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Abstract 

In this paper we consider distributed computing systems 
which exhibit dynamism due to their scale or inherent 
design, e.g. inclusion of mobile components. Prominent 
examples are Grids - large networks where computing 
resources can transparently be shared and utilized for 
solving complex compute tasks.   

One of the hard problems in this domain is the resource 
allocation problem and the related service placement 
problem. In this paper we discuss distributed and adaptive 
resource allocation algorithms performed in such dynamic 
systems. These algorithms assume that no global 
information about resource availability and service 
demand can be provided due to the scale and dynamism.    

Interesting aspects of our approaches are the capabilities 
of self-organization and fault-tolerance. We analyze and 
“factor-out” these capabilities, making them also usable in 
the setting of other dynamic distributed systems, for 
example in mobile computing. 

1 Introduction 

Grid computing arose in the early 1990’s in the 
supercomputing community with the goal of making 
underutilized computing resources easily available for 
complex computations across geographically distributed 
sites. The idea of the Grid is to provide a transparent and 
secure access to the resources by a software layer installed 
on the machines of participating organizations. This layer 
provides a multitude of functions, including resource 
virtualization, discovery and search for resources as well 
as the management of running applications. In addition to 
proprietary Grid software, two major software 
frameworks are in use today: the open-source Globus 
toolkit [26] and the Grid Engine [24].  

A major development in Grids is the Dynamic Grid 
Computing [27]. This research trend focuses on 
harnessing dynamic resources in the Grid by providing the 
applications with self-awareness of their changing 

environment. For example, the applications will possess 
the capability to migrate from site to site during the 
execution depending on both the changing resource 
availabilities and their own needs. We envision this trend 
also as an answer to both the increasing scale of Grids and 
to the correlated high costs of their manual management. 
In this paper we anticipate this basic functionality and 
illustrate how it can be used to increase the degree of 
automation in Grid systems. Another trend in Grids 
stressing its dynamic nature is to integrate, develop and 
use services in a grid environment according to the Open 
Grid Service Architecture (OGSA) [8] (we will therefore 
use the terms application and service interchangeably in 
this paper). 

Suitable placement of services or applications on 
resources is the primary factor for the economic 
utilization of underlying resources in such dynamic 
systems. A good solution for this problem prevents 
overloading server environments or the communication 
infrastructure, keeps resource utilization and response 
times in balance, and achieves higher availability and 
fault-tolerance. This paper describes and evaluates several 
algorithms which provide suitable service placement 
while considering fault-tolerance and self-organization. 

As a by-product we study universal approaches and 
paradigms for controlling large and potentially instable 
distributed systems under the aspects of self-organization 
and fault-tolerance. We believe that the resulting insights 
are useful as building blocks for a multitude of related 
problems (e.g. resource revocation) in distributed systems 
with dynamic nature, such as those occurring in mobile 
computing and ubiquitous computing. These elements are 
partially independent of other aspects of the algorithms 
and can be “factored out” from the proposed approaches. 

Overview of the paper. In Section 2 we discuss several 
issues related to management of dynamic distributed 
systems in more detail. We describe in more depth the 
problems and challenges in this field. We further 
illustrate the trade-off between algorithm reactiviness and 
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the solution quality. A part of Section 2 is devoted to 
defining functions that evaluate the placements of 
applications.  

The first considered algorithm, based on the so-called 
Ant Colony Optimization, is presented in Section 3. This 
paradigm comes from the study of behavior of real ants 
and incorporates elements of machine learning via 
recording the best partial solution by a “pheromone”. 
The approach has been applied successfully to a variety 
of problems, including routing in telecommunication 
networks, matching problems and the famous Traveling 
Salesman Problem. Its strengths are high scalability, the 
possibility of balancing solution time against solution 
accuracy and the robustness against failures of even large 
parts of the system. 

In Section 4 we discuss an approach taken from the 
coordination of mobile robots, called the Broadcast of 
Local Eligibility (BLE). We extend this method to 
provide better scalability than the original solution and 
suggest improvements in terms of communication costs 
by applying gossiping algorithms. While this algorithm is 
simple and has short reaction time, the placement 
proposed by the algorithms might be far away from the 
optimum. Therefore the use of this algorithm is mainly 
for discharging of “hot-spots”, less for optimizing 
service-to-server assignments. 

The algorithm presented in Section 5 combines a notion 
of intelligent agents which represent groups of services 
with P2P-based overlay networks information services. 
The advantages of this novel approach are exploiting the 
self-organization properties of P2P-networks, high 
scalability and the ease of further extensions. 

Section 6 discusses two simple algorithms, which are 
easy to implement yet do not let us expect a good 
placement quality. 

In Section 7 we describe related work, while the Section 
8 is devoted to the conclusion. 

2 Management of Dynamic Distributed 
Systems 

2.1 Problem Domain 
Balancing demand and supply. A major aspect of grids 
is to match resource supply with application demand.  
Resource capacities should also be provided locally to 
where demands occur avoiding cross-network traffic. 
Since demands are fluctuating over time and locations, 
application placements need to be adjusted accordingly, 
ideally completely automated without human 
intervention. Such an automated service grid control 

system then transparently regulates service demands and 
supplies. 

So far, most integrated management systems (in Grids 
and also other computing networks) are limited in regard 
to functioning in virtualized environments across 
organizational boundaries. Besides automated fail-over 
techniques in high-availability systems, management 
systems typically automate monitoring and information 
collection. Decisions are made by human operators 
interacting with the management system. Major service 
capacity adjustments imply manual involvement in 
hardware as well as in software. Systems need to be 
adjusted, re-installed and reconfigured, all expensive 
manual processes. 

Centralized versus distributed management. The 
design of an automatic management system for Grids is 
closely related to the scale of the managed system and 
the rate of system changes. In an ideal case, all 
information about system state could be collected in a 
central instance, and as a consequence an optimal 
placement could be made (modulo the computational 
tractability of the problem).  However, with increasing 
scale and rate of system changes, this solution becomes 
inappropriate. Another problem is fault tolerance. 

Instead, we consider distributed algorithms for solving 
the placement problem. We further strengthen the 
scalability property by assuming that each individual 
distributed component of an algorithm has only partial 
information about the global state of the system. While 
this assumption leads to reduced communication and 
increased reactiviness, the obtained placement of 
services to resources cannot be expected to be optimal, 
i.e. only heuristic algorithms can work under these 
assumptions. 

Dynamic Distributed Systems. Computational Grids 
and similar computational distributed systems are 
inherently dynamic due to their large-scale and 
complexity. Here by “dynamic” we mean the property of 
a frequently changing state of resource availability as 
well as the state of service requirements. In a system 
comprising 1000s of servers, changes such as server 
failure, overload or resource revocation might occur 
every few seconds. Similarly, resource demand will 
fluctuate in short time intervals. 

These effects require adaptation of the system to new 
conditions on a permanent basis. While it could be 
possible to manage such a system by an army of human 
operators, this approach is certainly not economically 
viable and more error-prone. In our view, automatic 
management comes into place at this point. We believe 
that self-organization, fault-tolerance and adaptation to 
changes in supply and demand of resources are the key 
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elements to master this challenge on the top level, i.e. the 
application level. 

Self-organization, fault-tolerance and adaptation. The 
term “self-organization” is not defined precisely in the 
literature. Intuitively, it describes an ability of a system to 
organize its components into a working framework 
without the need of external help or control. For our 
purposes we will understand self-organization as the 
capability of adding and removing system parts without 
the need for reconfiguration nor the need for human 
intervention. This aspect is of particular interest for us 
since (non-automatic) management of systems is an 
essential cost factor and source of a majority of errors. 

The fault tolerance of a system is its ability to recover 
from transient and also possibly permanent failures 
without human intervention. There is a large amount of 
literature on fault-tolerant systems; however, it is mostly 
focused on fault tolerance of system components, and not 
on recovery of large and complex distributed systems. 
The interested reader is referred to [18]. 

Adaptation to changing demand/supply conditions is 
closely related to load balancing. Research on this topic 
has a long history in distributed systems. However, in 
most cases local ensembles of resources (such as 
multiprocessors or clusters of workstations) are 
considered, and stable “laboratory-like” conditions are 
assumed. In our case we have to meet a multitude of goals 
as discussed in Section 2.3; also, the large-scale and the 
dynamics of Grid-like systems make new approaches 
necessary. 

Paradigms for mobile computing and ubiquitous 
computing. The challenges of dynamic Grid systems bear 
similarities to challenges of other highly dynamic (albeit 
smaller) distributed systems – those occurring in mobile 
computing or ubiquitous computing. We believe that 
many of the methods or techniques presented here can 
become applicable or can give rise to new paradigms in 
those areas. Additional motivation for this statement is the 
fact that the Grid is envisioned to comprise mobile 
computing devices, as stated in the OGSA roadmap [8].  

Satyanarayanan points out in his paper [22] that in mobile 
systems the roles of a server and client become blurred at 
certain times, and mobile entities take both roles 
depending on the actual system conditions and resource 
supply. Such a scenario is closely related to a picture of 
“dynamic mini-Grids” with needs for constant adaptation 
of the computing loads. In this way, the approaches 
discussed in this paper become directly applicable. 

To facilitate the application of the self-organizing 
elements and fault-tolerant properties in other domains, 

we discuss at end of most sections the “building blocks” 
for transfer of learned lessons and paradigms.  

Basic assumptions. In the remainder of this paper, we 
assume some lower-lever system properties which are 
necessary for the functionality of the discussed 
algorithms. Specifically, we assume a basic mechanism 
which allows a server or other type of resource to join the 
system and notify its “neighbors” (e.g. resources in the 
same subnet) about its existence. Such mechanisms are 
provided in the lower network protocol layer, or by the 
resource discovery mechanisms in mobile systems. Note 
that we do not assume any central instance to be notified: 
informing only the neighbors is sufficient. 

Another mechanism we build upon is the ability of each 
resource to measure its distance (in network hops or 
similar units) from other resources in the network. This 
ability enable building “maps” of other resources 
classified by their distance from a server. While this 
problem is not yet solved satisfactory, there are some 
promising approaches e.g. in the domain of P2P-systems 
[20].  

2.2 Reactiviness and Solution Quality 
One of the challenges of the service placement problem is 
to find algorithms that are both reactive and deliver high-
quality solutions for the control scale we are dealing with. 
In practice, the responsiveness of an algorithm must be 
traded against the quality of a solution. Thus, 
responsiveness constitutes one parameter of the design 
space. Another parameter is the type of the control 
system, ranging from centralized to completely 
distributed. Since it is unrealistic to find one algorithm, 
which can be parameterized in both dimensions, we look 
at several approaches covering most of the design space.  

Figure 1 summarizes tradeoffs for algorithms used for 
decision-making. The first chart symbolizes the 
dependency between the solution quality and time to find 
a solution. The second chart shows that centralized 
algorithms usually do not scale well compared to 
distributed algorithms. The next figure classifies four 
algorithms in regard to solution quality vs. reactiveness. 
Since being part of a control system, reactiveness of 
decisions is important. Reactiveness is understood as the 
time between detection an abnormality, for instance a 
sudden peak demand, and the final computation of a 
decision how the situation can be dealt with. Three time 
scales are considered: the “design” stage of an initial 
service placement, in longer periods reiterated as long-
term adjustment process in the system; a mid-term period 
for periodic operational adjustments, and a shorter-term 
period for discharging sudden hot spots. 
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Figure 1: Decision-making algorithm tradeoffs. 
 

 

 

 

 

 

 

 

Figure 2: Comparison of four algorithms in terms of 
accuracy and reactiviness. 

One approach we pursued is a centralized heuristic 
algorithm based on integer programming. This algorithm 
(not discussed in this paper) yields high-quality solutions 
but at a cost of longer running time and limited 
scalability. For improved responsiveness and larger scale, 
we explore agent-based and distributed algorithms 
described below. Such algorithms are composed of 
several simple decision-making instances, sometimes also 
referred to as agents. They communicate with each other 
directly or indirectly in order to approximate a solution. 
Each decision-making instance has, in general, only 
partial knowledge of the system.  This facilitates 
scalability of such approaches. Furthermore, failure of any 
of the decision-making instance does not make the overall 
algorithm fail.   

One agent-based approach is based on the Ant Colony 
Optimization paradigm [6], [23]. This fully distributed 
algorithm has medium responsiveness and can be used for 
periodical reassignments of services onto servers. 

As an alternative approach, we evaluate an agent system 
based on a paradigm known as Broadcast of Local 
Eligibility (BLE), used for coordination of robot teams 
[28]. This partially distributed algorithm allows faster 
rebalancing of the managed services for the price of 
potentially lower-quality assignments. 

Another approach uses more “intelligent” agents moving 
in the system guided by an self-organizing overlay 

network. This fully distributed approach can be 
parameterized in order to react either fast yet less optimal 
or slower but yielding a better-quality solution. It can be 
used for both fast discharging of hot spots or for mid-term 
operational adjustments. A comparison of these 
approaches in respect to the reactiviness/accuracy-tradeoff 
is presented in Figure 2. 

2.3 Control Objectives and the Partial Objective 
Function   (POF) 

General control objectives. As discussed in the 
beginning of this section, the goals for optimal placement 
might vary in general. Therefore, the following algorithms 
are designed to be generic enough to support new 
objectives without fundamental changes. However, we 
focus on only few aspects to be achieved by control 
decisions. These are: 

1. Balancing the server load such that the utilization of 
each server is in a desired range. 

2. Placing services in such a way that communication 
demand among them does not exceed the capacity of 
the links between the hosting server environments. 

3. Minimizing the overall network traffic aiming to 
place services with high traffic close to each other on 
nearby servers (nearby in the sense of a low number 
of communication hops across nodes). 

The Partial Objective Function. We want to be able to 
compare different placement options in a quantitative 
way.  To this aim we introduce a partial objective function 
(POF) fPOF, which is derived from a balanced sum of two 
characteristics. The first one, cT, is the sum of traffic costs 
between the services on a pair of servers weighted by the 
distance of these servers. The second number, uT, is the 
variance of the processing capacity usage among the 
servers. This leads to the POF computed by the formula: 
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where α is the balancing factor between 0 and 1, and β a 
parameter described below. In our setting, both a lower 
weighted traffic cost and a lower variance are better. This 
is reflected in the value of the POF, which has a higher 
“score” for smaller cT or uT. Note that the value of fPOF 
ranges between 0 and 1; β must be chosen according to 
the maximum possible values of cT and uT in order to 
ensure a relatively uniform distributions of the values of 
the POF. 

It is of course possible to exchange each of the above two 
characteristics. Especially, instead of cT one might 
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imagine function which returns the total number of servers 
used for placement.  Such a function can be implemented 
in the way described in [4]. 

Our POF is evaluated for a set V of servers and a set S of 
services.  It is important to note that such a set might not 
contain all services or all servers in the system. In case of 
services this is motivated by a fact that for larger systems 
we can frequently isolate groups of interdependent 
services  (i.e. services communicating with each other). 
While it makes sense to consider all services in such a 
service group for a placement decision, we do not need to 
consider services outside the group.   

The rationale for considering only few and not all servers 
is dictated by scalability issues. In large systems, it is 
simply impossible to take all servers into consideration.  
The algorithms described in the following select an 
appropriate subset of the servers from the system in a 
heuristic fashion. The subsets are then subject to 
evaluation in the POF.  

In the following, we give formal definitions for the 
characteristics cT and uT. We assume a fixed assignment 
of services in the set S to the servers in the set V. 

For two servers v and v’, we designate by cv,v’ the 
estimated total traffic between all services placed on v and 
all services placed on v’, measured in the number of 
exchanged IP packets. If proxv,v’ is the network distance 
of servers v and v’ (in terms of IP-hops), then the total 
weighted communication cost cT is given by the formula: 
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where M is the total number of exchanged IP packets 
times the maximum distance between two servers in V. 

For a server v, let uv be the fraction of its processing 
capacity used by all services placed on this server. We 
assume that uv is a real number in [0, 1]. Then the 
variance uT of these numbers is defined by: 
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Necessary conditions of an assignment. An assignment 
must fulfill certain necessary conditions; for example, we 
cannot assign a service to a server with insufficient 
processing capacity. By slightly abusing the notion of an 

“objective function”, we can use fPOF to ensure that such 
requirements are fulfilled. Specifically, we set the value of 
the POF to 0, if any of the following conditions is 
violated: 

− Each service is placed at exactly one server. 

− For each server v, the total processing demand of all 
services assigned to v is at most the processing 
capacity of v. 

− For each server v, the total storage demand of all 
services assigned to v is at most the storage capacity 
of v. 

− For each pair (v, v’) of servers, the total network 
traffic between the services hosted on these servers 
should not exceed the link capacity between v and 
v’. 

− The entries of a so-called affinity/repulsion matrix, if 
present, are respected; they indicate that a service 
must not or must be placed on a certain server. 

3 Ant-Based Control Algorithm 

In the classical Ant Colony Optimization [6], the path 
taken by an ant on its way between objects (e.g. cities in 
the Traveling Salesman Problem) represents a possible 
solution to the optimization problem. In our case, the 
objects would be both servers and services, and the 
alternating path would represent an assignment of services 
to servers. However, this approach is centralized and not 
really scalable for the following reasons: 

1. The ant must “remember” the whole path it has 
taken; this information might become very large. 

2. The ant must visit all objects on its tour. In a large 
and dynamic system, this is a serious drawback. 

3. Finally, each solution (path) must be evaluated 
against others. This requires central knowledge. 

3.1 Overview 
For these reasons, we evaluate another approach not 
common in the classical Ant Colony Optimization yet 
leading to a better scalability. First we give an informal 
overview of this algorithm. 

In our system, for each service s we instantiate a “demon” 
Ms called a service manager of s. If the service s is not yet 
placed or an overload condition has occurred, Ms creates   
multiple ants (“agents”) and sends them out to the server 
network. Each ant has a service list containing s and the 
services cooperating with s. For each such a service, it 
knows the current resource requirements; also, it knows 
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the current communication requirements among the 
services in the service list. 

The ant travels from one server to another choosing the 
servers along the path based on a probability computed 
locally.  In each step, one of the services from the list is 
assigned to the current server. The path created in this 
way represents a partial solution to the placement problem 
as found by this particular ant. When the ant has assigned 
all the services, it reports its path to the service manager 
Ms of s and terminates. The manager compares the 
reported paths using the POF, where the set V of the POF 
is constituted by the servers visited by this ant, and the set 
S is the service list of s. This assignment is compared with 
the current placement of those services. Finally, Ms 
decides of a possible rearrangement of the placement. 

On each server, the ant evaluates the score of the server in 
respect to each service from its list. For each pair  
(service, server), this placement score expresses how well 
this server is suitable to host the service. It is computed 
also using the POF in the way described below. 
Furthermore, the ant causes the pheromone table of the 
current server to be updated. This table contains 
pheromone scores for certain pairs (service, server). 
Those are essentially weighted sums of placement scores 
of the ants that evaluated this particular (service, server)-
pair. The table is used to help an ant to decide which 
server to visit next. The server managers of neighboring 
servers periodically exchange these tables, thus providing 
a mechanism to disseminate the local information across 
the system. 

3.2 Ants, Service Managers and Server Managers 
In our algorithm we have three entities that store and 
manipulate data: 

− a service manager Ms of a service s, 

− an ant representing s, 

− a server manager (corresponding to a single server) 
which executes the ant code, and maintains and 
updates the pheromone table of its server. 

The data held by a service manager comprises the service 
list of s, the number of spawned ants and the currently 
best assignment reported by an ant. A service manager 
also knows how to evaluate the POF and its value for the 
current placement of the services in the service list.  

An ant is launched with the following data that are “static” 
during its lifetime: the service list together with the 
current demand profiles of each service in the list, and the 
communication demand profiles between those services. 
This information is necessary to compute the score via a 
POF. The dynamic data carried by an ant are the scores of 

the already assigned services from the service list, and 
data about already visited servers, including link 
capacities. 

Finally, a server manager holds the pheromone table of its 
server. The structure of the pheromone table is shown in 
Table 1. For each pair (serviceId, serverId) existing in this 
table, we record the known pheromone score, the age of 
this score and the number of ants which contributed to 
establish this score.  

serviceId serverId pheromone 
score 

score 
age (sec) 

# ants  

apache-01 15.1.64.5 0.572 95 15 

apache-01 15.1.64.7 0.356 120 9 

oracle-02 15.1.64.1 0.012 62 12 

… … … … … 

Table 1: An example pheromone table 

3.3 Functionality of the System Components 
In this section we describe in detail the behavior of the 
entities introduced above. 

Service managers. A service manager constantly watches 
the performance of “its” service and evaluates the current 
assignment by a POF. On two occasions it spawns ants 
starting a process described below: 

− If the POF value is larger than some critical limit; 
this corresponds to the case of an occurrence of a 
“hot spot”. 

− If a certain period of time has passed since the last 
launch of the ants. The purpose of this step is to 
periodically “rebalance” the wholes system towards 
an optimal utilization. 

The process from the decision of launching ants until its 
termination includes the following steps. 

1. Synthesize the ant data described in Section 3.2. 

2. Place cs copies of such an ant in the server 
network. The placement method and the value of 
cs is described in Section 3.6.  

3. Collect the assignments and the corresponding 
scores sent by the ants that terminated. 

4. Once all ants have finished (or a timeout has 
occurred), compare the reported assignments by 
the POF and choose the one with the best POF 
value. 

5. If the service s has already been placed, compare 
the current POF of s and the cooperating services 
with the one found in Step 4. If the new 
assignment is better by a threshold ts 
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(representing the “penalty” for reassigning 
services to servers), continue with the next step; 
otherwise, terminate this epoch of ant launching. 

6. If s is not placed, or the evaluation in Step 5. led 
to this step, reassign the services to servers in a 
following way. 

a. Contact all servers to be used in the new 
assignment of services and verify that 
their scores are still (approximately) 
valid. If this is not the case, start a new 
epoch of ant launching (i.e. begin from 
Step 1.) 

b. Contact the service managers of all 
cooperating services and let them stop 
any running ant-based evaluations. 

c. Contact the servers to be used in the 
new assignment and let them reserve the 
required resource capacities. 

d. Start installing and starting the services 
on their new locations. 

e. When step d. is finished, shut down the 
services in the old placement. 

f. Finally, start the service managers of 
the newly installed services. 

Ants. An ant created by a service manager Ms of a service 
s “travels” from one server manager to the next one 
(usually residing on an another physical entity). 
Technically, it is done by contacting the next server 
manager, transmitting the ant data to it and initiating 
executing the ant code for this ant instance. The choice of 
the next server manager is done in the way described 
below. The ant has the following life cycle after it has 
arrived on a new server manager: 

1. Evaluate for each service in the service list the 
score in regard to this server. This is done via the 
POF for this server as described in Section 3.4. 

2. Update the pheromone table of the current server 
by passing the computed scores to the server 
manager. 

3. Choose the service with the highest computed 
score among the not yet assigned services and 
remember this assignment. 

4. If all services from the internal list have been 
assigned, report the resulting assignment to the 
“original” service manager Ms, then terminate. 

5. Otherwise, move to the next server manager and 
continue with 1. 

Server managers. Both entities described above have 
essentially a fixed order of tasks to be executed. By way 
of contrast, a service manager acts in an asynchronous 
way, providing “services” to the other two entities. Its 
roles comprise the following tasks: 

1. It provides an environment where the ants are 
executed. Especially, it can asynchronously 
receive messages from other server managers 
which send the ant data. Once this data is 
received, it executes the locally stored code 
representing an ant. 

2. It lets an ant update the pheromone table with the 
scores computed for the services in the service 
list. 

3. It maintains the pheromone table by updating the 
age of the pheromone scores and pruning the 
table. The last step is necessary, because in the 
extreme case, the pheromone table could attain a 
size proportional the to number of servers 
multiplied by the number of services; this would 
seriously impede scalability. During the pruning, 
the oldest entries (except for those regarding the 
neighboring servers) are removed, until the 
desired table length is reached. 

4. Finally, a server manager sends periodically its 
own pheromone table to the neighboring servers, 
keeping the information of the neighbors up to 
date.  

The last function provides a mechanism for dissemination 
of the local knowledge throughout the system. This 
reduces the gap between a distributed system where each 
participant has only local knowledge, and a centralized 
system with the complete, global knowledge of the 
system. The size of the time interval between the updates 
and the size of a pheromone table controls the degree of 
the “global knowledge” in the system. An antagonistic 
trend is the rate of changes in the system and 
consequently the ageing rate of the pheromone.  Also, 
albeit a high degree of this knowledge is very useful for 
choosing the next server in a correct way, attaining it 
costs a lot of resources, mostly network bandwidth and 
storage for the pheromone tables.  

3.4 Placement Scores and the Pheromone Table 
Recall when an ant reaches a new server manager, it 
computes placement scores for all services from its list in 
respect to the current server.  For such a pair (service s, 
server v), this computation is done via the POF as 
follows.  The current server v and servers already visited 
by an ant become the set V.  Furthermore, s and all 
already assigned services from the ant's service list 



- 8 - 

constitute the set S.  Then the value of the POF is 
computed for the (partial) assignment of services to 
servers already chosen by this ant, together with the 
mapping of s to v. We assume that information about link 
capacities between the servers is buffered by the ant or 
can be obtained from the server manager, if necessary.  

Let us describe now how the pheromone tables are 
updated.  Assume that an ant has computed a fresh 
placement score r for the pair (service, server).  If such a 
pair does not exist in this server manager's table, it is 
simply inserted with the pheromone score being equal to 
the placement score.  Otherwise, the new value p' for this 
pair's pheromone score is computed from the current table 
entry p and the newly computed placement score r by the 
formula:  

.)1(' rpp ⋅−+⋅= γγ  

Here γ is a parameter between zero and one which 
determines the degree of inheriting previous pheromone 
score value.  Note that the contribution of all other scores 
decreases geometrically with the number of iterations: if 
the very first ant which has visited the node has set the 
pheromone score to p, then after k new ants have reached 
the server, the contribution of this first ant to the current 
score of the pair will only be γkp. 

We also want to consider an effect known from the ant 
colony systems in the nature: evaporation of the 
pheromone.  Due to this effect, old and probably outdated 
information about affinities of services to servers will be 
removed with time, even if no new ants have arrived at 
this server.  To this aim, a server manager scans through 
its pheromone table once every T minutes, and reduces 
the score p in the pheromone table according to the 
formula:  

,pp ⋅= δ  

where delta is an aging factor between 0 and 1 (usually 
close to 1).  If the value of the pheromone score decreases 
below a certain limit, these pairs are removed from the 
pheromone table in order to save storage resources.   

 

3.5 Choosing the Next Server 
Pheromone tables are the main decision factor for 
choosing the next server to be visited by an ant.  Since 
those tables are exchanged by the neighboring servers and 
propagated through the system, an ant has a good chance 
to find a pair (service s, server v) in the pheromone table 
of the current server. Here v is a not too distant server and 
s is a still unassigned service from the service list of this 
ant.  If multiple such pairs have been found, the server of 
a pair with the highest pheromone score is selected.  

However, if no such a pair exists, the ant chooses a set of 
servers from the pheromone table with 1.  most recently 
updated pheromone scores, and with 2.  highest 
pheromone scores.  Then a random server from such a set 
is selected as the next host.  This approach targets to 
identify with high probability servers with free 
computational resources.   

As an alternative to each of the above cases, sometimes 
we send an ant to a randomly selected not-too-distant 
server.  The decision for this step is taken with a (small) 
probability h.  Such an addition of a “noise” is helpful to 
prevent the blocking problem and the shortcut problem 
[23]. The blocking problem occurs if a “popular” path 
found by many ants can no longer be taken, e.g. due to a 
server failure. The shortcut problem occurs in a situation 
where a new assignment of services to servers suddenly 
becomes possible, for example due to introduction of new 
servers to the system.  In both cases the information 
stored in the pheromone tables might cause lack of 
adaptation of the ants to the new conditions.  A small 
amount of noise forces the ants to exploit the alternative 
routes on a permanent basis. 

3.6 Initial Placement of the Ants 
 The initial placement of the ants is intuitively an 
important factor for finding good service placements. In 
our case, the service manager Ms places the ants in the 
system according to the following schema. 

First, it determines Nr “regions” where clusters of ants are 
placed. The centers of these regions are chosen randomly 
in the known system area in the way that the probability of 
choosing a center distant from the service manager is 
smaller than choosing a center close to Ms. To this aim, 
each service manager maintains a (partial) map of the 
resources in term of their network location. The resources 
are categorized by their IP-distance d to the server 
manager. When choosing a center of the region, in the fist 
step the service manager selects randomly a class of 
resources with a distance d to Ms. Then it decides to 
continue with this class with probability  

( )
,

1
1

θd+
 

otherwise it chooses again a random class until success; 
here θ is a parameter greater 1. If successful, a random 
resource as the center of a new region is chosen. 
According to the findings in [15], this approach ensures 
that very rare resources can be still discovered, but 
simultaneously supports clustering of services according 
to the location of their inception. 

In each of the regions determined in this way, the service 
manager spawns Na ants on the resources close to the 
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center of the region. Here a similar approach to the one 
described above is taken, yet the distances of the created 
ants from the center of the region are kept smaller by 
means of increasing θ. Furthermore, ants “repel” 
themselves: if an ant is placed on a certain resource, then 
Ms will discard all servers within a distance Dr from this 
resource for further placements. 

3.7 Conclusions for Self-Organization and Fault 
Tolerance 

The presented algorithms have some pleasant features in 
respect to automating resource management. For example, 
servers and resources added to the network do not need to 
inform any central instance of their existence; it is 
sufficient, that only their neighbors learn new topology 
(by the mechanism mentioned in Section 2.1). 
Furthermore, even if the majority of the servers in the 
system are unavailable or unreachable, our approach will 
not be prevented to work correctly in the remaining part 
of the system. Also a plus is the fact that by changing the 
amount of noise in the ant’s selection of its next steps 
along its path we can adjust the necessary degree of 
adaptability. 

A disadvantage is the fact that the service manager is a 
single point of failure; if it disappear, the service or a 
group of them might not recover without human 
intervention. The reader is referred to Section 5 for a 
solution to this problem.  

Building blocks for other domains. We believe that the 
idea of pheromone tables deserves some attention in 
conjunction with the agent technology. In the classical 
agent frameworks, the communication takes place either 
directly between agents or between agents and “agent 
containers” (i.e. the environment executing them). It 
would be interesting to exploit models where the 
information between agents can be exchanged in an 
undirected and passive ways, as in the case of pheromone 
tables. However, we are not aware of possible 
applications of this schema. 

Another idea worth to be “extracted” from the above 
algorithm is the dissemination of information by 
exchanging it between the neighboring servers only. This 
mechanism, similar to those used in Systolic Computing, 
allows to blur the distinction between a situation where 
only partial information of the system is known at each 
node as opposed to the scenario in which every node 
possess a complete system description. It would be 
interesting to learn by theoretical analysis or an empirical 
study how frequently information must be exchanged and 
how fast the information can expire for a large part of the 
system to have accurate information.  

4 BLE-Based Control Algorithm 

We adapt the concept of the Broadcast of Local Eligibility 
used for coordination of robots [28] for the placement of 
services. This concept can be used to create highly fault-
tolerant and flexible frameworks for coordination of 
systems of agents. However, the originally proposed 
framework has a drawback of limited scalability. To 
overcome this problem, we use a hierarchical control 
structure discussed below. 

Decision cycle in a cluster. We consider a cluster of 
servers with a distinguished server called cluster head. 
Each member of the cluster has the ability to broadcast a 
message to all other members of the cluster. This can be 
done either directly or via the cluster head. The placement 
of services in this cluster is periodically re-evaluated by 
arbitration between peer servers in so-called decision 
cycles. The time between two cycles is determined by the 
required responsiveness to fluctuations in server 
utilization and by the induced communication between 
cluster members. 

In each decision cycle, the following actions take place: 

1. Each server broadcasts the list of services it hosts 
with all new arrived services and simultaneously 
updates its list of all services in the cluster. 

2. Each server evaluates its own suitability to host each 
service and sorts the list according to the computed 
score. The evaluation is done by using the POF from 
Section 2.3. In addition, a service already deployed 
on a server highly increases the score. 

3. Each server broadcasts a list, ordered by scores, of 
those services the server can host simultaneously 
without exceeding its capacity.  

4. When a server receives a score list from a peer, it 
compares this score with its own score for a service. 
As a consequence, each server knows whether it is 
the most eligible one for hosting a particular service. 

5. The changes in the service placement are executed. 
Notice that each server knows already whether it has 
to install new or remove current services. In addition, 
the cluster head compares the initial list of services 
with those, which will be hosted at the end of this 
decision cycle. The remaining services are passed on 
to the next hierarchy level as explained below. 

An important aspect is that the servers do not forget the 
list of services in the cluster after a decision cycle. In this 
way we provide fault-tolerance: if a server hosting certain 
services fails, other servers in the cluster will 
automatically install the failed services (or the cluster 
head adds them to the list of unassigned services).  
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Gossiping algorithms. Note that steps 1 and 3 require 
all-to-all communication, i.e. each server learns the 
information from all other servers.  This may lead to a 
problem of the communication costs in terms of the 
number of messages and the time until all members of a 
cluster are informed. In infrastructures like Ethernet or 
wireless LAN a cost of a broadcast is comparable to 
sending a targeted message, which partially relieves the 
situation. This problem becomes more serious if members 
of a cluster are geographically distributed or communicate 
over a switched network.  

These communication costs can be reduced using 
gossiping algorithms [10]. These deterministic and also 
randomized [14] algorithms achieve optimal bounds for 
the number of messages with a low number of 
communication rounds; for example, the information 
exchange can be completed in approximately 2 log2 n 
steps in the deterministic case, and in roughly log n steps 
in the randomized case, where n is the number of servers 
in the cluster. The reader is refereed to the literature for 
more detailed discussion. 

Scalability by a cluster hierarchy. Obviously, the 
scalability of the above approach is limited by the size of 
the cluster, the communication capacity in the cluster and 
the processing capacity of the cluster head.  

We propose a following hierarchical approach to extend 
the scalability. Basically, the cluster heads of the clusters 
at level k are treated as “normal” members of a cluster of 
level k+1. However, they compete only for those services, 
which could not be installed in their own cluster (see step 
5. above). After a decision round in the cluster of level 
k+1, these pending services are possibly moved to another 
peer, which is a cluster head for a cluster of level k. (The 
cluster head evaluates the eligibility of the servers in its 
own cluster, not its own eligibility). In the cluster of level 
k, these services become part of the list of services to be 
installed and participate in the normal decision cycles. 

The cluster size is essential for the balance between the 
responsiveness of the system and flexibility. Identifying a 
correct hierarchical structure can be done similarly to 
clustering algorithms used in sensor networks [7]. 

4.1 Conclusion: Self-Organization and Fault-
Tolerance  

The above algorithm has several good properties. In 
addition to being relatively simple, it ensures the 
automatic recovery of services without special 
mechanisms. Also, the size of a cluster can be treated as a 
parameter for tuning the algorithm’s reactiviness (against 
solution quality); see Section 2.2.  A weakness of the 
algorithm is the fact that the cluster head can become 
overloaded or even temporarily be a single point of failure 

(however, cluster heads building the cluster of the next 
level will recover the failed head in their next decision 
cycle). Another inconvenience of this algorithm is the fact 
that the hierarchy of clusters must be created externally 
(i.e. is not given implicitly by the algorithm), which limits 
the self-organization of this approach.  

Building blocks for fault-tolerance. An interesting 
quality of the above approach is the implicit fault 
tolerance and also implicit “negotiation” between the 
resources about their assumed roles (i.e. roles as hosts for 
applications). This mechanism works due to the fact that 
information about all required tasks (in our settings, the 
services to be hosted) and information about the 
capabilities of the cluster members is known to everybody 
in a cluster. While this scheme has been exploited 
successfully in the BLE-approach, we think that by 
extending it to a hierarchical system of cluster a true 
scalability becomes possible.  

5 Agents in Overlay Networks 

In this section we describe an approach which combines 
the advantages of agent technology techniques with the 
fault-tolerant properties of peer-to-peer (P2P) networks. 

Service groups and agents. As discussed in Section 2.3, 
services frequently build clusters of interdependent 
entities, which do not rely on further services outside the 
cluster. Such a service group, if not too large, can be 
treated as one (albeit not atomic) entity in the process of 
the optimization. Therefore we assign to such a service 
group Na instances of group agents. Each group agent has 
the task to walk around in the resource network and 
evaluate the current server and its neighborhood in regard 
to placement of the services in the service group; 
however, one agent stays on one of the servers which host 
members of the service group, and evaluates only the 
current placement.  

The evaluation of potential new placements is initiated by 
retrieving the capacity parameters and utilization data of 
the current server and its neighboring servers by means of 
a P2P-network described below. This data is then a 
subject to evaluation by the Partial Objective Function 
from Section 2.3. Periodically, the group agents belonging 
to the same service group exchange their best scores. If 
the score of one of them is better than the real placement 
(also taking into account a penalty for moving services), 
this group agent initiates a rearrangement of the 
placement.  

A further assignment of a group agent is to provide the 
fault-tolerance to the optimization infrastructure: it is 
done by constantly watching all other Na–1 group agents 
for being alive; the special group agent staying close to 
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actually deployed services also watches the health of the 
services. If one of the group agents fails, it is immediately 
re-instantiated by other agents. Also, if one of the services 
turns out to have failed, an appropriate recovery action is 
initiated.  

It is important to note the difference to the Ant Colony 
Optimization Algorithm presented in Section 3. While 
both ants and agents use a notion of a service group and 
carry data of services in such a group, agents have a 
different evaluation algorithm compared to ants. While an 
ant assigns a service to a server in each step, an agent 
evaluates a possible assignment of all services to the 
current server and its neighbors in such a step. 
Furthermore, agents have more “intelligence” and do not 
die as opposed to ants. On the other hand, ants use the 
pheromone trails to learn the best assignments.  

P2P-based overlay networks. Since the evaluation of a 
new agent placement incurs a lot of effort, the next jump 
of an agent must be chosen carefully. To this aim agents 
are guided by information from an overlay network which 
provides capacity-related attributes of servers. In the 
overlay network described in [3] servers are connected in 
a P2P-manner to achieve fault-tolerance and self-
organizing properties (i.e. servers may join and leave 
without a reconfiguration exercise).  The functionality of 
the network allows range queries of attributes; in our case 
we are mostly interested in server processing capacity, 
server storage capacity and the density values of these 
attributes. The density of an attribute is the averaged 
attribute value from a group of servers whose center is the 
server which “labels” this density value; thus, a density 
value is an indicator of the attribute (capacity) in the 
surrounding of a server. The density values are 
periodically computed on each server by receiving 
updates from the surrounding resources. 

When deciding about the next server to be visited, an 
agent first collects the current utilization data from its 
service group. This demand value determines the range 
for which the density values are queried. The overlay 
network responds with a list of servers fulfilling the 
criteria. An agent sorts them according to their distance, 
and chooses randomly the next server to move on, 
similarly as described in Section 3.5. Once arrived on the 
new server, it queries directly the surrounding servers 
retrieving their individual attribute values. (If ranges of 
values are necessary, the overlay network query capability 
can be used.). This data is then used for the evaluation of 
the POF.  

5.1 Lessons Learned for Self-Organization and 
Fault-Tolerance  

Opposed to the ACO-approach from Section 3, the above 
algorithms provides full fault-tolerance. Since agents are 
guarding themselves together with the service group, 
faults of even a majority of the system does not lead to 
breakdown of the service group. Another positive aspect 
is exploiting the self-organization properties of the 
underlying P2P-network. A disadvantage of the algorithm 
is the fact that each agent is a complex entity, which might 
bind more resources than e.g. in case of the Ant Colony 
Optimization-based algorithm.  

Building blocks. The first idea deserving to be 
transferred into other research domains is the symmetry of 
agents in their roles (except for the one which stays at the 
service group). This simplifies the overall schema and 
allows a higher degree of fault tolerance. Another 
noteworthy paradigm is using a P2P-network as a “lower 
layer” providing the self-organization capabilities to the 
system elements (and in our case, also providing the 
information infrastructure). Such an architecture suggests 
a layered model, where lower layers provide self-
organizing properties used by higher, more complex 
layers. 

6 Two Simple Algorithms 

To complement the above three approaches, we discuss in 
the following two algorithms for service placement 
characterized by simplicity and statelessness. 

6.1 Random / Round Robin (R3) Load Distribution 
Algorithm 

Pretty much like random or round robin scheduling, the 
load distribution algorithm pushes load from an 
overloaded server to a randomly or in a round robin 
fashion chosen neighbor that may absorb that load if it has 
the capacity, or pushes the load further on to another 
server chosen in the same fashion. Once a place has been 
found where the load can be absorbed, the actual 
migration of the load is initiated in the underlying system. 

 

 

 

 

 

 

 

Figure 3: The R3 Load Distribution Algorithm. 

1. push load to a 
    chosen neighbor 

2. either accept load or 
    push load further on 

3. if capacity found, migrate  
    the actual load 

2. 1. 

3. 
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The advantage of this algorithm is its simplicity and 
statelessness (efforts to maintain states can be avoided). 
The disadvantages are unpredictability and insufficient 
(random) convergence on the chance for thrashing. 

The termination problem of the algorithm can be 
addressed by limiting the number of hops. Cycles cannot 
be avoided due to the statelessness of the algorithm. 

6.2 Simple Greedy Algorithm 

Greedy Algorithms also represent a simple category of 
distributed algorithms. A simple greedy algorithm just 
pushes load on to the least loaded neighbor. Unlike 
random algorithms that do not take any information into 
account, greedy algorithms make use of locally available 
information such as load conditions on neighbored servers 
in our case. Servers need to exchange information in order 
to keep this information up to date. However, total 
consistency cannot be achieved. 

Convergence is better than random. However, since load 
is pushed only to most-underutilized servers, these servers 
quickly become utilized with the danger of becoming 
overloaded themselves. This causes greedy algorithms 
tend to oscillate with the effect of thrashing service load 
in the underlying system. For this reason, greedy 
algorithms strongly depend on the update frequency of 
load conditions in the meta-system. They also require a 
bias between load states in order to defuse the oscillation 
problem. Termination and cycles can also not be avoided 
by the algorithm itself. Both need to be guaranteed by 
limiting the number of hops. The algorithm does not 
guarantee to find a solution. 

The algorithms R3 and Greedy make good use of locality 
by placing load on the closest server they can find.  Over 
a longer period, both algorithms achieve good load 
balancing. However, fast reactiveness is not guaranteed. 

7 Related Work  

Work related to the topics of this paper can be classified 
in three themes: self-organization of distributed systems; 
resource management in such systems; and distributed 
constraint solving. 

The self-organization of distributed systems includes 
contributions from P2P-systems research, mobile systems 
and ubiquitous computing. In most P2P-systems 
mechanisms which automatically handle joining and 
leaving nodes (e.g. servers) are inherent parts of the 
design. Examples include Gnutella, Pastry, Tapestry, 
Chord and CAN Error! Reference source not found.. 
Project OceanStore [16] exemplifies an application of a 
P2P-based self-organization for resource management; 
another example is given in [3]. 

The concept of ad-hoc networks known from mobile 
computing [21] is another source of paradigms for self-
organization. The focus of the research in this area are 
protocols for discovering routes between dynamically 
located nodes. The BARWAN project [5] addresses 
aspects of self-organization and dynamic adaptation in the 
domains of mobile networking and ubiquitous computing. 

The most prominent project at the edge of self-
organization and resource management is IBM’s 
Autonomic Computing vision [13]. This broad collection 
of projects intends to create systems that are self-
configuring, self-healing and self-optimizing. Related to 
this research thread is the Océano project [12]. It 
addresses the designing and building a prototype of a 
scalable infrastructure for a large-scale “computing utility 
powerplant” that enables multi-customer hosting on a 
virtualized collection of hardware resources. An 
undertaking of similar flavor is HP’s Utility Data Center 
project [11], [1]. 

There is a multitude of activities focused on using 
computational Grids for sharing distributed 
supercomputing resources [25], [2]. Examples include the 
Globus toolkit [26], or Sun’s Grid Engine [24]. Although 
these systems exhibit a mature infrastructure for resource 
management, the scheduling part still lack more 
sophisticated algorithms. 

In the field of distributed constraint solving the most 
notable thread is the research on the Distributed 
Constraint Satisfaction Problems (DCSPs) [17]. In a 
DCSP several computational agents try to solve a 
connected Constraint Satisfaction Problem collectively. 
Such a problem consists of a set of variables which take 
their values in particular domains, and a set of constraints 
which specify the permitted value combinations. Each 
agent carries – strategy dependent – a subset of variables 
or a subset of values for variables and tries to assign 
values to variables while preserving consistency between 
agents. Noteworthy strategies in DCSP are Asynchronous 
Backtracking, Weak-Commitment Search Algorithms or 
Distributed Constrained Heuristic Search [9].  

8 Conclusion 

The algorithms presented in this paper provide means for 
distributed control of resources dynamic distributed 
systems such as large Grids or federations of data centers. 
The approaches exhibit different levels of the tradeoff 
between reactiviness and solution accuracy, so that not a 
single algorithm but a suite of them becomes necessary. 
Interesting aspects of the algorithms are the capabilities of 
self-organization and fault-tolerance. For each algorithm, 
we discuss these capabilities with the goal of proposing 
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paradigms usable in other domains, such as mobile 
computing or ubiquitous computing. 

 

Figure 4 summarizes and classifies the behavior of 
algorithms (a comparison to a centralized integer 
programming approach not discussed in this paper is also 
provided). 

 
 Integer Ovl.Agts Ants BLE R3 Greedy 

scalable 
 - + + + + + 

dense 
graph + - + - ? ? 

globally 
accurate + - ? - - - 

fast 
reactivenes - + - + - - 

self-organi-
sation - + + + ? ? 

fail-over 
capability - + - + ? ? 

extensib-
ility + + - - + + 

adaptability 
 - + + - + + 

simplicity 
 + - - + + + 

 

Figure 4: Classification of control algorithms. 
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