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considered here, faithful preservation of the probability law is not a 
problem, yet the same minimum rate of H random bits per symbol is still 
needed to essentially eliminate the statistical dependency between the 
input sequence and the output sequence. The results are extended to more 
general information measures. 
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Abstract

We consider the problem of universal simulation of an unknown random process� or
information source� of a certain parametric family� given a training sequence from that
source and given a limited budget of purely random bits� The goal is to generate another
random sequence �of the same length or shorter�� whose probability law is identical to
that of the given training sequence� but with minimum statistical dependency �minimum
mutual information� between the input training sequence and the output sequence� We
derive lower bounds on the mutual information that are shown to be achievable by
conceptually simple algorithms proposed herein� We show that the behavior of the
minimum achievable mutual information depends critically on the relative amount of
random bits and on the lengths of the input sequence and the output sequence�

While in the ordinary �non�universal� simulation problem� the number of random
bits per symbol must exceed the entropy rate H of the source in order to simulate it
faithfully� in the universal simulation problem considered here� faithful preservation of
the probability law is not a problem� yet the same minimum rate of H random bits
per symbol is still needed to essentially eliminate the statistical dependency between
the input sequence and the output sequence� The results are extended to more general
information measures�
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� Introduction

Simulation of random processes� or information sources� is about arti�cial generation of ran�

dom data with a prescribed probability law� by using a certain deterministic mapping from

a source of purely random �independent equally likely� bits into sample paths� The simula�

tion problem �nds its applications in speech and image synthesis� texture production �e�g��

in image compression�� and generation of noise for purposes of simulating communication

systems�

In the last decade� the simulation problem of sources and channels� as well as its relation

to other problem areas in information theory� has been investigated by several researchers�

In particular� Han and Verd�u ��	
 posed the problem of �nding the resolvability of a random

process� namely� the minimum number of random bits required per generated sample� so

that the �nite dimensional marginals of the generated process converge to those of the

desired process� It was shown in ��	
 that if convergence is de�ned in terms of variational

distance� the resolvability is given by the sup�entropy rate� which coincides with the ordinary

entropy rate in the stationary ergodic case� In ���
� the dual problem of channel simulation

was studied� where the focus was on the minimum amount of randomness required in order

to implement a good approximation to a conditional distribution corresponding to a given

channel �see also ���
 for further developments�� In ��

� the results of ��	
 were extended

to relax the requirement of vanishing distances between the probability distributions of

the simulated process and the desired process� For a given non�vanishing bound on this

distance �de�ned by several possible accuracy measures�� the minimum rate of random bits

required is given by the rate�distortion function of the desired process� where the �delity

criterion depends on the accuracy measure� In ���
 and ���
� concrete algorithms for source

simulation and channel simulation� respectively� were proposed� In all these works� the

common assumption was that the probability law of the desired process is perfectly known�

In this paper� we relax the assumption of perfect knowledge of the target probability

law and we focus on the following universal version of the simulation problem for �nite�

alphabet sources� The target source P to be simulated� which is assumed to belong to a

certain parametric family P �like the family of �nite�alphabet memoryless sources� Markov

sources� �nite�state sources� parametric subsets of these families� etc��� is unknown� but we

are given a training sequence Xm � �X�� � � � �Xm� that has emerged from this unknown

	



source� We are also provided with a string of k purely random bits Uk � �U�� � � � � Uk�� that

are independent of Xm� and our goal is to generate an output sequence Y n � �Y�� � � � � Yn��

corresponding to the simulated process� that satis�es the following three conditions�

C�� The mechanism by which Y n is generated can be represented by a deterministic func�

tion Y n � ��Xm� Uk�� where � does not depend on the unknown source P �

C	� The probability distribution of Y n is exactly the n�dimensional marginal of the prob�

ability law P corresponding to Xm for all P � P�

C�� The mutual information I�Xm�Y n� is as small as possible� simultaneously for all

P � P�

Condition C� means that Y n is actually a randomized function of Xm� where the amount

of randomization is given by the number k of random bits available� We can think of this as

a conditional distribution of Y n given Xm corresponding to a channel of limited randomness

from Xm to Y n� Note that every channel of this type is characterized by the property that

its conditional probabilities are all integer multiples of 	�k� This implies that the conditional

entropy H�Y njXm � xm� of Y n given any realization xm � �x�� � � � � xm� of Xm� cannot

exceed k� and so neither can H�Y njXm��

In Condition C	� we require exact preservation of the probability law P � which is di�erent

from the ordinary simulation problem� where only a good approximation of P is required�

Note that for n � m� this requirement can always be satis�ed even when k � �� trivially

by letting Y n � Xn � �X�� � � � �Xn�� For n � m� it is impossible to meet Condition C	 no

matter how large k may be�� Therefore� we will always assume that n � m� Note that the

�plug�in� approach �which is perhaps the �rst idea one may think of in the context of this

universal simulation problem�� where P is �rst estimated from Xm and then used instead

of the true P as in ordinary simulation� may not meet Condition C	�

It should be pointed out that a more general setting of the problem could have been

formalized� where Condition C	 is relaxed and a certain level of tolerance in approximat�

ing P is allowed �as is done in non�universal simulation�� Nonetheless� we preferred� in

this initial work on the universal simulation problem� to focus our study only on tradeo�s

�Had it been possible to generate sequences longer than m with perfect preservation of the unknown P �
we could� for example� estimate P with arbitrarily small error� which is contradictory to any nontrivial lower
bound on the estimation error corresponding to m observations�

�



among the mutual information� the amount of randomness� and the richness of the class

of sources� leaving the additional factor of the approximation tolerance� perhaps for future

work� We will only comment here that if such a tolerance is allowed and the divergence

D�PkP �� is chosen to be the distance measure between the desired probability law P and

the approximate one P � �of the simulated process�� then in the case where P is the class

of �nite�alphabet memoryless sources �as well as in some other parametric families�� it is

possible to make I�Xm�Y n� � �� simply by taking P � to be an appropriate mixture of all

members of P �independently of Xm�� thus making D�PkP �� � O�log n�� like in universal

coding �

�

Condition C� is actually meant to avoid an uninteresting trivial solution like Y n � Xn�

that we mentioned earlier� Loosely speaking� we would like the sample path Y n that we

generate to be as �original� as possible� namely� with as small a statistical dependence as

possible on the input training sequence Xm� There are a few reasons why small dependence

between the two sequences is desirable� For example� one of the applications of the universal

simulation problem considered here is lossy compression of textures� Since the exact details

of texture are immaterial to the human eye and only the �statistical behavior� is important�

a plausible approach to texture compression is to compress �or even transmit uncodedly� a

relatively short sample texture segment �training sequence�� and let the decoder synthesize

�statistically similar� patterns� instead of the missing texture segments� by repetitive ap�

plication of the function � �of course� with di�erent k�vectors of random bits every time��

Condition C� may help to maintain the regular structure of the texture and to avoid unde�

sired periodicities that may appear if each Y n depends strongly on Xm� �A similar comment

applies also to voice coding methods of speech signals� e�g�� linear predictive coding and its

variants�� Another reason for which one may be interested in Condition C� is that if we

use the same training vector Xm to generate many output vectors �again� by repetitive

use of ��� as may be the case in experimental simulation of algorithms and systems� then

weak dependence between the training sequence and each output sequence would yield weak

dependence among the di�erent output sequences� which is obviously desirable�

The goal of minimizing I�Xm�Y n� simultaneously for all sources in P� as expressed in

Condition C�� might seem somewhat too ambitious at �rst glance� However� as we show

in the sequel� this in fact can be done� At this point� one may argue that the choice

of the mutual information as a measure of dependence between two random variables is
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somewhat arbitrary as there are many possible measures of dependence� Indeed� as we

show in Section 
� our results apply not only to the ordinary mutual information� but also

to a much wider class of dependency measures� namely� the class of generalized mutual

information measures proposed by Ziv and Zakai ���
����
�

Our main results in this paper� are in characterizing the smallest achievable value of

the mutual information as a function of n� m� k� and the entropy rate H of the source

P � and in demonstrating simulation schemes that asymptotically achieve these bounds� In

some special cases� the simulation schemes are strictly optimum� namely� they meet the

corresponding lower bound precisely �not merely asymptotically� and simultaneously for

all sources in the class P� It turns out that the asymptotically achievable lower bound

on I�Xm�Y n�� which we will denote here by Imin� has at least four types of asymptotic

behavior� depending on the relations between n� m� k� and H� Speci�cally� letting R denote

the random bit rate k�n �relative to the number of output symbols�� and assuming� for

simplicity� that P is the class of all memoryless sources with a �nite alphabet A� we have the

following� If R � H� then Imin � n�H�R�� i�e�� there is linear growth with n� independently

of m �of course� as long as m � n�� If R � H� then the important factor is the growth

rate of m relative to n� If m � n or if m�n � �� then Imin grows logarithmically with n�

according to jAj��
� log n for large n �which means that the normalized mutual information

Imin�n tends to zero�� whereas if m�n � C� where C is a constant strictly larger than

unity� then Imin tends to the constant jAj��
� log C

C�� � Finally� if m�n��� our lower bound

vanishes as n � �� and its achievability is shown when logm � o�n�� The last case is

largely equivalent to the case where P is known�

The above results will actually be shown in a more general setting� where P is a para�

metric subfamily of the class of all memoryless sources of a given �nite alphabet A� In this

setting� the role of jAj is played by a quantity related to the number of free parameters

de�ning the class� with a possible reduction in the �cost of universality� �i�e�� the minimum

achievable mutual information�� depending on the richness of the family� Moreover� as

we demonstrate in Section 
� our derivations and results extend quite straightforwardly to

sources with memory� such as speci�c classes of Markov and �nite�state sources�

Notice that� according to our results� the number of random bits needed to essentially

remove the dependency between Xm and Y n grows with the output length n� while we

would like to make the input length m as large as possible in order to faithfully represent






the characteristics of the data� Thus� in applications where it is su�cient to simulate a

sequence shorter than the available training data �e�g�� the removal of a small object in an

image where the background is a large texture�� one would indeed use n � m� rather than

generating the maximum possible number m of samples for which P can still be preserved�

The outline of the remaining part of this paper is as follows� In Section 	� we give our

notation conventions and a formal description of the problem� In Section �� we focus on

the case n � m� which is presented �rst due to its simplicity and its special properties� In

Section �� we study the case n � m� �rst for an unlimited supply of random bits �k � ��

or equivalently� R � ��� and then for �nitely many random bits� Finally� in Section 
� we

discuss the aforementioned extensions�

� Notation� Preliminaries� and Problem Formulation

Throughout the paper� random variables will be denoted by capital letters� speci�c values

they may take will be denoted by the corresponding lower case letters� and their alphabets�

as well as some other sets� will be denoted by calligraphic letters� Similarly� random vectors�

their realizations� and their alphabets� will be denoted� respectively� by capital letters�

the corresponding lower case letters� and calligraphic letters� all superscripted by their

dimensions� For example� the random vector Xm � �X�� � � � �Xm�� �m � positive integer�

may take a speci�c vector value xm � �x�� � � � � xm� in Am� the mth order Cartesian power

of A� which is the alphabet of each component of this vector� For i � j �i� j � integers�� xji

will denote the segment �xi� � � � � xj�� where for i � � the subscript will be omitted�

Let P denote a parametric subfamily of the class of all discrete memoryless sources

�DMSs� with a �nite alphabet A� and let d denote the number of parameters describing P�

A particular DMS in P� de�ned by a d�dimensional parameter vector � taking values over

some parameter space �� will be denoted by P�� However� in a context where the parameter

value is either �xed or irrelevant� we will omit it� denoting a source in P simply by P � For

a given positive integer m� let Xm � �X��X�� � � � � Xm�� Xi � A� i � �� � � � �m� denote an m�

vector drawn from P � namely� PrfXi � xi� i � �� � � � �mg �
Qm

i�� P �xi�
�
� P �xm� for every

�x�� � � � � xm�� xi � A� i � �� � � � �m� Let H � �
P

x�A P �x� logP �x� denote the entropy of

the source P � where here and throughout the sequel log���
�
� log����� For a given positive

integer k� let Uk � �U�� � � � � Uk�� Ui � B
�
� f�� �g� i � �� � � � � k� denote a string of k random

bits� drawn from the binary symmetric source� independently of Xm�
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We shall de�ne the type class Txm of a vector xm as the set of all vectors �xm � Am

such that P ��xm� � P �xm� simultaneously for every source P � P� Accordingly� we shall

denote by TXm the �random� type class of a random vector Xm drawn from a DMS P � P�

The set of all type classes of vectors in Am will be denoted by T m� and its cardinality

by N�P�m�� For example� in case P is the entire class of DMSs �d � jAj � ��� the type

class Txm coincides with the set of all vectors having the same empirical probability mass

function �EPMF� as xm� where the EPMF is the vector Qxm � fQxm�a�� a � Ag and Qxm�a�

is the relative frequency of the letter a � A in the vector xm� In this case� N�P�m� �

�m � jAj � �� ���jAj � �� m 
� The type classes in this special case will be referred to as

elementary type classes� Notice that for any family P� the type classes are given by unions

of elementary type classes� As a result� we will rely quite heavily on the method of types ��
�

Similar notations will be used for types of sequences yn� with m� x� and X being replaced

by n� y and Y � respectively�

Next� for every type class T � T m� we de�ne

P��T �
�
�
X
�xm�T

P���xm� � jT j � P��x
m� ���

where xm is a sequence in T � Given some enumeration of T m� let T ���� T ���� � � � � T �N�P �m��

denote the corresponding type classes� For each j� � � j � N�P�m�� P��T
�j�� can be

regarded as a function of the d�dimensional parameter vector � de�ning P� � P� In the

sequel� we will assume that the class of sources P satis�es the following assumption�

A�� The set fP��T
�j��g

N�P�m�
j�� �as functions of �� is linearly independent over ��

Assumption A� is satis�ed for a broad class of parametric families� including any exponential

family when � contains an open subset of Rd � In this case� the probability of a sequence

xm takes the form

P��x
m� �

mY
i��

P��xi� �

mY
i��

exp�f��� ��xi�� �����g

� exp�fm���� � �xm�� �����
g �	�

where the d�dimensional vector � �xm�
�
� m��

Pm
i�� ��xi� is a minimal su�cient statistic ���

Chapter 	
� �u� v� denotes the inner product of the vectors u and v� and ���� guarantees

that the probabilities sum up to unity� By the de�nition of a type class and the minimality

of the su�cient statistic� Txm � T�xm if and only if � �xm� � � ��xm�� Thus� for any T �j� � T m�

P��T
�j�� � jT �j�j exp�fm���� � j� �����
g

�



where � j is the value of the su�cient statistic for any xm � T �j�� Since a �nite set of

exponential functions is linearly independent over any open set� the validity of Assump�

tion A� follows� as it su�ces to consider the collection fem���� j�g
N�P�m�
j�� � in which any two

functions are distinct� over an open subset of �� In case the entries of � j are integers�

after reparametrization� this is in fact a collection of �multivariate� monomials� As a simple

example� consider the case in which P is the Bernoulli family� parametrized by the proba�

bility p of a one� and � � ��� ��� Let T �j� denote the type of a sequence containing j � �

ones� � � j � n� �� Here� taking log p
��p as the new parameter� the functions P��T

�j�� are

monomials of degree j � �� which are linearly independent over ��

The model of �	� covers families of practical interest� which have more structure than the

entire class of DMSs� For example� we can think of a family of �symmetric� discrete sources

for which the symbols are grouped by pairs �with the possible exception of one symbol in case

of odd cardinality�� with both symbols in a pair having the same probability� In practice�

such sources can result from quantizing a symmetric density� With three quantization

regions� this is a single�parameter ternary source �d � �� in which two of its symbols have

equal probabilities� More generally� we can think of probabilities that are proportional to

e��h � h � �� �� 	� where � is a scalar parameter and 	�� 	�� 	� are �xed real numbers� Clearly�

in this case� the type classes are given by sets of sequences such that
P�

h�� nh	h � 	�

where n�� n�� n� are the number of symbol occurrences and 	 is some constant� Notice

that when the constants 	h are positive integers �as in the particular case of geometric

distributions�� the type classes are larger than the elementary type classes� However� when

the ratio �	� � 	����	� � 	�� is irrational �that is� in geometric terms� the di�erences are

incommensurable�� all the sequences in a type must have exactly the same values for nh�

Therefore� the type classes coincide with the elementary type classes� It will be shown in

Subsection ��	 that� in the context of universal simulation� the richness of the family is

determined� in fact� by the structure of the type classes �rather than by the number of

parameters��

For given positive integers m� k� and n �n � m�� and for a given mapping � � Am�Bk �

An� let Y n � ��Xm� Uk�� Let W �ynjxm� denote the conditional probability of Y n � yn

given Xm � xm corresponding to the channel from Xm to Y n that is induced by �� i�e��

W �ynjxm� � 	�kjfuk � ��xm� uk� � yngj�

�



The expectation operator� denoted Ef�g� will be understood to be taken with respect to

�w�r�t�� the joint distribution P �W of �Xm� Y n�� The notation E�f�g will also be used�

in case we want to emphasize the dependency on the parameter ��

Finally� let I�Xm�Y n� denote the mutual information between Xm and Y n that is

induced by the source P and the channel W �or� equivalently� the mapping ���

We seek a mapping � that meets conditions C��C� that were itemized in the Introduc�

tion� and are re�stated here more formally�

C�� The mapping is independent of P �

C�� For every P � P and every yn � An

PrfY n � yng
�
�
X
xm

W �ynjxm�

mY
i��

P �xi� � P �yn� �

nY
j��

P �yj�� ���

C�� The mapping � minimizes I�Xm�Y n� simultaneously for all P � P�

When referring to the special case of an unlimited supply of random bits �k � ��� it

will be understood that every channel W from Xm to Y n is implementable� In this case� we

shall no longer mention the mapping � explicitly� but only the channel W � As mentioned

in the Introduction� in the general case� we shall assume that k grows linearly with n� that

is� k � nR� where R � � is a constant interpreted as the random�bit rate� i�e�� the average

number of random bits used per generated symbol of Y n�

� The Case n � m

We begin with the special case where n � m� which is easier and for which the results are

more explicit and stronger than for the case n � m that will be treated in Section ��

��� Main Theorem for the Case n � m

Our �rst theorem gives a lower bound� which is achievable within a fraction of a bit for every

n by a certain mapping ��� An asymptotic analysis will later show that� in fact� for R 	� H�

the gap between the lower bound and the upper bound vanishes exponentially fast�� Our

upper bound is based on the following explicit construction of ��� Given xn� enumerate all

�The fact that our asymptotic analysis covers the cases R � H and R � H� but not R � H� is analogous
to performance analyses in source coding� for compression ratios either strictly smaller or strictly larger
than H� and in channel coding� where the information rate is never assumed to be exactly equal to channel
capacity�
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members of Txn in an arbitrary order� for which the index of �xn � Txn �starting from zero

for the �rst sequence� is denoted by Jn��xn� � f�� �� � � � � jTxn j � �g� and de�ne

yn � ���xn� uk�
�
� J��

n

�
Jn�xn�


kX
i��

	i��ui

�
���

where J��
n denotes the inverse map from f�� �� � � � � jTxn j � �g to Txn � 
 denotes addition

modulo jTxn j� and the sum over i is taken under the ordinary integer arithmetic� This scheme

attempts at randomly selecting a sequence in Txn as uniformly as possible� Notice that if

Txn contains less than 	k elements� multiple sequences uk may map to the same sequence

yn� but for two given sequences yn� the corresponding numbers of originating sequences uk

will di�er by at most one� This �wrapping around� provides better resolution for achieving

a uniform conditional probability assignment �and� as a result� smaller mutual information�

than the alternative of discarding those random bits in excess of dlog jTxn je bits�� The

complexity of this simulation scheme is determined by the type class enumeration step� In

the case of elementary type classes� lexicographic enumeration can be e�ciently done� as

shown� e�g�� in ��
� In the general case� the problem can often be reduced to the enumeration

of elementary type classes� or to an equally e�cient scheme based on the general formula

given in ��� Proposition 	
 for the enumeration of generic subsets of An�

Theorem � Let P satisfy Assumption A�� Then	

�a� For every mapping � that satis�es conditions C� and C�	

I�Xn�Y n� � nH �EminfnR� log jTXn jg� �
�

�b� The mapping �� de�ned by eq� �
� satis�es conditions C� and C� and yields

I�Xn�Y n� � nH �EminfnR� log jTXn jg� 
 ���

where 

�
� �� log e � log log e � ������

Comment� Interestingly� the gap 
 coincides with the constant that appears in the Gallager

upper bound on the redundancy of the Hu�man code ���
� Here� 
 is an upper bound on

the di�erence between the entropies of a dyadic distribution with highest entropy on an

arbitrary alphabet� and the uniform distribution on that alphabet�

�Another alternative would be to use only blog jTxn jc bits� covering every sequence in Txn at most once�
thus achieving a uniform distribution over a possibly smaller set� However� the resulting mutual information
would be� in general� larger�
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The remaining part of this subsection is devoted to the proof of Theorem ��

Proof� Our �rst step will be to show that Y n must be of the same type class as Xn in

order to satisfy Condition C	� To this end� we �rst observe that every channel W from Xn

to Y n induces a channel �W from TXn to TY n � de�ned in the following manner� Given an

input type class Txn � select Xn under a uniform distribution within Txn � then apply the

channel W from Xn to Y n� and �nally� extract the type TY n of the resulting Y n� Stated

mathematically�

�W �Tyn jTxn� �
�

jTxn j

X
�xn�Txn

X
�yn�Tyn

W ��ynj�xn�� ���

Clearly� by the de�nitions ��� and ���� Condition C	 implies that for each type class T � T n�

the set of constraints X
T ��T n

P �T �� �W �T jT �� � P �T �� �P � P

must hold� Equivalently�

X
T � ��T

P �T �� �W �T jT �� � P �T �� �W �T jT �� �
 � �� �P � P � ���

For each T � T n� we may think of ��� as a linear combination of the N�P� n� type prob�

abilities P �T ��� which must be identically zero for all P � P� where the coe�cients are

f �W �T jT ��gT � ��T and �W �T jT �� �� Thus� by Assumption A�� we must have

�W �Tyn jTxn� � �WI�Tyn jTxn�
�
�

�
� Tyn � Txn

� Tyn 	� Txn
���

as claimed�

Now� to prove part �a��

I�Xn�Y n� � H�Y n��H�Y njXn� � nH �H�Y njXn� ����

where the second equality follows from the fact that� by Condition C	� the probability law

of Y n is according to the DMS P � Thus� to obtain a lower bound on I�Xn�Y n�� we need an

upper bound on H�Y njXn� �
P

xn P �xn�H�Y njXn � xn�� Now� given Xn � xn� Y n may

take no more than 	k � 	nR values� and� as we have just shown� they all must lie within

Txn � Therefore� H�Y njXn � xn� � minfnR� log jTxn jg� which completes the proof of part

�a� by taking the expectation w�r�t� P �

Turning now to the proof of part �b�� the mapping �� obviously satis�es Condition C�

as it is independent of P � Since Xn is uniformly distributed within its type class TXn � then

��



so is Y n � ���Xn� Uk� and therefore� �� satis�es Condition C	 as well� Finally� to upper�

bound the mutual information achieved by ��� notice that if 	nR � jTxn j� Y
n is uniformly

distributed in a set of size 	nR� and so H�Y njXn � xn� � nR� If� instead� 	nR � jTxn j�

consider the integer division 	nR � ��jTxn j���� where �� � � and � � �� � jTxn j� Clearly�

there are �� sequences yn for which the conditional probability W ��ynjxn� given by this

scheme is 	�nR��� � ��� whereas for the other sequences� W ��ynjxn� � 	�nR��� It is easy

to see that the corresponding conditional entropy takes the form

H�Y njXn � xn� � log jTxn j �!���� ��� ����

where

!���� ���
�
� 	�nR����� � �� log�� �

�

��
� � log��� 	�nR��� ��	�

and achieves its maximum value 
 for �� � � and �� � 	nR�� � �log e��	
� Thus� in any

case�

H�Y njXn � xn� � minfnR� log jTxn j � 
g

and� therefore�

H�Y njXn� � EminfnR� log jTXn jg � 


thus completing the proof of part �b�� �

��� Asymptotic Behavior of the Bounds

We would now like to evaluate the behavior of the lower bound given in part �a� of Theo�

rem �� as well as of the gap between this bound and the performance of the proposed scheme�

It will be shown that the lower bound on the �per�symbol dependence� I�Xn�Y n��n between

the two sequences is vanishing with n when R � H� but tends to H � R when R � H�

On the other hand� as we shall see� the rate of decay in the case R � H is not too fast� so

the gap between the upper bound and the lower bound� which is at most 
� is asymptot�

ically insigni�cant in any case� Furthermore� we will show that� in fact� this gap vanishes

exponentially fast for R 	� H�

We start with the lower bound� and let us �rst assume that k � �� or� equivalently�

R � �� In this case� the lower bound boils down to

I�Xn�Y n� � nH �Eflog jTXn jg

� �
X
xn

P �xn��logP �xn� � log jTxn j


�	



� �
X
xn

P �xn� logP �Txn�

� �
X
Txn

P �Txn� logP �Txn�
�
� H�TXn�� ����

that is� the entropy of the randomly selected type class under P � Since each type class is

given by a union of elementary type classes� their number grows no faster than polynomially

with n� and therefore it is already clear that H�TXn� cannot grow faster than logarithmically

with n� As a result� according to ����� the normalized mutual information will tend to zero

at least as fast as �log n��n�

A more re�ned asymptotic expansion of H�TXn� is provided in Appendix A via a local

limit theorem for lattice random vectors ��� Chapter 

���
� which requires some additional

assumptions on the family P� Basically� we will assume that P is an exponential family of the

form �	�� with some mild constraints on �� The reason for focusing on exponential families�

apart from their importance and simplicity� is that they satisfy the following properties�

P�� There exists a lattice random vector L�Xn� with rank d� for some d� � d	 such that

L�Xn� is a one�to�one function of the random variable TXn 	 and can be written as a

sum of n independently identically distributed �i�i�d�� random variables	 denoted Li	

i � �� 	� � � � � n �each independent of n��

P�� For each sequence xn	 the expectation of L�Xn� w�r�t� P���xn�	 where
"��xn� denotes the

maximum�likelihood estimate �MLE� of the parameter � �which is assumed to exist

and to belong to the closure of ��	 is L�xn��

As discussed in Appendix A� Property P� holds for any P such that there exists a one�to�one

function of TXn over Rd � which can be written as a sum of n i�i�d� random variables� For the

exponential families �	�� this function is clearly given by the su�cient statistics n� �Xn� �Pn
i�� ��Xi�� Moreover� assuming that for every sequence xn the equation � �xn� � r����

on � has a solution in the closure of �� Property P	 will follow from the fact that the

expectation of � �Xn� under "��xn� is precisely � �xn�� and the property is inherited by the

associated lattice random vector L�Xn�� As further discussed in Appendix A� the rank d�

is minimal� in the sense that for some d��vector v such that PrfLi � vg � �� without loss

of generality� u� v spans Zd
�

as u ranges over all d��vectors with positive probability� Our

technical assumptions on the exponential families� which ensure the validity of properties P�

��



and P	� are summarized as follows�

Assumption A�

a� The parameter space � is an open subset of Rd �

b� For any sequence xn	 the MLE "��xn� of the parameter � exists and belongs to the

closure of ��

c� The covariance matrix M��� of the random variables Li is nonsingular over the pa�

rameter space ��

Assumption A	c� may require the deletion of singularity points of M��� from the param�

eter space� For example� in case P is the entire class of DMSs� detM��� �
Q

a�A P��a��

Thus� the symbol probabilities are assumed to be strictly positive� While in this and other

simple cases d� � d� the possible di�erence between these two dimensions is discussed in

Appendix A� Here� we will only mention that� roughly speaking� while d is the dimen�

sion of the parameter space� d� conveys� in a sense� the dimensionality of the type class�

An example of disagreement between these two dimensions was provided in Section 	� a

ternary source with a scalar parameter �d � �� and symbol probabilities taking the form

C��� � e��h� h � �� �� 	� where � is the parameter� C��� is a normalizing factor� and the ratio

�	��	����	��	�� is irrational� As discussed in Section 	� the type classes coincide with the

elementary type classes� and the �e�ective number of parameters� d� is jAj � � � 	� rather

than just one�

Under Assumption A	� it is shown in Appendix A that for any P� � P�

nH �E�flog jTXn jg � H�TXn� �
d�

	
log�	�n� �

d

	
log e �

�

	
log�detM���
 � o��� � ����

Thus� the price of universality is dominated by the term d�

� log n� which for the case d� � d

parallels the universal lossless source coding problem �see� e�g�� ���
�� In particular� for

the entire class of DMSs with positive probabilities� the asymptotic expansion ���� can

alternatively be obtained from Stirling�s formula�

To evaluate the lower bound of Theorem � for a �nite value of R� we need to evaluate

the expression

EminfnR� log jTXn jg � nR �
X
xn�D

P �xn� �
X

xn�Dc

P �xn� log jTxn j ��
�

��



where D
�
� fxn � log jTxn j � nRg and Dc is the complement of D� Since n�� log jTXn j is

close to H with high probability �see Appendix A�� it turns out that the bound behaves

di�erently when R � H and when R � H� In the �rst case� Dc is a large deviations event

and the �rst term is dominant� whereas in the second case D is a large deviations event

and the second term is dominant� As a result� the lower bound is approximately equal to

n�H � R� for R � H and to H�TXn� for R � H �again� see Appendix A for the detailed

analysis��

This asymptotic behavior of the lower bound already guarantees that the gap between

the lower bound and the upper bound is immaterial for large n� as it is at most 
 �the case

R � H has not been analyzed explicitly� but the mutual information in this case cannot be

smaller than the one obtained with R � H�� Moreover� we will show that� in fact� this gap

vanishes exponentially fast for R 	� H� To this end� we �rst notice that� for the scheme of

Theorem �� eqs� ���� and ��
� imply that

EminfnR� log jTXn jg �H�Y njXn� �
X

xn�Dc

P �xn�!���� ��� � 	�nR	�
X

xn�Dc

P �xn�jTxn j

����

where the new upper bound on !���� ��� �used in lieu of the constant 
� follows from ��	�

by discarding the second �negative� term in the right�hand side� and using the inequality

�x � �� log�� � ��x� � 	 for x � �� Since jTxn j � 	nR for xn � Dc� and Dc is a large

deviations event for R � H� the gap vanishes exponentially fast in this case� For R � H�

we upper�bound jTxn j by further classifying the sequences xn � Dc as belonging to the

set D�
�
� fxn � j log jTxn j � nHj � n
g� which is shown in Lemma A�� �Appendix A� to

have exponentially vanishing probability for any 
 � �� or to its complement Dc
�� For the

sequences in Dc
�� jTxn j � 	n�H	��� whereas for the other sequences in Dc� jTxn j � 	nR by the

de�nition of the set� As a result� we obtain the upper bound

EminfnR� log jTXn jg �H�Y njXn� � 	�PrfD�g� 	�n�R�H����

which� choosing 
 � R�H� vanishes exponentially fast�

� The Case n � m

We now turn to the case of n � m� but we �rst assume that R � �� This assumption will

be dropped later�

�




��� Unlimited Supply of Random Bits

We shall say that an output sequence yn is feasible w�r�t� a given input sequence xm� if yn

is a pre�x of a sequence in Txm � in other words� if there exists a sequence zr� r
�
� m � n�

such that the concatenation ynzr belongs to the same type class as xm� Note that since�

for all P � P� P �xm� � P �yn�P �zr� � P ��yn�P �zr� for every �yn � Tyn � the feasibility of yn

w�r�t� xm depends only on the type classes of these sequences� Thus� we shall also say that

Tyn is feasible w�r�t� Txm � Furthermore� the type class of zr is fully determined by xm and

yn and� conversely� yn�zr � Txm for every �zr � Tzr � In addition� since P �ynzr� � P �zryn�

for all P � P� zr is also feasible w�r�t� xm�

Let the conditional distribution �or� channel� W � � Xm � Y n be de�ned such that Y n

consists of the �rst n coordinates of a randomly selected member of TXm �under the uniform

distribution�� This channel is mathematically given by

W ��ynjxm� �

�
jTzr j
jTxm j

if yn is feasible w�r�t� xm with ynzr � Txm

� otherwise�
����

In ����� the denominator in the �rst line expresses the uniform distribution over Txm � and

at the numerator� jTzr j is the number of members of Txm whose �rst n coordinates agree

with a given string yn� Thus� W � indeed sums up to unity for every xm�

Let I��Xm�Y n� denote the mutual information between the random variables Xm and

Y n induced by the input distribution of Xm and the channel W �� Our �rst result in this

section tells us that� under Assumption A�� I��Xm�Y n� is a lower bound on I�Xm�Y n�

for any channel satisfying conditions C� and C	� and that the channel W � which precisely

achieves this bound� indeed satis�es these conditions�

Theorem � Let P satisfy Assumption A�� Then	

�a� For every channel W � Xm � Y n that satis�es conditions C� and C�	

I�Xm�Y n� � I��Xm�Y n�� ����

�b� The channel W � satis�es conditions C� and C�	 and hence it satis�es also Condi�

tion C��

��



Comments�

�a� The theorem tells us that the best one can do is to randomly select a sequence with

uniform distribution across Txm � and then truncate it to the suitable dimension� An�

other option that one might think of is the other way around� �rst truncate and then

apply a random selection within the type class of the truncated sequence� While this

option also satis�es conditions C� and C	� it is not di�cult to show that it gives a

larger value of the mutual information than the option proposed in Theorem 	�

�b� If jTxm j � 	k�x
m� is an integer power of 	� the uniform distribution over Txm that is

required for implementing W � can be achieved with k�xm� random bits� However� in

any other case� R � � is required�

Proof� As in the proof of Theorem �� an arbitrary given channel W � Xm � Y n induces

a channel �W from TXm to TY n via a uniform distribution over TXm � namely�

�W �Tyn jTxm� �
�

jTxm j

X
�xm�Txm

X
�yn�Tyn

W ��ynj�xm�� ����

In particular� since W ��ynjxm� depends on xm and yn only through the respective type

classes� we have

�W ��Tyn jTxm� � jTyn jW
��ynjxm�� �	��

Again� Condition C	 implies that for each yn� the set of constraints

X
T ��T m

P �T �� �W �T jT �� � jTyn jP �yn�� �P � P �	��

must hold� Now� with r � m� n�

P �yn� �
X

Tzr�T r

P �ynzr�jTzr j �
X

Txm 
yn feasible w�r�t� xm

P �Txm� �
jTzr j

jTxm j
� �		�

Thus� by �	�� and �		�� for each class type T � T n and all P � P we have the constraint

X
T �
T not feasible w�r�t� T �

P �T �� �W �T jT �� �
X

T �
T feasible w�r�t� T �

P �T ��

�
�W �T jT ���

jT j � jTzr j

jT �j

�
� � �

�	��

Using Assumption A� as in the proof of Theorem �� it follows that �W ��Tyn jTxm� is the only

channel satisfying the set of constraints �	���

��



Now� to prove part �a�� we observe that TXm � Xm � Y n � TY n is a Markov chain�

and so� by the data processing theorem� for any channel W we have

I�Xm�Y n� � I�TXm �TY n� �	��

where the underlying channel in the right hand side is �W � induced by W according to �����

Since �W � is the only induced channel satisfying conditions C� and C	� it su�ces to prove

that the mutual information achieved by this channel �with the input distribution of TXm�

is I��Xm�Y n�� In other words� we need to show that W � achieves equality in �	��� which

follows from the following chain of equalities�

I��Xm�Y n� � E log
W ��Y njXm�

P �Y n�
� E log

jTY n j �W ��Y njXm�

P �TY n�
� E log

�W ��TY n jTXm�

P �TY n�
�	
�

where the �rst equality follows from the de�nition of I� and the last equality follows

from �	���

To prove part �b�� notice that Condition C� is obviously satis�ed by W �� Condition C	

is easily seen to hold by observing that �W � is a solution to the system �	��� dividing by

jTyn j� and using �	��� and Condition C� follows from the fact that W � provides the lower

bound of part �a� of the theorem� This completes the proof of Theorem 	� �

Asymptotic Behavior of the Lower Bound

We now evaluate the behavior of I��Xm�Y n�� We have

I��Xm�Y n� � E log
W ��Y njXm�

P �Y n�

� E log
jTZr j

jTXm j � P �Y n�

� nH �E log jTZr j �E log jTXm j �	��

where it is assumed that for a given xm� jTzr j � � for infeasible yn�

As shown in Appendix A� under Assumption A	�

E� log jTXm j � mH �
d�

	
log�	�m��

d

	
log e�

�

	
log�detM���
 � o��� �	��

and� since Zr is drawn according to P �by symmetry with the drawing of Y n�� a similar

expression applies to E� log jTZr j with m replaced by r �assuming that r is also large�� On

substituting these expansions into eq� �	��� we get� with r � m� n�

I��Xm�Y n� �
d�

	
log

m

m� n
� o��� � �	��

��



We learn from this expression that if m grows linearly with n and the ratio m�n tends

to a constant C � �� then I��Xm�Y n� tends also to a constant� d�

� log C
C�� �compare with

the logarithmic behavior of Section ��� Moreover� if m�n��� then I��Xm�Y n� � ��

It should be kept in mind that this asymptotic analysis holds under the assumption

that both m and r are large� Thus� the case n � m �where r � ��� treated in Section ��

is not obtained as a special case� Nonetheless� Theorem 	� as stated� without explicit

computation of I��Xm�Y n�� is still free of this assumption and hence includes the case

n � m �and R � �� as a special case� Furthermore� the case m�n � � �i�e�� r large but

r � o�n�� yields the same behavior as Theorem ��

��� Limited Budget of Random Bits

We now move on to the more general case� where both n � m and R � �� which turns

out to be surprisingly more involved than the special cases that have been studied thus

far� �n � m�R � �� and �n � m� large enough R�� The main di�culty essentially lies

in the fact that it is hard to construct a concrete simulation scheme that implements W �

�or at least� approximates it faithfully� with a limited number of random bits� even if

this number is larger than nH� As we shall see� not only the results will now be merely

asymptotic� but we will only be able to prove the existence of good simulation schemes �in

the sense of Condition C��� without any explicit construction� Nonetheless� as is typical to

many information�theoretic existence proofs �especially those that involve random coding

arguments�� it will become apparent �cf� Appendix B� that not only do good schemes

exist� but moreover� almost every scheme in a very large family that we shall de�ne� is

good� Consequently� a randomly selected scheme in this family will be good with very high

probability� Moreover� it will also emerge from the proof that if the parameter space is

known to be limited to sources such that H � lim supn���m�n� � R� then every simulation

scheme in the family is good� so that the proof is actually constructive�

Basically� the idea behind the proof is to demonstrate that� at least for pairs �xm� yn�

that are typical to sources for which H � R� W � can be implemented with very high

accuracy by some simulation scheme in the family� provided that logm � o�n�� The case

H � R is handled separately by another scheme which is conceptually simple� and the

choice between the two schemes is carried out by a decision rule that attempts to determine

whether H � R or H � R� based on the input sequence�

��



Our main result in this paper is given in Theorem � below� It states that the lower bound�

n�H � R� for R � H� and I��Xm�Y n� for R � H� is achievable within an asymptotically

negligible term� as long as the growth of m with n is sub�exponential �namely� logm � o�n���

Theorem � Let P satisfy Assumption A�� Then	

�a� For every mapping � that satis�es conditions C� and C�	

I�Xm�Y n� � Imin�Xm�Y n�
�
�

�
n�H �R� R � H
I��Xm�Y n� R � H�

�	��

�b� If logm � o�n�	 then there exists a mapping �� that satis�es conditions C� and C�

and for which

I�Xm�Y n� � Imin�Xm�Y n� � �n

where �n vanishes exponentially rapidly�

�c� If	 in addition	 P satis�es Assumption A�	 then �n is negligible relative to Imin�Xm�Y n�

provided that the sequence fm�ng is bounded�

Comment� Part �c� of Theorem � excludes the cases in which m�n grows without bound�

While in those cases the �rst term in the right�hand side of �	�� vanishes at the same rate

as n�m� which dominates over �n due to the assumption logm � o�n�� the remaining o���

term may actually determine the asymptotic behavior�

The remaining part of this section is devoted to the proof of Theorem ��

Proof� The proof of part �a� is very simple� For R � H� we obviously have

I�Xm�Y n� � H�Y n��H�Y njXm� � nH �H�Y njXm� � nH � nR

where the inequality follows from the fact that H�Y njXm� � nR when the number of

random bits is limited by nR� For R � H� we use the lower bound of Theorem 	� which

does not make any assumption on R� This completes the proof of part �a��

To prove part �b�� we consider mappings of the following structure �whose description

is similar to that of the mapping �� in Section ��� List the members of every type class Txm

in a certain order� and for every �xm � Txm � let Jm��xm� � f�� �� � � � � jTxm j � �g denote the

index of �xm within Txm in this list �starting from zero for the �rst sequence�� Denoting by

J��
m the inverse map from f�� �� � � � � jTxm j � �g to Txm � de�ne

yn � ��xm� uk�
�
�

�
J��
m

�
Jm�xm�


kX
i��

	i��ui

��n
�

����

	�



where 
 denotes addition modulo jTxm j� the sum over i is taken under the ordinary integer

arithmetic� and the operator ��
n� forms an n�vector by taking the �rst n coordinates of an

m�vector �e�g�� �xm
n� � xn � �x�� � � � � xn���

This mapping obviously satis�es Condition C� as it is independent of P � Since Xm is

uniformly distributed within its type class TXm � then so is Y n � ��Xm� Uk� and therefore�

� satis�es Condition C	 as well�

Whether or not such a mapping meets also Condition C�� depends on the ordering�

or the permutation corresponding to the ordered list of m�sequences in each of the type

classes� There are as many as
Q

T�T m jT j di�erent combinations of such permutations

across all type classes and each such combination corresponds to a di�erent scheme � in the

family of schemes� denoted F � that we now consider� The following lemma� whose proof

appears in Appendix B� guarantees� as explained earlier� that there exists a scheme in this

family that induces a very good approximation to W ��ynjxm�� at least for a subset S of

pairs �xm� yn� that are typical to sources for which H � R� This is the key property that

is needed to achieve asymptotically the lower bound of part �a�� and hence to essentially

satisfy Condition C�� Moreover� for a subset of sequences xm that are typical to sources for

which H � lim supn���m�n� � R� every simulation scheme in the family induces such an

approximation�

Lemma � Assume that logm � o�n�� Let R be given and let W � be de�ned as in eq� �����

For every � � � and all su�ciently large n	 there exists a permutation of each Txm 	 such

that the conditional probability distribution W induced by eq� ��
�	 satis�es

��� 	�n��W ��ynjxm� �W �ynjxm� � �� � 	�n��W ��ynjxm� ����

for every �xm� yn� � S	 where

S
�
� f�xm� yn� � nR � log jTxm j � log jTzr j� �n�g�

Moreover	 for every xm such that log jTxm j � n�R � ��	 every permutation of Txm satis�

�es �����

Let �� be de�ned by eq� ����� where the permutation of the members in each type class

satis�es Lemma �� Consider now the following simulation scheme�

yn � ���xm� uk�
�
�

�
���xm� uk� log jTxn j � nR

J��
n

�
Jn�xn�


PnR
i�� 	i��ui

	
log jTxn j � nR

��	�

	�



where Jn corresponds to an arbitrary enumeration of each type class �as in the de�nition of

the mapping of Theorem ��� The idea is that when H � R� the probability that log jTxn j �

nR is high for large n� and then yn is likely to take the value of ���xm� uk�� If� on the other

hand� H � R� then yn takes the alternative value de�ned in eq� ��	� with high probability�

Notice that in this case� we �rst truncate xm to n bits� and only then we choose a sequence

in Txn randomly�

We next analyze the performance of the scheme proposed in eq� ��	�� De�ne E �

fxm � log jTxn j � nRg�An� Assume �rst that H � R� In the following derivation� we shall

make use of the following simple fact� If 
 � ��� ��� u� � ��� �
� and u����
� � u � u����
��

then

u log u � u log�u��� � 
�


� u log u� � u log�� � 
�

� ��� 
�u� log u� � u��� � 
� log�� � 
�� ����

Now� the mutual information associated with the simulation scheme de�ned in eq� ��	� is

upper�bounded as follows�

I�Xm�Y n� � nH �
X
xm�yn

P �xm�W �ynjxm� logW �ynjxm�

� nH �
X

�xm�yn��Ec�S

P �xm�W �ynjxm� logW �ynjxm�

� nH �
X

�xm�yn��Ec�S

P �xm���� � 	�n��W ��ynjxm� logW ��ynjxm� �

W ��ynjxm��� � 	�n�� log�� � 	�n��


� nH �
X
xm�yn

P �xm����� 	�n��W ��ynjxm� logW ��ynjxm� �

W ��ynjxm��� � 	�n�� log�� � 	�n��
�X
�xm�yn��E	Sc

P �xm����� 	�n��W ��ynjxm� logW ��ynjxm� �

W ��ynjxm��� � 	�n�� log�� � 	�n��


� nH � ��� 	�n��HPW ��Y njXm� �

�� � 	�n�� log�� � 	�n�� � PrfE 
 Scg �m log jAj

� I��Xm�Y n� � 	�n�n log jAj�

�� � 	�n�� log�� � 	�n�� � PrfE 
 Scg �m log jAj

		



�
� I��Xm�Y n� � �n ����

where in the second inequality we have used eqs� ��	� and ����� HPW ��Y njXm� denotes the

conditional entropy of Y n given Xm induced by P �W � and where the last summation over

E 
Sc is bounded in terms of the probability of E 
Sc by using the fact that W ��ynjxm� �

��jTxm j � jAj�m whenever W ��ynjxm� � �� Since logm � o�n�� to complete the analysis

for the case H � R� it su�ces to show that the probability of E 
 Sc w�r�t� P � W � is

exponentially small in this case� The following lemma� whose proof appears in Appendix C�

establishes this fact�

Lemma � Let P � P be a given source for which H � R	 and assume that logm � o�n��

Then	 for all � in the range � � � � �R �H���	

lim sup
n��

�

n
log PrfE 
 Scg � �

where Prf�g is de�ned w�r�t� P �W ��

Notice that if not only R � H� but� moreover� R � HC� where C � lim supn���m�n��

then the set of sequences xm such that n�R � �� � jTxm j is typical provided that � �

�R�C��H� since the setD�� with 
 � �R�C��H��� is a large deviations event �Lemma A����

Thus� by Lemma �� ���� implies that any permutation of Txm can be used�

Consider next the case H � R� With a slight abuse of notation� let us rede�ne now E

as fxm � log jTxn j � nRg� without the Cartesian product with An as before� Let Y��x
m�

denote the set of 	k � 	nR output sequences that can be obtained from the second line of

the right hand side of eq� ��	� as uk exhausts Bk� Now�

I�Xm�Y n� �
X
xm�yn

P �xm�W �ynjxm� log
W �ynjxm�

P �yn�

�
X
xm�E

P �xm�
X

yn�Y��xm�

W �ynjxm� log
W �ynjxm�

P �yn�
�

X
xm�Ec

P �xm�
X
yn

W �ynjxm� log
W �ynjxm�

P �yn�

�
X
xm�E

P �xm�
X

yn�Y��xm�

	�nR log
	�nR

P �xn�
�

X
xm�Ec

P �xm�
X
yn

W �ynjxm� log
W �ynjxm�

P �yn�
��
�

	�



where the last equality follows from the fact that Y��xm� is a subset of Txn and therefore

all the sequences in the set have probability P �xn�� Letting Pmin denote the minimum non�

zero symbol probability assigned by P �� we have P �yn� � P n
min� Since W �ynjxm� � �� ��
�

implies

I�Xm�Y n� � nH � nR � PrfEg� n



log

�

Pmin

�
� PrfEcg

� Imin�Xm�Y n� � n�R � log
�

Pmin
� � PrfEcg � ����

Clearly� the probability of Ec is the same as the probability of the set Dc de�ned in Sub�

section ��	� which is shown in Appendix A to vanish exponentially rapidly� Thus� the

upper bound in the case H � R also approaches Imin�Xm�Y n� exponentially rapidly� This

completes the proof of part �b��

To prove part �c�� it su�ces to notice that under Assumption A	� if m�n is bounded�

Imin�Xm�Y n� is bounded away from zero� and thus dominates over �n� �

� Extension to More General Information Measures

Our results can be extended in several directions� Two of these directions will be outlined

informally in this section� The �rst one extends the class P to sources with memory� the

second one extends the dependency measure to a more general class of information measures�

which includes the Shannon mutual information as a special case�

��� Sources with Memory

For simplicity� we will assume that P is the entire class of �nite�state �FS� sources with

a given next�state function� extensions to parametric subfamilies are possible depending

on the validity of assumptions A� and A	� Our model is de�ned by a FS machine with a

�nite set of states S� driven by a deterministic next�state function st	� � f�st� xt�� where

st � S� � � t � n� and s� is a �xed initial state� The model is parametrized by conditional

probabilities p�xjs�� x � A� s � S� The probability of a sequence xm is given by

P �xm� �
nY
t��

p�xijsi� �

�Without loss of generality� we can assume that all symbol probabilities are positive� For the results to
hold uniformly over 
� the parameter space should be such that the probabilities are bounded away from
zero�

	�



Notice that� under this de�nition� in which the initial state is �xed� the sources in the

class will be� in general� nonstationary� Clearly� the type class of a sequence is given by its

FS�type� i�e�� the number of transitions between each pair of states �starting from the �xed

initial state�� and the class satis�es Assumption A�� Also� from Stirling�s formula applied

to the size of a FS�type �or using a local limit theorem for sources with memory �	
�� the

asymptotic behavior of E log jTXm j is still as in �A�
�� with nH replaced with H�Xnjs��

�the entropy of Xn when the source is started at the initial state s��� and where d � d�

is given by the number of free parameters jSj�jAj � ��� Here� the fact that the expected

divergence between the distributions of Xn with the MLE and the true parameters �both

conditioned on s�� tends to d
� log e also for sources with memory� is proved in ��
�

First� we notice that all the steps that lead to the main result in Section � hold ver�

batim� with nH replaced with H�Xnjs��� as the i�i�d� assumption is not used elsewhere�

Moreover� since n��H�Xnjs�� converges to the entropy rate H of the FS source� the asymp�

totic behavior of the lower bound on the mutual information is unchanged� and H is still the

critical threshold for the random bit�rate R needed for the per�symbol mutual information

to vanish�

The situation is slightly more involved when n � m� due to the fact that the �nal state

st	� to which the FS source is driven by a feasible yn� may not agree with s�� and therefore

the initial conditions for zr �de�ned such that ynzr � Txm� are di�erent� It should be noted�

however� that if �yn � Tyn � the �nal states corresponding to yn and �yn must coincide� since

the initial states do� and the number of transitions between any pair of states is the same

for both sequences� with the initial and �nal states being the only ones for which the nodes

in the associated graph may have an outgoing degree that di�ers from the incoming degree�

As a result� a key property in the memoryless case� namely that the feasibility of yn w�r�t�

xm depends only on the type classes of these sequences� is preserved� Notice� however� that

in order to generalize our results� we need to change the de�nition of the channel W ��ynjxm�

in ���� to re#ect the di�erence in the initial state of zr� Speci�cally� the type class in the

numerator assumes that the initial state is given by the �nal state prescribed by yn �or any

other sequence in the type class of yn�� This change in the de�nition of Tzr throughout the

analysis guarantees that the results will remain valid�

	




��� More General Information Measures

In ���
 and ���
� Ziv and Zakai proposed a generalized functional that satis�es a data

processing theorem� in the context of deriving tighter joint source�channel distortion bounds

for short block codes� If P �u� v� � P �u�W �vju� denotes the joint distribution of a pair

of random variables �or random vectors� �U� V �� and Q denotes the marginal of V � this

functional is de�ned as

IS�U �V �
�
� E

�
S



P �U�Q�V �

P �U� V �

��
� E

�
S



Q�V �

W �V jU�

��
����

where the expectation is w�r�t� P �W and S � R	 � R is a monotonically nonincreasing�

convex �
� function� with S��� � � and � � S�����
�
� limt�� tS���t� � �� Of course�

S�t� � � log t corresponds to the Shannon mutual information� It is easy to see that IS is a

�reasonable� measure of statistical dependence in the sense that it takes its minimum value�

zero� if U and V are statistically independent� and its maximum value� ES�P �U��� if there

is a one�to�one correspondence between U and V � As is shown in ���
 and ���
� IS satis�es

the data processing theorem� If U � V � Z is a Markov chain� then

IS�U �V � � IS�U �Z� � IS�V �Z��

We now demonstrate that our earlier results can be extended to account for IS�Xm�Y n�

as the objective function to be minimized in Condition C�� It turns out that the same sim�

ulation schemes that we discussed earlier� essentially minimize IS�Xm�Y n� for a general S�

Let us start� once again� with the case m � n� We �rst derive a lower bound to

IS�Xn�Y m�� As explained in the Introduction� for a given value of k � nR� W �ynjxn� is

always of the form W �ynjxn� � l�ynjxn�	�nR� where fl�ynjxn�g are non�negative integers

whose sum over fyng is 	nR for every xn� Let Y�xn�
�
� fyn � W �ynjxn� � �g� As we have

shown in the proof of Theorem �� part �a�� under Assumption A�� to meet Condition C	�

yn must always be of the same type class as xn� Thus� Y�xn� must be a subset of Txn � Since

jY�xn�j cannot exceed 	nR� it follows then that jY�xn�j � minf	nR� jTxn jg� and so�

IS�Xn�Y n�
�a�
�

X
xn

P �xn�
X

yn�Y�xn�

W �ynjxn�S



P �yn�

W �ynjxn�

�

�b�
�

X
xn

P �xn�S



� X
yn�Y�xn�

W �ynjxn� �
P �yn�

W �ynjxn�

�
A

	�



�
X
xn

P �xn�S



� X
yn�Y�xn�

P �yn�

�
A

�c�
�

X
xn

P �xn�S �jY�xn�j � P �xn��

�d�
�

X
xn

P �xn�S
�
P �xn� �minf	nR� jTxn jg

�
� ES

�
P �Xn� �minf	nR� jTXn jg

�
����

where �a� follows from the assumption that ��S����� � �� �b� � from Jensen�s inequality� �c�

� from the fact that Y�xn� � Txn �hence P �yn� � P �xn� for all yn � Y�xn��� and �d� � from

the aforementioned upper bound to jY�xn�j and the monotonicity of S� It is straightforward

to see that this lower bound is essentially achieved using the same scheme as in Theorem ��

part �b�� because for that scheme� W �ynjxn� is essentially uniformly distributed within

Y�xn� whose size is exactly minf	nR� jTxn jg�

For m � n and R � �� the data processing theorem w�r�t� IS gives �as in the proof of

Theorem 	� part �a��� the lower bound

IS�Xm�Y n� � EP
W �S



P �Y n�

W ��Y njXm�

�
����

whereEP
W � denotes expectation w�r�t� P�W � and W � is the same channel as in Section ��

which attains the bound� This extension follows from a similar chain of equalities as in eq�

�	
�� where the function � log��� is replaced by the general function S����

Finally� consider the case n � m and R � �� Rede�ning Y�xm� as the set of fyng

with strictly positive probabilities given xm� and Y��x
m� Tyn�

�
� Y�xm� � Tyn � we have the

following�

IS�Xm�Y n� �
X
xm

P �xm�
X

yn�Y�xm�

W �ynjxm�S



P �yn�

W �ynjxm�

�

�a�
�

X
xm

P �xm�
X
fTyng

X
�yn�Y��xm�Tyn�

W ��ynjxm�S



P �yn�

W ��ynjxm�

�

�b�
�

X
xm

P �xm�
X
fTyng

X
�yn�Y��xm�Tyn�

W ��ynjxm�S



P �yn�

	�nR

�

� ES�	nRP �Y n��

� ES�	nRP �Xn�� ����

where �a� follows from the facts that P ��yn� � P �yn� for all �yn � Y��x
m� Tyn� � Tyn and

	�



�b� follows from the assumption that S is monotonically nonincreasing and the fact that

W �ynjxm� � 	�nR whenever W �ynjxm� � �� This bound �for R � H� and the previous

bound of ���� �for R � H� can essentially be attained jointly� by the same scheme as

described in the proof of Theorem �� provided that S satis�es some additional regularity

conditions that account� among other things� for insensitivity to small di�erences between

W and W � �cf� Lemma ��� We will not get into the technical details of this case any further�
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Appendix A

In this appendix� we examine the asymptotic behavior of the lower bound for n � m� To

this end� we use an asymptotic expansion of the expression E log jTXn j� based on a local

limit theorem for lattice random vectors ��� Chapter 

 �see ��� Chapter XV�

 for the scalar

case� under Assumption A	 on the exponential family P� stated in Subsection ��	� We start

with a discussion of Property P�� which links our problem to lattice distributions� and� in

particular� the relation between the parameter dimension d and the relevant lattice rank d��

We also discuss Property P	 �Assumption A	 states standard regularity conditions��

First� we observe that Property P� holds for the exponential families �	�� as a result of

n� �Xn� being a one�to�one function of TXn over Rd � which can be written as a sum of n i�i�d�

random variables ��Xi�� The idea is that each random variable ��Xi� can be transformed

into a random d��vector of integers as follows� Consider the �at most jAj� real values that

the j�th coordinate of ��Xi� can take� j � �� 	� � � � � d� For each j� we can always �nd a

positive integer rj � and rj pairwise incommensurable real numbers 	�j
h� h � �� 	� � � � � rj �

that yield a �unique� decomposition of any value of the j�th coordinate� denoted � �j
� in

the form

� �j
 � 	�j
� �

rjX
h��

	�j
hL�j
h �A���

where 	�j
� is a �xed real number and L�j
h� h � �� 	� � � � � rj � are integers that depend on

� �j
� The uniqueness of the decomposition clearly follows from the irrationality of the ratios

	�j
h��	�j
h� � � � h�� h� � rj� h� 	� h�� Now� to each �real� d�vector � we associate the

unique �integer� d��vector with coordinates L�j
h� � � j � d� � � h � rj � d
� ��

Pd
j�� rj �

	�



obtained by decomposing each coordinate of � according to �A���� Clearly� this process

de�nes a random variable Li which is a one�to�one function of ��Xi�� i � �� 	� � � � � n� and�

accordingly� the random variable L
�
�
Pn

i�� Li is a one�to�one function of Txn � The random

variables Li are clearly i�i�d� In addition� we choose the real numbers 	�j
h to be the spans of

the distribution of the j�th component� that is� to have maximum magnitude among those

real numbers yielding a decomposition of the form �A���� Thus� for each coordinate j� h� the

values taken with positive probability by L�j
h span Z� as they are mutually prime� We can

therefore assume� without loss of generality� that d� is the rank of the lattice random vectors

Li� in the sense that for some d��vector v such that PrfLi � vg � �� u � v spans Zd
�

as u

ranges over all d��vectors with positive probability �otherwise� all the vectors u � v would

lie in a hyperplane and the dimension d� could be reduced by standard transformations��

Example� Consider again the example presented in Section 	� of a ternary source with a

scalar parameter �d � �� and symbol probabilities taking the form C��� � e��h � h � �� �� 	�

where the ratio �	� � 	����	� � 	�� is irrational� Here� ��X� �in this case� a scalar� so that

the index j is omitted� can take the values 	�� 	�� and 	�� Therefore� for each value of � �

there exists a unique pair of integers �L�� L�� such that � � 	� � �	� � 	��L� � �	� � 	��L�

�speci�cally� the pairs ��� ��� ��� ��� and ��� ��� for � taking the values 	�� 	�� and 	��

respectively�� and d� � r� � 	� As a result� the lattice random vectors L�Xi� take the

values ��� ��� ��� ��� and ��� ��� with positive probability� Notice that we have chosen the

maximal possible values for the incommensurable real constants in the representation� and

the vectors ��� �� and ��� �� indeed span Z��

As for Property P	� it clearly follows from the construction of L�xn�� and the fact that�

for every given sequence xn� the exponential families satisfy� under Assumption A	�

E ���xn�� �Xn� � � �xn� �

In some cases� it is convenient to use the MLE "��Xn� as the �real� random vector from

which L�Xn� is derived� Clearly� Property P	 will follow from the unbiasedness of the

MLE� Notice that since the mapping must be one�to�one� this is only possible when� as in

the case of exponential families� two sequences belong to the same type class if and only if

they yield the same MLE�

Next� to evaluate log jTxn j for a given sequence xn� we observe that since� by Property P��

	�



L�Xn� is a one�to�one function of TXn � for any parameter value � we have

jTxn j �
P�fL�Xn� � L�xn�g

P��xn�
�

In particular� if the MLE of � for xn lies in �� we can choose � � "��xn� and use Property P	

to obtain

jTxn j �
P���xn�fL�Xn� � E���xn��L�Xn�
g

P���xn��x
n�

� �A�	�

The numerator in �A�	� is the probability that an integer�valued random d��vector� which

by Property P� is the sum of n i�i�d� random vectors� equals its expected value �which is also

in Zd
�
�� This probability can be evaluated using the local limit theorem of ��� Corollary I�

part II
� to obtain


P���xn�fL�Xn� � E���xn��L�Xn�
g �
� � o���

�	�n�d���
q

detM �"��xn�


where M �"��xn�
 denotes the covariance matrix of the random variables Li evaluated at the

MLE of � for xn� Thus� �A�	� takes the form

log jTxn j � � logP���xn��x
n��

d�

	
log�	�n��

�

	
log detM �"��xn�
 � o��� � �A���

Now� to compute E� log jTXn j for a given parameter � � �� we take a ball around � that

lies inside �� and for those �typical� sequences xn for which the MLE lies inside the ball we

use �A���� whereas for the non�typical sequences we use the trivial upper bound n log jAj

on the left hand side� After standard manipulations involving typicality arguments and the

almost sure convergence of "��xn� to �� we obtain

E� log jTXn j � �E� logP���Xn��X
n��

d�

	
log�	�n��

�

	
log detM��� � o��� � �A���

Notice that for the case in which P is the entire DMS class with positive symbol probabilities�

the asymptotic expansion �A��� can be obtained by applying Stirling�s formula to the type

size

log jTxn j � log

�
n Q

a�A�nxn�a�� 

�

where nxn�a� denotes the number of occurrences of a symbol a in xn� and taking the

expectation� Here� d� � d and detM��� �
Q

a�A P��a��

�The local limit theorem of ��� was chosen due to the simplicity of the required assumptions� but earlier
similar results exist in the literature� In particular� the local limit theorem for lattice random vectors of ���
does not require L to be a sum of i�i�d� random vectors� and can therefore be used when P is not a family
of DMS�s� e�g�� in the Markov case�

��



Finally� using the fact that nE�D�P���Xn�kP�� tends to d
� log e� where D��k�� denotes the

Kullback�Leibler divergence between two probability mass functions on A �see �

 and ref�

���� Proposition 
�	
 therein�� we conclude that

E� log jTXn j � nH �
d�

	
log�	�n��

d

	
log e�

�

	
log�detM���
 � o��� � �A�
�

Next� we use the asymptotic expansion �A�
� to evaluate the lower bound of Theorem ��

With D
�
� fxn � log jTxn j � nRg� we have the decomposition

EminfnR� log jTXn jg � nR �
X
xn�D

P �xn� �
X

xn�Dc

P �xn� log jTxn j � �A���

Thus�

E log jTXn j � EminfnR� log jTXn jg � E log jTXn j � n log�jAj� � PrfDg

where the second inequality follows from omitting the �rst term in the decomposition �A����

and using the trivial bound log jTxn j � jAjn for xn � D� Now� for R � H� we will show that

PrfDg decays exponentially fast with n� and therefore� by �A�
�� the asymptotic value of

the lower bound of Theorem � is d�

� log�	�n� � d
� log e� �

� log�detM���
� Similarly� omitting

the second term in �A����

nR � EminfnR� log jTXn jg � nR��� PrfDcg� � �A���

Considering now the case R � H� we will show that PrfDcg decays exponentially fast

with n� and therefore the lower bound of Theorem � behaves like n�H � R� within an

exponentially vanishing term�

To show that the probability of the set D behaves as claimed� it su�ces to prove the

following lemma� which generalizes analogous results for elementary type classes ��
�

Lemma A�� For any 
 � �	 let D�
�
� fxn � j log jTxn j � nHj � n
g� Then	

lim sup
n��

�

n
log PrfD�g � � �

Proof� By the de�nition of a class type�

� � log jTxn j � log
�

P �xn�
� logP �Txn� �A���

and

PrfP �TXn� � 	�n���g � N�P� n�	�n���

��



where N�P� n� grows polynomially fast with n �as the number of type classes is no larger

than the number of elementary type classes�� Therefore� with probability that approaches

one exponentially fast� the right hand side of �A��� is lower�bounded by �n
�	� In addition�

by the Asymptotic Equipartition Property �AEP�� � logP �xn� is within �n
�	 of nH with

probability that approaches one exponentially fast� implying the exponentially vanishing

probability of D�� �

Appendix B

Proof of Lemma �� For a given � � �� we shall estimate the relative number of �bad�

members of F which violate eq� ���� for some �xm� yn� � S� We show that the number of

such �bad� schemes is a doubly exponentially small fraction of the total size of the family�

jFj �
Q

T�T m jT j �

For a given xm� let us denote by ym� the permuted m�sequence de�ned by eq� ����� but

without applying the truncation operator ��
n� � that is�

ym � J��
m

�
Jm�xm�


kX
i��

	i��ui

�
� �B���

First� observe that given xm� there is a set of 	nR
��xm� �� 	nR mod jTxm j di�erent sequences

fymg� which we shall denote by Y�xm�� that are obtained from �B��� one more time than

the other sequences in Txm as uk exhausts Bk� Also� since yn�zr � Txm for every �zr � Tzr �

there are jTzr j sequences in Txm that start with yn as a pre�x� Therefore� it is easy to see

that the probability of yn given xm� W �ynjxm�� takes the form

W �ynjxm� � ��� 	�n�R�R
��xm���W ��ynjxm� � 	�nRjY�xm� yn�j �B�	�

where jY�xm� yn�j denotes the number of members of Y�xm� whose �rst n coordinates coin�

cide with yn� So the �rst question to be addressed is the following� How many �bad� permu�

tations of the members of Txm are there such that more than L�
�
� W ��ynjxm��	nR

��xm� �

	n�R���
 members of Y�xm� start with yn as a pre�x� and thus� by �B�	�� do not satisfy

the second inequality in ����$ Similarly� for how many permutations� less than L�
�
�

W ��ynjxm��	nR
��xm� � 	n�R���
 members of Y�xm� begin with yn� and thus do not satisfy

the �rst inequality in ����$

Notice that if 	n�R��� � jTxm j� then L� � jTzr j and L� � �� so that the answer to the

above questions is trivial in this case� all permutations satisfy eq� ����� Thus� we shall

�	



upper�bound the number of �bad� permutations for the �rst question under the assumption

L� � jTzr j �implying 	n�R��� � jTxm j�� For the second one �under the analogous assumption

L� � ��� the technique is very similar� and the analysis will be omitted� Assume that the

given xm is in a certain �xed position in its type class� say� J�xm� � �� The number of

permutations � of the remaining sequences� such that at least L� members of Y�xm� begin

with yn� is given by

� � �jTxm j�	nR
��xm�� 

X
��L�



	nR

��xm�

�

� ���Y
i��

�jTzr j� i�

�nR
��xm�����Y
j��

�jTxm j� jTzr j� j� �B���

where each summand corresponds to all combinations of 	nR
��xm� sequences �that form

Y�xm�� such that exactly � members of them are pre�xed by yn� and the factor in front of the

summation is the number of permutations of the members of Txm � �Y�xm�
c� Equivalently�

� can be rewritten as follows�

� � �jTxm j � 	nR
��xm�� 

X
��L�

�	nR
��xm�� 

� �	nR��xm� � �� 
�

jTzr j 

�jTzr j � �� 
�

�jTxm j � jTzr j� 

�jTxm j � jTzr j � �	nR��xm� � ��� 

� jTxm j �

P
��L�



jTzr j
�

�
�



jTxm j � jTzr j

	nR
��xm� � �

�



jTxm j

	nR
��xm�

� � �B���

Since the �rst factor of the last expression� jTxm j � is the total number of permutations of the

members of Txm � the second factor� is the fraction of permutations for which W �ynjxm� �

�� � 	�n��W ��ynjxm�� We next show that this fraction is doubly exponentially small as a

function of n� To this end� we upper�bound the numerator and lower�bound the denominator

of the right�most side of �B���� The numerator is upper�bounded using the fact that for

any two nonnegative integers N and K �K � N��

N
K

�
� 	Nh�K�N�

where h�t�
�
� �t log t� ��� t� log��� t�� t � ��� �
� Speci�cally�X
��L�



jTzr j
�

�
�



jTxm j � jTzr j

	nR
��xm� � �

�

�
X
��L�

exp�

�
jTzr j � h



�

jTzr j

��
� exp�

�
�jTxm j � jTzr j� � h

�
	nR

��xm� � �

jTxm j � jTzr j

��

� 	nR
��xm� max

��L�

exp�

�
jTzr j � h



�

jTzr j

�
� �jTxm j � jTzr j� � h

�
	nR

��xm� � �

jTxm j � jTzr j

��

� 	nR
��xm� � 	jTxm j�F �B�
�

��



where F � maxfqh��� � �� � q�h�	�g� q
�
� jTzr j�jTxm j � W ��ynjxm�� the maximum being

over all pairs ��� 	� for which � � ���	�n	�� and q�����q�	 � �� with �
�
� 	nR

��xm��jTxm j

and �
�
� R��xm��R��� It is easy to show that the function qh�������q�h����q������q��

is monotonically decreasing in � for � � �� Thus� the maximum de�ning F is attained for

� � ��
�
� �� � 	�n	�� � �� where the inequality follows from the assumption L� � jTzr j�

As a result� the numerator of the expression at hand is upper�bounded by

	nR
��xm� � exp� fjTxm j � �qh���� � ��� q�h�	��
g

where 	�
�
� �� � q������ � q�� The denominator� on the other hand� is lower�bounded ��


by 

jTxm j

	nR
��xm�

�
�

�

jTxm j� �
� exp�fjTxm j � h���g � �B���

On substituting the upper bound on the numerator and the lower bound on the denominator

into eq� �B���� the exponent of the denominator is subtracted from that of the numerator

and we obtain�

qh���� � ��� q�h�	��� h��� � �qD���k�� � ��� q�D�	�k��

� �qD���k�� �B���

where for t� s � ��� �
� D�tks�
�
� t log�t�s� � ��� t� log���� t���� � s�
� It then follows that

� � �jTxm j� �� � 	nR
��xm� exp�

�
�jTzr j �D��� � 	�n	��k��

�
� �B���

To further upper bound �� we next derive a lower bound on jTzr j �D��� � 	�n	��k��� Using

the fact that

ln�� � u� � � ln



��

u

u � �

�
�

u

u � �
�u � ��

we have the following lower bound on the divergence�

D��� � 	�n	��k�� �
�

ln 	
�� � 	�n	�� ln�� � 	�n	� �

�

ln 	
��� �� � 	�n	��
 ln

�
��

�	�n	

�� �

�

�
�

ln 	
�� � 	�n	�� ln�� � 	�n	��

�

ln 	
��� �� � 	�n	��
 �

�	�n	��� � ��

�� �	�n	���� ��

�
�

ln 	
�� � 	�n	�� ln�� � 	�n	��

��



�

ln 	
��� �� � 	�n	��
 �

�	�n	

�� �� � 	�n	��

�
�

ln 	
��� � 	�n	� ln�� � 	�n	�� 	�n	 


�
�	��n	

� ln 	
� large n �B���

where the last line follows from the Taylor series expansion of the function f�u� � �� �

u� ln�� � u�� u� Thus� using the de�nitions of � and �� we obtain

jTzr j �D��� � 	�n	��k�� �
�

� ln 	
� 	log jTzr j�log jTxm j�nR

��xm�	�nR��n�

�
�

� ln 	
� 	log jTzr j�log jTxm j	nR��n� �

	n�

� ln 	
�B����

where the second inequality follows from R��xm� � R� and the last one from the assumption

that �xm� yn� � S�

We conclude that for a given �xm� yn� � S� and a given location J�xm� in the list of

Txm � the number of permutations of the remaining sequences in Txm for which L� or more

members of Y�xm� begin with yn as a pre�x� is upper�bounded by

� � �jTxm j� �� � 	nR � exp�

�
�

	n�

� ln 	

�

for large n� where we have used� again� the inequality R��xm� � R� Multiplying this bound

by the jTxm j possible locations of xm in Txm and by the cardinality of S� which are both

bounded by exponential functions of m� we deduce that the total number of permutations

that have this property for some location of xm in the list and for some pair �xm� yn� � S

is still a vanishing fraction of the total number of permutations� jTxm j �as we assume

logm � o�n��� This conclusion remains unchanged even after taking into account also

the permutations for which � � L�� whose number is also bounded �similarly� by a doubly

exponentially small fraction of jTxm j � Thus� not only does a good channel W �corresponding

to a scheme � � F� exist in the sense of satisfying Lemma �� but actually the vast majority

of channels satisfy Lemma �� �

Appendix C

Proof of Lemma �� Proceeding as with the set D in Appendix A� PrfEg clearly vanishes

exponentially fast with n for H � R� Thus� by the union bound� it su�ces to show that

Prf�xm� yn� � nR � log jTxm j� log jTzr j��n�g also vanishes exponentially fast with n� Since

�




Zr is drawn according to P � we have

log jTxm j � log jTzr j � log
�

P �xm�
� log

P �Tzr�

P �zr�
� log

�

P �yn�
� logP �Tzr�

where the last term on the right hand side satis�es� with 
 � �R�H � ����	 � ��

PrfP �TZr� � 	�n�g � N�P� r�	�n� �

Since N�P� r� grows polynomially fast with r and log r � o�n�� the result follows from

noting that� by the AEP� � logP �yn� is within 
 of nH with probability that approaches

one exponentially fast with n� �
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