

Making Web Services that Work

Steve Loughran
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2002-274
October 23rd , 2002*

E-mail: slo@hplb.hpl.hp.com

web services,
deployment,
development
process,
SOAP

This paper explores the techniques and technology needed to make building production-quality
web services a manageable problem. It approaches this problem in both software process and in
the specifics of some areas of a Web Service - such as API, security and session management. The
software process is more foundational: this paper argues that the traditional waterfall model of
deployment is not appropriate for Web Services. In these services, integration with external callers
is one of the key problems, yet this only surfaces on live systems. Debugging on, and rapid
updates of, the live system are the only way to address interoperability and other problems that
surface on the production service. Furthermore, as management of a running system is the main
ongoing cost of a service, the needs of operations cannot be left as an afterthought to the system
design. We propose the incorporation of the deployment process into the iterative development
process through the inclusion of operations use cases, tests and defect tracking into the normal
software cycle. When combined with a fully automated deployment mechanism, the foundations
for a rapid web service development process are in place. On the technical aspects of Web Service
development, there are core issues related to security, interoperability, scalability and robust
design that need to be considered from the outset. We explore these topics using the experience
gained from encountering many of the issues when developing production systems. We then go on
to explore how the component models of the future could adapt to better suit server-side and Web
Service development. We argue that uniform APIs for standard services- logging, configuration,
management, testing-permit reusable components to be used in a production server environment.
We discuss how neither of the two platforms competing most vociferously to be the foundation
upon which developers should build their services, Enterprise Java and Microsoft .NET, have
room for improvement in this area, and propose some strategies for improvement. Finally, this
paper explores the concept that individual Web Services will become independent components
within the emerging Web Service Federation: the collection of independent systems interworking
using common Web Service protocols. As these protocols evolve they may become viable to
connect programs and computers inside an individual Web Service, although this is only partially
viable today.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Contents

1 Introduction 4

1.1 What is a Web Service? . 5

1.2 Why are Web Services Hard? . 5

1.3 The Operational Aspects of Web Services 6

2 A Deployment-Centric Development Process 9

2.1 Introducing Continuous Deployment 11

2.2 Operations Use Cases . 13

2.3 Develop Operations Test Cases 14

2.4 Have Defect Tracking for Deployment Issues 15

2.5 Deploy Early, Deploy Often . 16

2.6 Use the Target Application Server from the Beginning 16

2.7 Automate Deployment . 17

2.8 Treat the Router as an Integral Part of a Cluster 17

3 Addressing Scalability 19

3.1 System Configurations . 19

1

3.2 Software Solutions . 22

3.3 Clustering . 23

3.4 Partitioning . 24

3.5 Multihoming . 25

4 Design Issues 26

4.1 API Design . 26

4.2 State and Sessions . 27

4.3 Robustness . 28

4.4 Configuration . 29

5 Client Design 31

6 Interoperability 33

7 Versioning 36

8 Securing a Service 38

9 When Things Go Wrong 43

10 Components of the Future 45

10.1 COM+ . 45

10.2 Enterprise Java Beans . 46

10.3 .NET . 47

10.4 Improving the component models 48

2

11 A component model for the federation of Web Services 50

12 Summary 53

3

Chapter 1

Introduction

This paper explores issues that arise when developing production quality Web
Services, and techniques to address them. Before delving into the topic, here is
a quote from a telecomms software developer on the process he uses to deliver
quality products:

“I don’t think there is any secret to high availability systems; you
just make sure you don’t leak memory, stop the users from chang-
ing the configuration, have detailed trace information which can be
enabled dynamically, then test for six months before you ship”

Mark Syrett, developer of telecommunications server software [Syr01]

Web Services take on high availability requirements with delivery timescales
that never include the luxury of a six month test period. They add the problem
of integrating with otherWeb Services, none of which were developed to such a
rigorous standard as the telecomms systems. They encounter problems that few
prior systems have encountered, yet are being written by more developers than
before, all of whom have been convinced by vendors that web services are easy to
write. The hard part is not writing the service, it is getting a working, deployed
implementation to on the date committed to, and keeping that working. Those
aspects of the problem have been neglected to date, because everybody is still
discovering the issues.

This document combines the lessons we learned building and deploying pro-
duction services with opinions upon how Web Services could be done better
in future. The improvements are both technical and procedural; the proposed
changes to process are more fundamental than the technical issues, and perhaps

4

more controversial. We believe that both are essential.

1.1 What is a Web Service?

At its most abstract, a Web Service provides functionality to remote applica-
tions and web sites, by exchanging XML and binary data. This can be provided
via a standardized XML marshalling protocol such as XMLRPC [Win00] and
SOAP [W3C01, W3C02a]. An alternate approach is to by use the REST con-
ceptual model [Fie00] to offer a service that responds to GET, POST and other
HTTP protocol methods against different URLs representing objects and their
attributes.

Despite the differences in how requests and responses are sent from client to
server, all share the core notion of exporting computation services from one
system to callers across the Internet, using HTTP as the underlying substrate
[FGM+]. They also share a lot of the underlying implementation details: they
are likely to be run on an application server of some sort, managed by an
operations team, and maintained by a development team. This means that many
operational and process aspects of Web Service developent are independent of
the actual Web Service architecture.

1.2 Why are Web Services Hard?

Software engineers have been designing and deploying distributed systems for
years. Why should Web Services be any harder?

Complex, large-scale distributed systems have always been hard to write. Tech-
nologies such as COM and CORBA have evolved to make writing such systems
possible, and yet they have not made it easy. Small LAN-scale distributed
systems using these technologies are tractable; a single distributed system can
be built, deployed, and upgraded as one unit. Treating the distributed system
as a single unit eliminates version problems, while local area networks have the
bandwidth to permit ‘chatty’ object reference management mechanisms and the
speed to hide the fact that object method calls are being made against remote
systems.

Attempting to scale these technologies to the Internet introduces problems. The
long latencies and lower bandwidth of the connections forces designers to rethink
the granularity of communication, and how that communication is implemented.
Method calls to remote objects cannot be transparent when the remote objects

5

are a few thousand miles away, connected over an unreliable link.

Even if these problems were taken into account in the design of a Web Service,
the business model of Web Services: exported functionality for third parties,
makes it dangerous to try and re-implement the tightly-coupled architecture of
small-scale distributed systems. A Web Service will be expected to implement
a stable interface for as the lifespan of the client application, or at least for the
lifespan of the Service Level Agreement (SLA) between the client application
and the provider of the Web Service.

Technically, that pushes developers towards a loosely-coupled, asynchronous
communications mechanism, one in which the caller has to clearly state its
version expectations of the remote service. It may be that message based com-
munications is the correct network architecture to compensate for reliability
and latency issues [Mic02a]. This still leaves versioning as a long term prob-
lem that Web Service developers have to address. Historically, the software
development industry has been very bad at versioning, with COM and DLLs
the reference example of how not to do it. As Parnas explained so long ago,
the exported interface of a module comprises its signature and its behaviour
[Par74]. Any mechanism which merely validates that the remote program still
has the same signature as before is insufficient. Unfortunately, current remote
invocation technologies are restricted to verifying signatures, as without design-
by-contract, or other machine readable specification of behaviour, there is no
way for the underlying system to compare the expectations of the client with
what is currently offered by the server.

Internet-scale distributed applications have to be completely independent of the
implementation platform. This need arises because it is impossible to upgrade
all clients and servers simultaneously, and over time one will need to add new
components to the system, components written in new languages and running
on new platforms. If the protocol is platform specific, such as with DCOM,
or framework specific, such as Java’s RMI or the tcp: protocol in .NET re-
moting, then one is stuck with the original platform for the lifespan of the
entire distributed system. Clearly designing for implementation independence
is of strategic importance, not just over the Internet, but for any complex dis-
tributed system with the potential to last. The use of XML in Web Services
promises this independence, yet introduces the whole issue of interoperability.

1.3 The Operational Aspects of Web Services

Regardless of what the Web Service does, there are some implicit requirements
from the customer perspective:

6

• It must always be available.

• It must support the load placed on it by all callers.

• It must be consistent, that is, provide the same interface and explicit and
implicit behaviour over an extended period.

• It must be robust.

• It must be global.

• User data will be kept secure and private.

Developers calling the web services also need an implementation of the service
as early as possible, so they can start working with it. They also expect stability
of the service and the exported API from the moment the first version becomes
available. They will also assume that rapid deployment enables instant bug
fixes: this creates the risk that deploying a prototype too early can lead to a
barely controlled firefighting exercise related to the first prototype, rather than
controlled enhancement of the quality and functionality of the codebase.

The operations perspective comes from the need to satisfy these requirements
as easily as possible:

• It must be easy to bring up.

• It must have a very low operational cost.

• It must work for an extended period without human intervention.

• It must be secure.

• It must be instrumented for auditing and billing.

• It must be possible to make a live backup of the system.

• It must be possible to make a hot update of a running service.

• It must be robust against transient failures of the surrounding infrastruc-
ture.

From an operations perspective, any service that meets the customer require-
ments, yet is near-impossible to install, requires continual nurturing and daily
reboots is a failure. The system simply won’t scale up because of the time and
effort that would require. Moreover, because of the ongoing support costs it will
not be economic to run at any scale.

7

From a developer perspective, if the service does not work then operations will
be in contact with you to find out why. If it goes wrong at 5 am, then you
get a phone call at 5:15 am, regardless of whether you are officially “on call” or
not. To be able to sleep soundly at night, your system must not only work well,
but when things start to fail for any reason, the processes must be in place for
operations to diagnose and fix the problem without having to involve you.

Management have a different set of perceptions. They are used to the notion that
a web site can be revised in a minute, and infer from this fact that updating
a human readable web site is trivial, that updating a machine readable Web
Service is too. Certainly, automated deployment can take a matter of minutes,
but that does not eliminate the need for applying all the rigors of a normal defect
fixing process: tracking, replication, fix proposal, fix implementation, testing,
regression testing and then finally deployment. This leads to an interesting
difference of expectations that developers need to manage.

The designers and developers need to be aware of these needs and issues from
the outset, so that their code and processes work with the Web Service model.
If they don’t, the service they will deliver will require extra support —including
developer support, and the entire development process will be painful. The Web
Service model is meant to make development and deployment easier, after all.

8

Chapter 2

A Deployment-Centric
Development Process

One conclusion from our experiences of building and deploying Web Services
work is that we need to move to a deployment centric development process;
both popular processes, XP and the RUP are not complete when it comes to
addressing the needs of Web Services and need tuning to work.

The key observation from our projects was that the process of “handing off” a
web service to an operations group to run was essentially reverting to a waterfall
model of development. The waterfall model is so discredited precisely because of
its inflexibility: evolutionary development is viewed as essential for feeding back
the experiences of the later stages of software development back into the earlier
stages. With a web service, most of the issues related to installing, configuring
running the service are only encountered once deployment begins. Without a
feedback loop from from the operational system to the development team, the
developers will never adapt their service to meet the needs of operations.

This is a problem which exists on any server system which is handed off to
an operations group; modern Web sites would seem to fall into this category.
However, most web sites are primarily standalone systems —Web Services add
a new problem: integration. It may be possible to deliver a web site by running
it in an isolated staging system for a test period, but Web Services only begin
to encounter interoperability issues with third parties after deployment. This
forces the developers and operations to work together, enabling developers to
debug interoperability problems on the live systems.

The Rational Unified Process focuses on building code from a domain model

9

Design

CodeTest

Staging

Production

?

*

I

	

development

production

?

external callers-�

Figure 2.1: How iterative development processes revert to a waterfall when the
service is handed off from R&D to production.

derived from use cases [Kru00]. This process is incomplete for Web Services, as
it implicitly ends by handing the software off to production. Iterative design
and development may be used but the waterfall model is returned to when it
actually comes time to deliver the product.

Figure 2.1 illustrates the problem. Even an iterative build-test-redesign cycle
hands off staging and deployment to operations.

The Unified Process can address the up-front design issues, it just needs to take
on board the deployment problem earlier on, preferably during the analysis
phase. Deployment must actually begin during the implementation phase, and
the results of that fed back in to the ongoing development of the software.

The XP process model focuses more on being flexible with respect to change,
by not over-designing up front and instead keeping the implementation clean as
developers extend, refactor and rewrite classes. Testing, including comprehen-
sive unit and regression testing, is central to the XP philosophy, ensuring that
old code always works and something is always ready to deliver.

10

The XP model is differently weak, because it is not robust against fundamental
design errors, especially against those made in the public interface of the ser-
vice or the foundational deployment model. Some errors can only be fixed by
throwing everything away and starting again with a different implementation:
the purpose of upfront design is to avoid that situation and the resulting costs.
Furthermore, because Web Service interfaces have to be robust, it is impossible
to change the interface and semantics of a published version of a service; design
errors in the system get frozen, whether or not it is appropriate.

2.1 Introducing Continuous Deployment

Martin Fowler has introduced the notion of Continuous Integration, in which an
automated tool continually rebuilds the source from SCM, runs regression test
and notifies the team whenever the tests fail

[FF00]. This process ensures that nobody ever forgets to run tests, and that the
code in SCM will always build and run. Sam Ruby has taken this to its extreme
with The Gump, [Rub01], which is a six-hourly rebuild of all the popular open
source Java projects hosted on Apache and elsewhere.

We are exploring extending this model to one we term Continuous Deployment
—after passing the local test suite, a service can be automatically deployed to
a public staging server for stress and acceptance testing by physically remote
calling parties. One can implement this by automating the deployment tasks
in an Ant build file and using the current generation of Continuous Integration
tools [HL03, Ant02, urb01]. This certainly complicates the build process, and
encounters resistance from operations, but promises to make it much easier to
develop and deploy Web Services.

Figure 2.2 illustrates the difference. With deployment to staging brought into
the core process, one can test against the external staging site; both internal
functional tests and external integration tests. The final production site cannot
be brought into the process so tightly, at least, not when it is in active use. Even
the production system will still effectively be a test system to external callers,
as they integrate their Web Service clients with the system. As a consequence
developers will still need debug and diagnostic access to the system —the notion
that after passing sucessfully through staging a service is perfectly functional is
as valid as the idea that client software is bug-free at the time of its product
launch. While granting developers access to the production system may seem
an admission of fallibility, it is an effective way of taking advantage of the
replicability of Web Service defects: with only one installation, all problems
should be replicable.

11

Design

CodeTest

Staging

Production

?

*

�

development

production

6

?

6

Integration testing-�

external callers-�

Figure 2.2: Continuous deployment integrates deployment into the core cycle

12

2.2 Operations Use Cases

Just as Use Cases are the basis for the RP process, Operations Use Cases help
direct the development of server-side software to meet their needs, and so are
critical to a deployment-centric process.

Operations will have a large number of tasks they need to perform on a system.
Many will be uniform across all systems: “apply security patch to IIS”, “back up
complete system image” and “defragment hard disk”. Others will be unique to
an application: “install new fonts”, “verify file quotas”, and “update postcode
data”. If operations need to do it, developers need to be aware of the need
early on, and have some means of supporting them. It may be code; it may be
process; it may be a mixture. The more automated the use case support is, the
more likely it is the process will be carried out consistently.

Here are some use cases we have found useful:

• Determine which version of all components are running on a remote system

• Hot update of running service

• Immediate rollback of service to previous version

• Apply security patch to OS/app server/web server.

• Copy entire service configuration to a cloned system

• Housekeeping of disk space: clean up files and move directories.

• Hot reconfigure of running service

One category of deployment use cases are the when things go wrong events:

• Diagnose and correct network trouble.

• Diagnose and work around intermittent failure of dependent component.

• Investigate the suspected compromise of a server.

• Reboot entire system after complete power outage.

The final item may seem out of place, but it is a perfect example of why opera-
tions use cases are so important. Consider what the boot sequence of the entire
stack would be. Does the Domain Controller or DNS server need to be available

13

before the rest? What about the database server? What if they take longer
to check their file systems than the other boxes? It is easy to design a sys-
tem where operations can bring up each server individually, but an unplanned
simultaneous system reboot does not come up by itself.

Engineering may have their own use cases involving the deployed server. These
could also be categorized as Operations Use Cases, as they do require the active
involvement of the operations team to be viable:

• Debug interoperablity problems with a client by running a debugger against
the server

• Debug security and authentication problems.

• Post mortem a crash dump.

The classic deployment model of staging and production does not normally
permit developers to debug the production system. However the system inte-
gration nature of Web Service development effectively requires that developers
have some means of debugging integration problems on a live system. The
organisation and debugging tools need to be able to permit this.

2.3 Develop Operations Test Cases

Just as one can have use cases for operations, it is possible to have automated
tests that verify that the system is “happy”. This is separate from functional
tests, that verify the system works, as these tests are lower level and can be used
for diagnostics. They can verify the components and configuration the service
depends upon are correct.

How does one know what tests to write? Firstly, after making a list of basic
requirements and operations use cases, a first set of tests should be obvious.
Secondly, after something goes wrong —such as the filestore being eight hours
behind the rest of the cluster and housekeeping deleting files as they are created,
or a recurrent installation issue with a COM object, developers should write a
unit test to verify the problem before fixing it. Verify the test fails, fix the
problem then verify the test passes after the next deployment.

This is the same process as for code development; we are just using it in a
different context. Here are some of the tests we have written:

1. A “temp” directory exists and is writeable.

14

2. The cluster-shared directory exists and is writeable.

3. The timestamp of files created in the temp and shared directories matches
the local clock to a few minutes.

4. The configuration lists the URLs of two servers we depend on.

5. Certain remote URLs must be accessible by the service.

6. The XML parser must be able to parse certain XML files.

7. An external executable must exist on the path.

8. A COM object the application depends upon must be creatable.

What can these tests be used for? Firstly, they can be used in any health test
pages or management calls. Secondly, developers can write a unit test wrapper
class which performs the same tests, and the server side Ant deployment file
can run those tests before the system goes live.

Example: We wrote a health page for Apache Axis [Axi01], happyaxis.jsp
that probes the system for classes being available, to address installation prob-
lems that many users encounter. This test page is automatically probed in the
automated post-deployment httpunit test suite, and it is also made available for
end users. The test page therefore benefits an continuous deployment process,
with its automated tests, and anyone trying to diagnose a problem on a new
installation.

It is impossible to write simple test automated cases for all deployment problems
—such as pulling out network connections, turning off a server with no warning,
or forced deletion and recovery of all backed up data. These will need to be
generated by hand, and with care.

2.4 Have Defect Tracking for Deployment Issues

Configuration and deployment problems need to be logged in the defect tracker,
just as with code defects. In particular, any event that returns error messages
to customers or in the log should be marked as a defect with causes and fixes
added, so that in future the database can be searched when the same behaviour
re-occurs.

15

2.5 Deploy Early, Deploy Often

In iterative development, one cannot wait till the end of the project to deploy;
deployment must be a part of every iteration, and the lessons learned in deploy-
ment and operations the system fed back in to the design. Viewing operations
and deployment as high-risk activities enables this, as it helps management
recognize that the activities need to be addressed up front.

This process introduces the risk of diversion into firefighting, as developers get
pushed into to continually fixing and redeploying the previous iteration instead
of working on the next version. Defects should be filed and fixed. A rigorous
update policy of regular daily updates to the visible services —and no more
than daily, sets expectations clear from the outset.

In the early stages of a Web Service project, most support calls are not opera-
tions related so much as defect related, as the service is still stabilizing. In this
period, developers may be needed more often than operations.

Management should clearly specify a service level that explicitly excludes no
evening or weekend support. If the engineers are working at those times, great,
let them work without interruptions. If they aren’t, let them take a rest. To put
them on call requires a proper mechanism for balancing the load among staff,
and some form of compensation to those on call. Given the effect that such a
rôle can have on normal productivity, offering a downgraded availability, such
as six hours a day, five days a week is much more preferable.

2.6 Use the Target Application Server from the
Beginning

Start working on a multi-processor system with the same application server as
the production system. Ideally, this should be a remote box, deployed with the
same automated process as the production cluster. That includes SSH based
deployment, router configuration for security and round robin load balancing,
everything the production site will have. Waiting for staging to offer these
facilities is hiding problems

It is imperative to never to switch from one J2EE server implementation to
another midway through a project. That is, not without expecting to spend a
significant amount of time learning the differences and getting the application
to work again. We have found every such server to have its own quirks and
epiphenomena; behaviours which aren’t really designed in but arise from how

16

the product is implemented. They also have their own interpretations of the
J2EE specification 1.

Developers for the .NET platform would seem to be exempt from this problem,
but the arrival of .NET server and version 1.1 of the framework introduces the
problem, albeit on a lesser scale.

2.7 Automate Deployment

Ant can deploy using FTP, Telnet and HTTP, and there are custom deployment
tasks for many application servers [Ant02]. SSH will tunnel these protocols over
to a secured remote site. There is no technical reason not to use the same
deployment target to deploy to both local staging and remote production web
sites in a fully automated manner. This is not only a prerequisite to Continuous
Deployment ; it reduces the chance of installation errors when updating a cluster
of systems.

It is valuable to include version files containing a a build number and timestamp;
serve these up and the Ant deployment target can finish with a <get> to verify
the deployment just went through; unreliable deployment can be a real time-
waster if it goes undetected.

2.8 Treat the Router as an Integral Part of a
Cluster

Any complex Web Service will have something at the front balancing requests,
ideally something like a Cisco/ArrowPoint Level 7 router, routers that under-
stand URLs, can probe servers for happiness and take them out of rotation when
they are unhappy, and generally act as a filtering and load balancing front end
to the cluster. If the service is going to have one of these, start using it from
the beginning. Design a low-load but informative status page for the servers,
and test the router with the appropriate HTTP/HTTPS protocol. Tests need
to verify that the service continues to work when one of the cluster elements is
off-line, and that the load balancing does not interfere with any session state
stored in the cluster nodes.

1This exposes the flaw with test-centric processes such as XP; you always have less tests
than you need, and certainly the J2EE compliance test suite must be vast. A design-by-
contract programming language and a formal specification may be superior for a specification
that is implemented by multiple independent parties.

17

The router/load balancer must be aware of the state of the system at a higher
level than simply ’servicing requests’; it needs to recognize when a node is not
successfully executing requests and so needs to be taken out of service. This
requires a status page and a load balancer that probes the status page on a
regular basis. Deployment test cases make ideal candidate tests for the status
page. If these take a long time to execute, they do not need to run every time
the load balancer hits the status page; they can run once a minute and cache
the result: [Bul00] shows how to do this.

Example: At one point we had a load balancer that would route requests to
the application server with the shortest queue, but it lacked any mechanism to
probe the server instances for health. When a service instance had a problem
that would allow it to receive requests but be unable to service them, it would
respond to incoming requests with a SOAP fault. The load balancer noticed
that this instance had a shorter queue because it was servicing requests faster,
and so routed more requests to the broken system than the healthy ones.

The lesson from our experience was that the load balancer needs to be intimately
aware of the health of the services and what the expected behaviour of instances
should be. Perhaps the services should recognise themselves when they have
problems and take themselves out of circulation, somehow, rather than rely on
an external agent.

Write management routines from the outset

With operations use cases written up, it should be easy to start adding man-
agement code from the outset. This includes passive routines: logging code,
instrumentation for load reporting and other performance statistics, and active
management code. The latter are the pages, web service endpoints and classes
added for service management.

A good stage in development comes when you start writing JUnit tests instead of
main() entry points; an even better level of sophistication comes when you write
JMX MBean entry points to which the JUnit tests can refer. Unfortunately, the
singleton nature of the MBean factory does not mesh well with JUnit. Many
MBean based tests can avoid registering/unregistering themselves in the factory,
so encounter no test problems.

Note that XDoclet [XDo01] radically simplifies the JMX development process by
autogenerating the MBean interface from the implementation and extra Javadoc
tags.

18

Chapter 3

Addressing Scalability

Web Services need to scale. They need to scale up if they become popular;
they need to scale down to reduce operational costs by running many instances
simultaneously. There are different ways to achieve this. The exact approach
taken may depend on the lifecycle stage of the product. If there is a limit how it
scales, then the maximum size of the service is limited. If it doesn’t scale down,
then the service cannot survive any lean times. Getting the scalability right is
clearly important.

3.1 System Configurations

The underlying hardware configuration of a service has a significant effect on
the system. Many different configurations used to address different aspects of
scalability and availability. Development machines are usually much simpler,
which is dangerous. It is critical for the core test systems to resemble the actual
deployment hardware; otherwise, the code will not have been tested properly.

Standalone Uniprocessor. This is the simplest of server configurations. It
lacks high availability, but may still need to be managed remotely.

Standalone Multiprocessor. This is a minor extension of the uniprocessor
system, but one that can break very badly designed software. Mediocre software
may still work, yet not exhibit any speedup. It is a good for a local development

19

system to be multiprocessor, as it catches trouble early. Load tests seem to be
best for uncovering race conditions, although such bugs are always hard to track
down.

Interconnected Stack. In the stack design, a number of server and services
are interdependent, each providing a piece of the functionality of the whole. A
failure of one of the elements of the stack can result in degraded functionality,
or it can cause the entire stack to fail. A stack is very common in a three-
tier or four-tier system, with a database and file server supporting the front
end application servers. A stack can be hard to set up, as it needs cross-
system configuration, and its cost keeps the number available in a project to
a minimum. This is unfortunate, as one stack per developer would be better
for development productivity, even if the operations overhead would be high.
Unless of the service is designed for easy configuration and low operational cost.

Distributed Stack. Here the machines comprising a ‘system’ are remote,
each only connected over long haul links. Shared filestores are not available;
the probability of RPC failure is high. For example, even short HTTP requests
may be interrupted, so checking of content-length headers and perhaps even
checksums are needed to verify the completeness of downloads —even between
systems in the same workgroup. Testing systems for performance over slow and
unreliable links is much harder than basic functionality testing.

Load Balanced Farm. This is a farm of servers with a load balancer above
the farm balancing requests. How does the load balancer work? Either ran-
domly, round robin, or with some awareness of the actual load on the machines.
The first two work best if all machines are symmetric; the latter needs more
computation but helps balance load over a farm of systems with different per-
formance, or in situations where the load requirements of a request vary signif-
icantly. Effective load balancing of Web Services is a fruitful area for further
development.

Failover Farm. A farm of servers which not only has load balancing, it is
somehow designed to be robust against failures. Any unsuccessful request can
be automatically re-issued till it succeeds, such that the client does not need
to implement retry behaviour itself. Realistically, the clients still to implement
timeouts and retries, because requests can fail before they even reach the web
farm.

20

Grid. Grid computing is an interesting model for implementing a scalable
web service. If the service runs on a grid infrastructure, then it could “rent”
a fraction of the available computing power. Scalability would come by using
more of the available computing and storage services, and from adding more
systems to the grid. If the services can run across many systems, yet only use
a fraction of their CPU time, then the service can have the redundancy that
a high-availability system needs without incurring the up front costs needed to
build that infrastructure from scratch.

If the programming model for writing Grid based Web Services is simple enough
to use, and the deployment model workable, then the Grid could be the ideal
foundation for Web Services, combining low-entry costs with near-unlimited
scalability.

Federation. A federation is a collection of systems that work together, sys-
tems operated by different entities, perhaps with different implementations. To
interoperate the systems in the federation must implement compatible network
protocols, and agree to communicate with each other by some set of social con-
ventions, from formal SLAs to informal agreements.

Few would set out to implement a single Web Service as a federation. However,
the total set of Web Services slowly emerging on the Internet will form a federa-
tion: the federation of systems that agree to interoperate using the XML-based
Web Service protocol stack.

Any Web Service that depends upon external Web Services is implicitly part of
this federation; its successful operation depends upon the availability of those
external services. Any client application that uses a Web Service is also depen-
dent upon the availability of the Federation.

If the Web Service vision succeeds, the duration of the overall federation will be
longer than any other distributed computing technology to date. Existing fed-
erated systems, from the ATM networks, and the VISA authentication network
to the Airline booking and billing systems, the international financial trading
networks, and even the vast SS7 system that coordinates the planet’s telephone
calls —all may one day be subsumed into the Web Service Federation.

Unlike the existing systems, the Web Service Federation will be heterogenous,
and designed to work over a potentially insecure Internet from the outset. This
is a weaker foundation than the previous federations, and it will take time for the
federation to stabilize. Its reliance on the public Internet as its communications
infrastructure will also place some fundamental limits as to its availability; this
is one of the problems that dependent applications will have to cope with.

21

3.2 Software Solutions

Is it possible to design one system to work in all these configurations? Perhaps,
if written wisely. The same code designed for a multiprocessor failover web farm
should be able to scale down to a single system: but the reverse is unlikely to
be true. Grid computing is probably the most unusual platform to develop for,
and it is still an evolving technology. Short term, targeting the load-balanced
or failover farm at the high end, a multihomed system at the low end is going
to be sufficient. For any research oriented project, the Grid and the Federated
models would be more interesting.

Multiprocessing

To use a multiprocessor the system needs to have enough threads to to useful
work, but not too many busy at the same time. Ideally, there should be one
working thread per CPU. Housekeeping threads can be given a lower priority
than request handling, but then you need prevent starvation: consider a high
priority but rarely scheduled thread that can bump up housekeeping’s priority
if it has not run for a long time.

Design for basic multithreading through:

• Using immutable objects for thread safety, this can also benefit security.
Bloch covers this in [Blo01]

• Documenting synchronization rules.

• Thinking about the threading and re-entrancy issues of all parts of the
system.

Design for high performance multithreading by minimizing contention. Instead
of using synchronized methods, synchronize on individual variables, array entries
and the like. There are some exceptions to this.

1. Split code into the parts that need synchronization with the parts that do
not. For example, iterating through a synchronized list of files, deleting
some of them could be split into two stages —a synchronized selection of
files to delete, and an unsynchronized deletion phase.

2. If all threads access a block of variables in a group, have one synchro-
nization lock for the group as it reduces the lock acquisition and release
overhead.

22

3. Developers may be able to get away with not synchronizing reads to an
integer, as in Java, Win32 and C# these reads are atomic. If this is done,
it is critical to use the keyword volatile to indicate that accesses should
not be cached or re-ordered. This trick is dangerous as it will breaks if
the date is ever changed to a type whose accesses are not atomic, such as
a long integer, or if someone uses non-atomic operators such as ++, +=,
--, or -=.

4. In both Java and C# the overhead of calling a synchronized method is
slightly less than when the synchronization code is implemented inside the
method itself.

Object pooling is often touted as a performance trick to minimize object creation
overheads, but on a multithread system, one can sometimes get away with
having a thread local instance of core objects that can be re-used every request.
For example, a per-thread 128 KB buffer can be used to for buffering reads and
writes on blocking IO, rather than having a pool of buffers that threads have to
acquire and release.

Test, test, test on MP systems, as this is the key way to be sure that race
conditions really don’t exist. Don’t wait till deployment time before discovering
that you have thread problems. The other way to do is using formal mathematics
[Mil80], but this is very hard for anything other than a trivial example. We have
found that realistic and long lasting load tests, accurate even to the simulation
of client delays, capable of discovering many race conditions in a Web Service,
from thread concurrency issues to race conditions between worker modules and
housekeeping routines.

Bulka, [Bul00], has good coverage on performance tuning server-side code.
Tricks covered include caching objects for a finite period of time, such as caching
a java.util.Date object for a second, rather than recreating a new one every
request. Tricks like this can impact the readability and maintainability of code,
but can make a measurable difference.

3.3 Clustering

Clustering is the sequel to multithreading; a cluster of computers acting like
one service. Performance of a cluster should scale with the number of boxes.
If the system is badly designed, management scales up significantly faster than
performance.

• Design the system with no race conditions with other cluster elements

23

accessing shared data. Databases and directory servers should be the
standard repositories.

• Design the service such that state is not kept in a single application in-
stance, for failover and load balancing. If all the requests in a session must
be routed to the same box, the service cannot handle failover.

• On a cluster, simple web status pages does not work as a management
mechanism; there are too many systems to track this way. Use of appli-
cation management technologies —JMX, WMI, SNMP— from the outset
can avoid this issue.

Although the software must keep session state in a shared location for failover ro-
bustness, if the router consistently redirects session requests to the same server,
that server can cache content from call to call. Because it should check to see if
the persistent data has changed, caching the persistent data is worthless —but
caching incidental data is. There is always a trade-off between the costs of data
creation versus those of storage; these costs (and the frequency of the need to
recreate objects) vary between projects such that there is no clear answer as to
best approach.

3.4 Partitioning

This is an extension of clustering. Sometimes there is a hard limit on how
many boxes can be in a cluster before contention becomes an issue; all the work
put in for load balancing and statelessness imposes overhead which only new
independent clusters can avoid.

If clients can be assigned to a single cluster, either statically or dynamically,
then the logon process should bind the client to the appropriate cluster for a
session: the logon server should be a cluster apart from the rest.

• To enable partitioning, always use GUID identifiers for externally refer-
enced objects, not incrementing integer columns supplied by the database.

• For effective distributed deployment, never rely on a globally accessible
shared file store as part of the solution. It does not work over long haul
links, Use HTTP URLs that can easily be mapped to files in a shared
filestore when the URLs are resolved on a system close to the files.

• A logon process where the caller is allocated a session ID should also return
the endpoint for the rest of the conversation.

24

• If the partitioned systems have to interoperate, and they will be dis-
tributed widely, such as co-located on MAE-West, MAE-East, London,
and Singapore, consider using loosely coupled Web Service protocols for
the communications. Toolkit support for asynchronous messaging and
connectivity failures are relevant for such distances. There are even im-
plicit benefits if the protocols do not require all instances to be running the
same software version; it becomes possible to perform a rolling overnight
update in each timezone.

3.5 Multihoming

This is scaling down: running multiple instances of a service on a single system or
cluster. This is a useful configuration to support both at the beginning or end of
a product’s life, when it is being ramped up or run down. Multihoming provides
a different endpoint for each customer using DNS as the routing mechanism; this
gives operations the flexibility to redirect customers to different server clusters.

To support multihoming the service must be able to use the logon or request
URL to generate an appropriate personality for the caller, accessing the ap-
propriate data sources. This can be done with multiple instances of the same
webapp running, or the multihoming can be done on a session by session basis;
the latter being lighter weight but more complex, and potentially less secure.

The hard part is for the server to recognize what identity it is running under
at any point; this can be derived from the URL of the request. If that is done
then the session information —be it in cookie or server side— must track the
original ‘server’ identity. Otherwise, a user could authenticate in one server and
rewrite the URL to acquire rights in a different virtual server.

A barrier to effective multihoming can often be the underlying application server
and Web Services software. Check the capabilities of these products early, if
multihoming is considered important.

25

Chapter 4

Design Issues

4.1 API Design

What is a good design of a remote API for callers to use? It depends upon the
problem and the deployment model: a LAN based system can be far chattier
than a WAN solution, where delegated workflows and perhaps asynchronous
callbacks or polling the appropriate notification mechanism. A solution designed
for LAN operation either explicitly in the requirements or implicitly (in the
implementation), does not easily transit to WAN operation. The whole REST
versus SOAP debate is another issue, which will take time to resolve. The exact
mechanism by which a client talks to a Web Service does not make any different
what the development and deployment process should be. It does affect the
API, as does the choice of doc/literal SOAP versus RPC SOAP.

Ignoring the SOAP/REST debate, here some tips about API design which
should be relevant to either:

• Any document based design should be in XML format with a DTD/Schema
to validate it before sending. Providing a simple validation entry point
could be useful to client testing: the payload is parsed and validated but
not executed. Validation obviously encompasses more than simple schema
validation; it can check the arguments for being legitimate as a whole. An
XSLT implementation of the basic validation tests is ideal; this can be
given to callers as part of the interface specification.

• Exception code data should be machine and user parseable. Add:

26

1. Unique machine/VM instance ID (can be disguised)
2. Error code number/string/GUID
3. Text for developer at far end
4. Text for operations to read and understand

We have used COM HRESULT codes as the error number, as they could
encompass legacy applications. We added and documented internal er-
ror codes (including “Internal Java Error + exception string”, and dis-
tinguished some network errors (incomplete calls to dependent system)
which were likely to succeed if the request was retried. The only problem
was that the union of HRESULT + java.lang.Exception was a very large
set.

• Callbacks are problematic. Polling over HTTP is the only way that works
through firewalls. Alternate channels (Instant Messaging, SMTP and
SMS) may work, but this vastly complicates the process. Perhaps polling
with an email callback to trigger a call is a viable short-term mechanism.

• SOAP with Attachments enables large binary file upload, as can POST or
PUT to an intermediate filestore with URL upload. SOAP with Attach-
ments is the most consistent paradigm with a SOAP based marshalling
layer; POST is simple to implement server side, and ties in with the REST
Web Service model. Use of an indirect jobstore may be useful, but it adds
a lot to the service, unless many services can share the same job store.
As there is no uniformity of support for binary across different SOAP
implementations, large binary files are trouble. S As a fallback, base-64
encoding in the XML body does work, albeit inefficiently.

• Consider including a simple client call that simply echoes back the pa-
rameters, returns an uptime or some other low-load response, an endpoint
that can act as a ping test from the client application, and even directly
from a web browser, which is useful when fielding support calls.

4.2 State and Sessions

State is problematic in Web Services. There is a simple model for web appli-
cations: the User Agent stores session cookies that are used to index to state
stored server side. A Web Service may have a slightly different notion of what
constitutes a session and how long it lasts. Fortunately, it is possible to code
some more complex session negotiation into the service process, to deal with
partitioning and security

1. After authenticating, the server sends a new endpoint that will be valid for
the duration of the conversation. This endpoint could be session specific.

27

This is actually somewhat hard to describe in WSDL: there is no way
to state that the response to a request is new endpoint implementing a
known service [W3C02b]. You have to simply return a string which the
client must manually use as the endpoint for a new service.

2. The authentication process can return an opaque token to the client; this
token is included on the follow-up messages as cookies or a SoapHeader.

3. A load-balancing router that is aware of cookie-based sessions can redi-
rect calls to the favored server for the duration of a session, redirecting
to another server only when the original server goes off line. This boosts
performance as only core session state needs to be stored in a database;
transient data structures can be created and cached on the session spe-
cific server. There are two flaws with this approach. First, there is the
well-known issue that Level 7 routers cannot inspect the state of HTTPS
requests and so redirect based on cookie content. Secondly, it is not clear
that cookies are the best method of representing session state in a Web
Service API. They work on the web because that is all there is, but Web
Services can do better, particularly given that not all SOAP implemen-
tations support cookies properly (such as the MS SOAP toolkit 2.0, or
anything built atop java.net.HttpUrlConnection).

If an alternative to cookies is used to represent session, such as a token passed
in as one of the parameters of the request, or in SOAP headers, the current
generation of routers will not use this information to redirect the calls to the
appropriate server, even if the request is sent in the clear. This can only be
resolved by having routers aware of the actual protocol being used, able to
parse requests and responses and determine session information.

In the meantime, session-specific endpoints can redirect to a single server, or a
small cluster of servers in a larger farm.

4.3 Robustness

Web Services are designed to work over long and unreliable links, something
that must be factored into the API design.

• Always set the content-length header.

• Do not trust HTTP without validating that the amount of content received
matches that in the content-length header.

• Consider including a checksum header to also validate the data received
matches that sent

28

• What happens if a client disconnects during a request? Does the server
handle this gracefully?

• What happens if a hundred valid requests are suddenly disconnected be-
fore a response is sent back?

• What happens if the server disconnects during a request? Does the client
handle this gracefully?

• What happens if the client is expecting an XML response, and HTML,
such as a stack trace, comes back instead?

The HTTP protocol provides no warning when incomplete data was received,
it is up to the caller to check the content-length header and then verify that no
more or no less was received. This header is optional on HTTP/1.0, mandatory
on HTTP/1.1. Server code should always set it, so client code can test it.
Client code that supports both protocols should consider reporting an error on
a mismatch, but do nothing if no header is set.

Even with content length validation, there is still the issue that the content itself
is not validated: a transposition or complete replacement would not get picked
up. A checksum is needed here; one can always be sent in the response headers
for those clients that know of it.

This exposes a flaw with HTTP; there is no intrinsic checksum validation of
responses, except at the TCP level. HTTPS implicitly validates the stream
during the encryption process, leaving only the risk that something behind the
HTTPS front end server can still corrupt the data.

4.4 Configuration

Being able to control the configuration of a system helps operations keep it
running, and make it customizable for end users. At the same time, it leads to
big problems when the configuration gets changed and everything breaks.

• Split customization into harmless and harmful areas, such as decoupling:
the configuration of skin of the service from the configuration of its be-
haviour.

• Lock down service configuration. If nobody would possibly want to change
it, make it a compile time option and not a value that operations can
control.

29

• Any dynamic configuration options should be changeable in one place and
automatically propagated out to all servers. Anything else does not scale
and increases the likelihood of configuration differences across systems

• Provide a sensible default configuration that works and is secure.

• Try and support hot-updates of changes

• Provide a mechanism to view the entire configuration of a system.

This is hard to get right. Hard coded URLs and values in ASP/JSP pages are
definitely dangerous; even a per-system XML configuration file does not scale
across a server farm.

Database storage of the configuration data is the obvious choice when the
database is present, and there is some easy means of directing service instances
at the service.

A directory service based design is an interesting alternative. Directory servers
are readily available, and designed to provide replication and failover, so that
a single directory service interface can control multiple partitioned instances of
the same service. Furthermore, LDAP support is available across all the Web
Service programming languages. Consider this approach for any database-free
service implementation.

30

Chapter 5

Client Design

How can one design client programs to work well with Web Services? If the
server and protocol is well designed most of the benefits trickle through into
the client. There are still a few items that need explicit support on the client.
Obviously, many of these design concepts also apply to a Web Service that calls
a dependent service.

Do not rely on the server being local

Assume the server is distant and connected over slower links, multiple routers
and through a firewall.

Support the local proxy server configuration

Lots of systems have proxy server access; your software has to work with them.
Do not require your application to make the users re-enter what the system
knows; In particular, windows does let applications examine the proxy settings
for IE: use this data.

Be robust against transient failure

Even if the server is available, transient network failures can fail a request. Be
prepared to retry, perhaps using an exponential back-off algorithm. Include

31

timeouts on requests. The system designers also need to consider how to handle
transient failures inside a distributed server installation: do they retry or do
they propagate the failure information to the client for them to retry. In our
project, we resorted to, propagating the failure back up over multiple requests
till it reached the client application, using a special HTTP error code to indicate
a transient failure for which a retry was recommended. This enabled only one
system to implement retry logic, rather than every part in the chain.

Validate responses

Match content-length headers and message digests against the received data.
Compare the request-ID echoed back with that submitted. Anything on the
chain: proxy server, modem, router, load balancer can potentially corrupt the
data.

Implement a service probe test

If the server implements a simple status, health or echo method, call it. This
provides an easy way to determine if the service is reachable before submitting
a complex request.

Provide a debug log facility

This is not for the end users, it is for the end users to email to the Web Service
support when they field support calls from the customer.

Implement off-line support

Windows has an off-line mode, so does Java Web Start. Use them and the appli-
cation software can degrade functionality gracefully when the user is somehow
disconnected. or the service off-line.

32

Chapter 6

Interoperability

The whole reason to use an XML marshalling mechanism rather than a binary
one, such as RMI or DCOM tunneled over TCP port eighty, is for interop-
erability. Clearly, interoperability between other implementations of the Web
Services protocol stack is imperative for the Service to be useful. Systems which
implement their own XML-based protocol leave it is up to the clients to imple-
ment their side from the ground up, working off sample code or specifications.
Precisely because this can be over-complex, using a standard protocol such as
XML-RPC or SOAP should make it easier for people to talk to your service.
XML-RPC, by virtue of its simplicity [Win00], is very easy to interoperate
with: there are so few datatypes that implementing XML-RPC support from
the ground up is trivial.

SOAP is a different matter. SOAP version 1.1 has its own set of datatypes; the
infamous “Section 5” datatypes [W3C01]. SOAP implementations support the
majority of these, and a large (but seemingly never complete) selection of XML
Schema (WXS) datatypes, as does the WSDL language for specifying service
interfaces. Ultimately, XML Schema is the only representation that makes sense.
If the application code can read and write data to XSD defined XML files, then
it is independent of the particular wire protocol underneath.

While that is a good ultimate goal, the SOAP datatypes have the benefit of being
much less complex than XML Schema, and more tuned with the basic datatypes
that applications support: strings, integers, booleans, floats, enumerations and
arrays. Equally importantly, most SOAP implementations are likely to have
the basic SOAP datatypes thoroughly implemented and tested. This makes
the SOAP representations a good format for basic interoperability, even though
that is still not guaranteed. Note that to handle the fact that any of the Section

33

5 datatypes can be “nil”, JAX-RPC maps the datatypes not to any primitive
language counterparts such as int and float to their Object counterparts,
Integer and Float, which may have consequences in performance and code
complexity.

Long term, the Section 5 datatypes will be supplanted by XML Schema, which
raises the bar on interoperability [Rub02]. XML Schema can describe many
complex datatypes, including many that do not map easily to those in popular
programming languages. For example, it is easy to restrict the scope of a type,
creating datatypes such as a floating point number that is only valid from -180 to
+180, yet restrictive subclassing is not explicitly supported in most languages.
For arbitrary callers to be able talk to a service, it must not rely on such
restrictions.

Even seemingly innocuous types such as xs:unsignedInteger have interop is-
sues. They only work well with languages like C++ and C++ that support
unsigned integers; Java does not and so SOAP implementations have a harder
time knowing what to do with it. The JAX-RPC specification ignores those
datatypes completely [Mic02b].

Moving beyond the simple datatypes, the real problem with SOAP interoper-
ability comes with complex datatypes and serialized objects. Most SOAP im-
plementations generate WSDL specifications directly from the code, promising
remote service access without having to spend time with an interface declara-
tion language and IDL compilers. Effectively WSDL is the new IDL, this time
XML based rather than derived from C and C++, and dynamically generated
by default. This dynamic generation does simplify development, but it is a dan-
gerous simplification. It is no longer obvious when developers have accidentally
changed the interface such that callers need to be rebuilt, and it is no longer
obvious how the system is going to marshal content over the wire. When writ-
ing an IDL file developers had to think about what they would send over, how
to represent data in way that the callers could work with it, and essentially be
forced to worry about interoperability. When writing a Java or C# class that is
automatically turned into a Web Service by the framework, they may just use
a standard framework object for that language, such as a Hashtable, and be
surprised when the system at the far end of the wire cannot work with it. There
is a System.Collections.Hashtable in C#, and a java.util.Hashtable in
Java, but nowhere in the SOAP, WXS or WSDL specifications are there such
datatypes, and nowhere does it say that such language specific collections are
exchangeable.

It is this combination: modern languages with intrinsic collection frameworks,
and a service development process driven off the implementation code, rather
than off any interface specification, that creates interoperability problems. There
are no silver bullets here, other than being rigorous, even if the tools do not

34

mandate it.

• Create the WSDL file first and implement your service against this file,
rather than the other way around.

• Use XML Schema datatypes, not the SOAP section 5 datatypes, and avoid
use of facets to restrict ranges.

• Avoid xs:positiveInteger, xs:negativeInteger, xs:nonPositiveInteger,
xs:normalizedString and the unsigned types. For interop with any Java
systems, these datatypes cannot be used.

• Test for interoperability, from the outset of the project.

To test for interoperability, build clients in other languages —this is not as
hard as it seems. Ant1.5 has a <WsdlToDotnet> task to convert a WSDL
file into C# or VB.NET; if the WSDL cannot be processed that target
will fail with an error. Likewise, Apache Axis has an Ant task to generate
Java code from a WSDL file; C# service developers can use this to verify
that their service goes the other way [HL03].

Writing these interop tests in the popular languages and SOAP toolkits
is currently the only way to reliably validate interoperability. If running
the tests can be automated, they will become an essential feature of every
deployment cycle.

35

Chapter 7

Versioning

How are versions of a service to be handled?

Once a service is officially deployed, its behaviour is effectively frozen: the
endpoint, the interface and the semantics of that interface.

To be able to move endpoints, either require callers to locate the service using a
directory service, such as a UDDI registry or simply define a new hostname for
each version of the endpoint, and move them around as you need. For example a
service could have its first version implemented on http://v1.example.com/api; a
second edition could use a new hostname in its endpoint, such as http://v2.example.com/api.

Changing the exported functions of an existing SOAP endpoint is difficult. Al-
though one can extend a service with new actions, changing the arguments or
return value of an existing action can break calling code. The best way to do
it is to use the doc/literal model, rather than SOAP’s RPC model, so that the
XML body of the request can be extended within the limits of the schema. To
support options not permitted in the original schema, a new schema can be
defined; this approach obviates the need to have version attributes in the XML
itself, and offers much more extensibility.

What is hard to maintain is consistent versioning of service semantics, both
explicit “this request updates the database” and implicit “this update takes
less than 12 seconds”. A good development team can maintain the explicit
semantics, especially with a good regression test suite, but implicit semantics
are often a function of the deployment configuration itself, and are hard to
control.

36

Another potential trouble point for SOAP-based services is that SOAP is evolv-
ing, an evolution that SOAP toolkits try to track. This will create SOAP
versioning issues at some point in the future. If the SOAP implementation is
provided by the application server, or even the underlying platform, then when
these system components are upgraded the service may be forcibly upgraded
to a later version of SOAP. If this is the case, the only way to maintain SOAP
stack compatibility with previous versions will be to freeze the entire server
configuration. This is a potential problem with the .NET server SOAP stack
and some of the J2EE application server stacks. The solution for Apache Axis
and other drop-in SOAP toolkits is of course to keep the toolkit in the software
configuration management repository.

Consumers of Web Services need to be aware that versioning will be an issue,
and should create a set of tests to verify the behaviour of each aspect of the
service they use. The client code will act as a test itself, but having a separate
test suite makes identifying faults easier. Which is simpler: fielding a support
call that the client is not working, or getting a JUnit generated HTML report of
where an updated server is failing your acceptance tests. It may seem excessive,
proposing that Web Service consumers write and run their own regression tests
against a service implementation, but if you are a consumer of a service, who
else is going to look after your interests?

To close on the subject of versioning, it is inevitable that this will become an
issue over time. If there is one thing the computing industry is consistently bad
at it is is versioning. Despite debacles such as “DLL-hell”, new environments,
such as Java, replicate the problem. The .NET framework is unique here in
that programs are forever bound to the original version of libraries, but Web
Services offers to undo that gain by raising the complexity of the problem. It
will be irrelevant that an application is bound to the same version of a library
it was built with, if that library talks to a web service that now acts differently.

37

Chapter 8

Securing a Service

A Web Service needs to defend itself from malicious attacks, which can take
many forms. It also needs to be trustworthy to callers, which means that it
should be resistant to man-in-the-middle attacks and to someone impersonating
the server. HTTPS or other public key systems are good for authenticating both
servers and clients.

A security problem with web applications and services is that any security
breach, anywhere in the system, can compromise the entire machine. Put
bluntly, it does not matter if a service is bulletproof if the Code Red patches
are not installed on the server. Security holes are different from classic software
defects, where a defect in one path of the program prevents that path from
being followed. An application can be 99.5% bug free and still be workable; a
service that is 99.5% secure is still unsafe to deploy.

It is our untested hypotheses that a Web Service may be intrinsically more
vulnerable to security attacks than a web service. This premise is based on the
simple observation that many security attacks go through active code, such as
badly written CGI-BIN shopping cart programs, rather than fundamental bugs
in the web server itself. A Web Service is really nothing more than a large
number of programmatic entry points to custom code, along with a system-
generated WSDL description to make understanding the entry points easier, and
perhaps even a WSIF description to list those same endpoints [B+01]. These
same features which make finding and binding to a Web Service easy for trusted
callers, may also make automated malicious attacks easier.

This does not mean that there is any validity in Scheier’s claim that SOAP
is as big a security disaster as ActiveX [Sch02]. Callers of SOAP services are

38

not exposing themselves to any security risk unless they support some means
of callbacks. Without the callbacks, there is no way for a program behind a
firewall to receive and process a SOAP message, and thus no security risk. The
SOAP server is a different issue, of course.

Here are some basic security guidelines; none are significantly different from
those of a normal web site, except that because XML data often exchanged as
the payload of an RPC call, the application needs to sanitize that data more
carefully.

Have no limits on string buffer size. This avoids buffer overflows. Actu-
ally systems can have limits, provided they are explicit and they test for content
being in range on receiving requests and reject oversized content. Safest is to
avoid languages that are prone to buffer overflows. Even such languages as Java
and C# are vulnerable to buffer overflow attacks wherever data is handed to the
underlying operating system via helper libraries. Which means, in the absence
of a pure .NET or Java platform, that buffer overflow attacks are still possible.

Treat all incoming data as a threat. Assume all received data is a threat
unless proven otherwise, regardless of originating IP address. Sanitize it, ster-
ilize it and never use it raw. Perl is very good at this; Java and C# do not
implement ’tainted’ data out the box, and though a tainted strings class could
be implemented, it would not be as rigorous as one built in to the basic class.

For XML processing, URLs inside XML document need to be filtered so that
file:, classpath: and other protocols that provide access to server side re-
sources are intercepted. Catching xlink:href and xsd:include references is
also imperative. Note that simple string matching does not filter these strings,
unless the XML has been canonicalized.

Filter on caller. If operations have a finite list of allowed callers, they can
hard code that into the router. If the access control is only to some parts of the
server, use http filters to validate access, rather than tests in individual classes
and JSP/ASPX pages. It is too easy to forget those.

It also means that any early validation “is this a legitimate request” can resist
DoS attacks, as the amount of computation expended is less the earlier you
reject a request.

Never use clear text authentication. Basic HTTP authentication is only
secure over HTTPS links; even that sends a shared secret over an encrypted

39

wire.

Digest authentication not only avoids sending the password over the wire, so
can be used to authenticate over HTTP channels, it effectively signs the request,
ensuring that the far end can verify that no changes or errors have occurred.
This is ideal for Web Service requests where a simple transposition of digits
could have adverse consequences.

Do not store sensitive information in cookies. This should be obvious
to experienced web server developers, but merits repetition. Cookies are stored
client side. Expiry dates and times are hints, not mandatory commands, so
some other expiry check should also be performed server side. User ID and
other sensitive values must be hidden and made resistant to tampering. Session
theft is a common attack on web applications [AtS02] —there is no need to
replicate this vulnerability in Web Services.

Do not trust IP addresses or reverse DNS alone. A compromised sys-
tem can use false IP addresses when attacking another. The system needs a
better authorization mechanism than simply filtering by IP address. Digest au-
thentication is good. Using a session handle returned after the logon request
that is included in the follow-on requests, helps the service endpoints do quick
caller validation. The session handle should be an encrypted index to the real
session data, and contain a timestamp and some strongly random digits at the
beginning to make stream cipher cracking harder, something like the following

Handle= Encrypt(random[4]+timeout[4]+index[4]+sessionIP[4])

Decoding this can include verification that the session time had not expired and
that the IP address was still the same 1.

An advanced technique is to require the caller to do some NP-complete per-
request processing (perhaps using the session handle and a monotonically in-
creasing request number), which can be verified easily at the far end. This forces
the caller to invest CPU time per request, which makes DDoS attacks harder
by reducing the possible request rate of each zombie in the attack,

Filter by URL. If the system can have a separate URL, or better still host-
name, per customer, then the router and DNS can be used to direct and filter re-
quests. For example, a file storage service for external web sites could have differ-
ent virtual hosts for each customer site: site1.example.com, site2.example.com?

1Major ISPs (AOL, MSN) can route callers requests through different proxy servers, so IP
address validation does not work if the service must support callers from such locations.

40

etc. Usually these could all point to the same system, but if one site1 comes
under a DDoS attack, operations can direct it away so that site2 is unaffected.

Never print supplied string parameters inside an HTML page This is
the standard trick used to enable cross-site scripting attacks. Even pages which
try to be clever and filter out all tags that contain script, are vulnerable, unless
they filter out all tags which can possibly contain DHTML commands. It is
simpler and safer to use the \<IFRAME\> tag to display untrusted content with
the scripting inside that frame disabled, or escape all HTML tags completely,
though browser support is an issue there.

Run the service in a sandbox. Both Java and MS.NET provide isolation
for untrusted and semi-trusted applications. Run the service in such a sandbox,
granting it only the rights it needs to perform its tasks. If somehow the service
is subverted, the damage it can cause is then limited to the dimensions of the
sandbox. Never run a service with super user/administrator rights.

Defend in depth. Design the cluster such that subversion of a single box
does not compromise the entire system

Imagine if someone does gain control of a server so can execute arbitrary com-
mands on it. Should this give it unrestricted access to the rest of the Web
Service? It shouldn’t. If back end servers also validate user identities and rights
then the damages a compromised front end can do is limited. Also, use some
penetration detection tools and have a plan in place for a compromise.

Lock down the server. Have nothing on the server is not needed, disable
all extraneous bits of IIS and other front-end applications, rename all system
tools such as netstat and telnet. This is actually an area where Win2K
and WinXP’s “system recovery” feature gets in the way: they view deleting
a program such as netstat as an error and recover it from the original OS
image, whereas operations view deleting such programs and any other surplus
bits of the system as good housekeeping. The trick is to keep the install disk
inaccessible to the OS after deleting these files to prevent it restoring them.

Trust the staff, but not completely. Although security breaches by staff
are seemingly quite low, the damage can be significant. One option here is to
be utterly paranoid, but that would require auditing not only all the code writ-
ten by the team, but all the unsigned Java and .NET libraries used too. It is

41

too easy in these languages to decompile code, add an extra class or method,
creating a back door in an XML Processing Instruction or some other piece of
system code. One tactic is to decide where security really matters, and iso-
late those components and audit them rigorously, while the rest can be treated
less cautiously. Signing modules after auditing prevents them from being sub-
verted later. Of course, audited components can no longer trust the unaudited
elements.

Get a security expert to test it. To secure a Web Service the underlying
server needs to be secure, which means operations need to be up to date with
OS and web server security patches, and the operations tests need to probe for
those patches. It is rare for servers to regress security patches, but it is possible.
More likely is that a new node in a cluster is brought up and some of the patches
left out by accident; tests can detect this.

The Web Service itself needs to be tested for security. Here are some tests to
consider:

• Can any URL gain access to the source of the service?

• What gets printed/sent back on an error? A stack trace?

• Are directory listings possible?

• What does the client side do if some proxy redirects it to a malicious site?
Can it tell if this has happened?

• What happens if someone posts an near-infinitely long request? What
happens they post a hundred such requests ?

• What happens to any string validating process if data is sent in Unicode?

• Can one import a text file into an XML payload using XML “&entities;”?
What about XML paths?

• What happens when an RPC call is broken before server side processing
is completed? What happens if this happens simultaneously on a hundred
inbound requests?

• If the validation code searches for certain strings in the XML, what does it
do when those strings are escaped using XML’s “@” escaping mech-
anism?

42

Chapter 9

When Things Go Wrong

No matter how well designed the system is, at some point it will stop working.
Be ready for this, preferably as early as you can, as it will ease development as
well as deployment.

• Have logging code built into the system, with per package and level control
of log data generation. Apache’s Log4J is one example, the Apache Avalon
project’s Logkit another; Sun’s Java 1.4 logging API a third if Java1.4 can
be guaranteed. Jakarta-Commons/logging provides an abstraction that
lets your code integrate with any of these, though it has a bias towards
Log4J.

• Don’t compile out the debug level logging, you may need on a run time
system; just turn it off. Provide a way to turn it on without restarting
the server; JMX is the obvious choice.

• Keep line numbers in release packages, for the same reason. Full symbol
information is too much of a security risk; it makes reverse engineering
easier.

• The logging system should log enough information after an error for the
problem to be replicated. This should include session ID and request
parameter details.

• Provide a means of controlling the logging level dynamically through an
MBean interface. This lets you debug a running system and then throttle
logging back afterwards.

• When reporting errors via an RPC response, include a (possibly disguised)
machine/instance identifier to help track down configuration bugs.

43

Example: one server JVM stopped being able to resolve host-
names, but to the caller it looked like a general intermittent
failure of one request in eight, rather than a permanent failure
of one system. If the error had included a machine and JVM
ID, they would have been able to tell us “system 3 keeps failing”
instead of “there is an intermittent failure”.

• Include email notification for when things go very wrong.

Example: when an incoming request created a fatal error in a native
application, our service emailed the event and the data that caused it
to the development email alias, so we could file a complete bug report
ourselves. This enabled us to start fixing a problem before the end users
reported it, and so narrow the apparent interval between their bug report
and the availability of a fix.

• Even if you can find a bug a minute after receiving the report, and upload
an fix immediately later, always have a full test and staging and deploy
process, forcing 24 hours of lag between report and fix. This not only
ensures that the fix is tested, it sets people’s expectations as to what the
minimum response time is. Once you fix a trivial bug in twenty minutes,
management expects all bugs to be fixed in twenty minutes, and you end
up distracted from the process of finding and fixing problems.

• Don’t send software exception strings to the log and expect operations
people to be able to understand them.

A log message of java.io.NoRouteToHostException means to a developer that
networking problems are keeping a remote system unreachable. To operations,
the word “java” at the front meant “software problems”, which meant waking
the development team.

At the very least, common exceptions need to be noted in the deployment bug
tracking database, along with their real meaning and what could be done to fix
them.

44

Chapter 10

Components of the Future

If the Web Services vision is to be realised, then the software components used
to construct such products will need to evolve. The areas raised as issues here:
deployment, configuration, management, testing and logging all need to be ad-
dressed, not just by those software packages a team writes themselves, but by
those third party products which are used in the overall system.

The most successful server-side component models in current use are probably
COM+ and EJB; .NET is the newcomer.

10.1 COM+

COM+ components are almost a representative “how not to address deploy-
ment and availability” design: deployment is usually a matter of hand-filling of
dialog boxes on a system by system basis, creating user accounts in different
management console windows, and the sole logging standard, the Windows NT
Event Log, is slow and inflexible The WMI interface for remote management
of components is an integral part of Windows, yet a WMI interface is not a
standard feature of COM+ objects. Testing is an abstract concept: there is no
real framework for automated testing of COM+ objects on a par with JUnit
[Obj01].

Although COM+ components on Windows.NET server can be exported as
SOAP endpoints, moving to an XML transport does not address configura-
tion or scalability issues. The SOAP API a service exports should be designed
for use with SOAP, not mapped from an existing COM+ API, to address inter-

45

operability and wide area connectivity.

10.2 Enterprise Java Beans

Is Enterprise Java Beans (EJB) any better than COM+? EJB provides a con-
ceptual model for describing the domain model as a collection of objects, bound
to a database. Although it was intended to create a market of re-usable beans
from third party developers, with an explicit model of bean producers, bean
assemblers, system administrators and assemblers. Ignoring the controversial
issue as to whether Container Managed Persistence is a viable approach, the
EJB model does at least show developers how to write components which can
be used as part of a transaction, be accessed remotely and be tightly bound to
a database. The whole process of building and deploying EJB components is
somewhat unwieldy, but emergent Ant tasks, such as XDoclet, are simplifying
the process. From the perspective of high availability Web Services, it has a
number of weaknesses:

1. There is no explicit “tester” role defined, or a standard test API. Cactus
is emerging to fill the gap by extending JUnit to server side testing; the
complexity of the process shows how testing is clearly an afterthought

2. There is no standardized logging model. Components all had to choose
their own logging API. Log4J has emerged as the standard, although there
are others, including the Java1.4 logging package. A single API needs to
available for re-usable components, an API which can be bound to the
application server’s single logging mechanism underneath. However, given
that the EJB rules forbid direct writing to the file system, or opening of
sockets, there is no clear “legal” means to log inside an EJB.

3. There is no configuration model other than pure database state. This
is appropriate for the EJB beans themselves, but not for all the other
elements of an enterprise Java application, of which a Web Service is one
instance. All that is standardized are configuration files in the WAR/EAR
archives, which are inadequate.

4. There is no comprehensive notion of management: EJB beans do not come
as ’manageable’ or instrumented by default.

5. EJB is hard to develop for and incomplete. To achieve scalability and
ACID transatctions, many common functions of an application are forbid-
den: such as threading, file system I/O, and non-EJB networking. Any
large application will contain much other than the business logic function-
ality encapsulated in session and enterprise beans, yet there is no model
for these aspects of application development.

46

6. The RPC mechanism exposes the fact that the implementation is built
from EJB; clients need to include the EJB client jars and are tied to the
version of the code that they are built with.

One of the fundamental failings of EJB has to be that final one: that all the
direct clients need to know that the implementation is fronted by an EJB session
bean. This is actually addressed by the Web Services model: if you can export
your beans as Web Services, then XML can act as the transport, and WSDL
can be used to build up the client side proxy classes. From this perspective,
mapping EJB objects to SOAP endpoints is not only a good match, it is an
ideal way to hide implementation details from the caller.

10.3 .NET

The .NET framework is still new; its weaknesses will take time to become ap-
parent. Its persistence model does not stir up as much controversy as EJB,
because it has no equivalent model; this also means there is less instruction as
to how developers should construct their applications. The management side of
.NET is clearly incomplete: it is easy to write a new management entry point,
but you then have to write a Microsoft Management Console (MMC) snap-in to
work with these objects. A .NET aware management infrastructure that used
class introspection and metadata to provide a dynamic management UI is the
obvious improvement.

All this may change in future: one may hope that the ’blessed’ design patterns
do address the needs of a high availability Web Services. There is an obvious
risk that the focus of .NET evangelization will be on the speed of development
and execution over Java, rather than the ability to write quality code in the
framework. Given the slow takeup of the NAnt and NUnit tools in the .NET
community, and the lack of encouragement from Microsoft for the use of these
tools to raise the bar on build and deploy processes, there is some risk that
.NET Web Service development processes will be behind that of Java.

This potential gulf could be addressed by taking the best aspects of the leading
edge Java build tools and processes:

• Universal JUnit based testing

• Universal Ant based build processes integrating building, testing and de-
ployment

• Continual Integration servers such as CruiseControl, the Gump and Anthill
[FF00, Rub01, urb01].

47

• Autogeneration of JUnit test cases from WSDL files in Axis [Axi01, HL03]

• Seamless integration of Ant and Junit into the IDE.

The first step would be to create a test framework as powerful as JUnit, inte-
grating it into Visual Studio. The IDE’s wizards should automatically create
tests for components it creates, web services it imports, and web sites it de-
velops. These tests would be runnable from the IDE, and from an automated
continuious integration server that could be built atop the IDE, or a separate
component.

Similarly, a better logging API is needed, and again the Visual Studio wizards
should make it easy to include this logging in an application or component, and
easy to configure.

One could point to the .NET ports of Java tools: NUnit, NAnt, Log4net, and
say that the basis for this solution exists. That may be so, but without support
and integration from Microsoft, these tools are likely to remain on the sidelines.

10.4 Improving the component models

Could it be done differently? What would an ideal component world for Web
Services resemble?

Imagine being able to buy or re-use components which can be glued together to
build server side components. Each component is represented as objects that
can be created directly, or as some object whose lifecycle the application server
manages, and which must be located or created via some factory.

The component is configurable, supporting a configuration mechanism that de-
termined by the application server: the server could extract the configuration
data from a database, a directory service or simply an XML file; the component
does not have to care. All it needs to know is that it gets ’configured’.

Each component would have a management interface. This would be a JMX or a
WMI service interface depending upon the underlying platform. To implement
such a service, all the component had to do was state in the metadata associated
with methods that a method was part of the management interface; the build
tools or the runtime would extract this metadata and bind those methods to a
management interface.

The same model would apply to logging: a component would log events at a

48

debug level of verbosity, and leave to the application server to control the actual
log.

The application server would also be instrumented, so that you could turn on
logging for a particular SOAP endpoint, which would give a trace of inbound
messages, perhaps even performance statistics on computation time. The in-
strumentation provided in the server would be tightly integrated with the client
code: all could be saved to a file, streamed to a remote client or viewed in a
local GUI.

The final element of the vision would be implicity scalability: up, down, and
out. It may be that components designed for a grid architecture will deliver the
best outward scalability, but the components are easy to develop and deploy on
a single system, developer adoption will be limited.

Is this an unrealistic vision? Perhaps. But unless we start to improve the
current state of affairs, we will never get there.

In the Java world we have three competing logging APIs: Jakarta Log4J, Jakarta
Avalon Logkit, and now the Java 1.4 logging API; if an application uses the
Jakarta commons-logging logging API they can actually be written to be inde-
pendent of all three APIs, let log through any of them. This gives independences
at the expense of another layer of indirection.

The closest we have to XML/database/LDAP bindings is probably the Castor
work from Exolab. These tools will bind Java objects to XML Schema described
XML files, LDAP servers or databases via JDO —but the classes do have to
know what they are binding to: they have to pick one of the three. If someone
were to write an LDAP wrapper around XML and another to a database ta-
ble or two, then LDAP configuration should work for objects regardless of the
underlying source. This would seem to be a fruitful area for prototyping.

49

Chapter 11

A component model for the
federation of Web Services

If the federation of services that will comprise the set of publicly accessible Web
Services are viewed merely as a set of software components, what should their
component model be?

One obvious question is should they share the same component model of the
implementation?. The COM+ to SOAP bridge of Microsoft .NET Server does
let one export a COM+ API as a SOAP API, while similar bridges for EJB can
turn a session bean into a SOAP entry point.

Many of the issues covered in this paper: interoperability, security, state and ver-
sioning, and the whole challenge of working over long haul connections strongly
argue against doing so. Federated services on the scale of the Internet are
so different from the piece used to build them, that one cannot safely extend
LAN-scoped objects and endpoints to the scale needed.

Should Web Service protocols be used as the glue between elements
inside a web service?

Individual elements in a Web Service, or indeed, any other large software system,
can be implemented as Web Services in their own right.

This provides two benefits, one immediate, one potential. The immediate benefit
is that the Web Service protocols can be used to glue together disparate systems,
written in different languages or running on different technologies. For example,

50

a Java Web Service could use a “legacy” Win32 Web Service running on the
local system, exporting a SOAP interface to low level system calls. We have
used this technique in the opposite direction, with ASP pages calling a Java
Web Service for authentication.

The other potential benefit is that the exported interface can be re-used in other
applications, or perhaps underlying implementations of individual components
changed without the rest of the system needing modification. This is in marked
contrast to using interconnection technologies such as COM+, EJB/RMI-IIOP
or .NET’s tcp: remoting, as these technologies effectively tie a system’s imple-
mentation to their underlying technology for the life of that system.

Using an HTTP based API incorporates the front end load balancing compo-
nents of the system, such as the router, to balance intra-stack requests and
handle failover.

There is still a configuration problem; either the endpoints need to coded into
the system configuration files, or a UDDI server has to be set up and run in the
stack. The Mir prototype extension for Apache Axis uses multicast IP to locate
URI-identified endpoints on a LAN, so can be used to find available services
without any need for a central registry or advance configuration [Lou02]. This
could be a flexible solution for a registry-free boot up process. The first service
to locate may of course be a UDDI registy; multicast service location simply
aids in finding this registry.

There are strong arguments against using the current SOAP protocol stack
everywhere in a Web Service cluster. Firstly, it lacks transactions and authenti-
cation, key features of the existing technologies. If these are needed, then SOAP
is not viable. Secondly, it may be extra engineering effort, which, as the XP
programming philosophy espouses, is only justifiable if the results are immedi-
ately tangible. Thirdly, such an exported interface would needs to worry about
interoperability and security, just as if it were a public API.

Finally, it makes the system more complex. The routers and the servers need
to clearly distinguish public endpoints from private endpoints, and the routed-
through-the-Internet tests need to verify that the private endpoints are not
accessible. Using Web Service protocols to bridge disparate systems in a single
server stack may seem admirable, but having such heterogeneity inside a single
stack increases development, management and maintenance costs. There is a lot
to be said for the simplicity of a single language, single platform implementation.

Overall then, it is hard to come out completely in favor of blindly using SOAP for
intra-stack communications. It has a place, but it needs to be used carefully. As
the Web Service protocols evolve to include missing features, and integration
with platforms more seamless, it may be usable more widely. Security and

51

configuration issues still force caution, regardless of how much the underlying
techologies improve.

52

Chapter 12

Summary

Writing a Web Service is like writing a normal application except for the need
to implement near 100% availability, be secure and deliver robust distributed
software functionality on web timescales. The key to this is to adopt a deploy-
ment centric process that involves operations from the outset, in communicating
their requirements and deploying early builds of the system. All the founda-
tional techniques of modern software development processes: use cases or stories
to focus development, defect tracking and testing can be applied to the opera-
tions and deployment process. By doing so, the delivery process of Web Services
can be eased.

Issues that have to be addressed in the process cover security, scalability, man-
ageability and configuration; problems that other server designs have long en-
countered. New to Web Services is the API design itself: a good API for a LAN
is rarely a good API for a WAN and vice versa. There are still many problems
in this area, from interoperability to versioning —problems that do not all have
solutions.

Finally, there are ways we can improve the component model of application
frameworks, ways that are independent of the uses the components are put too.
At the very least, developers need all components supporting configuration,
management, testing and logging consistently with all other components in the
system. We can achieve this if the organisations that produce the component
models enable and evangelize this process, or the development community itself
adopts the methodology and tools to realise the vision. Although Apache and
JUnit have demonstrated that community developed tools can lead the way
in development processes, they have yet to make significant headway into the
design patterns of applications themselves.

53

The new Web Services ecosystem is a new environment, one that presents an
opportunity to apply the lessons from the past into the new world, and guide
developers into writing stable, scalable, manageable, web applications out of
components which exhibit the same characteristics.

Acknowlegements

Acknowlegements to Charlie Amacher, Mike Bialek, Debi Braught, Otto Gygax,
Sally Kaneshiro, Debi Johnson, Larry Mull, Mark Newsome, and Fred Taft.

54

Bibliography

[Ant02] Ant Developer Team. Ant 1.5, 2002. http://jakarta.apache.org/ant/.

[AtS02] AtStake. All applications are not created equal. Technical report,
AtStake, 2002. http://www.atstake.com/research/reports/.

[Axi01] Axis. Apache Axis, 2001.

[B+01] Keith Ballinger et al. Web services inspection language. Technical
report, 2001.

[Blo01] Joshua Bloch. Effective Java. Addison-Wesley, 2001.

[Bul00] Dov Bulka. Java Performance and Scalability. Addison-Wesley, 2000.

[FF00] Martin Fowler and Matthew Foemmel. Con-
tinuous integration. Technical report, 2000.
http://www.martinfowler.com/articles/continuousIntegration.html.

[FGM+] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach,
and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol –
HTTP/1.1. Technical report, IETF.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. dissertation, Univer-
sity of California, 2000.

[HL03] Erik Hatcher and Steve Loughran. Java Development With Ant.
Manning press, 2003. http://manning.com/antbook.

[Kru00] Philippe Krutchen. The Rational Unified Process. Addison-Wesley,
2000.

[Lou02] Steve Loughran. Mir: Multicast endpoint resolution. 2002.

[Mic02a] Microsoft. Global XML Web Services Architecture. Technical report,
Microsoft, 2002.

55

[Mic02b] Sun Microsystems. JAX-RPC Specification, 1.0 edition, 2002.
http://java.sun.com/xml/downloads/jaxrpc.html.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer,
1980.

[Obj01] Object Mentor. JUnit, 2001.

[Par74] D. L. Parnas. Use of abstract interfaces in the development of soft-
ware for embedded computer systems. 1974.

[Rub01] Sam Ruby. The Gump, 2001.

[Rub02] Sam Ruby. To infinity and beyond — the quest for SOAP interop-
erability, 2002.

[Sch02] Bruce Schneier. Crypto-gram newsletter, June 2002.
http://www.counterpane.com/crypto-gram-0006.html.

[Syr01] Mark Syrett. private communication. email discussion, 2001.

[urb01] urbancode. Anthill, 2001.

[W3C01] W3C. SOAP version 1.1. Technical report, W3C, 2001.
http://www.w3.org/TR/SOAP/.

[W3C02a] W3C. SOAP version 1.2 part 0: Primer. Technical report, W3C,
2002. http://www.w3.org/TR/soap12-part0/.

[W3C02b] W3C. Web Services Description Language (WSDL) 1.1. Technical
report, W3C, 2002. http://www.w3.org/TR/wsdl.

[Win00] Dave Winer. XML-RPC, 2000. http://www.xmlrpc.com/spec.

[XDo01] XDoclet. XDoclet, 2001.

56

