

On the Complexity of Distance-based
Evolutionary Tree Reconstruction

Valerie King1, Li Zhang, Yunhong Zhou
Systems Research Center
HP Laboratories Palo Alto
HPL-2002-267
October 31st , 2002*

E-mail: {valerie.king,l.zhang, yunhong.zhou}@ hp.com

evolutionary
tree
reconstruction,
algorithm,
complexity,
bioinformatics

We give the first tight lower bounds on the complexity of
reconstructing k-ary evolutionary trees from additive distance data.
We also consider the problem under DNA-based distance
estimation assumptions, where the accuracy of distance data
depends on the length of the sequence and the distance. We give the
first o(n2) algorithm to reconstruct trees in this context, and prove a
trade-off between the length of the DNA sequences and the number
of distance queries needed to reconstruct the tree. We introduce new
computational models for understanding this problem, which
simplify the development of algorithms. We prove lower bounds in
these models which apply to the type of techniques currently in use.

* Internal Accession Date Only Approved for External Publication
1 University of Victoria, Victoria, BC, Canada
Copyright SIAM
 To be published in and presented at the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 12-14
January 2003, Baltimore, Maryland

On the Complexity of Distance-based

Evolutionary Tree Reconstruction

Valerie King∗ Li Zhang Yunhong Zhou

Systems Research Center, Hewlett-Packard Labs
1501 Page Mill Road, Palo Alto, CA 94304

Email:{valerie.king, l.zhang, yunhong.zhou}@hp.com

Abstract

We give the first tight lower bounds on the complexity of recon-
structing k-ary evolutionary trees from additive distance data. We
also consider the problem under DNA-based distance estimation as-
sumptions, where the accuracy of distance data depends on the length
of the sequence and the distance. We give the first o(n2) algorithm
to reconstruct trees in this context, and prove a trade-off between
the length of the DNA sequences and the number of distance queries
needed to reconstruct the tree. We introduce new computational mod-
els for understanding this problem, which simplify the development of
algorithms. We prove lower bounds in these models which apply to
the type of techniques currently in use.

1 Introduction

There has been extensive study on computational tools for evolutionary
(phylogenetic) tree reconstruction using either relative or absolute distances.
These algorithms access their input by a sequence of queries, each about the
relationship of a few species. We model them as algorithms with access to an
oracle. The extant methods use two types of oracles: the relative distance
or “relation” oracle and absolute distance or “distance” oracle. A relation
oracle is an oracle that takes three (for rooted trees) or four (for unrooted
trees) species as input and determines which pair or pairs of leaves are closer
to each other than the other leaf or leaves, i.e., it returns the topology of

∗University of Victoria, Victoria, BC, Canada. Email: val@cs.uvic.ca

1

Figure 1: A caterpillar tree with six leaves

the induced tree on those species. A distance oracle is an oracle that takes
two species and returns the distance between them in the tree. We call the
methods using those oracles, respectively, the relation-based method (also
known as the experiment-based method in [10] or the quartet method in the
unrooted case) and the distance-based method [14] .

We measure complexity of such algorithms by the number of queries
made to the oracle. Distance-based oracles are at least as powerful as
relation-based oracles as each relation query can be simulated by a con-
stant number of distance queries. In fact, they can be more powerful, as in
the example of a caterpillar tree with n leaves (see Figure 1). For such a
tree, the relation-based method requires Ω(n log n) queries as it amounts to
sorting n elements by comparisons. On the other hand, the distance-based
method needs only O(n) queries. While there have been tight bounds on
the complexity of relation-based methods, for both binary or k-ary trees
([10, 1]), the bounds for distance-based methods are not tight.

In this paper, we first show a tight Ω(kn logk n) lower bound on the
number of queries of distance-based methods for k-ary trees with n leaves.
This matches the known upper bound of relation-based methods. Therefore,
while distance-based methods provide logn factor speed-up for some trees
(e.g., caterpillar trees), it does not reduce the number of queries needed in
the worst case. To prove our lower bound, we first describe a partition prob-
lem and then show that an adversarial strategy for the tree reconstruction
problem can be created from an adversarial strategy for that problem.

In recent years, much attention has been paid to the problem of recon-
structing trees when the distance information only approximates those in the
true tree. Such problems arise naturally in DNA-based distance estimation
methods. The methods, pioneered by [6, 4] and others, model the evolution
as a stochastic process and use the DNA sequences to derive a measurement
on the mutation distance between species on the tree. One can then apply
distance-based methods to reconstruct the tree based on those measured
distances. The accuracy of distance obtained this way is a function of the
length of the DNA sequences and the distance between the species. Earlier
work studied the length of the DNA sequences required to reconstruct the
tree with high probability. The major breakthrough made in [4] relates the
bound to the so-called “edge-depth” rather than the diameter of the tree

2

and thus reduced the DNA length needed from exponential to polynomial
in terms of the number of species. A series of work [4, 5, 9, 3, 2] reduced the
running time to O(n2) [3] from the early high degree polynomial bound.

In DNA-based distance estimation, if the distance between the sequences
grows too large, the distance measure becomes unreliable. All the known
algorithms proceed by finding pairs of leaves which are not far away in the
tree. This motivates us to consider the bounded and restricted distance
oracle models. In a τ -bounded distance model, the oracle returns accurate
distances for only pairs within distance τ . In a (τ, ε)-restricted model, the
oracle returns a distance with error up to ε for pairs within distance τ .
These models offer us a much simpler view of computation in the context of
DNA-based distance estimation.

We then consider the complexity of evolutionary tree reconstruction un-
der those distance oracle models. By extending our lower bound argument
for the exact distance model, we obtain lower bounds for the bounded
distance model. We show that Ω(nκ(2τ, 1/8)) queries are required where
κ(2τ, 1/8) is the the minimum number of balls of radius 2τ needed to cover
n/8 leaves of the tree. This implies a worst case lower bound of Ω(n2/τ).

We then present algorithms for the bounded distance model. We first
describe an algorithm that runs in O(n2) time for τ = 2g where g is the
edge-depth of the tree. The technique in our algorithm is similar to that
in [3] but is significantly simpler. Then, we describe an algorithm that
runs in sub-quadratic time if we allow slightly larger τ . The running time
of the algorithm is O(1

ε0
(nκ(τ

4 − (1 + ε0)g) + n log n) log g) = O((n2/τ +
n log n) log g), where τ > 4(1 + ε0)g for any ε0 > 0. Our algorithm runs
in two stages by first clustering the leaves and then constructing the tree
incrementally by inserting those clusters according to a particular order. We
then show that our algorithms for bounded oracles can be easily extended
to (τ, ε)-restricted model for ε < 1/4 with only a constant factor blow-up.

We also show the connection between the restricted oracle model and
the DNA-based distance estimation methods. In particular, we show that
an algorithm using the (τ, ε)-restricted oracle can be converted into an al-
gorithm using DNA-based distance estimation method with DNA length
roughly O(α2τ log n/ε2) where α is a constant determined by the minimum
mutation rate on each edge. On the other hand, any DNA-based distance
estimation method can be converted into an algorithm using the τ -bounded
oracle for τ = O(log(mn)/ log α) where m is the length of DNA sequences.
Therefore, our upper bound for the restricted model and lower bound for the
bounded oracle model can both be translated to the upper and lower bounds,
respectively, for the DNA-based distance estimation method. This gives a

3

tradeoff (stated in Theorem 6.4) between the length of DNA sequences and
the number of queries needed for reconstruction. Our sub-quadratic algo-
rithm shows that all pairwise distances between DNA strings do not need to
be computed in order to construct the tree, which can result in substantial
time savings.

The paper is organized as follows. We give some definitions in Section 2.
In Section 3.1, we describe an abstract game and establish a tight bound
for the game. It serves as the basis of our lower bounds arguments for
both exact and bounded distance oracles, as shown in Section 3 and 4,
respectively. In Section 5, we present algorithms for restricted oracle models.
Section 6 establishes the connection between the restricted model and the
DNA-based distance methods. Finally, we conclude with the proposal of
some open problems and future work directions.

1.1 Related work

Upper bounds: There has been extensive work on reconstruction of trees
using relation and distance oracles with no error, beginning in 1977 with [14].
Optimal algorithms can be found in [10], [8], and [1].

Numerous techiques and models have been proposed to do tree recon-
struction when the data is not accurate. In [7], Farach et al. consider the
existence of tree metric that is sandwiched by two distance metrics. In [4, 5],
Erdos et al. showed that if a distance metric is not “far” from a tree met-
ric, it then uniquely defines a tree. All the tree reconstruction algorithms
presented in [4, 5, 9, 3, 2] can be viewed as under the restricted oracle model
although it is never made explicit in those papers.

Lower bounds: In the relation model, Kannan et al. gave an Ω(n log n)
lower bound for constructing binary trees based on information theory. In
2001, Brodal et al. [1] gave a Ω(nk logk n) lower bound for degree k trees.

In the distance model, in 1989, Hein [8] gave a Ω(n2) lower bound
for reconstructing an arbitrary tree from additive distance data. In 1999,
Kao et al. [11] claimed a Ω(n log n) lower bound for constructing binary
trees from distance data with a flawed proof. For ultrametric distance data,
they also give an Ω(deg(u)2 +

∑
v∈T\u(deg(v) − 1)2) lower bound for u a

node of maximum degree and a lower bound of Ω(n log n + nk) in the case
where all the leaves are children of n/(k − 1) vertices of degree k.

The problem of proving tighter lower bounds in the case of error does
not seem to have been addressed in the literature.

4

2 Preliminaries

Trees Suppose that T is a unrooted tree without degree two nodes. T is
semi-labeled if all the leaves of T are labeled but the internal nodes are not.
Evolutionary trees are semi-labeled trees where the leaves represent species
and internal nodes the evolution branching points. T is weighted if every
edge e in T has a positive weight w(e). In what follows, we assume that
w(e) ≥ 1 for all e ∈ T . An unweighted tree is treated as a weighted tree
with unit edge length. The distance d(i, j) between two leaves i, j is the
total weights of the edges on the path between them in T .

For any subset L of leaves, define the induced tree of L to be the weighted
tree joining L. An induced tree can be obtained by deleting all the leaves
not in L from T and removing all the degree two nodes by merging two
edges e1, e2 by a single edge with weight w(e1) + w(e2). For three leaves
u, v,w, their induced tree in T is a tree with one interior node o(uvw).
Define σ(w, uv) = d(o(uvw), w) = d(u,w)+d(v,w)−d(u,v)

2 . σ(w, uv) tells us how
to attach w to the path between u, v.

If we remove an edge e = (u, v) from T , we obtain two subtrees, one is
rooted at u and the other at v. We denote those two rooted subtrees Tu(e)
and Tv(e), respectively. For a rooted tree, define its min-depth, denoted by
dmin, to be the distance from the root to the nearest leaf in the tree. Let the
edge-depth g(e) be w(e)+max (dmin(Tu(e)),dmin(Tv(e))).1 Define the edge-
depth g(T) of a tree T to be maxe∈T g(e). According to [4], for unweighted
trees, g(T) = O(log n) in the worst case and O(log log n) in average for
random trees. For any node u in T , the removal of u decomposes T into one
or three subtrees. By the definition of edge-depth, each of those subtrees
contains a leaf that is at most g(T) away from u.

Distance oracles A distance oracle O is an oracle that takes a pair (i, j)
and returns a non-negative number. Denote by AO an algorithm that queries
distance oracle O. These are several types of oracles that we are interested
in.

Definition 2.1 A distance oracle O is

1. τ-bounded if O(i, j) = d(i, j) when d(i, j) ≤ τ and O(i, j) = φ other-
wise;

2. ε-approximate if |O(i, j) − d(i, j)| ≤ ε. When ε = 0, the oracle is
called exact;

1Our definition of edge-depth is an extension of the defintion in [4] to weighted trees.

5

3. (τ, ε)-restricted if |O(i, j)−d(i, j)| ≤ ε when d(i, j) ≤ τ and O(i, j) =
φ otherwise.

Evolution models The existing tree reconstruction algorithms based on
DNA sequences all model the evolution as a stochastic process. In such
models, each DNA sequence is represented by a string over the character
set Σ. Each edge e in the tree is associated with a mutation matrix M(e)
that describes the mutation probability from each character to any other
character. The evolution starts at the root of the tree with an initial string
and propagates towards the leaves. When propagating down along the edge
e, each character is mutated independently according to the mutation matrix
M(e). There are many ways to defineM(e), from the simplest two character
symmetric model (Cavender-Farris(CF) model, or two-state Neyman model
[4, 12]) to the most general model ([13, 2]). In our paper, we only consider
the CF model as there is no inherent difficulty to go from the simplest to
the most general model if we define edge weights as in [2]. In the CF model,
Σ = {0, 1}, and the mutation probability is symmetric, i.e. it is the same
from 0 to 1 and from 1 to 0.

Tree covers Our lower and upper bounds results for bounded and re-
stricted oracles all involve the cover of the trees. Here, we give some defini-
tions and summarize some properties. A leaf u τ -covers a leaf v in T if the
distance between u and v is at most τ . When τ is clear from the context,
we also simply say that u covers v. We say that a set of nodes U covers a
set of nodes V if every node in V is within distance τ of some node in U . A
(τ, δ)-cover of a tree is a set of leaves that τ -covers at least δn leaves. When
δ = 1, we also call it a τ -cover or a cover when τ is clear. The leaves in a
cover are called centers. A cover induces a partitioning of the leaves accord-
ing to by which center a leaf is covered. We call each set in the partitioning
a cluster. A cover is minimal if no center is covered by any other center.

The cover number κ(τ, δ) is the minimum size of (τ, δ)-covers. κ(τ, 1)
is also written as κ(τ). Denote by κ̃(τ) the maximum size of any minimal
cover. A minimal cover can be computed using a simple greedy algorithm
with running time O(nκ̃(τ)). It is easy to verify the following:

Lemma 2.1 κ(τ) ≤ κ̃(τ) ≤ κ(τ/2), and κ(τ, δ) ≤ 4aδn
τ , where a is the

maximum edge weight.

6

3 Lower Bounds for Exact Oracles

In this section, we study the lower bounds of evolutionary tree reconstruction
using exact distance queries. We first consider an abstract game called the
Partition Problem.

3.1 The Partition Problem

We define the (n, k)-Partition Problem as follows:

(n, k)-Partition Problem: Given n elements which are partitioned into k
equal sized classes, determine the elements in each class by asking a sequence
of queries of the form: “Are elements a and b in the same class?” Cost is
measured by the number of queries required.

We first give a lower bound for this problem.

Lemma 3.1 Given an (n, k)-Partition Problem for 1 < k < n, an adversary
can force an algorithm to ask Ω(nk) queries whose answers are “No”.

Proof: First, we observe that for any k > 1, there is an obvious lower
bound of Ω(n). Now we assume k ≥ 3.

We prove a lower bound by an adversary argument. The adversary
maintains a mapping of elements to classes, which is adjusted as the queries
proceed. Initially, the adversary places the elements arbitrarily in k equal-
sized classes. Let NQ be the set of pairs of elements asked about so far
for which the adversary has answered “No”, Y Q be the set of pairs for
which the adversary has answered “Yes.” Let C be the adversary’s current
mapping from elements to classes. A mapping C is consistent with NQ and
Y Q if, for all pairs (a, b) ∈ NQ, C(a) 	= C(b) and for all pairs (a, b) ∈ Y Q,
C(a) = C(b).

Let q(a) be the number of queries asked about a so far. A class is fixed
by the adversary when its elements are involved in n/3 queries in NQ. An
element a is fixed by the adversary when q(a) =
k/3� − 1 or its class
becomes fixed. The goal of the adversary is to say “No” as long as possible.
If the algorithm asks a query (v,w), and C(v) = C(w), the adversary swaps
either v or w with an unfixed element from a different class, so as to be able
to answer “No”. The adversary answers “Yes” to a query pair only when
both elements are fixed and in the same class. Once an element is fixed, its
class is never changed. We show that such a strategy is possible as long as
|NQ| < (n/12)
k/3�.

7

Given a current mapping C, NQ, and Y Q, two elements a and b are
swappable if C(a) 	= C(b) and there is a consistent mapping C ′, such that
C ′(a) = C(b), C ′(b) = C(a), and for all y 	= a, b, C ′(y) = C(y).

It is not hard to see:
Claim 1: An element a is swappable with another element b if:
(1) there is no b′ such that C(b′) = C(b) and (a, b′) ∈ NQ and
(2) there is no a′ such that C(a′) = C(a) and (a′, b) ∈ NQ and
(3) neither a nor b is fixed and
(4) C(a) 	= C(b).

If |NQ| < (n/12)
k/3� then it is easy to see that (A) there are fewer
than n/6 elements with d ≥
k/3� − 1 and (B) there are fewer than
k/6�
classes that have been fixed. Hence,
Claim 2: If |NQ| < (n/12)
k/3�, there are fewer than n/3 fixed elements.

We are now ready to show:
Claim 3: If any element a is not fixed and |NQ| < (n/12)
k/3�, there is an
element b that is swappable with a.
Proof of Claim 3: Since q(a) <
k/3�−1, no more than
k/3�·n/k−n/k−1 ≤
n/3−n/k−1 b’s are eliminated because condition (1) in the claim above is not
satisfied. Since a’s class is not fixed, no more than
k/3�·n/k ≤ n/3−1 b’s are
eliminated because condition (2) isn’t satisfied. Since there are fewer than
n/3 fixed elements, then fewer than n/3 elements are eliminated because of
condition (3). Condition (4) eliminates n/k elements. In conclusion, there
is at least one element b which satisfies the conditions (1), (2), (3) and (4).

Claim 3 implies that while any element a is not fixed and |NQ| <
(n/12)
k/3�, every query involving a can be answered “No”. Furthermore,
if every class has size at least 2, there are more than one partition consis-
tent with NQ and YQ. Thus we have shown that a solution to the partition
problem requires |NQ| = Ω(nk). ✷

We can solve the partition problem by inserting elements one by one. We
pick a representative for each of classes. Whenever we insert an element, we
query it against those representatives. If the answer is “Yes” of one query,
we find a class that contains the element. Otherwise, we create a new class
that contains the element and assign the element to be the representative
of that class. Each insertion takes at most k − 1 queries. This implies an
upper bound of O(nk) for the Partition Problem. We conclude:

Theorem 3.2 The Partition Problem on n elements and k classes has com-
plexity Θ(nk).

8

3.2 Lower Bounds for Exact Oracles

Suppose that the tree T has maximal degree k. Our main result in this
section is the following theorem:

Theorem 3.3 The number of queries needed to reconstruct an evolutionary
tree is Ω(nk logk n).

Proof: Let n = km for some integer m. Suppose the tree to be recon-
structed is a complete k-ary tree.

The idea of the proof is to show that the reconstruction algorithm can
be forced to solve many partition problems. In particular, for each internal
node of height h, the adversary can force the algorithm to solve the partition
problem on kh elements, each with k classes, with the worst case number
of queries required for each problem. We denote the partition problem for
node x by P (x). Let NQ(x) denote the set of “No”queries NQ for P (x).

We show that the cost of the algorithm is equal to the number of
“No”’s given for the partition problem at each node of height h > 1 or
Ω(

∑k
j=1 jk

i−1) = Ω(ki+1). Summing over all internal nodes of height i and
over each height i = 1, 2, · · · ,m, this yields the lower bound claimed.

We label the nodes of a complete k-ary tree top-down as follows. The
root is labeled 1. The ith child of a node a is labeled by a’s label concatenated
with i. A node of depth j is therefore labeled by a string in {1, 2, · · · , k}j .

We construct the Adversary from the adversaries for P (x) as follows.
The Adversary maintains a 1-1 mapping from species to leaves: Let Cx

denote the mapping for the adversary in P (x). The species a is mapped to
the leaf labeled Cx1(a), Cx2(a), · · · , Cxm(a) where x1 is the root. Let p(x)
denote the label of the parent of node x. The label of xi is given by a’s class
in the adversary mapping for the problem at its parent node, i.e., Cp(xi)(a),
concatenated with the label of its parent p(xi).

We describe the Adversary strategy: The Adversary reveals that the
tree is a rooted full k-ary tree. We model the state of revealed knowledge by
placing a set of n pebbles on internal nodes of the tree, one for each species.
Initially, all pebbles are placed on the root.

If query (a, b) is asked, then let x be the lowest common ancestor of the
nodes on which the pebbles for a and b lie. Let i be the height of x.

Case 1: Pebbles for a and/or b lie on node x If the adversary strategy for
P (x) requires the adversary to say “No,” the Adversary answers d(a, b) = 2i,
and (a, b) is added to NQ(x). If the adversary fixes a species to class j and
its pebble lies in x then the Adversary moves its pebble to the jth child of
x.

9

If the adversary strategy requires a “Yes” answer, then this implies that
both pebbles are now located in the subtree rooted by the same child of
x and the query is now answered according to the current position of the
pebbles.

Case 2: If neither pebble for a and b lie in x then the two pebbles
have already been fixed in P (x). The adversary answers that the distance
between them is 2i. No pebble is moved.

Note that when a’s pebble is in node x, a is essentially a “dummy” in all
P (y), y a descendant of a, since no queries regarding a affect these problems.
So if a and b are swapped in P (y) then for all z on the path from y to the
leaves assigned to a or b, they are swapped in P (z), with no effect on the
partition problem.

The complexity of the adversary strategy is proved by induction on the
height of the trees. We omit the details due to lack of space. The key idea
is: Assigning the species to one of the k subtrees of the root is equivalent to
solving the partition problem on n elements with k subtrees. Answering that
the distance between two species is “2m” indicates only that two species are
in two different subtrees at height m but reveals no information about the
species’ positions in the subtrees of heightm−2 or less. The queries answered
“Yes” either confirm information already revealed by the adversary and/or
become the equivalent of queries on a partition problem for a descendant
node. ✷

4 Lower Bounds for Bounded Oracles

In this section, we study the lower bounds of evolutionary tree reconstruction
using bounded oracles as defined in Section 2. We only consider bounded
oracles as a lower bound for τ -bounded oracle is also a lower bound for a
(τ, ε)-restricted oracle. Recall that κ(τ, δ) denotes the minimum number of
leaves needed to τ -cover δn leaves in the tree.

Theorem 4.1 For τ > 0, an algorithm with access to a τ -bounded oracle
needs Ω(nκ(2τ, 1/8)) queries to reconstruct a tree with bounded degree in the
worst case.

Proof: The proof of this theorem is similar to the proof of the lower
bound for the partition problem. The adversary maintains a 1-1 mapping π
from the set of species to the set of leaves of the tree. Let NQ be the set of
queries (a, b) for which the adversary answers φ and Y Q be the set of triples
(a, b, d) where the answer to the query (a, b) is d. A mapping π is consistent

10

with NQ and YQ if (a, b) ∈ NQ implies the distance d(π(a), π(b)) between
π(a), π(b)) is greater than τ and if (a, b, d) ∈ Y Q, then d(π(a), π(b)) = d.
The adversary may fix a species a to its leaf, i.e., π(a) will remain unchanged
throughout the adversary strategy.

A species u neighbor-τ -covers a species z under a mapping π if there
exists a species v such that (u, v) ∈ NQ and π(v) τ -covers π(z). Two
species a and b are swappable under π if there is a consistent mapping π′

such that π = π′ except that π′(a) = π(b) and π′(b) = π(a).
The adversary maintains the invariant that species which are not fixed

are not involved in any query of Y Q. The invariant implies that s and t are
swappable iff s and t are not fixed and s does not neighbor-τ -cover t and t
does not neighbor-τ -cover s.

The adversary fixes a species a to its leaf if
(1) a neighbor-τ -covers at least n/8 species; or
(2) a is neighbor-τ -covered by n/2 species or π(a) is within a ball of radius
τ of a π(b) where b is neighbor-τ -covered by n/2 species.

We claim that the number of fixed species is less than 39n/112 if |NQ| <
κ(2τ, 1/8)n/56.

Proof of Claim: Let A be the set of species fixed under (1) and B be
the set of species fixed under (2). In the following we bound |A| and |B|
separately.

If |A| ≥ n/28, then because each element a ∈ A neighbor-τ -covers n/8
species, a must be in κ(τ, 1/8) queries in NQ. Since |A| ≥ n/28, |NQ| ≥
κ(τ, 1/8)n/56 ≥ κ(2τ, 1/8)n/56.

If |B| ≥ 5n/16, then let b be any element of B. There are (5n/16)(n/2)
pairs of species in which one of the pair neighbor-2τ -covers the other. Using
the fact that a species can’t cover more than n other species, we see that
there must be at least n/28 species that neighbor-2τ -cover at least n/8
species. Each species must have at least κ(2τ, 1/8) queries inNQ, so |NQ| ≥
κ(2τ, 1/8)n/56.

Because |A| < n/28 and |B| < 5n/16, thus the total number of fixed
species is less than 39n/112, and the claim is proved.

Now, let a be a species which is not fixed. If we add up the number
of fixed species (39n/112), the number of species which neighbor-τ -covers
a (n/2), and the number of species that a neighbor-τ -covers (n/8), we see
that at least 3n/112 − 1 species are left for a to be swapped with, as long
as |NQ| < κ(2τ, 1/8)n/56. So that if |NQ| does not exceed that bound,
the adversary can maintain its invariant. If the degree of the tree is less
than 3n/112 − 1 then there is more than one distinct evolutionary tree
consistent with the queries. This implies that any algorithm needs at least

11

Ω(nκ(2τ, 1/8)) queries in the worst case. ✷

For the caterpillar tree with n leaves, κ(2τ, 1/8) = Θ(n/τ). One direct
consequence of Theorem 4.1 is:

Corollary 4.2 Ω(n2/τ) queries are necessary in the worst case.

5 Algorithms for Restricted Oracles

In this section, we describe tree reconstruction algorithms using restricted
oracles. Recall that g denotes the edge-depth of T . We first describe al-
gorithms that use τ -bounded oracles. We present an O(n2) algorithm for
τ = 2g. The algorithm is similar to the one in [3] but is much simpler
and easier to analyze. Then, we present an algorithm with running time
dependent on the cover size for τ > 4g. Finally, we show that a slight modi-
fication of these algorithms works under (τ, ε)-restricted oracles for ε < 1/4.
Throughout this section, all the trees are assumed to be binary trees.

5.1 A quadratic algorithm for bounded oracles

We first describe a tree reconstruction algorithm using a τ -bounded oracle
for τ = 2g. Our algorithm works incrementally by adding the leaves into
the tree in a carefully chosen order. Let Ti denote the induced tree of the
first i leaves. We show that in O(n) time we can find another leaf to insert
into Ti and thus overall the algorithm runs in O(n2) time. Denote by Li the
set of leaves in Ti. We maintain a partitioning of all the leaves in L \Li: for
each edge e, S(e) is a subset of the leaves attached to the edge e, and the
set of U contains all the leaves not in any S(e). For each leaf s ∈ S(e), we
store the position o(s) from which s branches out together with d(s, o(s)).
For each o on e, we keep track of the leaf with the minimum d(s, o). For
each leaf s ∈ U , an anchor a(s) is a node in Ti that is within distance τ
from s. A leaf in U may not have an anchor.

To start, we find two nodes u, v with the minimum distance. This can
be done in linear time as the underlying graph is a tree. Set L2 = {u, v} and
T2 the tree with a single edge e = (u, v). Initially, S(e) = ∅ and U = L \L2.
For each leaf s in U , we query its distances to u and v. If both are bounded
by τ , then we move it into S(e) and compute o(s) and d(s, o(s)). If only one
of u, v, say u, is within distance τ from s, we then set a(s) = u. Otherwise,
a(s) is undefined.

We now describe how to find a leaf to insert to Ti and how to update
S(·), a(·). At the beginning with i = 2, it is easy to see that S(e) 	= ∅. We

12

choose a leaf s from S(e) with minimum d(s, o(s)). After that we claim that
all the edges with S(e) 	= ∅ must be the following form: e = (p, q) where p
is an internal node and q a leaf node. Choose one such e. Among all the
leaves s ∈ S(e) with the minimum d(p, o(s)), we choose the one with the
minimum d(s, o(s)).

Now suppose that we have chosen a leaf s from S(e) where e = (p, q). We
insert s into Ti to form Ti+1 by splitting e at o into two edges e1 = (p, o) and
e2 = (o, q) and inserting e3 = (o, s). We assign weights to these three edges
accordingly. We then update the data structures by initiating three empty
sets S(e1), S(e2), and S(e3). We split S(e) as follows: for a leaf w in S(e),
if o(w) 	= o, we add it into either S(e1) or S(e2); otherwise, we query the
distance d(w, s). If the oracle returns φ, we add w into U with the anchor
node a(w) = o. Otherwise, we add w to S(e3). For each leaf w ∈ U , we
query d(s,w) too. If the oracle returns φ, we do nothing. Otherwise, if a(w)
is undefined, we update a(w) = s. If a(w) has already been defined, we can
determine the position of w on the path from a(w) to s. If it happens to
be in the middle of an edge e′, we remove w from U and add it into S(e′).
Otherwise if it branches out from one internal node t′, we update a(w) to t′.

An edge in Ti is called unfinished if it is not an edge in T . An edge
e = (p, q) is called an internal edge if p, q are both internal nodes. Otherwise,
it is an external edge. For any internal node of Ti, its removal results in three
subtrees which are denoted by T 1

i (v), T 2
i (v) and T 3

i (v). In what follows, we
show that we can always find a leaf s and insert it into the current tree.
We achieve our goal by proving the following lemma, which gives a much
stronger result about the current tree.

Lemma 5.1 The following properties hold during the insertation process:

1. If all the edges have empty S(·), then U must be empty and we have
the final tree. An internal edge is always finished.

2. The algorithm always succeeds in finding s ∈ S(e) for insertion with
d(s, o(s)) ≤ g. The weight of each edge of Ti is at most g.

3. For any internal node v in Ti and for any 1 ≤ j ≤ 3, there exists a
leaf u in T j

i (v) so that d(u, v) ≤ g.

4. For each external edge ẽ = (p̃, q̃) where p̃ is an internal node, if s̃ ∈
S(ẽ), d(s̃, p̃) ≥ d(p̃, q̃). This is also true for s̃ attached to ẽ and s̃ ∈ U .

Proof: The proof is by induction. At the beginning, d(u, v) ≤ g be-
cause u, v are two leaves with minimum distance. Consider the leaf s with

13

p q

s

op’

~s

~q

~p

~o

Figure 2: Intermediate stage of insertion process. Circles are leaf nodes, and
dots are internal nodes.

minimum d(s, o(s)). From the definition of edge-depth, d(s, o(s)) ≤ g. Ob-
viously d(s, u) ≤ τ and d(s, v) ≤ τ , thus s ∈ S((u, v)). Property (1) holds
because S((u, v)) 	= ∅. After inserting s into T2 and creating an internal
node o, properties (2), (3) are satisfied trivially. Property (4) is true be-
cause u, v are a pair of nodes with the minimum distance, and s is the node
with minimum d(s, o).

Consider an intermediate stage. Assume that e = (p, q) where p is an
internal node, and q a leaf node. Because S(e) is not empty, thus there
exists internal nodes on the path from p to q on the final tree. Consider the
unique internal node o with the minimum d(p, o). Suppose that s is a leaf
branching out from o with the minimum d(s, o). Obviously d(s, o) ≤ g and
d(s, q) ≤ 2g = τ . Let p′ be a leaf node in subtree Tp((p, q)) with minimum
distance to p. See Figure 2. By induction, d(p′, p) ≤ g. We claim that
d(o, p′) ≤ g. If this claim is valid, then d(s, p′) ≤ τ . Together with the
inequality d(s, q) ≤ τ , thus s ∈ S(e).

If this claim is false, then all the leaf nodes in the direction −→op is more
than g away from o. For any leaf s̃ connecting to o through node p, it
should branch out from some edge ẽ of the current tree. Here ẽ = (p̃, q̃)
with p̃ an internal node and q̃ a leaf node. No matter whether s̃ ∈ S(ẽ) or
s̃ ∈ U , by property (4) from induction, d(s̃, p̃) ≥ d(q̃, p̃). This implies that
d(s̃, o) ≥ d(q̃, o) ≥ d(p′, o) > g. In summary, all the leaves have distance to
o greater than g from the direction −→op. This contradicts with the definition
of edge-depth. So that d(o, p′) ≤ g and the claim is proved.

Now s ∈ S(e). The algorithm chooses s to insert and o is the new internal
node. Properties (2) and (3) are preserved after the insertion because d(o, s),
d(o, p′), d(o, q) ≤ g.

If all the S(·) are empty and U is not empty, there exists an unfinished
external edge e. Similar as the argument above, we can prove that S(e) is
not empty, a contradiction. So that (1) is also established.

After the insertion of s, we create one internal edge (p, o) and two ex-
ternal edge (o, q) and (o, s). Edge (p, o) is also a final edge based on our
selection method. In order to show that property (4) is preserved after

14

the insertion, we only need to consider these two new external edges (o, s)
and (o, q). It is trivially true for (o, s) as s has the minimum distance to
o based on the selection method. It is also trivially true for (o, q) because
d(ŝ, p) ≥ d(p, q) ⇔ d(ŝ, o) ≥ d(q, o) (assuming that ŝ branches out from
(o, q)). Thus property (4) is preserved after the insertion. The induction is
complete now. ✷

Clearly, each step in the above algorithm takes O(n) time. There are
totally no more than n steps. Thus, we have that:

Theorem 5.2 When τ ≥ 2g, we can reconstruct the tree in O(n2) by using
a τ -bounded oracle.

5.2 A sub-quadratic algorithm for bounded oracles

In this section, we describe an algorithm whose running time depends on
the cover size when τ > 4g. The running time of our algorithm may vary
between n2 log g/2cτ and n2 log g/τ where c > 0 is a constant. Our algorithm
always runs in sub-quadratic time. When the tree has a small cover, then it
may run significantly faster.

The algorithm works in two steps. In the first step, we compute a cover
of the leaves. In the second step, we construct the tree incrementally by
inserting the clusters formed in the first step. When we insert a node,
the algorithm is similar to incremental tree construction algorithm using
exact oracles. We show that if we order the clusters appropriately, we can
guarantee that the distance queried in the process is within τ . Further, most
queries made by the algorithm are between a leaf and a center in the cover.
Therefore, we are able to bound the running time by the number of centers
in the cover, i.e. the cover size.

We first prove a useful structural property about trees. Suppose that
C = {c1, c2, · · · , cm} is a d1-cover of T . We form a graph G = (C,E) where
(ci, cj) ∈ E if d(ci, cj) ≤ d2. We claim that:

Lemma 5.3 If d1 ≥ 0 and d2 ≥ 2d1 + 2g, then G is connected.

Proof: For any two centers c1, c2 ∈ C, consider the path q1, q2, · · · , qk

(q1 = c1, qk = c2) between them in T . For any i, the removel of the edge
(qi, qi+1) results in two subtrees, one rooted at qi and the other at qi+1. By
the definition of edge-depth, there exists a leaf vi+1 in the subtree rooted
at qi+1 such that d(qi, vi+1) ≤ g. Clearly, d(qi+1, vi+1) ≤ g as well. Denote
by ui the center in C that covers the leaf vi. We then have that d(ui, qi) ≤
d(ui, vi) + d(vi, qi) ≤ d1 + g, and d(ui+1, qi) ≤ d(ui+1, vi+1) + d(vi+1, qi) ≤

15

d1 +g. Therefore, d(ui, ui+1) ≤ d(ui, qi)+d(ui+1, qi) ≤ 2(d1 +g) ≤ d2. That
is, there is an edge between ui and ui+1 in G. c1, c2 thus are connected. ✷

Once we have obtained G, we can reorder the centers to c1, c2, · · · , cm
such that for any i > 1, there exists j < i such that the edge (cj , ci) ∈ G.
This can be done by a depth-first search in G. Given the order of the centers,
we now reconstruct the tree incrementally by inserting the corresponding
clusters in the order.

Suppose that we have constructed the tree Ti for the leaves in the sets
C1, C2, · · · , Ci where Cj denotes the set of leaves covered by cj . We shall
show how to add the leaves in Ci+1 to the tree. We first describe the process
for inserting ci+1.

By the order of the centers, there exists cj , j ≤ i, such that d(cj , ci+1) ≤
d2. We first root Ti at cj . For any node u 	= cj , denote by p(u) the parent of
u in the rooted tree and Ti(u) the tree obtained by adding the edge (u, p(u))
to the subtree in Ti rooted at u. Ti(u) is called free if it does not contain
any center. Otherwise, we define the lead 5(u) of Ti(u) to be the center in
Ti(u) nearest to u. For every free subtree, we construct a data structure
that allows insertion in O(log |Ti(u)|) time using exact distance oracle. In
the following discussion, our strategy is that we pretend to work under the
exact distance oracle model, and we show that the distances queried are
always within the given bound τ if we choose d1, d2 appropriately.

The insertion of ci+1 is done recursively. Suppose that we have decided
that ci+1 is in Ti(u), and we have computed d(s, p(u)). Initially, u is cj , the
root of the tree. If Ti(u) is free, we insert ci+1 in O(log n) time. Otherwise,
we query d(ci+1, 5(u)) to compute σ(ci+1, u5(u)). If there is no subtree
incident at the node o(ci+1u5(u)), we can attach ci+1 to the tree that node.
Otherwise, we recurse on subtree T (o(ci+1u5(u))) until we are able to insert
the leaf or reach a free subtree. Now, we bound the distance ever queried
by the above procedure.

We claim that

Lemma 5.4 1. For any u, if Ti(u) is not free, then d(5(u), p(u)) ≤ d2.
2. The height of a free subtree is at most d1.

Proof: 1. Suppose otherwise d(5(u), p(u)) > d2. Since 5(u) is the nearest
to u among all the centers in Ti(u), for any center v in Ti(u), d(v, p(u)) > d2.
There then does not exist a path between any center in Ti(u) and the centers
not in Ti(u), contradicting with that c1, · · · , ci are connected in G.

2. Otherwise, it would contradict with that every leaf is covered by a
center. ✷

By the above two properties, we have that:

16

Lemma 5.5 If we have ever queried d(ci+1, v), then d(ci+1, v) ≤ 2d2.

Proof: We distinguish two cases:
(i) when v = 5(u) for some u, d(ci+1, 5(u)) is queried only if ci+1 is in the

subtree Ti(u). Or, p(u) is on the path from ci+1 to the root cj . Therefore
d(ci+1, 5(u)) ≤ d(ci+1, p(u)) + d(p(u), 5(u)) ≤ d2 + d(ci+1, cj) ≤ 2d2 by
Lemma 5.4.1.

(ii) when v is in a free tree, similarly by Lemma 5.4.2, we have that
d(ci+1, v) ≤ d1 + d(ci+1, cj) ≤ d1 + d2 ≤ 2d2. ✷

After we have inserted ci+1, we reroot the tree at ci+1 and recompute
the leads. Then, we insert all the other nodes in Ci+1 by the same process.
Similar to Lemma 5.5, we have that

Lemma 5.6 If we have ever queried d(s, v) for some s ∈ Ci+1, then d(s, v) ≤
d1 + d2 ≤ 2d2.

Now, we are able to state the following:

Theorem 5.7 For any ε0 > 0, suppose that τ > 4(1+ ε0)g. Then the above
algorithm uses O(n) space and runs in O(1

ε0
(n(κ̃(τ

4 −(1+ε0)g)+log n) log g)
time.

Proof: Suppose for now that we know the edge-depth of the tree. By
Lemma 5.5 and 5.6, as long as 2d2 ≤ τ , the distance queried in the al-
gorithm never exceeds τ . By Lemma 5.3, we can set d1 = τ

4 − g and
d2 = 2d1 + 2g = τ/2. Computing the centers takes O(nκ̃(d1)) time and
O(n) space. The order of the centers can be computed in time O(κ̃(d1)2)
and in spaceO(κ̃(d1)) by an implicit depth-first search onG. Each re-rooting
and computing of leads takes time O(n). The insertion of a leaf takes time
O(κ̃(d1)+log n) while the first term accounts for the time spent on recursion
and the second for the time on insertion in a free tree. Therefore, in total,
the time complexity is O(nκ̃(d1) + n log n) = O(nκ̃(τ

4 − g) + n log n), and
the space complexity is O(n).

Since we do not know the edge-depth beforehand, we can guess g by
trying 1, (1 + ε0), (1 + ε0)2, · · · until we reconstruct the tree successfully.
There are two types of failures: one is when the graphG is not connected and
the other is when we query a distance while inserting a node, the bounded
distance oracle returns φ. We abort whenever a failure happens and try a
larger g. The bound follows from that we never try a value greater than
(1 + ε0)g, and we only try log g/ log(1 + ε0) = O(1

ε0
log g) times. ✷

Combining the above theorem with Lemma 2.1, we can show that the
following worst case bound.

17

Corollary 5.8 Suppose that a is the maximum edge weight of T . Then
O(an2 log g

τ) queries are sufficient for τ > 5g.

Proof: Set ε0 = 1/5 in the above theorem. Then the running time of
the algorithm is O((nκ̃(τ

4 − (1 + ε0)g) + n log n) log g) = O(n(κ̃(1
100τ) +

log n) log g) = O(an2 log g/τ) by κ̃(τ) = O(an/τ). ✷

The above bound is to illustrate that our algorithm always runs in sub-
quadratic time if τ = ω(1). However, the bound is quite conservative as we
use κ̃(τ) = O(an/τ) in deriving the bound. In a typical case, we expect that
κ̃(τ) is much smaller than an/τ , and the running time of our algorithm is
significantly lower than quadratic.

5.3 Extension to restricted oracles

We now extend the above algorithms to restricted oracles. When the dis-
tance oracle is (τ, ε) restricted, the distance queried is no longer exact. When
ε is big, we may not be able to construct a unique tree. However, as shown
in [4, 5], if ε is small enough, certain algorithms do guarantee to reconstruct
a unique tree. We can apply similar argument and show that after slight
modification to our algorithms, we can reconstruct the tree in the same
bound as long as ε < 1/4.

The primitive of the previous algorithms is to determine where to insert
a leaf u to a path vw by computing σ(u, vw). The following is immediate
given all the edge length is ≥ 1:

Lemma 5.9 Suppose that σ̂ is computed using an ε-approximate oracle
where ε < 1/4. For any four leaves u1, u2, v, w, we have that

o(u1vw) = o(u2vw) iff |σ̂(u1, vw) − σ̂(u2, vw)| < 1/2 .

The above lemma suggests the following modification to the algorithm.
Whenever we try insert a leaf u to a path vw, we compute σ̂(u, vw). If
there already is an interior node o′ on the path vw so that ô(u, vw) is within
distance 1/2 to o′, we treat o′ = o(uvw) and recurse on that subtree. Other-
wise, we create a new interior node o and attach u to o. Denote the modified
algorithm Â. By Lemma 5.9, we can prove the following by induction.

Theorem 5.10 If A reconstructs a tree successfully with a τ -bounded ora-
cle, Â reconstructs the same tree successfully with a (τ, 1/4)-restricted oracle.

18

6 Connection to DNA-based Distance Model

In this section, we establish the connection of the restricted oracle model
to the DNA-based distance estimation method. The technique is mostly
adapted from the previous work on DNA-based distance methods. We only
consider the CF model as described in Section 2. The extension to more
general mutation models should not be hard if we define edge weights as
in [2].

We show that if all the mutation probabilities are the same, then the
DNA-based distance estimation resembles a bounded distance oracle, and
if the mutation probabilities are different, then the DNA-based method re-
sembles a restricted distance oracle. We will focus on the former case and
the discussion can be extended to the latter case easily.

We assume that the mutation probability is p, where 0 < p < 1/2. Set
α = 1

1−2p . We treat T as a unweighted tree. Suppose that Di is the DNA
sequence corresponding to the leaf i, and the length of Di’s is m. Denote
by hij the Hamming distance between Di and Dj and Hij the probabilistic
distribution on hij . Denote by H(m, δ) the binomial distribution with prob-
ability δ. Then it is well-known that Hij is identical to H(m, 1

2 − α−d(i,j)

2) [6].
For two probabilistic distribution H1,H2, their distance distance ∆(H1,H2)
is defined as ∆(H1,H2) = 1

2

∑
z |Pr{H1(x) = z} − Pr{H2(x) = z}| .

Given two DNA sequences Di,Dj , define d̂(i, j) =
− log(1−2hij/m)
log α +

1/2�, if hij < 1/2, and undefined otherwise. We can simulate a distance
oracle using the DNA sequences under the CF model: for a query pair (i, j),
compute and return d̂(i, j). Denote by Dm the simulated distance oracle
by DNA sequences with length m. Dm behaves very similar to a bounded
distance oracle for T according to the following lemma.

Lemma 6.1 If the evolution follows the CF model with uniform mutation
probability p, then we have that

1. If d(i, j) ≤ τ , then Pr{d̂(i, j) = d(i, j)} ≥ 1 − 2e−2mp2/α2τ
.

2. If d(i, j) > τ , then ∆(Hij ,H(m, 1/2)) ≤ mα−τ .

Proof: 1 follows from Lemma 2.2 in [3], and 2 follows from ∆(H(m, 1/2−
ε),H(m, 1/2)) ≤ mε. ✷

Intuitively, the above lemma states that for given DNA length, if d(i, j)
is small then d̂ approximates d very well; and if d(i, j) is too big then d̂
tells us almost no information as Hij is not distinguishable from a random
distribution. The following theorem is the formal statement.

19

Theorem 6.2 Suppose that T is an evolutionary tree under the CF model
with uniform mutation probability p, then

1. If AO reconstructs the tree T with probability 1−δ1 using any τ -bounded
oracle O, then there exists B with the same complexity so that BDm

reconstructs T with probability 1 − δ1 − δ for any m ≥ α2τ log n
δ /p

2.
2. If BDm reconstructs T with probability 1− δ1, then there exists A with

the same complexity so that AO reconstructs T with probability 1−δ1−δ
where O is a τ -bounded oracle for any τ ≥ 2 log mn

δ / log α.

Proof: 1. B simulates AO by querying D̂m. When D̂m returns a
distance greater than τ , B treats it as φ. According to Lemma 6.1.1, if
m ≥ c1α

2τ log n
δ /p

2, the estimated distance d̂(i, j) equals the true distance
d(i, j) with probability at least 1 − 2δ/n2. Since there are no more than
n2/2 pairs, the error probability is upper-bounded by δ.

2. A simulates BDm by querying O. When O returns φ, A generates
a number according to the distribution H(m, 1/2) and returns a distance
according to the definition of d̂. By Lemma 6.1.2, ∆(Hij,H(m, 1/2)) ≤
mα−τ ≤ δ

n2 if τ ≥ 2 log mn
δ / log α. Therefore, the total error probability is

upper-bounded by δ as well. ✷

So far, we have shown that if the mutation probability is uniform, then
the DNA-based distance method is similar to a bounded oracle. When the
probability is not uniform, the method is then similar to a restricted oracle.
Suppose that T is an evolutionary tree in CF model where all the edge
mutation probabilities are in an interval [a, b], for some 0 < a ≤ b < 1/2.
Set β = 1

1−2a , γ = 1
1−2b , we form a weighted tree Tw as follows. Tw has the

same topology as T . For an edge e ∈ T with mutation probability pe, we
assign a weight − log(1−2pe)

log β to the corresponding edge of e in Tw. Then, we
can show that:

Theorem 6.3 If AO reconstructs the tree Tw with probability 1 − δ1 using
any (τ, ε)-restricted oracle O, then there exists B with the same complexity
so that BDm reconstructs T with probability 1− δ1 − δ for m ≥ cβ2τ log n

δ /ε
2

for some constant c > 0.
Proof: The proof is similar to the uniform mutation probability case and
is omitted in this abstract. ✷

By combining Theorem 5.10 and 6.3, we obtain a tradeoff between the
length of the DNA sequences and the number of distance queries needed to
reconstruct the tree.

Theorem 6.4 Let g be the edge-depth of T when considered as a unweighted
tree. There exists a constant c1, c2 > 0 such that if m ≥ c1γ

10g log n
δ , then

20

the algorithm reconstructs the tree with probability 1 − δ and runs in time
O(n(κ(τ) + log n) log g) where τ = c2(logm− log log n

δ)/ log γ.

7 Conclusion

In this paper, we first present a tight lower bound for distance-based evo-
lutionary tree reconstruction. Then, we study the evolutionary tree recon-
struction by using the bounded and restricted oracles. We present both
lower and upper bounds in these models. We also show that the models we
proposed are closely related to the popular DNA-based distance estimation
methods. To our knowledge, this paper is the first to study evolutionary
tree reconstruction in these models.

Both of our lower and upper bounds are related to the tree cover size:
the minimum number of leaves needed to cover all or a constant fraction of
leaves. Our work therefore may motivate the study of the tree cover size
of evolutionary trees. In particular, it is very interesting to know what is
the tree cover size of a typical evolutionary tree. We plan to investigate
this question both in practice and in appropriate probabilistic models on
the distribution of evolutionary trees.

Our sub-quadratic algorithm requires τ to be greater than 4g. One open
question is that if we can achieve subquadratic algorithm with smaller τ .
Our algorithms are more efficient and significantly simpler than the previous
DNA-based estimation algorithms and are easy to implement. One future
work is to implement and test our algorithms in practice.

References

[1] G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity
of constructing evolutionary trees using experiments. In ICALP, pages 140–
151, 2001.

[2] M. Csürös. Fast recovery of evolutionary trees with thousands of nodes. In Pro-
ceedings of 5th Annual International Conference on Computational Molecular
Biology, pages 104–113, 2001.

[3] M. Csürös and M.-Y. Kao. Provably fast and accurate recovery of evolution-
ary trees through harmonic greedy triplets. SIAM Journal on Computing,
31(1):306–322, 2001.

[4] P. Erdös, M. Steel, L. Székély, and T. Warnow. A few logs suffice to build
almost all trees - I. Random Structures and Algorithms, 14:153–184, 1999.

[5] P. Erdös, M. Steel, L. Székély, and T. Warnow. A few logs suffice to build
almost all trees - II. Theoretical Computer Science, 221:77–118, 1999.

21

[6] M. Farach and S. Kannan. Efficient algorithms for inverting evolution. In
Proceedings of 28th Annual ACM Symposium on Theory of Computing, pages
230–236, 1996.

[7] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13(1):155–179, 1995.

[8] J. J. Hein. An optimal algorithm to reconstruct trees from additive distance
data. Bulletin of Mathematical Biology, 51(5):597–603, 1989.

[9] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast converging
method for phylogenetic tree reconstruction. Journal of Computational Bi-
ology, 6(3):369–386, 1999.

[10] S. Kannan, E. Lawler, and T. Warnow. Determining the evolutionary tree.
In Proceedings of 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 475–484, 1990.

[11] M. Kao, A. Lingas, and A. Ostlin. Balanced randomized tree splitting with
applications to evolutionary tree constructions. In Proceedings of STACS, 1999.

[12] J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation. In Intelligent
Systems for Molecular Biology, 1999.

[13] M. A. Steel. Recovering a tree from the leaf colourations it generates under a
markov mode. Applied Mathematic Letters, 7:19–24, 1994.

[14] M. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. Additive evolutionary
trees. Journal of Theoretical Biology, 64:199–213, 1977.

22

