

A test client API for CC/PP and UAProf

Charles Smith1, Mark H. Butler
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-269
October 11th , 2002*

E-mail: chasmi@hplh.hpl.hp.com, smithcr@tcd.ie, mark-h_butler@hp.com

CC/PP,
UAProf,
capability
description,
delivery
context, device
independence,
testing,
protocol

CC/PP is a standard proposed by the W3C to allow devices to
communicate their capabilities to other devices. UAProf is a related
standard proposed by the Open Mobile Alliance (formerly the WAP
Forum). Here we describe a Java test client for CC/PP that can test
CC/PP aware servers using HTTP. The client implements all the
HTTP based protocols currently used for transmission of CC/PP
and UAProf profiles and allows users to test the performance of a
server under unusual conditions.

* Internal Accession Date Only Approved for External Publication
1 Trinity College Dublin, Dublin, Eire.
 Copyright Hewlett-Packard Company 2002

 1

A test client API for CC/PP and UAProf

Charles Smith (chasmi@hplb.hpl.hp.com, smithcr@tcd.ie)*
Mark H. Butler (mark-h_butler@hp.com)
Hewlett Packard Laboratories, Bristol UK

12 September 2002

Abstract
CC/PP is a standard proposed by the W3C to allow devices to communicate their capabilities
to other devices. UAProf is a related standard proposed by the Open Mobile Alliance
(formerly the WAP Forum). Here we describe a Java test client for CC/PP that can test
CC/PP aware servers using HTTP. The client implements all the HTTP based protocols
currently used for transmission of CC/PP and UAProf profiles and allows users to test the
performance of a server under unusual conditions.

Keywords

CC/PP, UAProf, Capability Description, Delivery Context, Device Independence, Testing,
Protocol

1 Introduction
The CC/PP (Composite Capabilities/Preferences Profiles)1 standard provides a uniform way
for devices to transmit a profile of their characteristics to other devices. As the number of
CC/PP aware devices and servers increases, it is useful to be able to test their interoperability.
Specifically, this test client API was created to test DELI2, a CC/PP Java servlet developed at
HP Labs Bristol. There can be considerable variations between the format of different device
profiles and the way in which they are transmitted so simulation of these variations is an
important element of the testing process.

Currently there are four broadly equivalent protocols defined for CC/PP profiles, as the
CC/PP specification does not impose constraints on the transmission protocol. This means
that devices could theoretically use any protocol, therefore this test client is designed to be
easily extensible should new protocols be defined. It is likely that any protocol defined to
transmit CC/PP profiles in the future will be similar to the ones currently in use, but in the
authors’ opinion it would be advantageous to adopt a single standardised protocol for CC/PP,
as this would make implementation of a CC/PP server easier. At present deployed devices
and software already deviate from the defined protocols, so it is harder to guarantee that a
server will be able to process any request containing CC/PP device profiles. The test
environment described here can also replicate some of the better known deviations, in order
to test that servers can still interoperate with these implementations.

* Charles Smith is a summer intern at HP Labs Bristol from Trinity College Dublin, Eire.

 2

2 Protocols and requests

2.1 CC/PP Exchange Protocol [CCPPex]
The CC/PP Exchange Protocol (hereafter referred to as CCPPex) is detailed in a W3C note3
and makes use of the HTTP Extension Framework (HTTPex) 4 to transmit profile
information. HTTPex provides extensions using numerical namespaces which are pre-pended
to any HTTP request header which belongs to the particular extension. The extensions can be
declared to be mandatory (i.e. a server must implement them or else return an error) or
optional (i.e. a server can ignore the extension if it does not support it). A mandatory
extension is introduced using a Man request header in a HTTP request, and an optional
extension uses an Opt header. The value of this header contains the extension identifier (for
example http://www.w3.org/1999/06/24-CCPPexchange) and a numerical namespace
declaration e.g.:

Man: "http://www.w3.org/1999/06/24-CCPPexchange" ; ns=25

In addition to Man and Opt, requests can also be declared to be hop-by-hop rather than end-
to-end, by replacing Man with C-Man and Opt with C-Opt, and including a Connection
header. If the Man or Opt headers are used the profile information should be transmitted
intact to the origin server whereas if C-Man or C-Opt are used it should be analysed by
intervening proxies.

A Profile header must be included if CC/PP information is being sent. This contains a list of
all reference profile and profile diffs (profiles transmitted inline). A reference profile is sent
as a URL whereas the profile diff is represented by a profile diff sequence number and a
profile diff digest that contains an MD55 encoding of the content of the profile corresponding
to the profile diff. The profile diff digest can be used to identify profile diffs for caching
purposes, and to protect it from modification. An example profile diff name is:

1-Rb0sq/nuUFQU75vAjKyiHw==

Here, the leading 1 indicates the profile diff sequence number, and the characters after the
hyphen are the diff digest.

The profile corresponding to the profile diff is transmitted as a Profile-Diff header which
contains the profile diff sequence number (as used in the Profile header) and the content of
the profile diff.

An example of the headers needed to send a profile ref and a profile diff are shown below:

Man: "http://www.w3.org/1999/06/24-CCPPexchange" ; ns=25
25-Profile: "http://www.ex.com/hw," "1-CWccARHXxtYJE+rKkoD8ng=="
25-Profile-Diff-1: <?xml version="1.0"?> <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">

 <rdf:Description rdf:ID="MyDeviceProfile">
<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">
<rdf:type
rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010430#HardwarePlatform"/>

 <prf:SoundOutputCapable>No</prf:SoundOutputCapable>
 </rdf:Description>

</prf:component>

 3

</rdf:Description>
</rdf:RDF>

2.2 Wireless Profiled HTTP [W-HTTP]
The Wireless Profiled HTTP protocol (hereafter referred to as W-HTTP) is functionally
equivalent to the CCPPex protocol but was defined in the UAProf6 specification created by
the OMA. It has the advantage over CCPPex that it does not use numerical namespaces or
non-standard HTTP methods. The Profile header of CCPPex is replaced by x-wap-profile,
and the Profile-Diff header is replaced by x-wap-profile-diff. The content of these headers
remains equivalent to CCPPex. Sending a profile ref and diff with this protocol is done as
follows:

x-wap-profile: "1-CWccARHXxtYJE+rKkoD8ng=="
x-wap-profile-diff: 1;<?xml version="1.0"?> <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">

 <rdf:Description rdf:ID="MyDeviceProfile">
<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">
<rdf:type
rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010430#HardwarePlatform"/>

 <prf:SoundOutputCapable>No</prf:SoundOutputCapable>
 </rdf:Description>

</prf:component>
</rdf:Description>
</rdf:RDF>

An important difference between W-HTTP and CCPPex is that W-HTTP includes profile diff
sequence numbers in the profile diff header value:

x-wap-profile-diff:1;

while CCPPex stores this inside the profile diff header name:

25-Profile-Diff-1:

2.3 The Wireless Session Protocol [WSP]
The Wireless Session Protocol (WSP7), defined in the UAProf specification, is designed to
allow transmission of profile information from WAP phones to WAP gateways. It encodes
profiles in a binary form (WBXML8) to reduce the amount of data that needs to be sent.
Gateways will translate requests using WSP into CCPPex, and then forward this to the origin
server. This test client does not support WSP, as it is not designed to be used through a WAP
gateway.

2.4 The Session Initiation Protocol [SIP]
A protocol for CC/PP has been defined based on the Session Initiation Protocol (SIP)9,10,
which is designed to support session based services rather than sessionless services based on
the HTTP model. Since this test client is designed as a HTTP client it does not support this
protocol at present.

3 Response Warning Headers
Servers adapting content for devices based on CC/PP profile information can provide
information pertaining to the type of adaptation (if any) that has been performed on the data

 4

provided in a response, as well as the way in which profiles have been used. W-HTTP servers
return an x-wap-profile-warning header, containing a warning code.

HTTP/1.1 200 OK
x-wap-profile-warning: 202
…

CCPPex clients expect a response to contain a Profile-Warning header. This header must
include a numerical namespace, which presumably* should be defined in the response as part
of an extension declaration, similar to those used in requests (see section 2). If necessary, an
"Ext:" header (with no header value, just a header name) must be included, to indicate that a
mandatory extension has been recognised. The "Cache-Control" header must indicate that
this header is not cacheable. An example of a CCPPex response is:

HTTP/1.1 200 OK
Ext:
Man: "http://www.w3.org/1999/06/24-CCPPexchange" ; ns=99
99-Profile-Warning: 202 www.something.com "Content Generation Applied"
Cache-Control: no-cache="Ext"
...

4 HTTP Extensions Server Compatibility Issues
The HTTP Extensions standard defines a set of new HTTP methods not present in the HTTP
1.1 specification, such as M-GET and M-POST. These are used to indicate that a request
contains a mandatory extension. These methods cause problems for some servers that do not
implement HTTP extensions, since these will refuse to handle a request if they do not
recognise the method it uses. The Java servlet API currently does not support HTTP
extensions, since they are not defined in RFC 206811. Java servlets are often used in order to
implement various types of web applications therefore represents a significant obstacle to the
use of the CCPPex protocol. W-HTTP does not suffer from this problem, as it conforms to
HTTP 1.1. Therefore W-HTTP is preferable. Unfortunately though W-HTTP is only part of
the WAP 2.0 specification, so WAP gateways supporting WAP 1.2.1 support UAProf by
converting WSP to CCPPex. Hence in order to support currently deployed devices, a server
must support a subset of the CCPPex protocol. Luckily though the authors have not
encountered a WAP gateway that uses non-standard methods. This simplifies the
implementation of CCPPex.

Furthermore the usefulness of the mandatory methods to CC/PP is questionable, since their
function is to cause a server to return an error when it does not support an extension. In the
case of CC/PP this would mean that a client would prefer to receive an error response rather
than untailored content from servers which are not CC/PP aware. Since the client could use
warning headers (see section 6) to determine whether content has been tailored by a server
processing a request with an optional extension, situations where mandatory extensions are
really necessary would seem to be quite rare.

5 Non-standard use of protocols
During interoperability testing, we have found that several CC/PP devices and
implementations use these protocols in non-standard ways. The most common of these are:

* “Presumably” is used here since the CCPPex Note does not make this clear

 5

[1] Not enclosing the values of the profile header fields in quotes
The protocols state that profile ref and diff names must be quoted in the profile
header, but some devices do not adhere to this. See Appendix B for a sample request.

[2] Not including a Profile or x-wap-profile header i.e. using only the profile-diff headers

Both protocols require that these headers are used; if they are omitted difficulty can
arise when identifying profile diffs, and when caching profiles. See Appendix A for a
sample request.

[3] Calculating a profile diff digest from the entire profile diff header (not just the header
content)

Some devices calculate the profile diff digest incorrectly, by including the header
names when running the MD5 algorithm. In the CCPPEx and WHTTP protocols, the
server should ignore the diff if the digest does not match as an intermediary may have
modified the diff. Therefore if a client and server calculate the diff digest differently,
this will mean the server will always ignore diffs from that client. Another possible
consequence of this is unpredictable caching behaviour, since different requests may
have different digests for the same profile diff.

[4] Using profile and profile -diff headers instead of x-wap-profile and x-wap-pro file-diff [W-
HTTP]

Certain devices and emulators use different headers from those defined by W-HTTP,
making the server’s job of isolating CC/PP profile data more complex.

[5] Using profile diff sequence numbers that are not consecutive in the absence of a profile
header.

Using consecutive numbers is not required by the protocols, but can cause difficulty
for servers when no profile header is present. This means the CC/PP processor must
search a HTTP request for CC/PP profile headers. If the profile diff numbers are not
consecutive then it is more difficult to ensure that all the relevant profile information
is used. In this case it would be necessary to use some form of wildcarding to extract
the header data.

Since these conditions occur often, the test client is designed to be able to simulate them for
the purposes of checking the robustness and stability of a CC/PP aware server.

 6

6 API summary
The code for test client API is available as part of the DELI distribution12 under the package
com.hp.hpl.deliTestClient. Javadoc of the API is available as part of the distribution.

6.1 Class Structure-UML Class Diagram

Figure 1 – Test Client Class Structure

6.2 Configuration File
The client can load configuration information from an XML configuration file. An example
of such a file is shown below:

<?xml version="1.0"?>
<CCPPTestClientConfig>
 <headers>
 <header>
 <name>Accept</name>
 <value>text/html,text/plain</value>
 </header>
 <header>
 <name>User-Agent</name>
 <value>CCPP Test Client</value>
 </header>
 <header>

 7

 <name>Connection</name>
 <value>close</value>
 </header>
 </headers>

 <quoteHeaderValues>true</quoteHeaderValues>
 <includeProfileHeader>true</includeProfileHeader>

 <CCPPex>
 <HTTPextNamespace>19</HTTPextNamespace>
 <mandatoryExtension>false</mandatoryExtension>
 <hopByHop>false</hopByHop>
 </CCPPex>

 <WHTTP>
 <omitXWapPrefix>false</omitXWapPrefix>
 </WHTTP>
</CCPPTestClientConfig>

If a CCPPex client configured using this information is then instructed to create a request for
http://www.example.com/index.html using HTTP version 1.1 and the GET method, and
including a profile ref to http://www.profiles.com/device-profile, then it will create a
request as follows:

GET /index.html HTTP/1.1
Host: www.example.com
Content-Length: 0
Accept: text/html, text/plain
User-Agent: CCPP Test Client
Connection: close
Opt: "http://www.w3.org/1999/06/24-CCPPexchange" ; ns=19
19-Profile: "http://www.profiles.com/device-profile"

The <headers> element allows any number of <header> sub elements which contain header
names and values. These will be included in any request the client sends. The
<quoteHeaderFields> element specifies whether profile ref and diff names should be quoted.
The <includeProfileHeader> element determines whether the client will send a Profile or x-
wap-profile header with requests. The <CCPPex> element contains settings specific to the
CCPPex protocol, which are the namespace number to use, and whether the extension is
mandatory or optional and hop-by-hop or end-to-end. Similarly the <WHTTP> element only
applies to that protocol, and determines whether the client should omit the x-wap prefix from
the profile header.

6.3 Usage Example
Here is an example of using the API to request a web page using the GET method, and
including a profile ref and profile diff:

HTTPExtClient client = new HTTPExtClient();
client.loadConfig(...);
URL target = ...
byte[] body = ...

client.addProfileRef(new ProfileRef(...));

client.addProfileDiff(new ProfileDiff(...));

Socket connection = new Socket(InetAddress.getByName(target.getHost()),80);

Request request = client.createRequest(HTTPExtClient.GET,target,body);

 8

request.writeToSocket(connection.getOutputStream());
Response response = new Response(connection.getInputStream());
connection.close();

The first line creates a test client for the HTTPex protocol. It then loads configuration
information from an XML document (see section 6.2). The target of the request is represented
by a URL object, and the body of the request can be either a byte array or a String object. A
profile ref and a profile diff are then added to the client. This means that any request
generated by the client will include this profile information. A Socket object is created,
connected to the server of the target URL (port 80 is the default HTTP port). The client is
then used to create a Request object, containing all the appropriate CC/PP header
information, and this request is sent by invoking a writeToSocket method. The server
response can be retrieved by creating a new response object, which will parse the data from
the socket’s input stream. The transaction is now complete, and the socket is closed.

6.4 Command Line Interface
Two command line interfaces to the test client are provided, one for each existing CC/PP
protocol. They send a request to a given target, including headers as specified by their
parameters, and retrieve a response which is parsed and printed. Both take the same
parameters, and both look for a configuration file (as described in section 6.2) located at
config/CCPPClientConfig.xml inside the DELI distribution. Note to use the test client, first it
is necesary to configure the CLASSPATH environment variable as described in the
documentation accompanying DELI. The parameters are specified as follows:

HTTPExtTest [-r profileRefs] [-d profileDiffs] [-v HttpVersion] [-m HttpMethod] [-p
proxyServer] [-b requestBodyFile] [-w responseBodyFile] target

WHTTPTest [-r profileRefs] [-d profileDiffs] [-v HttpVersion] [-m HttpMethod] [-p
proxyServer] [-b requestBodyFile] [-w responseBodyFile] target

[-r] Indicates that the client should include the list of profile refs which follow it.

[-d] Indicates that the client should include the list of profile diffs which follow it.

[-v] Indicates which version of HTTP the client should use. 1.0 and 1.1 are supported, 1.0
being the default.

[-m] Indicates which HTTP method to use when sending the request. GET is the default.

[-p] Indicates that the client should use the given URL as the address of a HTTP proxy
server to use.

[-b] Specifies a file from which to read the body of the request

[-w] Instructs the client to write the body of the response it receives to a given file.

 9

6.4.1 CCPPex Example

java com.hp.hpl.deliTestClient.HTTPExtTest -r http://www.profiles.com/device-
profile -v 1.1 -m POST -b requestData.txt http://localhost
:8080/index.html

generates the following request

POST http://localhost:8080/index.html HTTP/1.1
Content-Length: 5901
Host: localhost
Accept: text/html,text/plain
19-Profile: "http://www.profiles.com/device-profile"
Opt: "http://www.w3.org/1999/06/24-CCPPexchange" ; ns=19
User-Agent: CCPP Test Client

[BINARY DATA]

6.4.2 W-HTTP Example

java com.hp.hpl.deliTestClient.WHTTPTest -d testProfile01.rdf -v 1.0 -m GET –p
http://http-proxy http://www.hp.com/

generates the following request

GET http://www.hp.com/ HTTP/1.0
x-wap-profile: "1-OZb/VXn3J+IHjBdh78HHvg=="
Content-Length: 0
Host: www.hp.com
Accept: text/html,text/plain
x-wap-profile-diff: 1;<?xml version="1.0"?> <rdf:RDF…

</rdf:RDF>
User-Agent: CCPP Test Client

7 Summary
The test client described here is not designed to test the full functionality of a web server, but
merely the degree to which it supports CC/PP. For this reason, many of the optional
components of the HTTP 1.1 specification are not implemented, namely those which have no
bearing on the operation of a CC/PP server. If it becomes necessary to test a particular aspect
of a server requiring special request headers, the flexibility of the client allows this to be
accomplished simply. As well as being able to test the compliance of a server with the HTTP
based protocols for transmission of CC/PP, this client can be used to retrieve content from a
server side CC/PP application and thus ensure its correct function.

Appendix A
Example CCPPex request sent from an Ericsson T39 phone through an Ericsson gateway.

GET /ccpp/html HTTP/1.0
Host: 127.0.0.1:8080
WAP-Connection: Stack-Type=CO
Opt: "http://www.w3.org/1999/06/24-CCPPexchange"; ns=56
Accept: application/vnd.wap.wmlc, application/vnd.wap.wbxml,
 application/vnd.wap.wmlscriptc, */*, text/vnd.wap.wml,
 application/xml, text/xml, text/vnd.wap.wmlscript
Accept-Language: en

 10

User-Agent: EricssonT39/R201
Accept-Charset: *
56-Profile-Diff-1:<?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema-19991014#">
 <!-- browser vendor site: Default description of properties -->
 <rdf:Description>
 <prf:CcppAccept>
 <rdf:Bag><rdf:li>application/vnd.wap.wmlc</rdf:li>
 <rdf:li>application/vnd.wap.wbxml</rdf:li>
 <rdf:li>application/vnd.wap.wmlscriptc</rdf:li>
 <rdf:li>*/*</rdf:li>
 <rdf:li>text/vnd.wap.wml</rdf:li>
 <rdf:li>application/xml</rdf:li>
 <rdf:li>text/xml</rdf:li>
 <rdf:li>text/vnd.wap.wmlscript</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept></rdf:Description></rdf:RDF>
56-Profile-Diff-2:<?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/UAPROF/ccppschema-19991014#">
 <!-- browser vendor site: Default description of properties -->
 <rdf:Description><prf:CcppAccept-Charset><rdf:Bag>
 <rdf:li>*</rdf:li></rdf:Bag>
 </prf:CcppAccept-Charset></rdf:Description>
 </rdf:RDF>
Content-Type: text/vnd.wap.wml; charset=iso-8859-1
Date: Tue, 09 Apr 2002 11:31:16 GMT
Pragma: no-cache
Transfer-Encoding: chunked
Server: Apache Tomcat/4.0 (HTTP/1.1 Connector)
Cache-Control: no-cache, must-revalidate
Expires: -1
Set-Cookie: JSESSIONID=1783D571E4A7E5116339D189C238A923;Path=/

Appendix B
Example W-HTTP request sent by an Ericsson R520 phone through an Openwave gateway.

x-up-uplink: testgate.wdps.com
Profile: http://mobileinternet.ericsson.com/UAprof/R520.xml
Accept-Language: en
User-Agent: EricssonR520/R201 UP.Link/4.3.2
x-up-devcap-max-pdu: 3000
Accept-Application: 2
x-up-devcap-charset: us-ascii, iso-8859-1, utf-8, iso-10646-ucs-2
Connection: Keep-Alive
Encoding-Version: 1.2
Accept: application/vnd.wap.wmlc, application/vnd.wap.wbxml,
 application/vnd.wap.wmlscriptc, */*,
 text/x-wap.wml,text/vnd.wap.wml,text/x-hdml,
 text/html,text/vnd.wap.wmlscript
Bearer-Indication: 0
Accept-Charset: us-ascii, iso-8859-1, utf-8, iso-10646-ucs-2, UTF-8, *

1 W3C CC/PP Working Group

http://www.w3.org/Mobile/CCPP/

2 DELI: A Delivery context Library for CC/PP and UAProf

 11

HP Labs Technical Report 2001-260
Mark H. Butler
 http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm

3 CC/PP exchange protocol based on HTTP Extension Framework
W3C Note 24 June 1999
Hidetaka Ohto, Johan Hjelm

http://www.w3.org/TR/NOTE-CCPPexchange

4 Internet Engineering Task Force RFC 2774 - An HTTP Extension Framework
February 2000
H. Nielsen, P. Leach, S. Lawrence

http://www.ietf.org/rfc/rfc2774.txt

5 Internet Engineering Task Force RFC 1321 – The MD5 Message-Digest Algorithm
April 1992
R. Rivest

http://www.ietf.org/rfc/rfc1321.txt

6 OMA / WAP Forum UAProf Specification
 http://www1.wapforum.org/tech/documents/WAP-248-UAProf-20010530-p.pdf

7 Wireless Session Protocol Specification
OMA / WAP Forum WAP-230-WSP
 http://www.wapforum.org/

8 WAP Binary XML Content Format
OMA / WAP Forum WAP-240-WBXML
 http://www.wapforum.org/

9 Internet Engineering Task Force RFC 2543 - SIP: Session Initiation Protocol
March 1999
M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg
 http://www.ietf.org/rfc/rfc2543.txt

10 Internet Engineering Task Force Internet Draft - CC/PP Exchange Protocol based on SIP
July 14, 2000
Takashi Nishigaya, Masanobu Yuhara
 http://community.roxen.com/developers/idocs/drafts/draft -nishigaya-sip-ccpp-00.html

11 Internet Engineering Task Force RFC 2068 - Hypertext Transfer Protocol -- HTTP/1.1
January 1997
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee
 http://www.ietf.org/rfc/rfc2068.txt

12 DELI Java Servlet API,
 http://delicon.sourceforge.net/

