

Validating CC/PP and UAProf Profiles

Charles Smith1, Mark H. Butler
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-268
October 11th , 2002*

E-mail: chasmi@hplb.hpl.hp.com, smithcr@tcd.ie, mark-h_butler@hp.com

CC/PP,
UAProf,
validation,
capability
description,
delivery
context,
device
independence

CC/PP and UAProf are two related standards, proposed by the W3C
and the Open Mobile Alliance respectively, that allow devices to
communicate their capabilities to other devices such as web servers.
This paper explores ways of guaranteeing interoperability in CC/PP
aware devices by validating their capability descriptions. Firstly it
explains what validation can be performed on CC/PP and UAProf
profiles. Secondly it investigates two methods of performing
validation: using an XML Schema derived automatically from the
RDF Schema describing the vocabulary and a more comprehensive
validation technique implemented using an RDF parser. Methods of
adding additional information to RDF Schemas that can aid the
validation process are also discussed.

* Internal Accession Date Only Approved for External Publication
1 Trinity College Dublin, Dublin, Eire.
 Copyright Hewlett-Packard Company 2002

 1

Validating CC/PP and UAProf Profiles

Charles Smith (chasmi@hplb.hpl.hp.com, smithcr@tcd.ie)*
Mark H. Butler (mark-h_butler@hp.com)
Hewlett Packard Laboratories, Bristol UK

11 September 2002

Abstract

CC/PP and UAProf are two related standards, proposed by the W3C and the Open Mobile
Alliance respectively, that allow devices to communicate their capabilities to other devices
such as web servers. This paper explores ways of guaranteeing interoperability in CC/PP
aware devices by validating their capability descriptions. Firstly it explains what validation
can be performed on CC/PP and UAProf profiles. Secondly it investigates two methods of
performing validation: using an XML Schema derived automatically from the RDF Schema
describing the vocabulary and a more comprehensive validation technique implemented using
an RDF parser. Methods of adding additional information to RDF Schemas that can aid the
validation process are also discussed.

Keywords

CC/PP, UAProf, Validation, Capability Description, Delivery Context, Device Independence

1 Introduction
As the variety of computing devices increases, there is a growing need for flexible and
application independent capability negotiation. CC/PP (Composite Capabilities / Preferences
Profiles)1 provides a standard way for devices to transmit their capabilities and user
preferences when requesting web content. Servers and proxies receiving this information can
then provide content appropriate to the particular device. Technologies such as CC/PP are
essential to the problem of device independence2 since they allow different devices to specify
their capabilities in a uniform way.

Currently virtually all CC/PP capable devices use UAProf 3, a standard developed by the
Open Mobile Alliance (formerly the WAP Forum) to allow Internet enabled phones to send a
profile of their capabilities to a server. UAProf predates CC/PP so CC/PP is designed to be
backwardly compatible with UAProf. Furthermore UAProf, unlike CC/PP, defines a set of
vocabularies for describing device capabilities. CC/PP, on the other hand, is designed to be
vocabulary and application agnostic. This is achieved by leveraging XML namespaces so that
different profiles may use one or more vocabularies to describe device capabilities.

The CC/PP and UAProf data format is based on RDF4 and represents device capabilities as a
two level hierarchy consisting of components and properties e.g. HardwarePlatform and
ColorCapable respectively. Therefore in essence a CC/PP profile takes the form of a
structured set of property and value pairs. A CC/PP vocabulary provides application specific
information shown in Table 1. CC/PP and UAProf recommend that RDF Schema5 should be

* Charles Smith is a summer intern at HP Labs Bristol from Trinity College Dublin, Eire.

 2

used to define vocabularies and CC/PP gives a schema that should be extended by specific
vocabularies to define component types and properties. However these schemas only define a
subset of vocabulary information as indicated in Table 1. Note currently UAProf places some
of this information in comments in the schema making it more difficult for processors to
extract. In addition UAProf does not currently define the set of values a property can take,
instead giving example property values without defining their meaning. Ideally values as well
as properties should be defined within vocabularies otherwise there is a danger that vendors
will use different values to mean the same thing or use the same value to mean different
things. Furthermore unless these values are defined it is possible that different vendors will
use different capitalization schemes or introduce other variations that make interpretation
difficult such as variations due to local language e.g. “Yes” and “No” versus “Ja” and “Nein”.

Vocabulary Information Is information currently expressed in RDF

Schemas associated with vocabularies?
The set of valid property names. Yes
The set of valid component names. Yes
The parent components for each property. Yes
The data type of each property i.e. literal,
Boolean, positive integer, rational or custom.

Forthcoming - when RDF Core reaches a
decision on datatyping.
Stored in comments in UAProf.

Whether each property is single or multi-
valued.

Yes

For multi-valued properties, whether those
values are ordered or unordered.

Yes

In the case of UAProf, how to merge
multiple values of the same property.

No
Stored in comments in UAProf.

Where a property can take a defined set of
values, a vocabulary may explicitly define
the allowable set of values and explain the
meaning of each value.

No

Table 1 - CC/PP Vocabulary Information

Previous work at HP Labs has resulted in DELI6, a CC/PP processor that can be used in Java
Servlets, allowing application developers to use CC/PP information in web applications
without needing to worry about CC/PP profile structure, protocol or resolution. This work has
also identified a number of potential interoperability issues with CC/PP that could be
obstacles to widespread deployment 7,8 some of which are due to errors in profiles. For
example profiles have been released that are not valid RDF, or in some cases not valid XML,
that spell property names incorrectly, or that contain other errors relating to profile structure.
These problems are generally identified and resolved over time, but it would be useful to be
able to validate profiles i.e. guarantee that profiles are correct before they are released.
Furthermore as the companies responsible for authoring profiles are often different to those
creating CC/PP processors, it is possible there may be disagreements about responsibility
when interoperability problems occur. By having a clear validation procedure that is fair and
everyone can understand, such disagreements are avoided and companies can instead
concentrate on whether their profiles or processor are compliant.

This paper explores techniques for validating CC/PP profiles using XSLT9 and XML
Schema10. It also explores an alternative validation method implemented using an RDF
parser. As the only vocabularies currently in common use are the UAProf vocabularies this

 3

paper concentrates on UAProf, but the same techniques can be applied to any CC/PP
vocabulary.

2 Validation
In order to validate CC/PP profiles, there must be a set of rules that determine what
constitutes a valid profile. According to the CC/PP Structure and Vocabularies Working
Draft11 a CC/PP profile MUST meet the following constraint: a profile must be valid XML
and a valid XML serialisation of RDF. The W3C’s RDF validation service12 can be used for
this task. In addition it MAY contain the following resources: firstly it may contain resources
identified with a component property associated with either a CC/PP namespace or a UAProf
namespace. Secondly it may contain resources identified with a default or Default property
associated with either a CC/PP namespace or a UAProf namespace.

However it is the authors’ belief that these requirements are insufficient to guarantee
interoperability. Therefore we argue that the other important element of validation is ensuring
that profiles conform to the vocabulary or set of vocabularies they reference when they
declare the namespaces for a profile. However this type of validation is controversial for two
reasons: firstly some members of the RDF community think such validation constrains how
RDF may be used. However, as CC/PP is a specific RDF application it is free to define
additional restrictions on RDF usage. Secondly there is no guarantee in CC/PP that an RDF
Schema description of a vocabulary will be available from the same URI used for a
namespace in a profile. However, here we will make the assumption that vocabulary authors
and profile authors follow recommended CC/PP best practice and make RDF Schemas
available from the appropriate URIs. Alternatively appropriate schemas may be available
from other sources e.g. they are distributed with some CC/PP processors. If the correct
schema is available, we propose that it is also possible to use the following validation rules,
derived from the vocabulary information in Table 1:

• The profile only uses properties defined in that schema.
• The profile only uses components defined in that schema.
• That the profile only places properties in components specified in the schema.
• If the schema contains XML Schema datatyping information for specific properties

that the profile agrees with that datatyping information.
• If the schema specifies that a property is a bag or sequence that the profile uses a bag

or sequence for that property.
• If the schema defines a set of allowable values for a property, that the profile only

uses values from that set. For example consider a property called “Keyboard”. This
might be able to possess the following values: QWERTY, DVORAK, T9, PHONE
and ON-SCREEN.

3 Validation using XML Schema
It is important to note that although RDF Schema and XML Schema are both schema
languages they perform slightly different roles: RDF Schema’s primary aim is to provide a
machine-readable description of a particular vocabulary rather than provide mechanisms for
validating data. XML Schema, on the other hand, can be used to validate XML documents
and enforce strict structural and datatype constraints. Therefore one solution to the validation
problem in CC/PP would be to use XML Schema to validate profiles. In order to use XML
Schema in this way, it is necessary to solve another related problem: in the XML serialisation
of RDF it is possible to serialise a single RDF graph in several different ways, making the

 4

required XML Schema complex and unwieldy. The solution proposed here is to use XSLT to
convert a profile to a constrained form of RDF that maintains all the information from the
original serialisation. After this the profile can be validated using XML Schema, to ensure
that it is both syntactically correct and that it uses all referenced vocabularies correctly. This
process is shown diagrammatically in Figure 1.

3.1 Profile format conversion
One complexity when dealing with the XML serialisation of RDF is it is possible to represent
the same underlying RDF model in many different ways necessitating the use of a specialist
RDF parser13. One solution to this problem is to constrain the XML serialisation of RDF so
that it is possible to process the profile using a standard XML parser. Here we use an XSLT
stylesheet to transform UAProf profiles into this form so they can be validated using XML
Schema. This transformation also automatically corrects some common errors made in device
profiles and where necesssary converts the profile to an alternative serialisation that produces
and identical RDF graph to the original form. This involves a number of individual
operations. Firstly it ensures that all RDF specific attributes are qualified with the correct
namespace prefix. This is required by RDF syntax according to the RDF Core Working
Group, which has decided:

“On 25th May 2001, the WG decided that ALL attributes must be namespace qualified.”14

Secondly it ensures that type statements are not omitted from components. In CC/PP, it is
possible to omit type statements from components because the use of type statements was not
mandatory in early versions of UAProf. However the latest version of the UAProf
specification states that components in the profile must correspond to the components defined
in the schema and must be identified by the rdf:type attribute.

Type statements are important to a CC/PP processor as discussed in 7:

 Device Profile

XSLT Transformer

Transformed Profile

XML Schema Validator

Validated Profile

Profile stylesheet Vocabulary schema Vocabulary stylesheet

XSLT Transformer

XML Schema

Figure 1 - Validating CC/PP Profiles using XSLT and XML Schema

 5

“Many people seem to find it counter-intuitive that you need to declare that the component is
called HardwarePlatform twice. It is important to note the first use of HardwarePlatform
defines the instance name whereas the second use is to define the type. This is just as if we
defined an object in Java e.g.

HardwarePlatform hardwarePlatform;

In Java we would not expect the complier to determine the object type from the instance
name, but some CC/PP implementers omit the type statements from components. This means
the CC/PP processor cannot recognise components as the ID is just a local name.”

If a component is not typed correctly, the stylesheet will attempt to determine its type from its
rdf:ID or rdf:about attribute.

Thirdly the stylesheet ensures that where possible all component resources are expressed
using the RDF typedNode syntax. Thus component definitions such as:

<rdf:Description rdf:ID=”HardwarePlatform”>
 <rdf:type rdf:resource=”http://www.wapforum.org/profiles/UAPROF/ccppschema-
20020710#HardwarePlatform”>
 …
</rdf:Description>

becomes:

<prf:HardwarePlatform rdf:ID=”HardwarePlatform”>
 …
</prf:HardwarePlatform>

Fourthly any properties that use references to resources internal to the document are changed
to express those resources “inline”. For example:

<prf:OutputCharSet rdf:resource=”#genid1”/>

<rdf:Bag rdf:ID=”genid1”>
 <rdf:li>US-ASCII</rdf:li>
</rdf:Bag>

will be changed to:

<prf:OutputCharSet>
 <rdf:Bag>
 <rdf:li>US-ASCII</rdf:li>
 </rdf:Bag>
</prf:OutputCharSet>

Fifthly properties expressed as attributes using the RDF abbreviated syntax are changed to
give the properties as elements instead. Thus:

<prf:component>
 <prf:BrowserUA rdf:ID="BrowserUA" prf:BrowserName="Microsoft"/>
</prf:component>

will be expressed as:

 6

<prf:component>
 <prf:BrowserUA rdf:ID="BrowserUA">
 <prf:BrowserName>Microsoft</prf:BrowserName>
 </prf:BrowserUA>
</prf:component>

Finally the datatype constraints of XML Schema also require some changes to Boolean
values, as UAProf uses “yes” and “no” rather than the standard XML Schema values of
“true” and “false”. These transformed profiles act like a canonical form of the profile, which
is valid RDF, can be validated, and meets the UAProf specification.

Here is an example profile before transformation:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20020709#">
 <rdf:Description ID="MSIE">
 <prf:component>
 <rdf:Description ID="HardwarePlatform">
 <prf:ColorCapable>Yes</prf:ColorCapable>
 <prf:Keyboard>Qwerty</prf:Keyboard>
 <prf:Vendor>Microsoft</prf:Vendor>
 <prf:SoundOutputCapable>Yes</prf:SoundOutputCapable>
 <prf:StandardFontProportional>Yes</prf:StandardFontProportional>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description ID="SoftwarePlatform">
 <prf:CcppAccept-Charset rdf:resource="#genid1"/>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description ID="BrowserUA" prf:FramesCapable="Yes"/>
 </prf:component>
 </rdf:Description>
 <rdf:Bag rdf:ID="genid1">
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
</rdf:RDF>

Here is the same profile after transformation:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20020709#">
 <rdf:Description rdf:ID="MSIE">
 <prf:component>
 <prf:HardwarePlatform rdf:ID="HardwarePlatform">
 <prf:ColorCapable>true</prf:ColorCapable>
 <prf:Keyboard>Qwerty</prf:Keyboard>
 <prf:Vendor>Microsoft</prf:Vendor>
 <prf:SoundOutputCapable>true</prf:SoundOutputCapable>
 <prf:StandardFontProportional>true</prf:StandardFontProportional>
 </prf:HardwarePlatform>
 </prf:component>
 <prf:component>
 <prf:SoftwarePlatform rdf:ID="SoftwarePlatform">
 <prf:CcppAccept-Charset>
 <rdf:Bag>
 <rdf:li>US-ASCII</rdf:li>

 7

 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept-Charset>
 </prf:SoftwarePlatform>
 </prf:component>
 <prf:component>
 <prf:BrowserUA rdf:ID="BrowserUA">
 <prf:FramesCapable>true</prf:FramesCapable>
 </prf:BrowserUA>
 </prf:component>
 </rdf:Description>
</rdf:RDF>

There is a deficiency with this stylesheet approach as it cannot process one syntax used for
RDF container constructs when items in a container are identified by numerical property
names (_1, _2 etc). For more information about this problem see 15.

3.2 Schema conversion
Next an XSLT stylesheet is used to convert the UAProf RDF Schema into XML Schema in
order to validate profiles in the constrained RDF form. This stylesheet extracts datatype
information from the rdf:type and rdfs:range properties of the UAProf properties in the
RDF Schema. This information is then used to perform type checking and also catch common
errors such as misspelled property names. The XML schema ensures that profiles only use
the properties and components defined in the schema, and that properties are located in the
correct components. The schema also checks datatypes, and checks the syntax of bags and
sequences. Note in order to use this approach it is necessary to fix some small errors in older
versions of the UAProf RDF Schema, and also add some information as RDF inside the
schema to indicate the data type. It is our expectation that these issues will be resolved in
future versions of the schema. For an in-depth explanation of the revised schema, see
Appendix A.

Given the following property declared in the RDF Schema:

<rdf:Description rdf:about="&ns-prf;ColorCapable">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="&ns-prf;HardwarePlatform"/>
 <rdfs:range rdf:resource='&ns-prf;Boolean'/>
 <prf:resolutionRule rdf:resource='&ns-prf;Override'/>
</rdf:Description>

• The rdf:about attribute of the <rdf:Description> element gives the name of the
property being described.

• The <rdf:type> element specifies that this is a property in RDF rather than a class.
• The <rdfs:domain> element specifies that this property belongs to the

HardwarePlatform component.
• The <rdfs:range> element specifies that the datatype of this property is Boolean.
• The <prf:resolutionRule> element specifies the resolution rule of the property i.e.

how to merge multiple occurrences of this property.

The stylesheet generates the following XML schema fragment:

<xsd:complexType name="HardwarePlatformType">
 <xsd:all>

 8

 <xsd:element name="ColorCapable" minOccurs="0">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="types:SingleBoolean"/>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 …
 …
 …
 </xsd:all>
</xsd:complexType>

• The <xsd:complexType> called “HardwarePlatformType” contains all the properties
that can occur within the HardwarePlatform component.

• The <xsd:all> declaration indicates that the properties can occur in any order.
• The <xsd:element> indicates that the property called ColorCapable is valid in this

component. The minOccurs attribute states that the element is optional i.e. a profile
does not have to contain it.

• The <xsd:complexType> element indicates that some properties can contain child
elements.

• The <xsd:simpleContent> element indicates that this property only contains text.
• The <xsd:extension> element indicates the datatype of the property.

Note that the resolution rule information is not used here. Although it is needed by a UAProf
processor it is not necessary for validation.

3.3 Analysis of stylesheet approach
The stylesheet approach to validation presented here has a number of advantages: it provides
a simple mechanism for validation that makes use of existing tools e.g. XSLT and XML
Schema. Furthermore using this functionality in a program is simple, since there are several
open source XML Schema parsers and XSLT transformers available such as Apache Xerces
and Apache Xalan16. It also makes use of existing information e.g. the RDF Schemas for
UAProf. However, by making some small changes to this existing information we can
provide much more powerful validation that enables us to easily identify common errors in
UAProf profiles.

The downside of performing validation in this way is that both profiles and vocabularies must
be transformed before they can be validated. Ideally it should be possible to validate profiles
without any changes, as validating transformed profiles can lead to error messages being
difficult to interpret as they refer to a different profile than the one presented by the user.
However the transformation of profiles does have the useful effect of correcting any minor
errors in RDF syntax, without the need for user intervention.

Secondly because there are various versions of the UAProf vocabulary, each using a different
namespace URI, it is necessary to have separate stylesheets to convert profiles and schema
belonging to the different versions. This is due to a restriction in XSLT that prevents
stylesheets from inserting namespace declaration attributes into a document. Since the
required change is simply the substitution of one namespace with another, a simple Java
application has been written to generate stylesheets for a given namespace URI. This
application and example schemas can be obtained from17.

 9

As mentioned earlier, it would also be useful to have a mechanism to enumerate all the valid
choices for the value of a property, and thus ensure that a profile conforms to this. This could
be specified in RDF schema as follows:

<rdf:Description rdf:about="&ns-prf;Keyboard">
 <rdf:type rdf:resource="&ns-rdfs;Property"/>
 <rdfs:domain rdf:resource="&ns-prf;HardwarePlatform"/>
 <rdfs:range rdf:resource='&ns-prf;Literal'/>
 <prf:resolutionRule rdf:resource='&ns-prf;Locked'/>
 <prf:allowableValues>
 <rdf:Bag>
 <rdf:li>Disambiguating</rdf:li>
 <rdf:li>Qwerty</rdf:li>
 <rdf:li>PhoneKeypad</rdf:li>
 </rdf:Bag>
 </prf:allowableValues>
 <rdfs:comment xml:lang="en">
 Description: Type of keyboard supported by the device, as an
 indicator of ease of text entry.
 Type: Literal
 Resolution: Locked
 Examples: "Disambiguating", "Qwerty", "PhoneKeypad"
 </rdfs:comment>
</rdf:Description>

The <prf:allowableValues> element contains a bag of all the values that are allowed for this
property.

The XML schema could reflect this for single valued attributes as follows:

<xsd:element name="Keyboard" minOccurs="0">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:restriction base="types:SingleLiteral">
 <xsd:enumeration value=”Qwerty”/>
 <xsd:enumeration value=”Disambiguating”/>
 <xsd:enumeration value=”PhoneKeypad”/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

Here the <xsd:restriction> element enumerates all the possible values of the property.

Attempting to extend this idea to multi-valued properties exposes a weakness in the use of
XML Schema to perform validation. Since multi-valued properties are defined in a profile
using the RDF container types*, the elements containing the property values are in the RDF
namespace. As far as XML Schema is concerned, all rdf:Bag constructs are treated
identically so the XML Schema cannot distinguish between an rdf:Bag associated with
prf:CcppAccept from an rdf:Bag associated with prf:HtmlVersionsSupported. Hence it is not
possible to define multiple elements with the same name (i.e. rdf:Bag and rdf:li) but
different types and restrictions, since elements are differentiated by their names only.
Furthermore a single XML Schema can only represent elements from a single namespace,
although it may indicate that elements in a document come from other namespaces.

* Other RDF users have also requested that RDF Schema should provide constructs to constrain the types of
members of a container. See http://www.w3.org/2000/03/rdf-tracking/#rdfs-constraining-containers

 10

Therefore, we must consider the technique of using XML schema to be only a partial solution
to the problem of validation. A more rigorous approach based on RDF needs to be developed.

3.4 Using the XML Schema validator
The basic process for using this validator is:

• Generate stylesheets for the required vocabulary URI from templates.
• Apply the schema stylesheet to the appropriate RDF schema.
• Apply the profile template to any profiles to be validated.
• Process the transformed profiles using a schema-aware validating XML parser.

For example, to validate profiles using the latest UAProf vocabulary using Xerces and Xalan:

[1] Create stylesheets:
java com.hp.hpl.stylesheetGenerator.Generator
http://www.wapforum.org/profiles/UAPROF/ccppschema-20020710#

This will create two stylesheets called transform_uaprof_schema.xsl and
transform_rdf_profile.xsl.

[2] Transform the RDF schema:
java org.apache.xalan.xslt.Process -IN ccppschema-20020710.rdfs -XSL
transform_uaprof_schema.xsl -OUT RDF_uaprof_vocab.xsd

[3] Transform the device profile:
java org.apache.xalan.xslt.Process -IN profile.rdf -XSL transform_rdf_profile.xsl -
OUT transformed_profile.rdf

[4] Validate profile:
java dom.Writer -n -v -s transformed_profile.rdf

In addition to the schema created in stage 2, the schemas for RDF syntax and UAProf
datatypes are required (RDF_schema.xsd and UAProf_types.xsd)

More information is available in the documentation accompanying the validation
components.

4 Validating with an RDF parser
Performing validation of RDF documents using an RDF parser is more complex than
validating XML documents, because there are no standardised tools available to accomplish
this task. A prototype validator has been developed as an extension to DELI, making use of
Jena18, an open source RDF parser developed at HP Labs. This approach has the advantage of
not requiring any transformations of profiles or schema, since Jena can parse RDF documents
and RDF Schema.

To determine the structure to which profiles must adhere, the validator exploits the two level
structure of UAProf profiles (profiles contain components, which contain properties). The
UAProf vocabulary can be used to derive a list of valid component names, by analysing all
resources having an rdfs:subClassOf property whose object is Component. Once this is done,
it is possible to build a list of all properties that can belong to a particular component, since
these will all have an rdfs:domain property arc to the component resource. Collection type
information is determined by checking the rdf:type properties of device properties i.e. if a
property is of type rdf:Bag or rdf:Seq, or a simple type if not declared to be otherwise.

 11

When using this validation technique, and provided that the RDF schema has the format
recommended in Appendix A, datatypes can be extracted from rdfs:range properties and
checked by matching values against regular expressions defined in the schema for each type.
The UAProf vocabulary gives regular expressions for the datatypes it defines, and these are
used in the validator. It became apparent, however, that many profiles do not adhere to these
specified expressions, and nor in fact do many of the examples given in the UAProf
specification itself. For example, the literal datatype has the following regular expression in
the schema:

[A-Za-z0-9/.\-_]+

A large number of literals in profiles contain spaces, asterisks, semicolons and various other
characters forbidden by this expression. Although this problem is easily solved by extending
the expression to allow a wider variety of strings, ideally these regular expressions should be
machine readable rather than written as XML comments to make it easier for RDF parsers to
extract them and use them in profile validation. The fact that the existing regular expressions
in the specification and real world profiles do not match is a further justification for an
automated validation process for profiles.

To overcome this, the datatypes could be defined in the schema as follows:

<rdfs:Class rdf:about="&ns-prf;Boolean">
 <rdfs:label>Boolean value</rdfs:label>
 <rdfs:subClassOf rdf:resource="&ns-rdfs;Literal"/>
 <prf:regularExpression>(Yes)|(No)</prf:regularExpression>
 <rdfs:comment xml:lang="en">
 This class is used to represent any boolean attribute value
 </rdfs:comment>
</rdfs:Class>

<rdfs:Property rdf:about=”&ns-prf;regularExpression”>
 <rdfs:label xml:lang="en">Datatype regular expression</rdfs:label>
 <rdfs:domain rdf:resource=”&ns-rdfs;Literal”/>
 <rdfs:range rdf:resource=”&ns-rdfs:Literal”/>
 <rdfs:comment xml:lang="en">
 This property defines a regular expression for a datatype
 </rdfs:comment>
</rdfs:Property>

A brief outline of the validation process is as follows:

[1] Identify all UAProf namespaces declared in the profile
[2] For each UAProf namespace do
[3] Begin
[4] Identify all component properties in the namespace
[5] For each component do
[6] Begin
[7] Identify all UAProf device attributes in the component
[8] For each device attribute do
[9] Begin
[10] Attempt to find a definition of the attribute in a vocabulary schema
[11] Fail if the attribute is not defined
[12] Check that the attribute occurs in the correct component
[13] Check that the attribute has the correct syntax for its collection type
[14] If the attribute is a simple type then
[15] Check that the attribute matches its given datatype
[16] Else
[17] Check that all the elements in the complex type match the datatype

 12

[18] Endif
[19] End
[20] End
[21] End

Since UAProf vocabularies do not at present contain sets of allowable values for device
attributes, this validator is unable to enforce such a restraint, however this functionality could
be added in a straightforward manner, and checking for conformance could be performed at
the same time as datatype validation.

4.1 Using the RDF parser validator
The RDF parser validator is part of the DELI distribution; the class providing this
functionality is com.hp.hpl.deli.UAProfValidator. The API is documented in the DELI
documentation, however a short example is given here:

Workspace.getInstance().configure(null, "config/deliConfig.xml");
UAProfValidator validator = new UAProfValidator(System.out);
validator.setDefaultDatatypes();

String profileName = …

if(validator.validate(profileName)) {

System.out.println("Profile is valid\n");
} else {

System.out.println("Profile is not valid\n");
}

The first line is required to instruct DELI to load the required vocabulary information. The
validator object is created, specifying the System.out stream as the stream to write status
messages to. The validator is then instructed to use the default UAProf datatypes; if required
an alternative set of datatypes can be loaded from a configuration file. The format of this file
is as follows:

<?xml version="1.0"?>
<validator>
 <datatype>
 <name>Literal</name>
 <expression>[A-Za-z0-9/.\\-_]+</expression>
 </datatype>
 <datatype>
 <name>Dimension</name>
 <expression>[0-9]+x[0-9]+</expression>
 </datatype>
 …
 …
</validator>

Further datatypes can be added by including more <datatype> elements containing a name
and regular expression for the new type.

There is also a command line interface to the validator, which can be executed as:

java com.hp.hpl.deli.UAProfValidator [list of profiles to validate]

For more information please see the documentation in the DELI distribution.

 13

5 Conclusion
As discussed in Section 3, validation of profiles using XML Schema has the advantage that it
makes use of existing technologies, however it has some deficiencies when it comes to
coping with the full complexity of a general RDF document. The RDF parser validation
approach is more thorough, but it requires specialised software. Both approaches require that
RDF Schema is used in a controversial way as it was not intended to be used for validation of
document structure. Table 2 compares these two approaches.

Vocabulary
Information

Is information currently
expressed in RDF
Schemas associated with
vocabularies?

Can this
information be
validated using
XSLT / XML
Schema?

Can this
information be
validated using
a custom RDF
validator?

The set of valid property
names.

Yes Yes Yes

The set of valid
component names.

Yes Yes Yes

The parent components
for each property.

Yes Yes Yes

The data type of each
property i.e. literal,
Boolean, positive
integer, rational or
custom.

Forthcoming - when RDF
Core reaches a decision
on datatyping.
Stored in comments in
UAProf.

Yes Yes

Whether each property is
single or multi-valued.

Yes Yes Yes

For multi-valued
properties, whether those
values are ordered or
unordered.

Yes Yes Yes

In the case of UAProf,
how to merge multiple
values of the same
property.

No
Stored in comments in
UAProf.

Not relevant to
validation

Not relevant to
validation

Where a property can
take a defined set of
values, a vocabulary may
explicitly define the
allowable set of values
and explain the meaning
of each value.

No Only for simple
values

Yes

Table 2 - Comparing validation approaches

A further disadvantage of validating profiles in either manner, is that at present a specific
validator needs to be written for each vocabulary. This is because as Table 1 and Table 2
show, not all information relevant to a vocabulary is currently encoded in the related RDF
Schema. In fact in CC/PP there is no requirement that a vocabulary provides the appropriate

 14

RDF Schema, so an application cannot be guaranteed to be able to retrieve a particular
information field from a vocabulary schema. Therefore although it is possible to write a
validator for UAProf profiles, this validator will need modification to cope with other
vocabularies. This is part of a more serious issue of vocabulary independence that is outside
the scope of this document.

Appendix A

This Section describes some problems with previous versions of the UAProf RDF Schema.

[1] In some places in the schema there are references to "#HardwarePlatform" whereas in
others they refer to "#HardwarePlatform ". The trailing space is turned to escape characters
by parsers so these are considered different resources.

[2] Current work on RDF Schema has made some changes to the original specification:

“Resolution: On 2nd August 2001, the RDFCore WG resolved: Multiple domain and range
constraints are permissible and will have conjunctive semantics”19

i.e. this section of the schema

<rdf:Description rdf:about="&ns-prf;defaults">
 <rdfs:type rdf:resource="&ns-rdfs;Property"/>
 <rdfs:domain rdf:resource="&ns-prf;HardwarePlatform"/>
 <rdfs:domain rdf:resource="&ns-prf;SoftwarePlatform"/>
 <rdfs:domain rdf:resource="&ns-prf;WapCharacteristics"/>
 <rdfs:domain rdf:resource="&ns-prf;BrowserUA"/>
 <rdfs:domain rdf:resource="&ns-prf;NetworkCharacteristics"/>
 <rdfs:domain rdf:resource="&ns-prf;PushCharacteristics"/>
 <rdfs:comment>
 An attribute used to identify the default capabilities.
 </rdfs:comment>
</rdf:Description>

which is trying to say:

"defaults are a property and can be found on HardwarePlatform, SoftwarePlatform,
WapCharacteristics, BrowserUA, NetworkCharacteristics and PushCharateristics
component"

actually says:

"defaults are a property and can only be found on a component that belongs to all of the
following: HardwarePlatform, SoftwarePlatform, WapCharacteristics, BrowserUA,
NetworkCharacteristics and PushCharacteristics."

therefore it should be changed to:

<rdf:Description rdf:about="&ns-prf;defaults">
 <rdfs:type rdf:resource="&ns-rdfs;Property"/>
 <rdfs:domain rdf:resource="&ns-prf;Component"/>
 <rdfs:comment>
 An attribute used to identify the default capabilities.
 </rdfs:comment>
</rdf:Description>

 15

[3] In the authors’ opinion, instead of having namespaces in the entire document, it is
preferable to use entity declarations so the namespaces are defined once at the top. This
removes the danger of using different namespaces to refer to the same object, a common
mistake in some of the earlier UAProf schemas.

[4] Attributes should be qualified with a namespace e.g. rdf:resource and rdf:about. Even
though this only generates warnings in the validator, using attributes without qualifying them
and without a default namespace is an incorrect use of XML.

[5] It is preferable for the schema to use rdf:about not rdf:ID. This is what the forthcoming
CC/PP Working Draft says on the subject:

"This specification uses "rdf:about" to specify the URI's of resources. This was a deliberate
choice to ensure that such URI's are absolutely and unambiguously specified. This is also a
different to UAProf, which uses both "rdf:about" and "rdf:ID".

CC/PP allows "rdf:ID" attributes or "rdf:about" attributes. However, the values of " rdf:ID"
attributes represent URI’s that are relative to the base URI of the document. When a
document is moved to another location on the web the meaning of the value of an "rdf:ID"
attribute ch anges. The meaning is undefined when the RDF is contained in a document with
no base URI, e.g. when encapsulated in a message. The RDFCore WG has a Working Draft
that proposes that RDF should support "xml:base" attributes. If this addition to RDF
achieves recommendation status, then it would be appropriate to use "rdf:ID" attributes in
conjunction with an "xml:base" attribute instead of "rdf:about" attributes. For now we
recommend that CC/PP profiles SHOULD use "rdf:about" and that the URI's of resources
are fully specified."

Therefore rdf:ID or ID should be changed to rdf:about, and fully qualified base URI's should
be used wherever possible.

[6] In the old schemas, the data type and the resolution rule where hidden in the comments
fields. This makes things very difficult for processors e.g. the DELI UAProf processor
currently has to parse the comments fields to determine data type and resolution rule. It's
much better to represent them in the schema e.g.

<rdf:Description rdf:about="&ns-prf;ColorCapable">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdfs:domain rdf:resource="&ns-prf;HardwarePlatform"/>
 <rdfs:range rdf:resource="&ns-prf;Boolean"/>
 <prf:resolutionRule rdf:resource="&ns-prf;Override"/>
</rdf:Description>

• The <rdfs:type> property indicates that this is a property of a device. For multi
valued device properties, this property is also used to identify that the device property
is a bag or a sequence.

• The <rdfs:domain> property determines the parent component of the device property.
• The <rdfs:range> property gives the data type of the device property.
• The <prf:resolutionRule> property gives the resolution rule associated with the

device property.

 16

Work on datatypes is currently one of the issues being considered by the RDF Core Working
Group, and a current proposal20, compatible with the use of the rdfs:range property, also
allows datatypes to be explicitly defined locally as follows:

<some:Property rdf:type="&datatypeURI;">&lexicalForm;</some:Property>

For the purposes of CC/PP vocabularies, global datatyping (i.e. using rdfs:range) is the most
useful method, since each device property will have a single datatype, which will not vary
between different instances of that property in a profile.

[7] To satisfy internationalization concerns, in rdfs:comment and rdfs:label language should
be defined using xml:lang e.g.

<rdfs:label xml:lang="en">Component: SoftwarePlatform</rdfs:label>
<rdfs:comment xml:lang="en">
 The SoftwarePlatform component contains properties of the device's
 application environment, operating system, and installed software.
</rdfs:comment>

[8] The bag collection type should be in the RDF namespace, not the RDF schema
namespace, and likewise for the Property class.

<rdf:Description rdf:about="&ns-prf;InputCharSet">
 <rdf:type rdf:resource="&ns-rdfs;Property"/>
 <rdf:type rdf:resource="&ns-rdfs;Bag"/>
 …
</rdf:Description>

Therefore the fragment above should be:

<rdf:Description rdf:about="&ns-prf;InputCharSet">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdf:type rdf:resource="&ns-rdf;Bag"/>
 …
</rdf:Description>

[9] The use of rdf:type to identify a property as being a bag or sequence is, strictly speaking,
incorrect. Rather, rdf:range should be used to identify that the object of a device property is
such a container type. Therefore, a property defined as a bag should be described as:

<rdf:Description rdf:about="&ns-prf;BluetoothProfile">
 <rdf:type rdf:resource="&ns-rdf;Property"/>
 <rdf:range rdf:resource="&ns-rdf;Bag"/>
 …
</rdf:Description>

Expressing the property in this way, however, leaves no way to define the datatype of the
elements inside the container. As mentioned in Section 3.3, expressing a constraint such as
this has been ruled to be currently beyond the scope of RDF Schema. To allow the validation
of multi-valued properties, we chose to leave the definition of such properties in its current
form in the UAProf schemas, since the information is machine readable and the data required
for validation can be extracted if the schemas are formatted in this way. This is done with a
view to bringing the approach into line with the RDF Schema specification when it is
finalised by the RDF Core WG.

 17

1 W3C CC/PP Working Group

http://www.w3.org/Mobile/CCPP/

2 W3C Device Independence Activity

http://www.w3c.org/2001/di/

3 OMA / WAP Forum UAProf Specification
 http://www1.wapforum.org/tech/documents/WAP-248-UAProf-20010530-p.pdf

4 Resource Description Framework (RDF) Model and Syntax Specification
W3C Recommendation 22 February 1999
Ora Lassila, Ralph R. Swick
 http://www.w3.org/TR/REC-rdf-syntax/

5 Resource Description Framework (RDF) Schema Specification 1.0
W3C Working Draft 30 April 2002
Dan Brickley, R. V. Guha
 http://www.w3.org/TR/rdf-schema/

6 DELI: A Delivery context Library for CC/PP and UAProf
HP Labs Technical Report 2001-260
Mark H. Butler
 http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm

7 CC/PP and UAProf: Issues, Improvements and Future Directions
HP Labs Technical Report 2002-35
Mark H. Butler
 http://www.hpl.hp.com/techreports/2002/HPL-2002-35.html

8 Some Questions and Answers On CC/PP and UAProf
HP Labs Technical Report 2002-73
Mark H. Butler
 http://www-uk.hpl.hp.com/people/marbut/someQuestionsOnCCPP.htm

9 XSL Transformations (XSLT) Version 1.0
W3C Recommendation 16 November 1999
James Clark
 http://www.w3.org/TR/xslt

10 W3C XML Schema Activity
 http://www.w3.org/XML/Schema

11 Composite Capabilities / Preference Profiles (CC/PP) Structure and Vocabularies
W3C Working Draft 15 March 2001
Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka Ohto

http://www.w3.org/TR/CCPP-struct -vocab/

12 W3C RDF Validation service

http://www.w3.org/RDF/Validator/

13 Co-Parsing of RDF and XML
HP Labs Technical Report 2001-292
Jeremy Carroll

http://www-uk.hpl.hp.com/people/jjc/docs/r292.pdf

14 W3C RDF-Core Working Group Issue Tracking
http://www.w3.org/2000/03/rdf-tracking/#rdf-ns-prefix-confusion

 18

15 W3C RDF-Core Working Group Issue Tracking
 http://www.w3.org/2000/03/rdf-tracking/#rdf-containers-otherapproaches

16 Apache Xerces XML parser and Apache Xalan XSLT stylesheet processor
 http://xml.apache.org/

17 DELI SourceForge Site,
 http://delicon.sourceforge.net/

18 HPL Semantic Web activity
 http://www.hpl.hp.com/semweb/

19 W3C RDF-Core Working Group Issue Tracking
 http://www.w3.org/2000/03/rdf-tracking/#rdfs-domain-and-range

20 w3c-rdfcore-wg@w3.org from August 2002: The latest proposal
 http://lists.w3.org/Archives/Public/w3c-rdfcore-wg/2002Aug/0114.html

