because the formats involved are simple, it would

be possible to develop custom format translators that do

not use XSLT. This would be beneficial because the XSLT

libraries are rather memory intensive.

The SLP registration string for the previously described

service is:

service:play.mpeg:MPEGPlayerSplitter://poladian.

hpl.hp.com/“(uniqueId= MPEGPlayerSplitter)”

This is a “service:” URL that conforms to the SLP stan-
dard. Note that the abstract service type portion of the
URL is used to specify the action-data pair that the ser-
vice handles.

The system uses the registration string to register the
service with the SLP system. Service registration remains
valid for a fixed duration, the expiry interval, after which
the service registration expires. Devices are expected to
re-register themselves with SLP directory server within
this expiry interval. This is enforced to ensure that the
information in the system is up to date. The length of
the expiry interval is configurable and depends upon how
ad hoc is the environment. The disadvantage of enforcing
expiry interval is that the devices are forced to periodically
re-register.

Task Request and Satisfaction
A user requests a task by specifying a data file and ac-

tion directive pair. The extension of the file is used as the
mime type of the request. When the request is received,
the system performs the following steps.

� Browse all of the services in the SLP system

� Generate a JESS fact for each service

� Enter each fact into the JESS engine

� Assert a fact that corresponds to the request

� Execute the JESS engine to generate aggregations

� Score the aggregations

Browsing the services in SLP is accomplished in two
steps. SLP provides a function for querying all of the
registered service types. It also provides a function for
querying all of the services for a given service type. This
allows all of the registered services to be browsed without
any prior information. We initially used this approach, but
later we changed the implementation to cache this infor-
mation in memory, using the java.util.Hashtable object.
Browsing the SLP directory can be slow because the API
makes a multicast network request, and the multicast re-
quests can take a long time to complete.

Once all of the registered services are obtained, XSLT
transformations are used to convert the service descrip-
tions into JESS facts. Here is the JESS fact corresponding
to the previously mentioned service.

(assert
(service (serviceId MPEGPlayerSplitter)
(handlesDirective play mpeg)
(final no)
(requires (create play mp3 play avi))

))

This fact is an instantiation of the following JESS tem-
plate definition for a service object.

(assert
(deftemplate service

(slot serviceId)

9

(slot handlesDirective)
(slot final (default yes))
(multislot requires (default (create$)))

)

A template definition basically defines the name of the
type and the slots that the type has. Note that the “re-
quires” slot is a multislot, which means that multiple
values can be specified there. For the service we have
presented, there are two requirements: “play mp3” and
“play avi”.

When the JESS engine is executed, rules are fired based
on matches among existing facts. When a rule is fired,
new facts are generated. Initially, the fact corresponding
to the request is matched with an appropriate service, and
partial aggregations are generated. Partial aggregations
are further expanded using facts that match the needs of
the services in these aggregations. Aggregation expansion
stops when all of the needs are satisfied, or when there are
no more matches. Here is the template definition for an
aggregation.

(deftemplate aggregation
(slot handlesDirective)
(multislot requires (default (create$)))
(multislot requiredBy (default (create$)))
(multislot members (default (create$)))
(multislot finalMembers (default (create$)))
(multislot pinnedDevices (default (create$)))
(multislot pinnedDevicesHandle

(default (create$)))
)

We currently do not consider using more elaborate
matching rules that can allow protocol and format com-
patibility to be checked when chaining services together.
Because JESS has powerful pattern matching support, our
current implementation can be extended to account for
elaborate matching while chaining the services together.
Here is an example of an aggregation expansion rule.

(defrule expandsNormalServiceNotPinned�
aService

���
(service (serviceId

�
theId)

(handlesDirective
�
firstReq)

(final no)
(requires $

�
theNewReqs))�

anAggregation
���

(aggregation
(handlesDirective

�
theDirective)

(requires
�
firstReq $

�
restReqs)

(members $
�
mems)

(requiredBy $
�
ReqsSvc)

(finalMembers $
�
finalMems))

(test (isNotInList
�
theId $

�
mems))

(test (isNotInList
�
firstReq $

�
pHandles))

� �
(assert (aggregation

(handlesDirective
�
theDirective)

(requires $
�
restReqs $

�
theNewReqs)

(members $
�
mems

�
theId)

(requiredBy $
�
ReqsSvc

(makeMultiSlot
�
theId $

�
theNewReqs))

(finalMembers $
�
finalMems)

(pinnedDevices $
�
pDevices)

(pinnedDevicesHandle $
�
pHandles)

)))

This approach allows every aggregation, partial or com-
plete, to be stored in JESS during the generation process.
This makes it possible to later query all of the complete
aggregations. The design of the aggregation template also
makes it possible to store information about the structure
of the aggregation, including the dependency graph. This
approach also supports several other features, including
the “pinning” of devices where a user is able to specify
the exact devices to use to perform some of the services.

The JESS engine stops when no rules can be applied.
At that point, a query is made for facts of type “final-
aggregations”. If none are found, then no feasible aggre-
gation exists that satisfies the request. Otherwise, the list
of final-aggregations is obtained.

After aggregations are generated, the system scores
them using a hierarchy of policies. The user has two ways
to choose policies. First, the user can let the system au-
tomatically choose the policies. The system makes its de-
cisions by applying a decision-tree classifier to the users
history and context. Second, the user can select specific
policies. Any policies not specified by the user are filled
in automatically. The policies are used to score the aggre-
gations.

Aggregation Scoring
To score aggregations, the system needs to know 1)

how to score each participating device, 2) how to assign
weights to the devices in the aggregation, and 3) if sys-
tem needs to apply ensemble wide policy to account for
distraction in case of reaggregations.

For each type of service, attributes are identified that
are common across all devices support that service type.
For example, for devices that support the display-video
service, possible attributes are the size of the display, the
flatness of the screen, and whether the display allows pri-
vate viewing.

For each identified attribute, common sense is used to
score all of its possible values. For example, for the size
attribute, five values have been identified: extra large,
large, medium, small, and very small. Here is the service
scorer XML file for display video service.

�
serviceScorer action=“display” mime=“video” ��
attributes ��

attribute name=“size” � �
point value=“xLarge” score=“100”/ ��

point value=“large” score=“90”/ ��
point value=“medium” score=“80”/ ��
point value=“small” score=“30”/ ��
point value=“verySmall” score=“10”/ ��

/attribute ��
attribute name=“flatScreen” ��

point value=“yes” score=“100”/ ��
point value=“no” score=“0”/ ��

/attribute �

10

�
attribute name=”wallMounted” �

�
point value=“yes” score=“100”/ �

�
point value=“no” score=“0”/ ��

/attribute �
�

attribute name=“private” �
�

point value=“yes” score=“100”/ ��
point value=“no” score=“0”/ ��

/attribute �
�

/attributes �
�

/serviceScorer �

A service scoring policy is a vector of weights that is
applied to the attribute scores of a particular service to
obtain a single score for that service. A service is scored
by calculating a dot product between the weights vector
and the scores vector of the service. Different policies
allow different attributes to be favored. For example, a
policy named “Large Display” is weighted to favor the
size of the display, and one named “Private Display” is
weighted to favor the privacy attribute. Here is a sample
display video scoring policy.

�
serviceScoringPolicy

name=“Largest display, slight
preference for flat screen”
action=“display” mime=“video”
id=“Policy Larger Better” ��

attributes ��
attribute name=“size” weight=“.9”/ ��
attribute name=“flatScreen” weight=“.1”/ ��
attribute name=“wallMounted” weight=“.0”/ ��
attribute name=“private” weight=“.0”/ ��

/attributes ��
/serviceScoringPolicy �

Note that our approach for scoring attributes allows the
user to assign arbitrary weights to the different device at-
tributes. These weights should sum to one so that the
system can have normalized scores for different devices
in the ensemble. These policies allow users to weigh
some attributes more than others and add flexibility to the
system, without requiring them to provide a significant
amount of input.

An aggregation scoring policy is a vector of weights
that is applied to the individual service scores to obtain
a single quality score for an aggregation. The aggrega-
tion score is computed by applying the aggregation scor-
ing formula .��70 . An ensemble-wide score is then com-
puted for each aggregation using its aggregation quality
score and stability metric. The stability metric is based on
the average availability of the devices that are part of an
aggregation. Currently, a history-based approach is used
to gauge how frequently the devices have been available.
The ensemble-wide availability of an aggregation is com-
puted as the lowest availability value of any device in the
aggregation.

An ensemble-wide policy is used to combine the ag-
gregation quality and stability scores. This policy simply
specifies which dimension should get more weight. By

giving substantial weight to stability, quality is sacrificed
for a more stable aggregation. The rational behind this
decision is simple: if a device that is part of a running ag-
gregation becomes unavailable, then it will be necessary
to re-configure the system, a potentially costly operation.

Another measure in the ensemble-wide policy is the
change penalty weight. This measure is only used during
reconfiguration.

Policy Suggestion
We used the implementation of decision tree algorithm

provided by WEKA [2] for the policy suggestion. WEKA
is a collection of machine learning algorithms for solving
real-world data mining problems. Although learning in
our system is based on a decision tree, other data mining
approaches can be used with few changes to the imple-
mentation.

A data set file stores a users history, and is used as an
input to the decision tree algorithm. It contains entries for
context information and the policy selected by the user in
the past for that context. The data set is stored in ARFF
format (attribute-relation file format), the format expected
by WEKA. Here is an example of an ARFF file for pre-
dicting a device-level policy for the “display video” task.

�
relation policyEngine�
attribute task � play mpeg, play avi, run email ��
attribute time � morning, midday, evening,night ��
attribute policy

� Policy Larger Better, Policy Private ��
data

play mpeg, night, home, Policy Private
play mpeg, midDay, office, Policy Private
play mpeg, midDay,conferenceRoom,

Policy Larger Better

Separate data set files exist for each policy level that
needs to have a policy selected. For device-level poli-
cies, there is a data set file for each service type sup-
ported by the end devices, e.g., display video. Similarly,
the system stores history information about aggregation-
and ensemble-level policies in separate files.

The data set files are updated when a user manually se-
lects a policy. An entry consisting of the context and the
policy selected is added for every non-default policy cho-
sen by the user. Currently, the context contains attributes
that we believe have the greatest influence on user pref-
erence: the task, the location, and the time of day. Addi-
tional context information can easily be added to the data
set files.

5 Evaluation

To evaluate the system, we used CAFE to support aggre-
gations for two representative high-level tasks: playing an
mpeg-formatted movie and editing a powerpoint presen-
tation. We chose these tasks because they are commonly

11

Figure 6: Request Input Page.

performed and leverage appliance aggregation to provide
richer experience for the user. We used decoy represen-
tative of the different devices to have virtual ensembles,
and we used CAFE system to see the effectiveness of the
declarative policies to capture user preferences for aggre-
gation. Here we explain how the user interacts with the
system to accomplish her task, and then we give some re-
sults about the system performance.

To accomplish the tasks of editing a presentation and
playing a video, three types of devices are required, the
display, audio and input device for the presentation. We
used common sense to identify important attributes of
these devices and to score the different values of these
attributes. Further, we defined a set of declarative poli-
cies for different levels: device, aggregation and ensem-
ble. Figure 6 is the user interface to input the task. User
can use “Set Preference” option to bypass the policy se-
lection phase and directly obtain the aggregations.

If the user decides to manually select the possible poli-
cies at different levels, she can do so by selecting them
at the screen shown in Figure 7. CAFE shows only those
policies for selection which are relevant to the user re-
quested task. User can also pin a particular device, e.g.
she may specifically want to use the projector for display.

If the user does not want to specify the policies, the pol-
icy suggestion engine predicts the user choice for policies,
and these policies are used to rank the possible aggrega-
tions as shown in Figure 8. We here show the sorted list of
possible aggregations for explaining the system, though
the best aggregation can be directly instantiated without
asking user to select one out of those possible sorted ag-
gregations. Thus, by using “Set Preference” option, user

Figure 7: User preferences form page.

12

Figure 8: Aggregation using policy suggestion engine.

can enjoy one-click aggregation for her requests.
Our own experience with the system indicates, that

CAFE’s choice of aggregations matches our intuition. In
a relatively simple case of one-request aggregation, the
system’s choice of best aggregation matches our desired
choice. In case of two concurrent request, the systems
choice of devices for each aggregation seemed consis-
tently optimal from our point of view. However, we
should mention that as developers of the system and
producers of the declarative policies, we have in-depth
knowledge of the weights of these policies. As such, we
are somewhat biased users. In case of policy prediction,
occasionally we would encounter somewhat unexpected
recommendations from the system. Close examination of
the reasons indicated that time of day, for example, can
become the critical split in the decision tree algorithm, re-
sulting in an unexpected recommendation. We propose
further organizing the history data in such a way, so as to
prioritize the weight of the various context factors in the
recommendation process.

To evaluate the functionality of the system more rigor-
ously and objectively, we believe that user studies might
be required. Such studies will involve users wishing to
aggregate for common task requests, such as the ones de-
scribed above. We expect that the users of the system will

need to gain some familiarity with the effect of choosing
policies on the outcome of aggregation. Further, some
tuning will be required in the weights of the policies to
adjust to individual preferences. A sound evaluation of
the system will include comparing the automatic choice
of the aggregation by the system with a manual aggre-
gation choice by the user. Conducting user studies was
beyond the scope of our project.

We would also like to address the rationale of choosing
weighted sum for computing scores of devices, aggrega-
tions, and the ensemble. The Multiattribute Preference
Model [9], which is a well-established model in modern
microeconomic theory, suggests that utility across mul-
tiple objectives can be combined using weighted sums,
provided that these objectives satisfy the independence as-
sumption. Further, this model also provides mechanisms
for eliciting utility for the various levels of each attribute,
provided that these attributes are independent. We have
essentially adopted this model for the purposes of scoring
device attribute values, devices, aggregations, and the en-
semble. We believe that independence assumption holds
with respect to the functionality offered by different de-
vice types, since different device types offer different ser-
vices, that are not substitutable for each other. It is harder
to argue the independence of different attributes of one
device. In particular, there maybe attributes, which are
close substitutes. However, we would like to emphasize
that the willingness of the user to substitute a significantly
large size of the display with lower color depth is NOT
sufficient to refute that size and color depth are indepen-
dent. In general, the independence of attributes can be
proven by having elicited a complete utility profile of the
user, and then applying independence tests.

Results Below we present experimental results regarding
the efficiency of CAFE. All of these experiments were
performed using an iPAQ 3635 running Linux as the co-
ordinator device. Since here we want to measure the effi-
ciency of CAFE in finding and selecting the aggregation,
these results do not include instantiation time.

Figure 9 shows CAFE’s response time for different size
ensembles for one user task. The graph shows that even
for ensembles where the number of possible aggregations
is quite large, the system is able to find all aggregations
and rank them within a few seconds. When a new device
joins the ensemble or an existing device leaves the en-
semble, the time taken to do reaggregation is again within
acceptable limits.

For two tasks, the number of possible aggregations is
even larger. Using the greedy heuristic described in Sec-
tion 3.3, the system was able to determine the aggrega-
tions within ten seconds when the number of possibilities
was more than a hundred, as shown in Figure 10.

Lessons Learned The following important lessons were

13

0

1

2

3

4

5

6

7

8

9

10

1
 2
 6
 12
 16
 32

Number of possible aggregations

R
es

p
o

n
se

 t
im

e
in

 S
ec

o
n

d
s

Finding all

aggregations

Candidate

Selection

Device

disappearance

Figure 9: CAFE’s response time for handling one task.
First two lines, ’Finding all aggregations’ and ’Candi-
date Selection’ shows the corresponding response times
for handling a new task. ’Device disappearance’ line
shows the response time for reaggregation in case of dis-
appearance of a participating device from a running ag-
gregation.

0

2

4

6

8

10

12

6
 24
 48
 128

Number of possible aggregations

A
gg

re
gt

io
n

T
im

e
in

 S
ec

on
ds

Figure 10: CAFE’s response time for finding aggregations
for two consecutive tasks.

learned through this work:

� The stability of an aggregation and the distraction
of re-aggregation to a user are important concepts to
capture and quantify. Quantifying these concepts and
providing means for comparing them with the qual-
ity of an aggregation has proven to be challenging.

� Descriptive, hierarchically structured policies are an
effective way to elicit user preferences. This ap-
proach requires little input from the user, hides the
numerical weights and other algebra, and only ex-
poses user-oriented descriptions to the user.

� Simple descriptions are sufficient to capture device
functionality for the purpose of automatic aggrega-
tion. The richer semantics provided by standards for
service description, such as WSDL [1] and DAML-
S [5], are not required for our purpose because we
wanted to have a light-weight system considering the
resource constraints of mobile devices.

� Focusing on services at a high level has made it pos-
sible to avoid the complications of low-level con-
straints, such as protocol and format compatibility,
wiring, and so forth. This has made it possible to fo-
cus on the more essential aspects of the problem. Our
system can be easily extended to account for these
low-level constraints by adding richer JESS rules.

� Using JESS to express device functionality and com-
position logic is an effective way to keep data and
code together. We believe that JESS can be used to
handle more complex compositional logic.

6 Related Work

Many projects have tried to provide a richer experience
to the user in the presence of multiple consumer appli-
ances [8], [12], [13]. The basic idea that been used is
to represent devices as services, and then apply the tech-
niques of service composition [13], [10], [11]. These
projects have focused on resource requirements and con-
flicts, have not accounted for user preferences and expe-
rience. By changing the focus from resources to the user,
our system provides a more personalized experience to the
user.

The Metaglue project at the MIT AI Lab provides in-
frastructure for multi-agent system in a smart room envi-
ronment. Describing a device in terms of handle and need
in our system is similar to the way Metaglue describes a
device as resources. The Rascal system, which is built
on Metaglue, does resource arbitration between multiple
requests in the context of an intelligent room [7].

14

There are two principal differences between Rascal and
our approach that stem from the assumptions of the sys-
tem. First, in Rascal, the requests come from multiple
users, making it difficult to calibrate the requests against
each other. In our case, the same user requests both tasks,
making it possible for the user to employ a simple mech-
anism to give preference to one or the other task.

Second, the issue of constraint satisfaction is critical in
Rascal. Rascal handles constraints on physical resources
such as wires and switches. One of the shortcomings of
Rascal, based on personal correspondence with the au-
thors, is the time the system takes to satisfy additional
requests. In our work, we have assumed a computing
model that allows wireless connectivity between any two
devices.

Using context awareness to give personalized experi-
ence to the user in our system is related to the work by the
Future Computing Environment group at Georgia Tech
[4]. They use context in a touring application to pre-
dict what the user is observing and to provide informa-
tion about that entity. In our system, we capture and apply
context quite differently. We use it to predict a user’s pref-
erences in an ensemble environment, based on the user’s
past interaction with the system.

7 Conclusion

In this report, we presented the CAFE system. It pro-
vides infrastructure for the automatic aggregation of de-
vice functionality in a user-centric way. We first identified
the design requirements for such a system to do function-
ality aggregation in an ensemble. We then argued that
such a system should account for user distraction and ag-
gregation stability, in addition to aggregation quality. To
capture user preferences, distraction metrics, and device
properties in a generic way, we developed a hierarchical
policy approach that uses three levels: device, aggrega-
tion, and ensemble. We found that policies provide users
with a higher level of abstraction and that they help users
manage large numbers of aggregation choices. Using a
policy recommendation engine minimizes the user inter-
vention while performing aggregation, and also allows
user to have similar experience even in different and new
environments.

Some of the possible future directions in which our cur-
rent work can be extened is discussed below.

More accurate capture of user preference and context
In the current approach to scoring policy definition, the

relative weights of the device attributes are static and as-
signed at the beginning when the policy is defined. A user
can tune these weights according to preferences, but it is
unlikely that a user will want to tune all of the weights.
Thus, the relative weights used in the policies are static

and they do not reflect the difference in different user’s
preferences. That is, for some user the change from
“large” display to “very large” display may not be as im-
portant as the change from “medium” to “large” display,
while for another user the opposite may be true. The sys-
tem should adapt these weights automatically according
to user preferences.

Employing a feedback mechanism can help with the au-
tomatic tuning of scoring policy weights. One simple ap-
proach may be to ask a user about the aggregations when
the user does not want to follow the CAFE’s suggestions.

Applying to other application domains
The idea of using policy as an abstraction to elicit user

preferences can be applied to domains other than appli-
ance aggregation. One potential application of the policy
framework is data utility centers. The data utility center
provides data as a utility service, and it can encode the
system properties as policies. For example, the properties
can be data privacy, data access time, reliability, availabil-
ity, and so forth. The system manager can design poli-
cies using these properties in different combinations, and
a user can express how data should be stored by select-
ing these high-level policies. Based on user preference,
the system can dynamically decide how to store and man-
ager the user’s data. We are exploring how to give relative
weights to these properties and what are other important
properties to consider for capturing user preference and
needs.

Making device scoring more flexible
We are looking into the effects of adding new device

attributes or advanced devices on the existing device scor-
ing mechanism. We believe that the manufacturer of the
new device can provide appropriate standard values for
the attributes that we wish to evaluate. Furthermore, as
technology advances and better devices become available,
it should be possible to automatically calibrate the scoring
to make the highest value equal to 100, and appropriately
scale down all of the other values. While this approach is
naive, it certainly provides a simple way of dealing with
newly introduced devices.

References

[1] Web services description language(wsdl) 1.1:
http://www.w3.org/tr/wsdl.

[2] Weka 3 machine learning software in java:
http://www.cs.waikato.ac.nz/ ml/weka/.

[3] Xsl transformations(xslt) version 1.0 :
http://www.w3.org/tr/xslt.

[4] G. D. Abowd, A. K. Dey, R. Orr, and J. A. Broth-
erton. Context-awareness in wearable and ubiqui-
tous computing. In Proceedings of the 1st Inter-

15

national Symposium on Wearable Computers ISWC,
pages 179–180, 1997.

[5] A. Ankolekar, M. Burstein, J. R. Hobbs, D. M.
Ora Lassila, D. McDermott, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
Challenges: an application model for pervasive
computing. In Proceedings of the first International
Semantic Web Conference 2002 (ISWC 2002), pages
266–274, Sardinia, Italia, 2002.

[6] E. J. Friedman-Hill. Jess, the java expert system
shell. Technical Report SAND98-8206, Sandia Na-
tional Laboratories, 1997.

[7] K. Gajos. Rascal - a resource manager for multi
agent systems in smart spaces. In Proceedings of
The Second International Workshop of Central and
Eastern Europe on Multi-Agent Systems (CEEMAS
2001), Krakow, Poland, 2001.

[8] K. Gajos, L. Weisman, and H. Shrobe. Design prin-
ciples for resource management systems for intelli-
gent spaces. In Proceedings of The Second Inter-
national Workshop on Self-Adaptive Software, Bu-
dapest, Hungary, 2001.

[9] R. L. Keeney, H. Raiffa, and R. Meyer. Decisions
with Multiple Objectives: Preferences and Value
Trade-offs. Cambridge Univ Press, 1993.

[10] S. McIlraith and T. C. Son. Adapting golog for com-
position of semantic web services. In Proceedings
of the 8th International Conference on Knowledge
Representation and Reasoning (KR ’02), Toulouse,
France, 2002.

[11] S. R. Ponnekanti and A. Fox. Sword: A developer
toolkit for web service composition. In Proceedings
of The Eleventh World Wide Web Conference (Web
Engineering Track), Honolulu, Hawaii, May 2002.

[12] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and
T. Winograd. ICrafter: A service framework for
ubiquitous computing environments. Lecture Notes
in Computer Science, 2201:56–??, 2001.

[13] S. C. Samuel. Ninja paths: An architecture for com-
posing services over wide area networks.

16

