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We consider the problem of universal simulation of an unknown 
source from a certain parametric family of discrete memoryless 
sources, given a training vector X from that source and given a 
limited budget of purely random key bits. The goal is to generate a 
sequence of random vectors {Yi}, all of the same dimension and the 
same probability laws as the given training vector X, such that a 
certain, prescribed set of M statistical tests will be satisfied. In 
particular, for each statistical test, it is required that for a certain 
event, Eλ, 1 ≤ λ ≤ M, the relative frequency of occurrence of Eλ in 
Y1Y2...YN would converge, as N → ∞, to a random variable 
(depending on X), that is typically as close as possible to the 
expectation of the indicator function 1Eλ (X) of Eλ with respect to 
(w.r.t.) the true unknown source, namely, to the probability of the 
event Eλ. We characterize the minimum key rate needed for this 
purpose and demonstrate how this minimum can be approached in 
principle. 
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Abstract

We consider the problem of universal simulation of an unknown source from a certain
parametric family of discrete memoryless sources� given a training vector X from that
source and given a limited budget of purely random key bits� The goal is to generate a
sequence of random vectors fY ig� all of the same dimension and the same probability
law as the given training vector X� such that a certain� prescribed set of M statistical
tests will be satis�ed� In particular� for each statistical test� it is required that for a
certain event� E�� � � � � M � the relative frequency �

N

PN

i��
�E��Y i� ��E��� being the

indicator function of an event E�� would converge� as N � �� to a random variable
�depending on X�� that is typically as close as possible to the expectation of �E��X�
with respect to �w�r�t�� the true unknown source� namely� to the probability of the event
E�� We characterize the minimum key rate needed for this purpose and demonstrate
how this minimum can be approached in principle�

Index Terms� Random number generators� random process simulation� statistical
tests� typical sequences�

�This work was done while the author was visiting Hewlett�Packard Laboratories� California� U�S�A�
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� Introduction

Simulation of random processes� or information sources� is about arti�cial generation of

random sequences with a prescribed probability law� This is done by applying a determin�

istic mapping from a string of purely random 	independent� equally likely
 bits into sample

paths� The simulation problem has applications in speech and image synthesis� texture pro�

duction 	e�g�� in image decompression
� and generation of noise for purposes of simulating

communication systems�

In the last few years� the simulation problem of sources and channels� as well as its

interplay with other problem areas in information theory and related �elds� have been

investigated by a few researchers� Han and Verd�u ��
 presented the problem of �nding the

resolvability of a random process� namely� the minimum number of random bits required

per generated sample� so that the �nite dimensional marginals of the generated process

converge to those of the desired process w�r�t� a certain distance measure between probability

distributions� In ��
� it was shown that if this distance measure is the variational distance�

the resolvability is given by the sup�entropy rate� which coincides with the ordinary entropy

rate for stationary and ergodic sources� In ��
� a similar problem of channel simulation was

studied� In that paper� the focus was on the minimum amount of randomness required in

order to implement a good approximation to a conditional distribution corresponding to a

given channel 	see also ��
 for further developments
� In ��
� the results of ��
 were generalized

to drop the requirement of vanishing distances between the probability distributions of the

simulated process and the desired process� For a given� non�vanishing bound on this distance

	de�ned by several possible accuracy measures
� the minimum rate of random bits required

is given by the rate�distortion function of the target process� where the �delity criterion is

induced by the accuracy measure� In ��
 and ��
� speci�c algorithms for source and channel

simulation� respectively� were proposed�

In all these works� the common assumption was that the probability law of the desired

process is perfectly known� In a recent paper ��
� this assumption was relaxed� and the

following universal version of the simulation problem was considered� The target �nite�

alphabet source P to be simulated is unknown� except for the fact that it belongs to a

certain parametric family P� and we are given a training sequence X � 	X�� � � � �Xm
 that

has emerged from this unknown source� We are also provided with a key string of k purely
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random bits U � 	U�� � � � � Uk
� that is independent of X� and our goal is to generate an

output sequence Y � 	Y�� � � � � Yn
 	n � m
 corresponding to the simulated process� that

satis�es the following three conditions� 	i
 The mechanism by which Y is generated can

be represented by a deterministic function Y � �	X �U
� where � does not depend on

the unknown source P � 	ii
 the probability law that governs Y is exactly the same law P

corresponding to X for all P � P� and 	iii
 the mutual information I	X �Y 
 is as small as

possible� simultaneously for all P � P�

In this paper� we adopt a similar model setting as in ��
� but here 	iii
 is replaced by

another criterion that may be more directly relevant to real�life purposes of the simulation of

random processes� Now� instead of considering the behavior of a single generated random

vector Y as in ��
� we look at many random vectors Y i � �	X �U i
� i � �� �� � � � � N �

all generated from the same given training vector X� and of the same dimension as X

	here� denoted by n
� but with di�erent 	independent
 key strings of length k� fU ig
N
i���

Denoting by �E 	�
 	or� by �fEg
 the indicator function of an event� and given a set of M

events� E�� E�� � � � � EM � we would like the relative frequency of each event� �
N

PN
i�� �E�	Y i
�

� � �� �� � � � �M � to converge with probability one 	as N � �� while M � k� n� and X

are held �xed
 to a value 	depending on X
 that is typically as close as possible to the

expectation of �E�	X
� w�r�t� the true underlying source P � that is� to PfE�g� The simplest�

most common example is the set of M � 	n� r��
 � jAjr events E� � f	Xj��� � � � �Xj�r
 �

	x�� � � � � xr
g� where r is a positive integer 	typically� much smaller than n
� j � �� �� � � � � 	n�

r
� and 	x�� � � � � xr
 exhausts all possible r�tuples in Ar� One would then like the relative

frequency of each such event to come as close as possible to the respective true probability�

P 	x�� � � � � xr
� so as to have a faithful simulation� at least w�r�t� r�th order statistics� namely�

marginals of r�vectors�

At this point� a few words are in order with regard to the justi�cation for con�ning

attention to indicator functions of events and their relative frequencies� because one may

argue that while this class of tests is important and reasonable on its own right� some sta�

tistical tests of interest may involve matching between empirical means and expectations of

functions of fY ig that are more general than indicator functions� For example� in the case

of synthesizing textures or� speech�like signals� these functions� say� ff�	Y 
g��
� may corre�

�Here and throughout the sequel� we will use the symbol Y to generically denote a random vector that
is generated by the simulation scheme� and which has the same probability law given X as each one of the
Y i�s� but the index i is irrelevant to the context�
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spond to a certain set of features that the generated data should have� like a prescribed be�

havior of the empirical autocorrelation vector� where f�	Y 
 � �
n

Pn��
i�� YiYi��� � � �� �� � � � � r�

corresponding to a certain� desired spectral structure� Nevertheless� almost every function

of interest depends on Y only via some �su�cient statistics�� �	Y 
 	e�g�� the Markov�type

in the above example of the autocorrelation test
� and hence can be expressed� in the �nite

alphabet case� as a linear combination over a certain set of indicator functions of events� In

particular� if a function� say� f � is such� then f	Y 
 �
P

i �i�f�	Y 
 � �ig� where f�ig are

all possible values of �	Y 
 and f	Y 
 � �i wherever �	Y 
 � �i� Thus� indicator functions

can be thought of as �basis functions� of more general functions� and if their expectations

are all approximated adequately by a simulation scheme� the same is true for their linear

combinations� Having said that� we are essentially back to the problem of meeting a set of

statistical tests w�r�t� indicator functions of events�

Returning then to our problem� let us �rst con�ne attention to a single test for the

relative frequency of an event� denoted generically by E � First� we observe that since fY ig

are i�i�d� given X� the empirical mean of �E 	Y i
 converges almost surely to the conditional

expected value of �E 	Y 
 given X� namely�

Ef�E 	Y 
jXg � P 	Y � EjX
 �
�

�k

X
u�f���gk

�E 	�	X �u

 	�


rather than to the desired� unconditional expectation

Ef�E 	Y 
g � P 	Y � E
 � P 	X � E
� 	�


where the second equality is due to the fact that Y is required to obey the same probability

law asX� Letting � denote a certain distortion measure between these two values� a natural

objective would be to devise a simulation scheme that minimizes

J	X �Y 
 � E f�	P 	Y � E
� P 	Y � EjX

g � 	�


where the expectation� is over the ensemble of X� and where following the common abuse

of notation in the information theory literature� here J	X �Y 
 is actually a functional of

the joint distribution of X and Y � not X and Y themselves� Note that J	X �Y 
 can be

thought of as a measure of statistical dependence between X and Y in the sense that it

vanishes when X and Y are statistically independent and it may be positive otherwise�

�Note that P �Y � E� is a constant�

�



Thus� J	X �Y 
 now replaces the ordinary mutual information I	X �Y 
 of ��
� as a criterion

for good simulation�

Our main results are in characterizing fundamental limitations on simulation perfor�

mance in the sense of minimizing J	X�Y 
 �rst� for a single statistical test� and then�

simultaneously for a set of M such tests� In particular� we will characterize the minimum

key rate� R � k�n� needed so that J	X �Y 
 would be essentially as small as if there was an

unlimited supply of random key bits 	k � �
� In the case of a single test� this minimum

rate depends on the structure of the event E in a way that will become clear in the sequel�

In the more general case of multiple statistical tests� the behavior is as follows� As long as

the number of tests� M � grows in at a rate slower than double�exponential rate as a function

of n� the key rate needed is essentially the same as for a single test 	the most demanding

one in the set
� If M grows at the double�exponential rate� then some extra key rate will

be needed�

There are a few similiarities and di�erences between the present work and ��
� First�

we already mentioned that the main di�erence is that the mutual information I	X �Y 
 of

��
 is now replaced by J	X �Y 
� We are not aware� however� of a way to present I	X �Y 


as a special case of J	X�Y 
 for a particular choice of f and � that does not depend on

the unknown P � Therefore� the criterion of ��
 does not seem to be a special case of the

criterion J	X �Y 
 considered here� Moreover� the results of ��
 are not generalizable to

continuous�alphabet sources since for these sources� I	X �Y 
 �� for any �nite number of

key bits� By contrast� the approach taken in this paper can be generalized� in principle� to

the continuous case� Another di�erence is the following� The main result in ��
 is somewhat

pessimistic in that it tells us that in order to keep I	X �Y 
 small 	sublinear in n
� the

key rate R must exceed the threshold of H bits�sample� where H is the entropy of the

source� Here� on the other hand� as we shall see� the threshold rate needed to satisfy a

set of statistical tests will always be less than or equal to the entropy� depending on the

tests themselves� as mentioned earlier� Yet another di�erence is that in ��
� the analysis

and the results are more re�ned in the sense that for key rates above the threshold� there

is an accurate characterization of the best achievable rate at which I	X �Y 
�n may vanish�

There are no parallel results in this paper� Finally� on the more technical side� in ��
� there

is a distinction between the case where the dimension of Y is the same as the dimension of

X and the case where the former is smaller� Here� there is no loss of generality in assuming

�



the former because for the latter case� one can choose the event E as being measurable

only on a subset of the components of Y � The similarities between the two papers are in

the proof techniques and in the fact that the proposed simulation schemes are actually the

same�

For reasons of simplicity and brevity� our analysis will be carried out under the as�

sumption that P is the class of all memoryless sources of a given �nite alphabet� However�

similarly as in ��
� our derivations and results extend to more general classes of sources�

like exponential families of �nite alphabet memoryless sources� Markov sources� �nite�state

sources� and parametric subfamilies of these classes�

The outline of the paper is as follows� Section � is devoted to establish notation conven�

tions and to a more formal description of the problem� In Section �� we derive a lower bound

to the simulation performance w�r�t� a single test� and characterize the key rate needed to

come close to this bound� Section � extends the setting to to the case of multiple statistical

tests� Finally� in Section �� we summarize our �ndings and discuss some issues for further

research�

� Notation and Problem Formulation

Throughout the paper� random variables will be denoted by capital letters� speci�c values

they may take will be denoted by the corresponding lower case letters� and their alpha�

bets� as well as most of the other sets� will be denoted by caligraphic letters� Similarly�

random vectors� their realizations� and their alphabets� will be denoted� respectively� by

boldface capital letters� the corresponding boldface lower case letters� and caligraphic let�

ters superscripted by the dimensions� For example� the random vector X � 	X�� � � � �Xn
�

	n � positive integer
 may take a speci�c vector value x � 	x�� � � � � xn
 in An� the nth

order Cartesian power of A� which is the alphabet of each component of this vector� The

cardinality of a �nite set F will be denoted by jFj�

Let P denote the class of all discrete memoryless sources 	DMSs
 with a �nite alphabet

A� and let P denote a particular DMS in P� For given positive integers n and k� let

X � 	X��X�� � � � �Xn
� Xi � A� i � �� � � � � n� denote an n�vector drawn from P � namely�

PrfXi � xi� i � �� � � � � ng �
Qn
i�� P 	xi


�
� P 	x
 for every 	x�� � � � � xn
� xi � A� i �

�� � � � � n� Let H � �
P

x�A P 	x
 log P 	x
 denote the entropy of the source P � where here and

throughout the sequel� log	�

�
� log�	�
� For a given positive integer k� let U � 	U�� � � � � Uk
�

�



Ui � B
�
� f�� �g� i � �� � � � � k� denote a string of k random bits� drawn from the binary

symmetric source� independently of X �

Since we will rely quite heavily on the method of types ��
 in this paper� we next

describe the notation that will be used in this context� For a given source vector x � An�

the empirical probability mass function 	EPMF
 is the vector Qx � fqx	a
� a � Ag� where

qx	a
 is the relative frequency of the letter a � A in the vector x� The type class Tx of

a vector x is the set of all vectors �x � An such that Q �x � Qx� The set of EPMF�s of

n�vectors will be denoted by Qn� When we need to attribute a type class to a certain

rational PMF Q � Qn rather than to a sequence in An� we shall use the notation TQ� We

shall denote by TX the 	random
 type class of a random vector X drawn from a DMS

P � P�

For two given positive integers� n and k� and a given mapping � � An � Bk � An� let

Y � �	X�U 
� Let W 	yjx
 denote the conditional probability of Y � y given X � x

corresponding to the channel from X to Y that is induced by �� i�e��

W 	yjx
 � ��kjfu � �	x�u
 � ygj� 	�


Unless stated otherwise� the expectation operator� denoted by Ef�g� will be understood to

be taken w�r�t� the joint distribution of 	X�Y 
�

Let E � An be a given event 	corresponding to a statistical test
� let � � ��� �
� � IR� be

a distance 	or� distortion
 function� convex in its second argument� and satisfying� for every

u � ��� �
� 	i
 �	u� u
 � �� and 	ii
 �	u� v
 is monotonically non�decreasing in v for v � u

and is monotonically non�increasing in v for all v � u�� For a given �� let

P 	Y � EjX � xg �
X
y�E

W 	yjx
 �
�

�k

X
u�f���gk

�E	�	x�u

� 	�


and de�ne

J	X�Y 
 � E f�	P 	Y � E
� P 	Y � EjX

g

�
X
x�An

P 	x
 � �	P 	Y � E
� P 	Y � EjX � x

� 	�


For a single statistical test� designated by E � and a given �� we seek a mapping � that

meets the following conditions�

�Since both arguments of � are probabilities� and in the interesting cases� exponentially small ones� the
di�erences between them would typically be small as well� In such cases� one may let � depend on the
ratio rather than the di�erence between its arguments� A reasonable choice of � would then be of the form
��u� v� � ���v�u�� where �� � IR

� � IR� is convex and ���	� � 
�

�



C�� The mapping is independent of P �

C�� For every P � P and every yn � An

PrfY � yg
�
�
X
x
�W 	yjx


nY
i��

P 	xi

 � P 	y
 �
nY
j��

P 	yj
� 	�


C�� The mapping � minimizes J	X �Y 
 simultaneously for all P � P�

In the case of multiple tests� fE�g
M
���� let J�	X �Y 
 be de�ned as in eq� 	�
 with E being

replaced by E�� � � �� �� � � � �M � Then� C� is replaced by the requirement that J�	X�Y 
 are

to be minimized� if possible� simultaneously for all � � �� �� � � � �M and all P � P subject to

conditions C� and C��

Regarding the asymptotic regime of the length k of the key string� it is common to

assume that k grows linearly with n� that is� k � nR� where R � � is a constant interpreted

as the random�bit rate� i�e�� the average number of random bits used per generated symbol

of Y � However� in our setting� since X is given and �xed throughout the entire experiment

of N trials� it makes sense to allow k� and hence also R� depend on X rather than being

a constant� In this case� a better notation would be k	X
 and R	X
� respectively� or k	x


and R	x
� for a speci�c vector value of the training vector� However� to avoid cumbersome

notation� we will continue to use occasionally the shorthand notations k and R with the

understanding that they may depend on x�

Finally� we say that a sequence fAng is of the exponential order of �n� 	� being a

constant
 if limn��
�
n logAn � �� By the same token� we say that fAng is of the double�

exponential order of ��
n�

if limn��
�
n log logAn � �� Similarly� fAng is said to be of the

double�exponential order of ���
n�

if f��Ang is of the double�exponential order of ��
n�
�

� A Single Statistical Test

For the case of a single statistical test of the relative frequency of an event E � we begin with

a simple lower bound to J	X �Y 
 that applies to any simulation scheme that satis�es C�

and C�� with an arbitrarily large number of random key bits� This bound depends only on

P � E � and n� not on the particular simulation scheme�

Theorem � Let �	�� �
 be convex in its second argument� Then� for any simulation scheme

� that satis�es C� and C��

J	X �Y 
 � J�
�
� Ef�	P 	E
� P 	X � EjTX 

g

�



�
X

Q�Qn

P 	TQ
 � �

�
P 	E
�

jTQ 	 Ej

jTQj

�
� 	�


The quantity J� manifests the �price of universality�� namely� the price that must be

paid for the fact that P is unknown and only a �nite�length training sequence from P is

given� It has nothing to do with the fact that the reservoir of random bits may be limited�

a fact which may yield additional cost beyond J�� Before proving Theorem �� we pause to

provide a simple example for calculating J��

Example � Let P be a binary source �A � f�� �g� with p
�
� P 	X� � �
� and let E �

fx � x� � �g� In this case�

jTQ 	 Ej

jTQj
�

�
n� �

nqx	�
 � �

�
�

n
nqx	�


� � qx	�
� 	 


Therefore� if � is the squared�error distortion measure� then

J� � Ef�p� qx	�


�g � Varfqx	�
g �

p	�� p


n
� 	��


Proof of Theorem �� As is shown in ��
 	proof of Theorem �	a
 therein
� to meet conditions

C� and C�� for any type class TQ� given the event X � TQ� the output vector Y must

always be uniformly distributed across TQ� This means that

P 	yjX � TQ
 �

�
�

jTQj
y � TQ

� elsewhere
	��


and� on the other hand� denoting

S	y� TQ
 � f	x�u
 � x � TQ� �	x�u
 � yg�

we have the following�

P 	yjX � TQ
 � P 	�	X �U 
 � yjX � TQ


�
X

�x�u	�S�y�TQ	

�

jTQj
�

�

�k�x	

�
�

jTQj

X
�x�u	�S�y�TQ	

��k�x	 	��


which together with eq� 	��
� implies that for any � that satis�es C� and C��

X
�x�u	�S�y�TQ	

��k�x	 �

�
� y � TQ
� elsewhere

	��


 



We now derive the lower bound on J	X�Y 
 using this fact�

J	X �Y 
 �
X
x�An

P 	x
 � �	P 	Y � E
� P 	Y � EjX � x



�
X

Q�Qn

P 	TQ
 �
�

jTQj

X
x�TQ

�	P 	Y � E
� P 	Y � EjX � x



�
X

Q�Qn

P 	TQ
 � �

�
�P 	Y � E
�

�

jTQj

X
x�TQ

P 	Y � EjX � x


�
A

�
X

Q�Qn

P 	TQ
 � � 	P 	Y � E
� P 	Y � EjX � TQ



� J	TX �Y 
 	��


where the inequality follows from the assumption on the convexity of �	�� �
 w�r�t� its second

argument and equality is attained if fP 	Y � EjX � x
gx�TQ are all the same�
 To complete

the proof it remains to show that P 	Y � EjX � TQ
 � P 	X � EjX � TQ
� Now�

P 	Y � EjX � TQ
 � P 	Y � E 	 TQjX � TQ


�
�

jTQj

X
x�TQ

�

�k�x	

X
u

�E�TQ	�	x�u



�
�

jTQj

X
y�An

X
�x�u	�S�y�TQ	

��k�x	�E�TQ	y


�
�

jTQj

X
y�An

�E�TQ	y

X

�x�u	�S�y�TQ	

��k�x	

�
�

jTQj

X
y�An

�E�TQ	y


�
�

jTQj

X
x�An

�E�TQ	x


�
�

jTQj

X
x�TQ

�E 	x


� P 	X � EjX � TQ
� 	��


where the �fth equality follows from eq� 	��
� This completes the proof of Theorem �� �

Theorem � tells us that the best we can do� in order that the Jensen inequality of eq�

	��
 would come close to equality� is devise a simulation scheme � such that for every TQ

and every x � TQ�

P 	Y � EjX � x
 

�

�k

X
u

�E 	�	x�u

 	��


�The inequality J�X�Y � � J�TX �Y � can be thought of as a certain type of a data processing theorem
for J�X�Y ��

��



would be as close as possible to

P 	X � EjX � x
 �
�

jTQj

X
x�TQ

�E 	x
 �
jTQ 	 Ej

jTQj
� 	��


However� the reason we need the proximity between 	��
 and 	��
 for every x is deeper than

the aforementioned technical reason of making the inequality of 	��
 as tight as possible� It

is important to remember that the training vector X is generated only once and it remains

�xed throught the entire experiment of generating many vectors fY ig� so the law of large

numbers for fY ig applies only w�r�t� the given X� Therefore� it is not enough to have a

simulation scheme that is good 	in the sense of attaining J�
 only over ensemble average of

X� but one would like to guarantee that it would be good essentially for every given� typical

X� And since P is unknown� this should be true for all type classes fTQg� Therefore� from

now on� we focus on simulation schemes for which 	��
 comes close to 	��
 for every TQ and

every x � TQ�

Observe that there are two cases where 	��
 is exactly equivalent to 	��
� The �rst is

the case where TQ 	 E � �� where both 	��
 and 	��
 trivially vanish 	the former� for any

simulation scheme satisfying C� and C�� even with no key bits at all
� The other case where

	��
 matches perfectly to 	��
 is when k	x
 is at least as large as log jTxj� because in this

case� there is enough randomization power to implement a uniform distribution across Tx

	see also ��

� But this means that the rate

R	x
 �
k	x


n
�

log jTxj

n
�

is approximately equal to the empirical entropy� �
P

a�A qx	a
 log qx	a
� whose expectation�

w�r�t� the ensemble of fXg� tends to the entropy� H� The interesting question is whether

we can manage with a smaller bit rate to obtain a good approximation of 	��
 by 	��
� and

if so� what is the minimum rate�

Intuitively� the answer to the �rst question is a�rmative� The type class should only be

populated with su�ciently many points f�	x�u
gu�f���gk so as to have a faithful approx�

imation of the relative number of typical sequences within E � In the following� we try to

translate this intuition to a concrete result�

Denoting

!H 
 !H	x

�
�

�

n
log jTxj� 	��


��



and

E 
 E	x

�
�

�
�
n log jTx 	 Ej Tx 	 E �� �
!H Tx 	 E � �

	� 


we de�ne

RE 
 RE	x

�
� !H �E� 	��


Following the above discussion� for a given " � ��� �
� we de�ne a simulation scheme � as

"�faithful for E w�r�t� x� if

	��"
 �
jTx 	 Ej

jTxj
�

�

�k

X
u

�E 	�	x�u

 � 	� � "
 �
jTx 	 Ej

jTxj
� 	��


We also de�ne a simulation scheme as "�faithful for E if it is "�faithful for E w�r�t� every

x� The next theorem tells us that RE	x
 is essentially the minimum key rate� as a function

of x� required for "�faithful simulation w�r�t� all x� The asymptotically minimum average

rate is� therefore� EfRE 	X
g� Again� this expectation w�r�t� X is meaningful only if it is

essentially realized� for large n� by every typical x� since the training vector is drawn only

once�

Theorem � �a� �Converse part�� If R	x
 � RE 	x
 �
�
n log	� � "
� for some x� then

there exists no simulation scheme that is "�faithful for E w�r�t� that x� and hence nor

a "�faithful scheme for E�

�b� �Direct part�� Let 	 
 � be given and let n be su	ciently large� If R	x
 � RE	x
 � 	

for all x� there exists a simulation scheme which is "
faithful for E� provided that

" � ��n� for some � � 	���

Before proving this theorem� let us consider the following example for assessing the

function RE	x
 and its expectation�

Example � Let P be again� the binary memoryless source with p � P 	X� � �
� as in

Example �� Let now E � fx � x� � x� � � � � � xbn�c � �g� where � � 	�� �
� Now� if

nqx	�
 � bn�c� then jTx 	 Ej � �� otherwise

jTx 	 Ej �

�
n� bn�c

nqx	�
 � bn�c

�

 exp�

�
n	�� �
h

�
qx	�
 � �

�� �

�	
� 	��


where h	u
 � �u log u � 	� � u
 log	� � u
� for u � ��� �
� is the binary entropy function�

Therefore�

RE	x
 


�
h	qx	�

� 	�� �
h



qx��	��

���

�
� qx	�
 
 �

�� qx	�
 � �
	��


��



Now� as n��� qx	�
 tends to p almost surely� and so�

EfRE 	X
g �

�
h	p
� 	�� �
h



p��
���

�
� p 
 �

�� p � �
	��


Note that there is a discontinuity at p � ��

The remaining part of this section is devoted to the proof of Theorem ��

Proof� Part 	a
 is fairly simple� If Tx 	 E � �� there is nothing to prove� Otherwise� note

that

P 	Y � EjX � x
 � ��k
X
u

�E	�	x�u



can only take on values that are integer multiples of ��k� namely� m ���k for m � �� �� � � � ��

Now� for m � �� the left inequality in 	��
 is obviously violated� If R � RE � log	� �"
�n�

the right inequality of 	��
 is already violated for m � �� let alone larger values of m� This

completes the proof of part 	a
�

Turning to part 	b
� if Tx 	 E � �� the simulation scheme y � x� which requires no

key bits at all� satis�es 	��
 trivially� as mentioned earlier� For the case Tx 	 E �� �� our

proof technique is similar to the one in ��
� Consider mappings of the following structure�

List the members of each type class TQ in a certain order� and for every x � TQ� let

I	x
 � f�� �� � � � � jTQj � �g denote the index of x within TQ in this list 	starting from zero

for the �rst sequence
� Denoting by I�� the inverse map from f�� �� � � � � jTQj� �g to TQ� we

de�ne

y � �	x�u

�
� I��

�
�I	x
� k�x	X

i��

�i��ui

�
A � 	��


where� denotes addition modulo jTQj� and the summation over i is taken under the ordinary

integer arithmetic 	and de�ned as zero when k	x
 � �
�

This mapping obviously satis�es condition C� as it is independent of P � Since X is

uniformly distributed within its type class� then so is Y and therefore� � satis�es condition

C� as well� Whether or not such a mapping is "�faithful for E w�r�t� x� depends on the

ordering� or the permutation corresponding to the ordered list of n�sequences in each of the

type classes� There are as many as jTQj# di�erent permutations� and we next show that

there exists a permutation that induces a "�faithful approximation of jTQ 	 Ej�jTQj� In

fact� we show that the vast majority of permutations of TQ are such�

First� observe that given x � TQ� there is a set of �k � �nR di�erent sequences fyg�

which we shall denote by Y	x
� that are obtained from 	��
 as u exhausts the key space�

��



We would like to have a simulation scheme for which the relative frequency of sequences

from E within Y	x
 is within a factor of � � " away from the ideal value� jTQ 	 Ej�jTQj�

simultaneously for all x � TQ� Let us �rst upper bound the number of permutations� K� of

TQ such that for a given x� Y	x
 contains at least

L�
�
� 	� �"
 �

jTQ 	 Ej

jTQj
� �nR

sequences of E � A straightforward combinatorial consideration implies that this number of

permutations is given by

K � 	jTQj � �nR
#
X
��L�

�
�nR

�

�
���Y
i��

	jTQ 	 Ej � i

�nR����Y

j��

	jTQj � jTQ 	 Ej � j
� 	��


where each summand corresponds to all combinations of �nR sequences 	that form Y	x



such that exactly � members of them are from E and the factor in front of the summation

is the number of permutations of the members of TQ 	 �Y	x

c� Equivalently� K can be

rewritten as follows�

K � 	jTQj � �nR	
#
X
��L�

	�nR
#

�#	�nR � �
#
�

jTQ 	 Ej#

	jTQ 	 Ej � �
#
�

	jTQj � jTQ 	 Ej
#

	jTQj � jTQ 	 Ej � 	�nR � �

#

� jTQj# �

P
��L�

�
jTQ 	 Ej

�

�
�

�
jTQj � jTQ 	 Ej

�nR � �

�
�
jTQj
�nR

� � 	��


Since the �rst factor of the last expression� jTQj#� is the total number of permutations of

the members of TQ� the second factor is the fraction of permutations for which � � L�� We

next show that this fraction is doubly exponentially small as a function of n� To this end�

we upper bound the numerator and lower bound the denominator of the second factor of

right�most side of last equation� The numerator is upper bounded using the fact that for

any two nonnegative integers p and q 	q � p
��
p
q

�
� �ph�q�p	�

Speci�cally�

X
��L�

�
jTQ 	 Ej

�

�
�

�
jTQj � jTQ 	 Ej

�nR � �

�

�
X
��L�

exp�

�
jTQ 	 Ej � h

�
�

jTQ 	 Ej

��
� exp�

�
	jTQj � jTQ 	 Ej
 � h

�
�nR � �

jTQj � jTQ 	 Ej

��

��



� �nRmax
��L�

exp�

�
jTQ 	 Ej � h

�
�

jTQ 	 Ej

�
� 	jTQj � jTQ 	 Ej
 � h

�
�nR � �

jTQj � jTQ 	 Ej

��

� �nR � �jTQj�F 	��


where F � maxf
h	�
� 	�� 

h	�
g� 

�
� jTQ 	Ej�jTQj� the maximum being over all pairs

	�� �
 for which � � 	� � "
� and 
� � 	� � 

� � �� with �
�
� �nR�jTQj� It is easy to

show that the function 
h	�
 � 	�� 

h		� � 
�
�	�� 


 is monotonically decreasing in �

for � � �� and so� the maximum de�ning F is attained for � � ��
�
� 	� � "
�� Thus� the

numerator of the expression at hand is upper bounded by

�nR � exp� fjTQj � �
h	��
 � 	�� 

h	��

g �

where ��
�
� 	� � 
��
�	� � 

� The denominator� on the other hand� is lower bounded ��


by� �
jTQj
�nR

�
�

�

jTQj� �
� exp�fjTQj � h	�
g� 	� 


When plugging the upper bound on the numerator and the lower bound on the denominator

into eq� 	��
� the exponent of the denominator is subtracted from that of the numerator

and we obtain�


h	��
 � 	�� 

h	��
� h	�
 � �
D	��k�
� 	�� 

D	��k�


� �
D	��k�
� 	��


where for a� b � ��� �
� D	akb

�
� a log	a�b
� 	�� a
 log�	�� a
�	�� b

� It then follows that

K � 	jTQj� �
# � �nR exp� f�jTQ 	 Ej �D		� � "
�k�
g � 	��


To further upper boundK� we next derive a lower bound on jTQ	Ej �D		��"
�k�
� Using

the fact that

ln	� � u
 � � ln

�
��

u

u� �

�
�

u

u� �
�u 
 ��� 	��


we have the following lower bound on the divergence�

D		� � "
�k�
 �
�

ln �
	� � "
� ln	� � "
 �

�

ln �
���"
�
 ln



��

�"

�� �

�

�
�

ln �
	� � "
� ln	� � "
�

�

ln �
��� 	� � "
�
 �

�"�	�� �


�� �"�	�� �


��



�
�

ln �
	� � "
� ln	� � "
�

�

ln �
��� 	� � "
�
 �

�"

�� 	� � "
�

�
�

ln �
�	� � "
 ln	� � "
�"


�
�"�

� ln �
� small "� 	��


where the last line follows from the Taylor series expansion of the function f	u
 � 	� �

u
 ln	� � u
� u� Thus� using the de�nition of �� we get�

jTQ	Ej �D		��"
�k�
 �
"�

� ln �
��log jTQ�Ej�log jTQj�nR �

"�

� ln �
��n�R�RE �x	� �

"��n�

� ln �
	��


where the last inequality follows from the assumption that R � RE	x
 � 	�

We conclude that for a given x � TQ� the number of permutations of TQ for which L�

or more members of Y	x
 come from E � is upper bounded by�

K � 	jTQj� �
# � �nR � exp�

�
�
"��n�

� ln �

�

for large n� As stated in the assertion of part 	b
� " can be chosen to be as small as

��n� for any � � 	�� and still the r�h�s� of the last inequality would decay in a double�

exponential rate� Multiplying this bound by the jTQj possible choices of x� which is an

exponential function of n� we deduce that the total number of permutations that have this

property for some x � TQ is still a doubly exponentially small fraction of the total number

of permutations� jTQj#� This conclusion remains unchanged even after taking into account

also the permutations for which

� � 	��"

jTQ 	 Ej

jTQj
� �nR

whose number is also bounded 	similarly
 by a doubly exponentially small fraction of jTQj#�

Applying this consideration to all types fTQg� we have a complete simulation scheme that

is "�faithful scheme for E � In fact� we have shown that the vast majority of schemes of the

form 	��
 are "�faithful� �

� Multiple Statistical Tests

We now move on to the more general case� where rather than a single statistical test� we have

M tests for the events E�� E�� � � � � EM � which all have to be simultaneously accommodated in

��



the sense of Section �� Interestingly� it turns out that as long as M grows at a rate slower

than double�exponential in n� the key rate needed for a given x� is simply max�RE�	x
�

which is the same rate needed for the single test with the smallest jTx 	 E�j in the set 	cf�

Section �
� If� on the other hand� n grows double�exponentially� then the minimum needed

key rate increases in a manner that will be detailed next�

For each event E�� let us de�ne 	similarly to eq� 	� 

�

E�	x

�
�

�
�
n log jTx 	 E�j Tx 	 E� �� �
!H	x
 Tx 	 E� � �

	��


and for every S � ��� !H 
� let MS 
 MS	x
 denote the number of di�erent intersections

fTx 	E�g� created by the events fE�g for which E�	x
 � S� Note that MS	x
 may be non�

zero only over a �nite set of values of S� namely� the set f �n log �� �n log �� � � � � �n log jTxjg�

Now� de�ne

$S	x

�
�

���
��
�� MS	x
 � �
� MS	x
 � �
�
n log logMS	x
 MS	x
 
 �

	��


and the rate�function

R�	x
 � !H	x
 � max
S

�$S	x
� S
� 	��


Observe that the total number of di�erent subsets of Tx� whose sizes are all exactly �nS �

grows at the double�exponential rate of ��
nS
� thus the term maxS �$S	x
 � S
 is 	asymp�

totically
 non�positive� which means that R�	x
 essentially never exceeds !H	x
 	cf� the

discussion after Theorem �
� Observe also that as long as the total number of events M

grows at a rate that is slower than double�exponential in n� then $S	x
 is very close to

zero for all S with MS	x
 
 �� and so� R�	x
 is indeed� essentially equal to max�RE�	x
�

i�e�� the rate for the most demanding event in the set� Simple examples for calculating the

function R�	�
 appear in Example � below and in the construction described in the proof

of Theorem � in the sequel�

Our direct theorem for multiple tests is the following�

Theorem � Let 	 
 � be given and let n be su	ciently large� If R	x
 � R�	x
 � 	 for

all x� then there exists a simulation scheme that is "�faithful simultaneously for all E��

� � �� �� � � � �M � provided that " is as in Theorem ��

Proof of Theorem �� Recall that in the proof of Theorem �� we have shown that the fraction

of �bad� permutations of Tx� in the sense of violating 	��
 for each E�� is upper bounded by

��



an expression of the double exponential order of

exp�f��
n�R�RE�

	g � exp�f��
n�R�� 
H�E�	�g�

Thus� by the union bound� the fraction of permutations that are �bad� for at least one of

the events in the collection� is upper bounded by an expression with the double�exponential

order of

X
S

MS � exp�f��
n�R�� 
H�x	�S	�g � jTxj �max

S
MS � exp�f��

n�R�� 
H�x	�S	�g

� jAjn � exp�

�
max
S

h
�n�S�x	 � �n�R��


H�x	�S	�
i	

	��


which continues to decay with n as long as R	x
 � � !H	x
 � S
 � $S	x
 � 	 for all S� or�

equivalently� R	x
 � R�	x
 � 	� This completes the proof of Theorem �� �

The converse part is more involved� both conceptually and technically� Note that one

cannot expect a straightforward converse to Theorem �� asserting that for any given collec�

tion of events� fE�g
M
���� R � R�	x
� 	 implies the nonexistence of a "�faithful simulation

scheme w�r�t� x� simultaneously for all E� in this collection� The reason is that R�	x


does not take much account of the geometry of the constellation of the set of events fE�g�

Intuitively� if all M events are �su�ciently similar�� there might be a simulation scheme

that accommodates all of them� To demonstrate that this might be the case� consider the

following example�

Example � Let E� be an arbitrary subset of some type class TQ� whose size is jE�j � �nS� �

where S� � 	��HQ
 is a constant� HQ denoting �
n log jTQj� Now� for � � �� � � � �M � let

E� � E��G�� where each G� is a subset of TQ�E� whose size is � ��nS� for some �xed � �� "�

Note that all these events are clearly very �close
 to E�� and indeed� every simulation scheme

that is "�faithful for E� is also 	"� �

faithful for E�� � � �� �� � � � �M � The number of such

events is

M �

�
jTQj � �nS�

� � �nS�

�

which is of the double exponential order of ��
nS� � and so� for all x � TQ� $S	x
 is essentially

equal to S� for S � S� and is �� elsewhere� Therefore� for any x � TQ� we have

R�	x
 
 HQ � S� � S� � HQ�

��



while the simulation scheme for E� needs only about 	HQ � S�
 bits per sample within TQ�

Note that S� can be chosen arbitrarily close to HQ� and so� the gap between these two rates

can be nearly as large the one between the two extremes of the full range of rates� 	��HQ
�

In view of this observation� a converse to Theorem � can only exist for some of the

collections fE�g� intuitively� those where the events are su�ciently �far apart� from each

other�� But di�erent collections might� in general� have a di�erent rate function� R�	x
�

Therefore� in order to state a converse theorem in a coherent manner� we have to consider

all collections of M events that share the same rate function R�	x
� To ensure that such a

converse theorem would be compatible with the direct theorem� we �rst look at the direct

theorem� Theorem �� in a di�erent manner� Instead of characterizing R�	x
 for a given set

of events as in Theorem �� we then go the other way around� namely� we start with a given�

arbitrary rate function R�	x
 and then characterize the class of collections of events� fE�g

whose rate function does not exceed R�	x
�

Speci�cally� �x an arbitrary function R�	x
 � !H	x
� depending on x only via Tx� Now�

consider the class M	R�
 of all collections of fE�g with the following property� For every x

and every S � ��� !H	x

�

$S	x
 � S � � !H	x
�R�	x

�

Then M	R�
 is indeed the class of collections of events fE�g for which the rate function

does not exceed the given R�	x
� Theorem � then tells us that if R	x
 � R�	x
 � 	 for all

x� then for every collection of fE�g
M
��� in M	R�
� there exists a simulation scheme that is

"�faithful simultaneously for all E� in this collection of events�

The converse theorem is now the following�

Theorem � Let 	 
 �� � � " � �� and let n be su	ciently large� If R	x
 � R�	x
 � 	

for some x� then there exists a collection of events fE�g in M	R�
� for which no simulation

scheme is "�faithful w�r�t� this x� simultaneously for all E� in that collection�

In the proof of this theorem� it will actually be shown that not only does a problematic

collection in M	R�
 exist when R	x
 is below R�	x
� but moreover� the vast majority of

the collections� in a certain class� are such� The remaining part of this section is devoted to

the proof of Theorem ��

�In fact� for any reasonable set of tests� the events E� should be separated and diverse enough in order to
cover e�ciently a wide variety of patterns�

� 



Proof of Theorem �� We begin with a generic version of the covering lemma whose original

version� due to Csisz�ar and K%orner ��
� was stated in the context of type covering� The

more general version� stated below� will be used in the sequel in a context that is di�erent

than type covering� but the proof is in the same spirit as in ��
�

Lemma � Let F be a �nite set and let F��F�� � � � �Fm�
be subsets of F such that �m�

i��Fi �

F � and every u � F is a member of at least m of the subsets fFig� Then� F can also be

covered by some sub�collection of s out of the m� subsets fFig� provided that

jFj �

�
��

m

m�

�s
� ��

Proof of Lemma �� Let fFi� �Fi� � � � � �Fisg denote an arbitrary sub�collection of s subsets

of F � where ij � f�� �� � � � �mg� j � �� �� � � � � s� The number of elements of F that are not

covered by fFi� �Fi� � � � � �Fisg is given by

N	Fi� �Fi� � � � � �Fis
 �
X
u�F

sY
j��

��� �Fij 	u

�

Now� consider a random selection of Fi� �Fi� � � � � �Fis � where fijg are drawn independently�

each one with a uniform distribution over f�� �� � � � �m�g� Then� the expected value of the

number of uncovered elements of F � w�r�t� this random selection� is given by

EfN	Fi� �Fi� � � � � �Fis
g �
X
u�F

E

��
�

sY
j��

h
�� �Fij 	u


i��
�

�
X
u�F

sY
j��

E
nh

�� �Fij 	u

io

� jFj �

�
��

m

m�

�s
� �� 	� 


where in the second equality we have used the independence of fijg� and where the last

inequality is by the hypothesis of the lemma� Since N	Fi� �Fi� � � � � �Fis
 is an integer valued

random variable� then EfN	Fi� �Fi� � � � � �Fis
g � � implies that there must exist at least

one sub�collection fFi� �Fi� � � � � �Fisg for which N	Fi� �Fi� � � � � �Fis
 � �� which means that

F is covered by fFi� �Fi� � � � � �Fisg� This completes the proof of the Lemma� �

Comment� Note that the proof of the lemma also tells us 	using the Chebychev inequality


that

PrfN	Fi� �Fi� � � � � �Fis
 � �g � jFj �

�
��

m

m�

�s
�

��



in other words� the r�h�s� is an upper bound on the fraction of constellations fFijg
s
j�� which

do not cover F � If this number is signi�cantly smaller than one� then it can be argued

that not only does a cover of s subsets exist� but moreover� most of the constellations of s

subsets provide a cover�

Returning to the proof of Theorem �� let R�	�
 be given� and let x be a vector for which

R	x
 � R�	x
� 	� For a given � � $ � R�	x
� let

E� 
 E�	x

�
� !H	x
�R�	x
 � $�

Note that $ � E� � !H	x
� Consider the collection of all events fE�g� each containing

exactly �nE� members of Tx� The total number of such events is

M�
�
�

�
jTxj
�nE�

�
�

Now� for every subcollection of size M � ��
n�
�M�� the rate function is obviously� !H	x
�

maxS �$S	x
 � S
 � !H	x
 � $ � E� 
 R�	x
� and so� it is a member of M	R�
� We wish

to show that at least one such subcollection of events satis�es the assertion of Theorem �

provided that R � R�	x
� 	�

Now� for a given simulation scheme � and the given x� let Y	x

�
� fy � �	x�u
 � u �

f�� �gkg 	where now � is not necessarily of the form 	��

� We next use the covering lemma

in the following manner� The set F of the lemma is the set of all choices of Y	x
	� u


for the given x� Each subset F� is the subset of choices of Y	x
 which are �bad� for the

event E� in the sense that jY	x
 	 E�j�jY	x
j � 	� � "
jTx 	 E�j�jTxj� There is a total

number of M�	� m�
 subsets fF�g� but if we cover F with a subcollection of M	� s
 such

subsets� this means that any choice of Y	x
 is �bad� for at least one E� corresponding to this

subcollection of size M � and so� no scheme would be "�faithful w�r�t� x simultaneously for

all M members of this subcollection�

To use the lemma then� we �rst need a lower bound to the analogue ofm�m�� namely� the

relative number of sets of size �nE� for which a given Y	x
 is �bad�� A simple combinatorial

consideration leads to the following expression�

P
��L�

�
�nR

�

�
�

�
jTxj � �nR

�nE� � �

�
�
jTxj
�nE�

� � 	��


��



where L� � 	� � "
�nR � �nE��jTxj� This is exactly the same kind of expression as the

one for K 	cf� eq� 	��

 that has been handled in the proof of Theorem �� part 	b
� except

that jTQ 	 Ej of the former expression is now replaced by �nR� and �nR of 	��
 is in turn

replaced by �nE� � Accordingly� we now rede�ne � � �nE��jTxj and 
 � �nR�jTxj in analogy

to the previous derivation� The only di�erence is that now we need a lower bound on this

expression rather than an upper bound� It is easy to verify that all steps of upper bounding

K in the proof of Theorem � are tight in the double exponential scale� The only two points

that are not straightforwardly so are that� 	i
 the lower bound to the divergence 	��
 is

exponentially tight� and 	ii
 the term 	�� 

D	��k�
� that has been omitted in the second

step of eq� 	��
� is negligible compared to the remaining term 
D	��k�
�

As for 	i
� the binary divergence de�ned in the proof of Theorem �� can easily� be shown

to be upper bounded by

D	akb
 �
	a� b
�

b	�� b
 ln �
�

Therefore�

jTxj � 
D	��k�
 � jTxj � 
 �
��"�

�	�� �
 ln �

�
jTxj � 
�"

�

	�� �
 ln �
	��


which is again of the exponential order of expfn�R� 	 !H �E�

g�

Regarding 	ii
� we have

jTxj � 	�� 

D	��k�
 � jTxj � 	�� 

D 	�	�� 
	� � "

�	� � 

k�


� jTxj � 	�� 

 �
��
�"�

	�� 

��	�� �
 ln �

�
jTxj � �


�"�

	�� 

	�� �
 ln �
	��


which is of the exponential order of expfn��R � 	� !H � E�

g� and hence always less than

or equal to expfn�R � 	 !H � E�

g since R � !H� Thus� this term does not exponentially

dominate the term jTxj � 
D	��k�
�

We conclude that m�m� is lower bounded by an expression of the double�exponential

order of exp�f��
n�R�� 
H�E�	�g� Now� R � R�	x
� 	 implies that $ � R� 	 !H�E�
� 	� and

so� the covering lemma applies as follows�

jFj �

�
��

m

m�

�s �
�

�
jTxj
�nR

�
�
h
�� exp�f��

n�R�� 
H�E�	�g
iexp�f�n�g

	Use the inequality lnu � u� 	 for both logarithmic terms�

��



� jTxj# � exp
n
exp�f�

n�g ln
h
�� exp�f��

n�R�� 
H�E�	�g
io

� jAnjjA
nj � exp

n
� exp�f�

n�g � exp�f��
n�R�� 
H�E�	�

o
� exp

n
	n ln jAj
 � jAjn � exp�f�

n�R�� 
H�E�	��� � �n�R��

H�E�	�

o
� exp

n
	n ln jAj
 � jAjn � exp�f�

n�R�� 
H�E�	�	�n� � �
g
o

� exp �	n ln jAj
 � jAjn � exp�f	�
n� � �
�	� � "
g
� �� 	��


where the notation
�
� symbolizes the fact that �

n log log	m��m
 � R� 	 !H �E�
 � � for an

arbitrarily small � 
 � and all n su�ciently large� and where in the last inequality� we have

assumed that R � !H � E� �
�
n log	� � "
� as otherwise� by the converse part of Theorem

�� no simulation scheme can be "�faithful even for each one of the events separately� let

alone the whole set of M events simultaneously� Thus� we have proved the existence of a

cover of M � expf�n�g events fE�g inM	R�
� Observe also that in this case� the comment

following the proof of the covering lemma is in e�ect� so in fact� we have proved that

most subcollections of M � expf�n�g in M	R�
 form covers� This completes the proof of

Theorem ��

� Conclusion

In this paper� we made an attempt to characterize achievable key rates for universal sim�

ulation of random data based on a training vector� where these key rates are allowed to

depend on the training vector� For a single test� we have stated and proved a theorem

asserting that the rate function RE 	x
 	de�ned in eq� 	��

 is the minimum key rate needed

to guarantee simulation performance that is essentially as good as if there was unlimited

supply of key bits�

We then extended the paradigm to that of multiple statistical tests for events fE�g� that

all have to be accommodated at the same time� For this case� we have characterized the

minimum key rate function R�	x
 	de�ned in eq� 	��

� that depends on the entire set of

events� One interesting conclusion that we have drawn from this result� is that as long

as the number of tests is less than double�exponential� the minimum key rate needed for

multiple tests remains essentially as small as the rate function of a single test� the most

demanding one in the set 	namely� max�RE�	x

� independently of the structure of that set�

For the case where the size of the set of events is double�exponential and extra key rate

may be needed� our argument regarding the minimality of R�	x
 as an achievable key rate� is

��



somewhat weaker than for a single test� or relatively small sets of tests� Since R�	x
 does not

depend strongly on the geometry of the set of tests 	i�e�� the similarities and dissimilarities

between the various events in the set
� our argument regarding the minimality of R�	x
 is�

in principle� a worst case 	minimax
 argument� R�	x
 is essentially the minimum key rate

for the worst constellation of events in a certain class of constellations that we de�ne� In

other words� it is the tightest bound that can be obtained among all bounds that depend

on fE�g through the same information as R�	x
� It is not tight for constellations where the

events are too �close� to each other� but such constellations may not be reasonable anyhow

for testing simulated data� In fact� the converse result is stronger than merely a minimax

result because� we show that it applies to the vast majority of constellations in a very large

class� This happens to be the case because in most of these constellations� the events are

fairly �far apart��

One interesting direction for further research might be to try to re�ne the formula of

R�	x
 so as to incorporate more detailed information about the geometry of the set of

events� although a much more detailed geometrical description might be di�cult to extract

because of the double�exponential number of events�
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