

A Proofing, Templating and Purposing Engine in Java and C#/.NET

Margaret Sturgill, Steven Simske
HP Laboratories Palo Alto
HPL-2002-272(R.1)
January 31, 2006*

publishing,
templating,
proofing, .NET,
Java, repurposing

A UI-controlled application for proofing, template definition, ground
truth determination, and enabling of multi-purposing/re-purposing was
simultaneously engineered in JAVA and in C#/ .NET incorporating, as
needed, legacy C++ libraries. Fulfilling the quality assurance
requirements of a print-on-demand (printing, publishing & metadata
tagging) process, the application also provides a ready means for
templating, ground truthing & repurposing capabilities by allowing
borders and region (bit depth, type) specification. Its output is in XML in
accordance with a general schema written to provide sufficient metadata
for publishing, repurposing & template definition. This user-defined data
set also comprises "ground truth" of the viewed image and thus is by
definition a 100% accurate representation of the current image layout.
We also compare and contrast the implementation in the Java and
C#/.NET programming environments.

* Internal Accession Date Only
Published in and presented at the ACM Symposium on Document Engineering (DocEng 2003), 20-22 November
2003, Grenoble, France Approved for External Publication
© Copyright 2003 ACM

A Proofing, Templating and Purposing Engine in Java and C#/.NET

Margaret Sturgill, Steven Simske
Intelligent Enterprise Technologies Lab
HP Laboratories Palo Alto

ABSTRACT
A UI-controlled application for proofing, template definition, ground truth determination,
and enabling of multi-purposing/re-purposing was simultaneously engineered in JAVA
and in C# / .NET incorporating, as needed, legacy C++ libraries. Fulfilling the quality
assurance requirements of a print-on-demand (printing, publishing & metadata tagging)
process, the application also provides a ready means for templating, ground truthing &
repurposing capabilities by allowing borders and region (bit depth, type) specification.
Its output is in XML in accordance with a general schema written to provide sufficient
metadata for publishing, repurposing & template definition. This user-defined data set
also comprises “ground truth” of the viewed image and thus is by definition a 100%
accurate representation of the current image layout. We also compare and contrast the
implementation in the Java and C#/.NET programming environments.

Keywords: Publishing, Templating, Proofing, Repurposing, .NET, Java

Page 1

1. OVERVIEW
A UI-driven application for proofing, template definition, ground truth definition, and
repurposing was simultaneously engineered using JAVA (with JAI, Swing, and Castor
extensions/projects); and in C# in Visual Studio.NET incorporating, as needed, legacy
C++ libraries. The application was designed to fulfill the quality assurance (QA)
requirements of a print-on-demand process: any pages failing automated QA can be
proofed for printing, publishing & subsequent metadata tagging. Slight expansion of
original design provided templating, ground truthing & repurposing capabilities by
allowing borders and region (bit depth, type) specification. UI implementation comprises
providing a view of the image along with various (hot key, mouse, menu) built-in
commands (and various automated zoning engines) to facilitate zoning & proofing of the
image. Its output is in XML in accordance with a general schema written to provide
sufficient metadata for publishing, repurposing & template definition. This user-defined
data set also comprises “ground truth” of the viewed image and thus is by definition a
100% accurate representation of the image layout (and a full solution to any residual QA
errors).

The second part of this article compares and contrasts the implementation of the profiling
application in Java and C#. UML, availability and ease of integration of existing APIs,
testing and prototyping, UI, imaging and XML specification issues are considered on the
two development platforms. We found that while Java was consistently an easier
platform for which to find existing APIs (e.g. JAI and Castor), C# offered an advantage
in overall integration. Java is a more mature technology and for this certain advantages in
image processing and ease of XML development were noted (e.g. mapping vs. in-class
definition). C#, however, may provide a more consistent method of development that
some developers may find more comfortable. We also find no advantage in the use of JNI
vs. managed code wrappers incorporating existing native code (e.g. in C++). Overall as a
primarily-Java and primarily-C++ development duo, we did not find a broadly significant
advantage to development on either platform. The choice of the platform, therefore,
should be based on, not surprisingly, the developer’s skill set & deployment platform
issues.

2. BACKGROUND
As described above, one of the uses of the ground truth information is as a final step in
the Quality Assurance (QA) for a print-on-demand system where document layout
information cannot be obtained reliably by automated methods. In such case, a human
operator will need to examine the document and specify the correct page layout. Table 1
shows pass rates for different stages in Auto QA. The AutoQA verifier verifies the
images processed through the QA process. In it the PDF of the page gets converted to a
TIFF image, which is then compared to the original scan. Large deviation between the
two images implies an error in page processing.

Page 2

PODCORE PROCEDURE Pct Passing
A. Zoning Analysis 97.0
B. (A.) + OCR Feedback 97.5
C. (B.) + Forced Manhattan layout, feedback after AutoQA failure in (B.) 98.3
D. (C.) + Forced 1 black & white region, feedback after AutoQA failure in (C.) 98.7
E. (D.) + Forced Manhattan layout, with grayscale solid regions only, feedback after
AutoQA failure in (D.)

99.3

F. (E.) + Forces 1 gray region, feedback after AutoQA failure in (E.) 99.5
G. Remaining “VisualQA” failures are handled offline w/ GroundTruth application 100.0

Table 1. Sample results (from > 4000 pages) from AutoQA feedback (closed loop)

Forms, templates, specialized scanning adapters, and specific re-purposing applications
(i.e. for print-on-demand, web page generation, content delivery to specialized display
devices, etc.) require 100% accuracy for layout definition. A 100% accurate description
of a document/image/etc. layout is termed “ground truth”. Ground truth specifies exactly
where all of the regions on a (possibly composite) image are. It also describes what they
are (e.g. “text”, “photo”, “drawing” or even more specialized layout elements such as
“header”, “footnote”, “photo credit”, “bulleted list” or “background color”), termed
“region type”. Furthermore, it may describe how the region is to be treated (e.g. as
binary “BW”, or black & white; “GRAY” or 8-bit typically, and “COLOR” or 24-bit
typically), termed “modality”. Ground truthing can be used to ensure proper rendering of
a complex scanned document (e.g. to a print- or publishing-related destination such as
.PDF, .DOC, .RTF formats). It can also be used to define web page specifications (e.g.
.HTML, .XML formats). In defining a template for all other documents in a set, Ground
Truth can be used for forms processing, for specialized scanning adapters, such as slides,
photo and transparency adapters. These ground truth uses are shown in Table 2:

While automated QA techniques provide us with as high as a 99.5% success rate, the
remaining 0.5% has to be processed manually. On our more than 1.2 million-page corpus,
this turns out to be more than 6,000 pages that have to be looked at by a human operator.
Another 1-2% may be necessary to process manually based on the visual appearance of
the reconstructed (output) document. These are pages that pass Auto QA but have some
(usually small or subtle) visual defect (Visual QA). Such defects include rendering
photos in 1-bit and rendering line drawings in grayscale (8-bit). Most are
binarization/gray issues, since lost regions and segmentation errors are mainly captured
by AutoQA. This means more than 30,000 corpus pages in our set will have to be
reviewed with the GroundTruth application. Of course, given different sizes and
complexities of corpuses, these percentages and values will differ. Our goal is to limit the
review process to 2 pages/minute (the authors, after a few training pages, achieved a
throughput of 5 pages/minute). This means our pages could be processed in 15,000 man-
minutes (6.25 man-weeks). If this corpus is representative, the manual rate is 1.2 million/
6.25 pages/week/man or 200, 000 pages/man-week.

Page 3

Purpose Action Description
QA Proofing Input This is the original purpose for the ground truth application.

Automatic region generation can generate substantial quantities (up
to 2.5% in the case of our document corpus) of incorrectly processed
documents. The QA Operator processes each of the incorrect images
by verifying and modifying auto generated areas of interest to create
metadata description of document page layout. This information can
be then combined with the image data to generate the new PDF
description of the page.

Template
Generation

Store The metadata information extracted from an image can be used as a
template for page layout, allowing efficient page storage. Due to the
possibility of page scan errors and also some variations in printing
the template, the layout might have to be adjusted to generate info
for a specific page. The Ground Truth-type application is used to
either generate the template, or modify an existing template to a
specific image. Only the modified metadata would have to be stored.

Ground truth
Definition

Ship Once there is a way to extract areas of interest on a page, those areas
can be processed to extract a specific metadata required by the end
user. For example, in our project the region information can be
combined with the original image and test information extracted by
optical character recognition to produce a searchable page in a PDF
format that can be provided to a publisher for digital publishing.

Repurposing Post Use of metadata for page description allows us to present the same
document in a variety of ways just by changing the region
description.
For example a change of the bit depth for photo regions can make
them more suitable for different media and/or printers. Publishing to
print, web or storage can be easily accomplished.

Table 2. Uses for the Ground Truthing Engine

The application (GroundTruth) was written to graphically specify page layout and then
generate an XML description of the page. The two engineers involved in the project
predominantly develop on two different development platforms – Java and C++. We
decided that it would be interesting to use this project to examine the new Visual
Studio.NET and C# environment and compare it to the more mature Java platform.
GroundTruth is not necessarily a shining example of the type of software for which Java
or .NET would be picked. No web or database components are needed, and portability is
not a crucial issue (although a preference for UNIX by the end-user was one argument for
the initial deployment in Java). Because of the .NET OS requirements, our end-user
environment was a Windows 2000 system. The Mono project (http://www.go-mono.com)
should provide an open source Linux .NET implementation in the near future.

Page 4

http://www.go-mono.com/

AnalysisForceManhattanRegions()
mitprocess -rects -o outdir indir

START

AnalysisForceRectangularPageRegion()
mitprocess -1bw -0 outdir indir

AnalysisForceManhattanTextAndGrayRegions()
mitprocess -rectgray -0 outdir indir

AnalysisNew()
AnalysisAlterRegionPresentationAfterZoning()

mitprocess -0 outdir indir

Use GroundTruthing Application
on File to input desired regions via an XML file

mitprocess -gtxml -0 outdir indir

Passes
AutoQA?

Passes
AutoQA?

Passes
AutoQA?

Passes
AutoQA?

STOP

NO

NO

NO

NO

YES

YES

YES

YES

AnalysisForceGrayRectangularPageRegion()
mitprocess -1gray -0 outdir indir

Passes
AutoQA?

YES

NO

Figure 1. QA Process

Page 5

Data Collector

Generate "groundtruth"
document layout

Ground Truth
Application Select Image

Publisher

SHIP

Template Generator

Create template

Ground Truth
Application Select Image

Template User

STORE

Table 3. Ground truth uses

3. METHODS AND MATERIALS
As mentioned earlier, the “GroundTruth” application allows the user to create a page
layout description and output it in XML form for further processing. See Figure 2 for the
GroundTruth Activity Diagram. After starting GroundTruth, the user opens the file with
the page image displayed at either low resolution (75 dots per inch [or dpi], faster) or the
original resolution of the file (150 dpi Java, 300 dpi C#). She can then run automated
region analysis to provide a starting point of the page layout or start with no regions.
Regions, rectangular or polygonal areas of the page often defining a single object like a
paragraph or a picture can be drawn and their type (text, drawing, photo) and bit depth
(bw, gray, color) can be set or modified. The regions should be contiguous and not
overlap based on publishing and repurposing requirements. The user can also define the

Page 6

visible area, which is the smallest rectangle containing all the regions and whatever
border around them is also preferred. This is automatically updated to include at least a
border of 0 as new regions are added (no negative borders allowed).

Prompt UI feedback is necessary for ease-of use and speed of page processing. After all,
we should minimize the amount of time the operator spends on each page. Regions
should be color-coded for easy, at-a-glance, identification of regions. Standard techniques
like rubberbanding should be used for region definition. Context menus (right-clicking)
can be easily used for modification of attributes.

Once the user is satisfied with the region placement and properties the page description
can be saved in an XML format. See XML Section for corresponding dtd. One possible
output for the Moose Picture (See Figure 4) is shown in the same section. The metadata
generated is sufficient to reproduce the intended layout or reuse it on similar pages as a
template.

4. APPLICATION OVERVIEW

4.1. C# Version
The C# version of Ground Truth (See Figure 5) application uses the single document
model to separate the UI from the application data. All information necessary to output
XML data is stored in the GroundTruthDoc class (See Figure 3). This includes the
information about the output resolution and an array of regions currently defined on the
page. To output the XML information we used .NET’s XML serialization to output the
document class. This class also provides region management, making sure that new
regions do not overlap old ones and that any new polygon is convex.

The automatic region analysis is performed by a legacy C++ DLL. Unfortunately, we
cannot directly call its functions from C#. We have created a separate managed C++ DLL
that is used to marshal the image information and the resulting region data. This is similar
to wrapping API functions using JNI in Java. We will describe this in greater detail
below.

For drawing support we use the new GDI+, which created some interesting problems –
the biggest one being no XOR drawing support.

4.2. Java Version
The Java version of the Ground Truth application (See Figure 6) differs from the C#
version. Rather than using a large (100k lines of code) legacy C++-native zoning
analysis engine (as implemented for the C# application), it uses a smaller native Java
zoning analysis engine (20k lines of code) that does not allow overlapping regions. This
Java engine was co-developed in C++ for performance comparison (without JIT
compiling, the performance was approximately 25% better in native C++ than in Java
when running on a Windows 2000 Pentium 4 portable); however, the larger legacy
engine was chosen for the C# application as it had better overall zoning accuracy (e.g. it

Page 7

had a mean error rate in segmentation/classification of <0.1% compared to 0.2% for the
smaller, 20k lines of code, engine).

For imaging support, the Java Advanced Imaging (JAI), version 1_1_1
(http://java.sun.com/products/java-media/jai/index.html), was used. It provides full
support of the TIFF directory, and is also useful on BMP input files (Windows), although
it provides sparse metadata information for JPEG and GIF files (i.e. resolution is not
provided). For the latter file formats, the user may have had to manually enter (e.g. into a
file containing defaults) the x and y resolutions of the original document. A simple
rubberbanding class was generated which took advantage of the XOR capabilities of the
Java graphics package; e.g.:

Import java.awt.*;
…
Graphics g = component.getGraphics();

if(g != null) {
try { g.setXORMode(component.getBackground());

… }

5. CHOOSING UI TOOLS

5.1 C# Version
The UI in Ground Truth (See Figure 5) was created in Visual Studio .NET. This is where
there is a considerable difference between programming C++ with MFC and C#. Unlike
in VS 6, in VS.NET you design your UI graphically with a Forms-based interface. While
for a C++ programmer the interface would require some getting used to, for a Visual
Basic programmer it is a familiar approach. As you design the layout you drag and drop
the controls on the form and change their properties and events in property sheets. The
corresponding C# code is generated automatically. It’s quite slick. It is very important,
though, to follow the warnings about code modification in the automatically generated
comments. Additions in the middle of “Window Form Designer generated code” can
make your form unloadable, and what is more alarming, it can cause the compiler to
crash. The areas for addition of your own code are clearly marked with comments. There
is some tradeoff between ease of use vs. flexibility whenever using the automated tools.
Fortunately, handcrafted UI pieces can be also created. In our case the main region
definition area is a handcrafted control inheriting from a Picture Box.

The drawing in C# is done with GDI+. It is the new interface that shows up with .NET,
but unfortunately it is not yet ready for prime time. One of the big issues we ran into was
lack of ability to do XOR drawing, which makes rubberbanding rather unpleasant. To get
around it we had to create a new rubberbanding class that copies parts of the screen
image and bitblits it back to the screen as needed. This is definitely a slower approach
that can cause delays in drawing smoothness.

Page 8

http://java.sun.com/products/java-media/jai/index.html

5.2 Java Version
Many form editors exist in various Java IDEs. Forte Internet Edition was used to develop
& test the Java version of the GroundTruth application, and the UI components were
readily created using the Form Editor for GUI tools in Forte that “create JFC (Swing)
forms that can be designed visually”. Except for the rubberbanding class (which can be
modified from any one of several examples on the web: http://www.apl.jhu.edu/~hall/CWP-
Sources/CWP-Examples/Chapter14/1.1/Rubberband.java is a good starting point), most UI tools
were readily hooked to the menus, right clicks, hotkeys, and other activation methods.
Forte CE (Community Edition), of course, is fine for this task, and is available without
charge at http://java.sun.com/j2se/1.4/download.html (Forte is now called the SunTM
ONE Studio).

6. NATIVE CODE INTEGRATION
Unlike the Java version, the C# version of Ground Truth required integration of a legacy
DLL that provides the analysis support. The analysis DLL takes a bitmap image
(preferably at lower resolution) and returns location and classification of areas of interest
on the page. Because the code is written in unmanaged C++, it required us to provide
marshaling of data across the code boundaries. To assist us, we created a managed C++
object to do the actual marshaling and invoke the legacy code. While there is an
implementation of GDI+ in C++, we found that it does not work very well across mixed
languages. Passing Image data from C# to managed C++ caused crashes in ATL. In the
end we had to revert to old Windows basics. For our image we extracted the
corresponding HBITMAP handle and passed it to managed C++. There the new Image
structure is created from the HBITMAP. Once we had the image, we could allocate
unmanaged (__nogc) memory for the pixel data, copy it and invoke the legacy code.

As a part of the Analysis DLL we create two managed classes that can be then accessed
from the C# code:

#pragma once
#include "aiScanBedAnalysis.h"
#include "aiScanBedRegion.h"
#include "afxcoll.h"

using namespace System;

namespace Analysis_DLL
{

 public __value class Pt
 {
 public:
 int x;
 int y;
 };

// Analysis Region converts unmanaged ScanBedRegion to a managed object
 public __gc class AnalysisRegion
 {

Page 9

http://www.apl.jhu.edu/%7Ehall/CWP-Sources/CWP-Examples/Chapter14/1.1/Rubberband.java
http://www.apl.jhu.edu/%7Ehall/CWP-Sources/CWP-Examples/Chapter14/1.1/Rubberband.java
http://java.sun.com/j2se/1.4/download.html

 public:
 __value enum RegionType
 {
 JUNK = 0,
 TEXT = 1,
 PHOTO = 2,
 DRAWING = 3,
 HANDWRITING = 4,
 CARTOON = 5,
 TABLE = 6,
 GRAPH = 7,
 BUSINESSGRAPHIC = 8,
 BACKGROUND = 9,
 EQUATION = 10,
 COMPOSITETEXT = 11
 };

 __value enum RegionModality
 {
 BW =0,
 GRAY = 1,
 COLOR =2
 };

 AnalysisRegion(int RegNum, ScanBedAnalysis
*Analysis);
 Pt GetData()[] {return RegPolygon;}
 RegionType GetRegType(){ return RegType;}
 Pt GetPoint(int i) {return RegPolygon[i];}
 int PtCount() {return PointCount;}
 RegionModality GetRegModality() {return RegModality;}
 private:
 Pt BBox;
 int BBox_height;
 int BBox_width;
 Pt RegPolygon[];
 RegionType RegType;
 RegionModality RegModality;
 int IsColor;
 int PointCount;
 };

 //wrapper around AnalysisAPI, marshals image data.
public __gc class AnalysisDllAPI
 {
 public:
 AnalysisDllAPI();
 static ScanBedAnalysis *m_pScanBedAnalysisEngine;
 int InternalizeScannerData(System::IntPtr Bmp, int
Resolution);
 //int InternalizeScannerData(const __gc CImage *Bmp,
int Resolution);
 int AnalysisNew();
 int RegionCount();

 AnalysisRegion *GetRegion(int index);

Page 10

 };
}

The AnalysisDllAPI does the image marshaling, allocating the unmanaged memory and
copying the actual image data. The AnalysisRegion class marshals the region information
from analysis to a form accessible by C#.

#include "StdAfx.h"
#include <atlstr.h>
#include <atlimage.h>
#include "analysisdllapi.h"
using namespace Analysis_DLL;

AnalysisDllAPI::AnalysisDllAPI(void)
{
 System::Console::WriteLine("Analysis Api");
 if (m_pScanBedAnalysisEngine)
 delete m_pScanBedAnalysisEngine;
 m_pScanBedAnalysisEngine = new ScanBedAnalysis;

}

int AnalysisDllAPI::InternalizeScannerData(System::IntPtr Bmp, int
Resolution)
{
 IMAGE_MAP2* pMap = new IMAGE_MAP2;
 int Result = 0;
 unsigned char *data;
 unsigned char *input;
 pMap->hImage = NULL;
 pMap->Address = NULL;
 pMap->CTable = NULL;

 CImage bmp;
 bmp.Attach((HBITMAP)Bmp.ToInt32());
 int width = bmp.GetWidth();
 int height = bmp.GetHeight();

 pMap->BitsPerPixel = 24;
 pMap->Height = height;
 pMap->Width = width;
 pMap->BytesPerLine = width * 3;
 pMap->XResolution = Resolution;
 pMap->YResolution = Resolution;
 pMap->Type = IM_RGB;
 input = (unsigned char *)bmp.GetBits();
 data = new unsigned char[height * width *3];
 for (int i =0; i <height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 COLORREF col = bmp.GetPixel(j,i);
 data[i*pMap->BytesPerLine+3*j] = GetRValue(col);
 data[i*pMap->BytesPerLine+3*j+1] = GetGValue(col);
 data[i*pMap->BytesPerLine+3*j+2] = GetBValue(col);
 }

Page 11

 }
 pMap->BitsPerSample = 8;
 pMap->BlackIsZero = 1;
 pMap->SamplesPerPixel = 3;
 pMap->Address = data;
 pMap->Size = height*width*3;
 pMap->PadLineType = IM_PADLINES_NONE;
 pMap->First = 0;
 pMap->Lines = height;

 int Ret = m_pScanBedAnalysisEngine->InternalizeScannerData(pMap
);

 delete[] pMap->Address;
 delete pMap;

 return Ret;
}

AnalysisRegion::AnalysisRegion(int RegNum, ScanBedAnalysis *Analysis)
{
 ScanBedRegion *Reg = Analysis->m_list_of_scanbed_regions[RegNum];

 BBox.x = Reg->m_BBox_xmin;
 BBox.y = Reg->m_BBox_ymin;
 BBox_height = Reg->m_BBox_ymax - Reg->m_BBox_ymin;
 BBox_width = Reg->m_BBox_xmax - Reg->m_BBox_xmin;

 RegPolygon = new Pt[Reg->m_number_of_vertices];
 for (int i = 0; i < Reg->m_number_of_vertices; i++)
 {
 RegPolygon[i].x = Reg->m_xvertices[i];
 RegPolygon[i].y = Reg->m_yvertices[i];

 }
 RegType = (RegionType)Reg->m_region_type;
 IsColor = Reg->m_Color_FLAG;
 PointCount = Reg->m_number_of_vertices;

 if (Reg->m_Color_FLAG)
 RegModality = COLOR;
 else
 {
 if(Reg->m_region_type == PHOTO)
 RegModality = GRAY;
 else
 RegModality = BW;
 }

}

AnalysisRegion* Analysis_DLL::AnalysisDllAPI::GetRegion(int index)
{
 AnalysisRegion *reg = new AnalysisRegion(index,
m_pScanBedAnalysisEngine);
 return reg;

Page 12

}

As said before, we actually had a Java native version of analysis. If we did not or we
wanted to use a different segmentation engine, a JNI wrapper would need to be written to
provide Java connectivity. While JNI (Java Native Integration) was not used in the final
Java Ground Truthing application, it was considered early on. The same C++ .DLL that
was chosen for C# application was invoked from the Java side using JNI as follows:

On the Java side, the two stages of page analysis look like the following:

static native int analysisInternalizeSourceData(int source_height,
int source_width, int source_bytes_per_line,
int source_bits_per_pixel, int source_channels_per_pixel,
int source_x_resolution, int source_y_resolution,
byte [] source_map, double source_gamma);
// Default page analysis:
static native int analysisNew(char RegionStatus_low16,
char RegionStatus_high16, boolean success_FLAG);

On the C++ side, they look like the following:

extern "C" JNIEXPORT jint JNICALL
Java_AnalysisJNI_analysisInternalizeSourceData(JNIEnv *env,
jclass analysis, jint source_height,
jint source_width, jint source_bytes_per_line,
jint source_bits_per_pixel,
jint source_channels_per_pixel,
jint source_x_resolution, jint source_y_resolution,
jbyteArray source_map, jdouble source_gamma)
{
 jint return_value = 0;

 int n = 0;

 int h = (int)source_height;
 int w = (int)source_width;
 int bpl = (int)source_bytes_per_line;
 int bpp = (int)source_bits_per_pixel;
 int cpp = (int)source_channels_per_pixel;
 int xres = (int)source_x_resolution;
 int yres = (int)source_y_resolution;
 unsigned char *map = NULL;
 int gamma = (int)source_gamma;

 int nbytes = h*bpl;
 int int_value_of_byte = 0;

 // *** Array accessing fields:
 jbyte *pbyte = NULL;
 unsigned char *isCopy = NULL;

 // ***** Copy and convert source_map to map
 if(nbytes > 0)
 {

Page 13

 map = new unsigned char[nbytes];
 if(map == NULL)
 return(MEMORY_ALLOCATION_ERROR);
 pbyte = env->GetByteArrayElements(source_map,
isCopy);
// JNI call to access the jbyte array--isCopy is a
// jboolean that is filled with JNI_TRUE if a copy
// is made; with JNI_FALSE otherwise
 if(pbyte == NULL)
 return(MEMORY_ALLOCATION_ERROR);
 // Experimentally-driven mapping
for(n=0; n<nbytes; n++)
 {
 int_value_of_byte = (int)pbyte[n];
 if(int_value_of_byte >= 0)
 map[n] = (unsigned char)int_value_of_byte;
// 0...127 in C++ unsigned char are mapped to
// 0...127 in Java byte
 else
 map[n]=(unsigned char)(256+int_value_of_byte);
// 128...255 in C++ unsigned char are mapped to
// -128...-1 in Java byte
 }

 env->ReleaseByteArrayElements(source_map, pbyte, 0);
// JNI call to release the jbyte array--mode "0" is
// used to free the pbyte buffer after updating
// the source_map elements
 }

 // ********** Internalize the Scanner Data
 return_value = scanbed_analysis.InternalizeScannerData(
h, w, bpl, bpp, cpp, xres, yres, map, gamma);

 // *** Clean up memory
 if(map != NULL)
 {
 delete [] map;
 map = NULL;
 }

 return return_value;
}

extern "C" JNIEXPORT jint JNICALL Java_AnalysisJNI_analysisNew__CCZ(
JNIEnv *env, jclass analysis, jchar RegionStatus_low16,
jchar RegionStatus_high16, jboolean success_FLAG)
{
 jint return_value = 0;

 bool successFLAG = TRUE;
 UINT32 RegionStatusWord = (UINT32)RegionStatus_low16;
 UINT32 temp = (UINT32)RegionStatus_high16;

 RegionStatusWord += (temp<<16);

 if(success_FLAG == FALSE)

Page 14

 successFLAG = FALSE;

 scanbed_analysis.SetupProgressCallback(AnalysisCallback);
 return_value = scanbed_analysis.AnalysisNew(
 RegionStatusWord, successFLAG);
 if((return_value == MEMORY_ALLOCATION_ERROR) ||
 (successFLAG == FALSE))
 return(return_value);

 return return_value;
}

Note that many calls through JNI had to be made, depending on the “depth” of the data to
be bound from the C++ side to the Java side. Using Castor marshaling, the full set of
classes and their inheritance had to be specified at once. Fields of classes had to be called
sequentially to the classes being created on the Java side. Associated (nested) classes
could only be bound after the class to which they belonged was created on the Java side.

Thus, the steps for using JNI are as follows:
1. Create GroundTruthing class (Java side)
2. Obtain name, version, number of regions, width, height, xres, yres (Via JNI)
3. Create nregions, number of GroundTruthingRegions, VisibleArea class (Java side)
4. Obtain all GroundTruthingRegion & Visible Area fields, number of elements in arrays

belonging to the GroundTruthingRegions (Via JNI)
5. Create all these arrays belonging to the GroundTruthingRegions (Java side)
6. Obtain elements in all these arrays (Via JNI), number of elements in any further nested

arrays (e.g. <vertex> elements in the <polygon> arrays
7. Create these further nested arrays (Java side)
8. Obtain these array elements (Via JNI)

In theory, Steps 7/8 could be repeated out to any level of nesting where Class A has a
Class B has a Class C…etc. However, the 8 steps as above were sufficient and necessary
for the <GroundTruthing> specification.

7. XML
Once the user has generated the region information we need to output it for further use.
We needed a platform-independent format. XML was a logical choice as the transfer
mechanism. While a binary format could be more efficient, the amount of region data is
not the data-restrictive point of the project (the associated document data is!). We decided
also not to use a database to limit cost and licensing issues. We can envision a situation
(especially error detection and correction) where it is convenient for the end-user to be
able to view and modify the information with a simple text editor. For output format we
have chosen XML with a following DTD/schema (DTD shown for readability):

<!ELEMENT GroundTruthing (name, version, n_regions,
GroundTruthingRegion+, xres, yres, width, height)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT version (#PCDATA)>

Page 15

 <!ELEMENT n_regions (#PCDATA)>
 <!ELEMENT xres (#PCDATA)>
 <!ELEMENT yres (#PCDATA)>
 <!ELEMENT width (#PCDATA)>
 <!ELEMENT height (#PCDATA)>
 <!ELEMENT VisibleArea (left, right, top, bottom)>
 <!ELEMENT left (#PCDATA)>
 <!ELEMENT right (#PCDATA)>
 <!ELEMENT top (#PCDATA)>
 <!ELEMENT bottom (#PCDATA)>
 <!-- resolutions in ppi, width & height in pixels -->
 <!ELEMENT GroundTruthingRegion (bbox, polygon, region_type,
region_modality)>
 <!ELEMENT region_type (#PCDATA)>
 <!-- region types are TEXT | DRAWING | PHOTO | TABLE | EQUATION -->
 <!ELEMENT region_modality (#PCDATA)>
 <!-- modalities are: BW | GRAY | COLOR -->
 <!-- bbox and polygon values in pixel location for current
resolutions -->
 <!ELEMENT bbox (xmin, xmax, ymin, ymax)>
 <!ELEMENT xmin (#PCDATA)>
 <!ELEMENT xmax (#PCDATA)>
 <!ELEMENT ymin (#PCDATA)>
 <!ELEMENT ymax (#PCDATA)>
 <!ELEMENT polygon (n_vertices, vertex+)>
 <!ELEMENT n_vertices (#PCDATA)>
 <!ELEMENT vertex (xcoord, ycoord)>
 <!ELEMENT xcoord (#PCDATA)>
 <!ELEMENT ycoord (#PCDATA)>

7.1. C# Version

The new Visual Studio .NET has built-in support for XML. While this is provided for
Web services support, there was no reason for us not to use the existing XML APIs. In
our case XML serialization turned out to be the easiest approach. The public members
and properties are automatically output. We can add attributes to control serialization. For
example:

 public class GroundTruthDoc
 {
●●●
 [XmlElement("Name")]
 public string m_Name;

 // If we prefer an array of elements do following:
 //[XmlArray]
 //[XmlArrayItem(ElementName= "GroundTruthingRegion",
 // IsNullable=false,
 // Type = typeof(AiRegion))]
 //[XmlArray("GroundTruthingRegionList")]
 [XmlElement("GroundTruthingRegion",typeof(AiRegion))]
 public AiRegion[] AiRegions;
 private int m_xres;
 public int xres

Page 16

 {
 get {return m_xres;}
 set {m_xres = value;}
 }
●●●

}

In the above example, the m_Name member will be output as the Name element. The
xres property will be written out as an element of the same name. Arrays are more
interesting because we can output them either as an array or as disjoint elements. In the
above example we just automatically output all the objects in the AiRegions array. The
commented out code shows the attributes necessary for array output into an Array
element “GroundTruthingRegionList”.

7.2. Java Version
For Java, the XML dtd/schema for ground truthing was unmarshaled and marshaled
(XML to Java, and Java to XML, respectively) using a freeware 3rd party tool provided
by Exolab called Castor (http://www.castor.org) which itself uses Xerces
(http://xml.apache.org) for DOM, SAX and validation. To facilitate this data binding, a
mapping file (itself an XML file) is provided. A snippet of this file, showing the binding
for the GroundTruthing and VisibleArea classes, is shown below:

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Object Mapping DTD Version
1.0//EN" "http://Castor.exolab.org/mapping.dtd">

<mapping>
 <class name="GroundTruthing">
 <map-to xml="GroundTruthing"/>
 <field name="name" type="java.lang.String">
 <bind-xml name="name"/>
 </field>
 <field name="version" type="java.lang.String">
 <bind-xml name="version"/>
 </field>
 <field name="n_regions" type="java.lang.Integer”>
 <bind-xml name="n_regions"/>
 </field>
 <field name="xres" type="java.lang.Integer">
 <bind-xml name="xres"/>
 </field>
 <field name="yres" type="java.lang.Integer”>
 <bind-xml name="yres"/>
 </field>
 <field name="width" type="java.lang.Integer”>
 <bind-xml name="width"/>
 </field>
 <field name="height" type="java.lang.Integer”>
 <bind-xml name="height"/>
 </field>
 <field name="VisibleArea" type="VisibleArea">
 <bind-xml name="VisibleArea"/>

Page 17

http://www.castor.org/

 </field>
 <field name="GroundTruthingRegions" type="GroundTruthingRegion"
collection="vector">
 <bind-xml name="GroundTruthingRegion"/>
 </field>
 </class>
 <class name="VisibleArea">
 <map-to xml="VisibleArea"/>
 <field name="left" type="java.lang.Integer”>
 <bind-xml name="left"/>
 </field>
 <field name="right" type="java.lang.Integer”>
 <bind-xml name="right"/>
 </field>
 <field name="top" type="java.lang.Integer”>
 <bind-xml name="top"/>
 </field>
 <field name="bottom" type="java.lang.Integer”>
 <bind-xml name="bottom"/>
 </field>
 </class>

 <!—GroundTruthingRegion and its associated classes here-->

</mapping>

The output for the moose file may look like this:

<GroundTruthing>
 <name>Ground Truthing Engine in JAVA</name>
 <version>1.0</version>
 <n_regions>1</n_regions>
 <xres>75</xres>
 <yres>75</yres>
 <width>638</width>
 <height>875</height>
 <VisibleArea>
 <left>0</left>
 <right>638</right>
 <top>0</top>
 <bottom>825</bottom>
 </VisibleArea>
 <GroundTruthingRegion>
 <region_type>PHOTO</region_type>
 <region_modality>BW</region_modality>
 <bbox>
 <xmin>329</xmin>
 <xmax>593</xmax>
 <ymin>45</ymin>
 <ymax>412</ymax>
 </bbox>
 <polygon>
 <n_vertices>5</n_vertices>
 <vertex>
 <xcoord>329</xcoord>
 <ycoord>412</ycoord>

Page 18

 </vertex>
 <vertex>
 <xcoord>593</xcoord>
 <ycoord>412</ycoord>
 </vertex>
 <vertex>
 <xcoord>593</xcoord>
 <ycoord>45</ycoord>
 </vertex>
 <vertex>
 <xcoord>329</xcoord>
 <ycoord>45</ycoord>
 </vertex>
 <vertex>
 <xcoord>329</xcoord>
 <ycoord>412</ycoord>
 </vertex>
 </polygon>
 </GroundTruthingRegion>
</GroundTruthing>

8. DISCUSSION
Part of this exercise was to compare C# and Java programming in a practical environment
rather than comparing language features. As with most projects the major factors were:
1. End platform requirement
2. Feature set & robustness
3. Developer preference

8.1. End Platform Requirement
In the current incarnation the use of C# is limited to Windows systems. With
heterogeneous or non-Windows requirements, Java will be a better choice. Once the
Mono project finishes (based on the specification that Microsoft submitted to ECMA)
with its open source version of .NET, portability may become a lesser issue.

In desktop-type GUI applications, C# can be a reasonable choice due to the ease of GUI
design and the prevalence of Windows on the desktop. VisualStudio .NET makes the
design of Windows look-and-feel simple with easy access to standard Microsoft controls.
Note that Java applications are readily rendered with a Window’s look-and-feel.

Corporate culture and budget should be also taken into consideration. The .NET
environment is feature rich without necessarily turning to 3rd party tools. In places that
have something (like possible legal reprisals!) against using Open Source tools the cost of
Java use might become prohibitive in programming time or cost for commercial tools.
Often integration costs will outstrip the software cost in large-scale projects.

8.2. Feature Set and Robustness
Because Java has been out for several years, and is well-adopted in the programming
community, there are large amount of tools and libraries both commercial and free to
help with most specialized areas. In our case the Castor project allowed us access to

Page 19

XML without heavy coding of object serialization to XML. Also over time the number of
tools available on main Java distribution is increasing. For example, Java 1.4 has now
javax.imageio with jpg, gif and png support. JAI needs to be used only for tiff and bmp.

The .NET environment is unexpectedly feature rich. We assumed that some features like
large number of image formats will not be available to us. Surprisingly they were
available. On the other hand, some rudimentary features like XOR drawing were
inexplicably not present causing us delays while we create workarounds.

Java and Forte(now Sun ONE) provides a very stable environment. A huge free and
share community exists for Java & Forte developers. The same can’t be said for the
VisualStudio .NET environment. While the C# was very well behaved (as long as we
followed Microsoft warnings about not touching automatically generated code) the
integration of other languages on the top of CLR (Common Language Runtime) left
much to be desired. The managed C++ did not interoperate well with C# and we gave up
trying to pass Image objects.

8.3. Developer Preferences
Finally, developer preferences and training should be taken in to consideration. In our
case, neither one of us was convinced enough to change our development language
preference. At this point, if integration of large amount of legacy code is necessary, C++
should be seriously considered. Integration of managed and unmanaged code can be
awkward and time-consuming, depending on the number of entry points in the legacy
code. C#, like Java, is a pleasant language to program in, but at this point we recommend
it only if all of the necessary components are available in a managed form.

8.4. Final Thoughts
In addition to its intended purpose as a proofing tool for a print-on-demand service, the
GroundTruth application has other valuable applications for HP’s capture, printing and
publishing businesses. In defining a template, the application can be used to “ignore”
regions not defined by the user, and so, for example, it can be used to capture only the
images off of slide adapters (capture), or only the germane parts of a large document
(such as headers, titles, etc.) for printing and/or publishing. Additionally, in specifying
exactly the zoning region types and modalities, it is an invaluable tool for layout
definition, description, and re-purposing.

Page 20

Chart ID : GT Activity
Chart Name : GT Activity
Chart Type : UML Activity Diagram
Chart Stereotype : «Activity Diagram»

Region Edit

Start

Load Image

Analysis

Add regions

Output XML

Edit Regions

Branch

Merge

[not all regions specified] [not all regions correct]
[else]

[not all regions correct]

[automatic region generation] [else]

Activity Diagram: GT Activity

Figure 2. Ground Truth Activity Diagram

Page 21

+GroundTruth::GroundTruthDoc

Regions: ArrayList
+m_Name: string
+version: string
+region_count: int
+xres: int
+yres: int
+width: int
+height: int
+Mode: RegMode
+AiRegions: AiRegion[]
+PageFileName: string
Analysis: Analysis_dll.AnalysisDllAPI
«Constructor» +GroundTruthDoc()
+SetFile(FileName: string): void
+DoAnalysis(Bmp: System.Drawing.Bitmap, Resolution: Double): void
+AddRegion(reg: AiRegion): void
+Find(reg: Region): int
+Find(pt: Point): int
+GetRegions(): ArrayList
+SaveXml(FileName: string): int

+XValuesOfScanLineSegments(pyrange: int [], yrange: int, ymin: int, poly_data: ai_polygon, num_vertices: int, xvalues: int [], num_xvalues: int): int

+GroundTruth::AiRegion
$Region_Name: string[]
$Region_Modality: string[]
poly: ai_polygon
gp: GraphicsPath
start_line: Point
begining: Point
BBox: bbox
m_height: int
m_width: int
m_return_value: int
m_n_xcoordinates: int
m_xcoordinates: int[]
m_pyrange: int[]
used: bool
type: Analysis_dll.AnalysisRegion.RegionType
+region_type: String
points: ArrayList
«Property» +polygon(): ai_polygon
«Constructor» +AiRegion()
«Constructor» +AiRegion(reg: AnalysisRegion)
+Close(): void
+Add(pt: Point, end: bool): void
+Add(UL: Point, LR: Point): void
+Contains(pt: Point): bool
+SetType(t: Analysis_dll.AnalysisRegion.RegionType): void
+Draw(dc: Graphics, Scale: double): void
+CreateScanLineSegments(h: int, w: int): int
+NumberOfScanLineSegments(pyrange: int [], yrange: int, ymin: int, poly_data: ai_polygon, num_vertices: int): int

+SortXValuesOfScanLineSegments(pyrange: int [], yrange: int, xvalues: int []): int
+IsIntersecting(p1: Point, p2: Point): bool

+GroundTruth::ai_polygon
-verts: vertex[]
+n_vertices: int
«Property» +vertices(): vertex[]
«Constructor» +ai_polygon()
+Add(v: vertex): void

+Intersects(poly:ai_polygon): bool
+IsConcave(): bool

Figure 3. GroundTruthDoc UML

Page 22

Figure 4. Moose picture

Page 23

Figure 5. C# UI

Page 24

Figure 6. Java UI

Page 25

	ABSTRACT

