)

invent

Resilient Infrastructure for Network Security

Matthew M. Williamson

Information Infrastructure L aboratory
HP Laboratories Bristol
HPL-2002-273

October 11", 2002*

E-mail: matthew_williamson@hp.com

Present day network security mechanisms are based on preventing
attacks and responding to them as they occur. In the time before a
response is implemented the attack is generally free to damage the
system. Since responses are usualy human driven, this time is long
and the damage can be large. One way to minimise this damage is
to create “redlient infrastructure’. This is infrastructure that
automatically slows attacks so buying time for a human response.
This paper argues the case for resilient infrastructure in network

* |nternal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2002

Resilient Infrastructure for Network Security

Matthew M. Williamson
HP Labs Bristol, Filton Road, Stoke Gifford, BS34 8QZ, UK
matthew_williamson@hp.com

Abstract

Present day network security mechanisms are
based on preventing attacks and responding to
them as they occur. In the time before a re-
sponse is implemented the attack is generally free
to damage the system. Since responses are usu-
ally human driven, this time is long and the dam-
age can be large.

One way to minimise this damage is to create
“resilient infrastructure”. This is infrastructure
that automatically slows attacks so buying time
for a human response.

This paper argues the case for resilient infras-
tructure in network security.

1 Introduction

Present day network security mechanisms are based on
preventing attacks and detecting and responding to them
should they occur. However, while most attacks can be
prevented (by patching machines and using perimeter
defences) it is difficult to prevent all of them. As net-
works increase in scale and complexity, eliminating vul-
nerabilities becomes more and more difficult. Responses
to attacks are generally human driven and are thus late
and slow compared to the speed of attacks. With in-
creasing network complexity the response will be even
slower.

This means that using these two approaches together
still leaves a vulnerability in the system: attacks that
occur can run freely until a response can be mounted.
Because the time to a response can be large, this freedom
greatly increases the damage to the network, and thus
the work required to cleanup.

This paper argues that this situation demands a differ-
ent approach to security engineering. Rather than trying
to design secure systems from scratch, the approach is
to observe the existing system behaviour, and determine
ways to improve that behaviour without changing the
underlying system. This is akin to taming or domesti-
cation of a wild animal: not redesigning the animal, but
manipulating it in different ways to make it more useful
to the owner.

For the problem highlighted above, an approach to
“tame” the system is to construct infrastructure that
can automatically hamper and disrupt attacks as they

occur. This will limit the damage caused, and buy time
for a human response. Slowing an attack is simpler than
stopping it, so it makes sense to use automatic computer
responses to slow attacks, and human responses to stop
them. Having resilience built into the infrastructure re-
duces the burden on prevention: if the damage from a
potential attack is limited by the infrastructure, there
is less risk associated with not preventing it. Having re-
silience will also help with system behaviour when under
attack: the effect of the attack will be limited, allowing
the system to continue to operate, albeit at reduced ca-
pacity.

A simple analogy for this approach would be that
when a city is invaded, a simple but effective tactic by
the retreating population is to remove the street signs.
The population can then still use the infrastructure (for
counter attacks etc.) but the invading army is confused
and unable to use the same infrastructure as effectively.
Removing the street signs does not stop the invasion,
but hampers it while a response can be mounted.

This technology is most obviously applicable to large
attacks on network resources, for example fast spreading
viruses!, denial of service attacks, zombies, misconfigu-
rations etc., where the infrastructure could prevent the
network becoming overloaded and reduce the impact of
these attacks. Viruses that spread slowly and release a
payload at some synchronised later time could also be
countered: the slow spread gives much more time for a
human response, and the fast attack could be mitigated
by the infrastructure. Intrusions would be another at-
tack where this approach could work. It is probably less
appropriate for crafted cryptographic attacks, e.g. man-
in-the-middle ssh attacks.

The rest of this paper describes in detail the limita-
tions of present day prevention and detection-response
mechanisms in a network security context. Resilient in-
frastructure is then defined and described. Two exam-
ples of different sorts of resilient infrastructure are then
described, highlighting how this approach can both com-
plement and take the pressure off existing security mech-
anisms. The final sections discuss some of the potential
weaknesses of this approach and draw conclusions.

While there are rigorous definitions of virus and worm (Cohen,
1994; Nachenberg, 1999), in this paper the two words are used
interchangeably.

2 Prevention

All “prevention” approaches to network security are an
attempt to reduce the number of vulnerabilities and the
number of vulnerable machines. This can be achieved by
scanning networks for vulnerable machines and patching
them, by conducting penetration and patch cycles, or
by simulating attacks from outside. An alternative way
of preventing attacks is the use of defence in depth with
firewalls, DMZs etc. to shelter machines from the ravages
of the network outside.

Unfortunately, for prevention to be successful it needs
to be complete or nearly complete. It is best for all the
vulnerabilities to be removed, the firewall to only allow
traffic that cannot attack the machines inside etc.. Get-
ting complete or almost complete coverage is expensive
and difficult. Tt is an 80/20 problem, with the cost of
the last 20% being high.

There are a number of reasons for this, the first two
being scale and complexity. Modern computer systems
are big, and securing all those machines is difficult. If
you make secure 90% of a network of 600,000 machines,
there are still 60,000 vulnerable machines. A related is-
sue is complexity. The computers on the network are
no longer just servers and terminals, but servers, desk-
tops, laptops, pdas, cell phones etc., all first class citizens
and increasingly all with sufficient computing power and
bandwidth to do damage. Just managing this diverse
range of machines and users is a difficult task, while en-
suring that known vulnerabilities are removed is close
to impossible. The complexity also means that putting
neat boxes (e.g. firewalls) around systems is more and
more difficult. For example, many machines are now
mobile, operating both outside and inside the corporate
firewall. This means that protecting those machines is
more difficult. Another example is in working practises.
Peer-to-Peer systems such as Groove (Groove Networks,
2002) allow people to work together independent of or-
ganisation. It is hard to protect such systems with tech-
nologies such as firewalls.

A third issue is the demand of computer users for func-
tionality or convenience that is often directly opposed to
security. A good example would be the power of script-
ing languages in Microsoft Office applications. Those
features allowed users to e.g. make their spreadsheets
more dynamic but were also an opportunity for a vari-
ety of worms and viruses (Grimes, 2001). While security
is important to most users of computer equipment, it is
not generally their core business or reason for purchase.
There are some customers e.g. military, for whom se-
curity is the most important criterion, but for the vast
majority the functionality of the machine is more im-
portant. This means that there is an economic difficulty
with highly secure systems, since they inevitably mean
restrictions on functionality. If preventing vulnerabili-
ties means losing functionality, then implementing such

Number of infected machines

Time

Figure 1: Number of infected machines against time for a
virus attack. If the response is late (solid line) then the
virus will spread much further before the response is imple-
mented, meaning that the overall impact of the infection is
large: many machines are infected and it takes a long time
to clean up. If the response is quicker (dashed line) then
the overall impact of the infection will be much less. Tradi-
tional responses to viruses require human involvement in the
response; this makes them slow compared with the spreading
speed of viruses.

security will be an uphill battle.

A further issue is that security is a moving target. New
vulnerabilities are announced regularly, requiring work
to patch and upgrade systems. New applications are
also continually developed requiring changes to firewall
policies etc..

Finally, even if networks could be protected against
all vulnerabilities, some attacks would persist simply be-
cause they exploit the correctly working system. For ex-
ample, denial of service attacks that overload systems
with many legitimate requests. It is hard to be resistant
to this sort of attack without an enormous impact on
functionality.

3 Detection and Response

As discussed above, it is impossible to eliminate all at-
tacks, so other mechanisms are used catch the attacks
that get through. These are usually grouped as detec-
tion and response.

While the speed of computers, networks, etc. has in-
creased dramatically, the speed of responses has not
changed significantly, making them relatively late and
slow. This is a problem because it allows viruses to
spread unchecked, denial of service attacks to proceed
unthwarted and intruders to move around unchallenged
for significant periods of time, and so do significant
amounts of damage before a response is mounted.

The reason for the slow and late response is that hu-
mans are in the loop. An example would be the general

response to computer viruses. Figure 1 shows the typical
progression of a virus infection for a fast spreading virus
such as Code Red (CERT, 2001a). The response to a
virus is generally to use a virus “signature”. This is a
fingerprint of the virus that can be generated once the
virus has been noticed, isolated and analysed. These are
fundamentally human driven processes which take time.
Other response tactics are also slow, for example send-
ing an email to warn about an email virus. During this
delay the virus spreads effectively unhindered.

Another example would be Intrusion Detection Sys-
tems (IDS). Here a human has to sift through various
alerts to determine if an intrusion is occurring and then
respond. By the time the operator responds the damage
could already have been done. The operator is more of-
ten concerned with assessing the damage and organising
cleanup than with actual response.

It is not obvious how to speed up this response. In-
creasing the number of people working on the problem
will not necessarily help and is expensive. As networks
get larger and more complex it also becomes more diffi-
cult to mount a speedy response. It is also unclear how
fast the response needs to be. Some theoretical viruses
can spread through millions of systems in under a minute
(Staniford et al., 2002). This is far too fast for a human
response.

4 Resilient Infrastructure

The arguments in the previous sections can be repre-
sented by the diagram in Figure 2. The figure shows a
representation of the space of vulnerabilities on the z-
axis and the speed of response on the y-axis. Prevention
techniques eliminate vulnerabilities are are represented
by the area on the left. Attempts to increase prevention
would move the border of that area to the right, but
as discussed above it is difficult to move that line very
far. Attacks that do occur (from vulnerabilities known
but not removed, or from unknown vulnerabilities) are
dealt with by responses. These are generally slow as rep-
resented on the diagram. It is hard to make responses
faster.

The diagram thus makes the clear the vulnerability
in the present approach: attacks that are not prevented
can run riot until (much later) a response is mounted.
The present solution to this problem is to balance the
economic costs of closing the vulnerability with the risks
of keeping it open. Unfortunately, increases in the scale
or complexity of networks will only make this vulnerabil-
ity larger, making prevention less effective and responses
even slower.

The role of resilient infrastructure is to lessen the vul-
nerability, as illustrated in Figure 3. The aim is to mit-
igate attacks that have not been prevented until a hu-
man response can be mounted. The mitigation can be
achieved by slowing down, hampering, confusing and dis-

; \ |
g |
g Prevention /
g_ Response /

=

?

| |
known unknown

Vulnerabilities

Figure 2: Representation of the space of vulnerabilities. The
x-axis represents the space of vulnerabilities, and the y-axis
the speed of response. Prevention techniques cover some pro-
portion of known vulnerabilities (but not all of them, and
cannot prevent attacks that are not known) and present day
responses cover attacks that do occur but only slowly. The
area that is left uncovered is in the top right hand corner,
corresponding to a vulnerability to fast attacks. At present
the economic costs of making that area as small as possible
are balanced with the risks associated with leaving it uncov-
ered. As networks get bigger and more complex the size of
the vulnerable area will increase as it gets harder (and more
expensive) to prevent or respond quickly to attacks.

rupting malicious activity. If a firewall used to create a
system that was “crunchy on the outside, chewy on the
inside”, then this infrastructure should make it “crunchy
on the outside, treacle on the inside”. The infrastructure
should also collect data and alert the human, so that an
effective human response can be made to finally deal
with the problem.

As shown in Figure 3, resilient infrastructure comple-
ments prevention and detection-response. Since there
is some technology addressing the vulnerability, there
is less pressure on making the area as small as possi-
ble using the other approaches. If your infrastructure
is resilient to certain attacks, that means less effort is
required to prevent them. The human response can also
be more relaxed. Both of these effects should reduce
the cost of securing networks (balanced of course by any
extra costs of resiliencel!).

There are a number of reasons for suggesting that
attacks are hampered and not stopped. Firstly, it is
hard to accurately detect attacks (as years of experience
and research in Intrusion Detection Systems has shown
(Newman et al., 2002; Axelsson, 1999)). If actions are
takes to stop attacks on every alert, the rate of errors
(false positives) will result in some actions being taken

Fast

Prevention

Speed of response

Slow

known unknown

Vulnerabilities

Figure 3: Diagram showing how resilient infrastructure can
cover vulnerabilities in using only prevention and detection-
response approaches. Having resilient infrastructure in place
will not only reduce overall vulnerabilities, but also will take
the pressure of the other techniques: fewer attacks need to
be prevented, and the human response can be more relaxed.
This is indicated by the smaller areas in the diagram.

by mistake with large reductions in performance. If how-
ever the response is benign, hampering or slowing the
attack, then false alarms will cause much smaller drops
in performance.

A second aspect is that it is often difficult to determine
how to stop an attack, and stopping it is only one of the
options available to the operator. The operator can use
their common sense to determine the correct course of
actions. Writing a computer program to perform this
task would be very difficult, since it essentially requires
artificial intelligence.

Resilient infrastructure thus allows a neat division of
labour. Humans who are good at common sense and risk
analysis but poor at responding quickly can be helped
by an infrastructure whose role is to respond quickly
but does not assume responsibility for decisions requiring
common sense.

The following sections of this paper describe two ex-
amples of resilient infrastructure, showing how in each
case the infrastructure addresses a need, and comple-
ments and takes the pressure off existing approaches.

5 Example I. Virus Throttling

As mentioned above, viruses spread quickly and without
hinderance before a virus signature is developed. Virus
throttling (Williamson, 2002) is a technique that slows
the spread of viruses before the signature is available.
It does this by placing a restriction on the network be-
haviour of a machine so that viral-like traffic is heavily
delayed and slowed, but normal traffic is largely unaf-

fected.

The technique is based on the observation that a ma-
chine that is infected by a virus will contact (and at-
tempt to infect) as many machines as possible, as fast
as possible. This is in contrast to an uninfected machine
that makes outgoing connections at a lower rate, and
those connections are locally correlated—the machine is
more likely to re-connect to a recently contacted machine
than a different one. This observation is born out for a
wide variety of computer types (server, desktop machine
etc.) and for different protocols (see Williamson (2002);
Heberlein et al. (1990); Hofmeyr (1999)).

Given this observation, a mechanism that will allow
normal traffic but prevent viral traffic is to implement
a limit on the rate of connections allowed to “new” ma-
chines. “New” can be simply determined as being “in the
last n connections made”, where tests show that n is gen-
erally a small number (5-10). Such a simple detection
mechanism is bound to make mistakes, so rather than
drop connections that are to new machines, the idea is
to delay them. The delay is organised so that the quicker
and more uncorrelated the traffic, the more it is delayed.
Occasional detection errors result in small delays, but
virus-like behaviour is heavily delayed. Overall, the rate
of connections to new machines is always less than a cer-
tain allowed rate, ensuring that viruses can only spread
slowly.

Initial tests (Williamson, 2002) have shown that for a
variety of different protocols the allowable rate can be
as low as 1 connection per second. This appears to have
negligible effect on normal behaviour (e.g. around 1 in
100 normal requests delayed by 1 second, 1 in 500 by
2 seconds), and is not particularly noticeable when im-
plemented. Since the propagation of the virus is limited
to a fixed rate, the effect on the virus propagation de-
pends on its unrestricted rate. For viruses such as Code
Red and Nimda (CERT, 2001a,b) which made 200-500
connections per second, the virus should be slowed by
factors of 200-500. The throttle also makes it easy to
detect viral-like activity (by monitoring the number of
delayed connections), so it is possible to collect data on
the virus and alert a human, so aiding the speedy gen-
eration of a signature.

In its present incarnation, the throttle acts more to
protect the network of machines than to protect the
individual. This is because it does not stop the virus
destroying the individual machine but does restrict its
propagation. While this is unfortunate for the machine,
it does limit the overall damage to the network.

The throttle, if implemented widely, would create an
infrastructure that is resistant to viruses. Normal (cor-
related) traffic will pass relatively unhindered, but vi-
ral traffic will be delayed. Having this resilience built
into the infrastructure will take the pressure off the need
completely remove vulnerabilities, and in fact also aid

the slower human response.

Other research efforts that are related to this include
the idea of behaviour blocking (Messmer, 2002), and
some work on preventing machines participating in net-
work attacks by Brushi and Rosti (2000).

6 Example II. Responsive IDS

Intrusion detection systems are much studied and there
is considerable controversy over their use and value
(Newman et al., 2002). They fall into two types, those
that use signature libraries, and those that attempt to
learn the network behaviour and detect anomalies. The
signature based systems suffer from the same problems
as anti-virus signatures in that intruders can intrude
freely until the signature is found and distributed. The
anomaly detection systems attempt to solve a difficult
problem, characterising the “normal” behaviour of a sys-
tem and detecting differences from that normal profile.
The problem is that computer systems are complex and
change naturally over time: new software is installed and
used, new users have slightly different work practises, old
users leave etc.. Thus the profile needs to change over
time too. This means that it is inevitable that the sys-
tem will make mistakes, either missing real intrusions,
or classifying a normal activity as an intrusion. This
latter error is known as a false positive, and results in a
waste of the operators time. Increasing the sensitivity of
the system to real intrusions usually increases this false
alarm rate too.

The irony is that even if an intrusion is correctly de-
tected, by the time the operator does something about
it, the damage has been done e.g. the web site is de-
faced, credit numbers stolen etc.. The job of the opera-
tor is more often damage assessment and cleanup than
response. In addition the responses often cause problems
in the future. For example one response is to drop traf-
fic from a particular IP address after an attack has been
detected from that address. This is fine, except that IP
addresses are often dynamically assigned, so that traffic
from that same address 1 hour later could be legitimate,
but the system would deny it.

What is needed is a system to automatically and
quickly react to intrusions as they occur. One such sys-
tem was proposed by Somayaji and Forrest (2000).

Somayaji’s system (implemented as part of the linux
kernel) monitored the system calls made by running pro-
cesses, looking for anomalous sequences, which could cor-
respond to an attack. If such a sequence was detected,
the execution of that program was slowed by inserting
delays between the system calls proportional to the num-
ber of anomalies recently detected. This (like the virus
throttling) has the effect that a program that is run-
ning normally is not delayed, false positive errors result
in a slight loss in performance, and programs on which
intrusions are attempted are heavily delayed. In addi-

tion, since his system detects and responds to anoma-
lies, it could also respond sensibly to misconfiguration
and other common network problems (Somayaji, 2002).

Somayaji presented a large variety of results on the
performance of his system (see Somayaji (2002)). His
system was effective against a variety of different ex-
ploits and misconfigurations, giving delays that ranged
from tens of seconds to days. He also developed a user
interface that would allow a human to interact with the
system to check when processes were delayed. Some ex-
ploits were difficult to detect and gave rather short or no
delays. As far as normal interaction was concerned, the
behaviour of the system was relatively unobtrusive, but
varied with programs (e.g. the behaviour of emacs was
much more difficult to learn than sendmail).

This sort of system is another example of resilient in-
frastructure. It hampers programs that are behaving
abnormally, so limiting the damage caused by attackers
and indeed other network problems such as misconfig-
uration. It also provides a mechanism for alerting the
user when under attack.

As with the other two examples, improving automatic
responses complements and reduces the strains on other
security mechanisms. Having a system that automati-
cally fights intruders means that vulnerabilities can be
left open with less risk. It also means that there is less
work for the operator: false positives result in minor
performance hits that are probably not noticeable, as
opposed to being alerts that the operator must process.
However, the operator still has overall control over the
definitive response.

7 Drawbacks

Having presented the case for resilient infrastructure,
this section considers some of the criticisms of the ap-
proach.

Firstly, how effective can we expect resilient infras-
tructure to be? Since it aims to slow and not stop attacks
will that be futile as attacks get faster? If the aim is to
disrupt malicious traffic but not normal, will the effect
of the response have to be so small so as not to disturb
normal operation that the effect on malicious traffic will
be virtually nothing? For example does a hacker give up
after 5 secs, 50 secs, 500 secs?

The true answer to these questions is unknown. There
has been so little work in this area that it is too soon to
tell. However, that work is generally positive. The virus
throttling looks to be effective against fast spreading
worms such as Code Red and Nimda (CERT, 2001a,b).
However some theoretical viruses such as the Flash worm
(Staniford et al., 2002) would probably be too fast for it.
The Flash worm has a large list of addresses of machines
to attack and quickly propagates to the machines on the
list. It is estimated that the worm could take less than
thirty seconds to infect 10m machines. If that worm was

throttled, then the same infection would take about 100
seconds (Williamson, 2002). This is slower, but is still
too fast for a human response.

The work on intrusion response (Somayaji and For-
rest, 2000) is also a promising data point, where some
intrusions could be delayed for hours. There were how-
ever some cases where intrusions were not delayed much,
or not delayed at all. These occurred when the exploit
looked very similar to normal activity, since the amount
of delay was proportional to the number of anomalies in
a short space of time.

To summarise, some of the early work in this area is
promising, with hampering attacks having a large and
positive effect of virus transmission and intrusion re-
sponse. However, the early work has also shown that
in some cases the direct approach is less successful and
a more sophisticated approach is required. For example
Somayaji’s system only monitored system calls. If his
system had correlated system call and network activ-
ity it is possible that detection (and therefore response)
could be more effective.

A related question is how to test whether these ideas
are effective or not. There are two parts to this: do the
techniques work well individually, and do they work well
as part of the bigger system (prevention, detection and
resilience).

Testing the individual pieces requires two processes.
The techniques have to hamper real attacks, and so
should be tested on them. The techniques also have to
not disrupt normal activity, which is best verified using
user trials.

Determining how resilience fits into the broader secu-
rity context is more difficult. One approach would be
to pilot systems and evaluate them. Another is to build
models of the security process (for example epidemio-
logical models of virus spread and cleanup (Leveille and
Williamson, 2002)) and use them to gain insights into
the impact of new processes.

A second criticism that is levelled at any automatic
response system is that it opens a denial of service vul-
nerability. If an application slows down when it behaves
abnormally, all an attacker needs to do is to craft an
input that will make the application slow down.

This is a fair criticism that should be carefully ad-
dressed in the design of resilient infrastructure. The
problem might not be as bad as suggested, as it may be
difficult to know a priori what interactions may cause
an application to behave abnormally. In addition, be-
cause systems change over time, the input that caused
an application to be abnormal at one instant might not
work at another. In any case this criticism needs to be
taken in context. Adding resilient infrastucture may in-
troduce extra vulnerabilities, but if it mitigates many
other problems then it may be worthwhile.

A final comment is that our computer systems are not

really engineered at present for this type of approach.
A resilient system is somewhat like a control system, it
needs sensors to detect what is going on, and actuators
to allow it to alter the state of the system. The sensing
ought to be rich enough, and the control action ideally
needs to have enough granularity so that the controller
can have a smooth response.

Unfortunately our computer systems do not presently
have many sensors and have even fewer actuators! Part
of the challenge for this work is to determine what sen-
sors are necessary to instrument our systems, as well as
inventing various actuation mechanisms: aspects of com-
puter and network architectures that can be modified to
create benign responses.

8 Conclusion

Present day security practises for defences of networks
can be divided into two main areas. Prevention to elim-
inate as many vulnerabilities as possible, and detection-
response to recover from attacks that do occur. Unfor-
tunately, for prevention to be effective it needs to be
nearly complete which is expensive and practically un-
feasible. Responses are generally human driven and are
slow, which is a problem because attacks are fast, and if
not reacted to quickly result in the damage being much
greater than necessary. With the ever increasing scale
and complexity of networks, these techniques are strain-
ing at the seams.

This paper argues that there is a need for systems that
can automatically react to attack and problems to com-
plement these other two approaches. By building quick
response mechanisms that hamper and disrupt attacks
as they occur, the damage caused will be less. More time
will be available for a human response to finally deal with
the problem and there will be less need to remove all the
vulnerabilities as the infrastructure will be resistant to
attacks.

The paper has illustrated this with two examples from
anti-virus and intrusion detection, both of which have
demonstrated the value of a quick response that delays
malicious activity. Using virus throttling will create a
network over which viruses cannot propagate quickly.
While the individual machine might not be protected,
the overall damage to the network from an attack will
be much less. Using the responsive IDS system will allow
individual machines to protect themselves from attack.
Both systems defer final action on the problem to a hu-
man.

Possible drawbacks to the idea have been discussed
showing that initial research results are promising and
highlight that more work is required. Part of the problem
is determining how to sense system behaviour and also
how to respond to that behaviour.

If this approach is successful, then it should grow with
two goals. Firstly to further reduce the load on hu-

man operators, and secondly to encompass more network
problems. Our systems will be easier to manage if they
are naturally resilient to faults and misconfigurations as
well as attacks.

Acknowledgements

This paper was aided by discussions with Jonathan Grif-
fin, Dirk Kuhlmann and Graeme Proudler.

References

Axelsson, S. (1999). The base-rate fallacy and its
implications for the difficulty of intrusion detection.
In Proceedings of the 6th ACM Conference on
Computer and Communications Security, Singapore.

Brushi, D. and Rosti, E. (2000). Disarming offense to
facilitate defense. In Proceedings of the New Security
Paradigms Workshop, Cork, Ireland.

CERT (2001a). CERT Advisory CA-2001-19 “Code
Red” Worm Exploiting Buffer Overflow In IIS
Indexing Service DLL. Available at http:
//www.cert.org/advisories/CA-2001-19.html.

CERT (2001b). CERT Advisory CA-2001-26 Nimda
Worm. Available at http:
//www.cert.org/advisories/CA-2001-26.html.

Cohen, F. (1994). A Short Course on Computer
Viruses. John Wiley & Sons, New York.

Grimes, R. A. (2001). Malicious Mobile Code: Virus
Protection for Windows. O’Reilly & Associates, Inc.

Groove Networks (2002). http://www.groove.net.

Heberlein, L., Dias, G., Levitt, K., Mukherjee, B.,
Wood, J., and Wolber, D. (1990). A network security
monitor. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 296-304. IEEE Press.
http://seclab.cs.ucdavis.edu/papers/pdfs/
th-gd-90. pdf.

Hofmeyr, S. A. (1999). A Immunological Model of
Distributed Detection and its Application to
Computer Security. PhD thesis, Department of
Computer Science, University of New Mexico.

Leveille, J. and Williamson, M. M. (2002). An
epidemiological model of virus spreading and
cleanup. Technical Report In Preparation,
Hewlett-Packard Labs.

Messmer, E. (2002). Behavior blocking repels new
viruses. Network World Fusion News. Available from
http://www.nwfusion.com/news/2002/
0128antivirus.html.

Nachenberg, C. (1999). Computer parasitology. In
Proceedings of the Virus Bulletin International
Conference, pages 1-26.

Newman, D., Snyder, J., and Thayer, R. (2002). Crying
wolf: False alarms hide attacks. Network World
Fusion. Available from http://www.nwfusion.com/
techinsider/2002/0624securityl.html.

Somayaji, A. and Forrest, S. (2000). Automated
response using system-call delays. In Proceedings of
the 9th USENIX Security Symposium, pages 185-197,
Denver, CO.

Somayaji, A. B. (2002). Operating System Stability and
Security through Process Homeostasis. PhD thesis,
University of New Mexico, Alberquerque, New
Mexico. Available from
http://wuw.cs.unm.edu/ soma/pH/.

Staniford, S., Paxson, V., and Weaver, N. (2002). How
to Own the internet in your spare time. In
Proceedings of the 11th USENIX Security Symposium
(Security ’02). Available at http://www.icir.org/
vern/papers/cdc-usenix-sec02/.

Williamson, M. M. (2002). Throttling viruses:
Restricting propagation to defeat malicous mobile
code. In Proceedings of ACSAC Security Conference,
Las Vegas, Nevada. Available from http://www.hpl.
hp.com/techreports/2002/HPL-2002-172.html.

