

Algorithms for Self-Organization and Adaptive Service
Placement in Dynamic Distributed Systems

Artur Andrzejak, Sven Graupner,Vadim Kotov, Holger Trinks
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-259
September 17th , 2002*

E-mail: {artur_andrzejak, sven_graupner, vadim_kotov, holger_trinks} @hp.com

self-organizing
algorithms,
adaptive service
placement,
distributed
systems, grid
systems

In this paper we consider distributed computing systems which
exhibit dynamism due to their scale or inherent design, e.g.
inclusion of mobile components. Prominent examples are Grids -
large networks where computing resources can transparently be
shared and utilized for solving complex compute tasks.

One of the hard problems in this domain is the resource allocation
problem and the related service placement problem. In this paper
we discuss distributed and adaptive resource allocation algorithms
performed in such dynamic systems. These algorithms assume that
no global information about resource availability and service
demand can be provided due to the scale and dynamism.

Interesting aspects of our approaches are the capabilities of self-
organization and fault-tolerance. We analyze and “factor-out” these
capabilities, making them also usable in the setting of other
dynamic distributed systems, for example in mobile computing.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

- 1 -

Algorithms for SelfAlgorithms for SelfAlgorithms for SelfAlgorithms for Self----Organization and Adaptive Service Organization and Adaptive Service Organization and Adaptive Service Organization and Adaptive Service
Placement in Dynamic Distributed SystemsPlacement in Dynamic Distributed SystemsPlacement in Dynamic Distributed SystemsPlacement in Dynamic Distributed Systems

Artur Andrzejak, Sven Graupner, Vadim Kotov, Holger Trinks

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

{artur_andrzejak, sven_graupner, vadim_kotov, holger_trinks}@hp.com

Abstract

In this paper we consider distributed computing systems
which exhibit dynamism due to their scale or inherent
design, e.g. inclusion of mobile components. Prominent
examples are Grids - large networks where computing
resources can transparently be shared and utilized for
solving complex compute tasks.

One of the hard problems in this domain is the resource
allocation problem and the related service placement
problem. In this paper we discuss distributed and adaptive
resource allocation algorithms performed in such dynamic
systems. These algorithms assume that no global
information about resource availability and service
demand can be provided due to the scale and dynamism.

Interesting aspects of our approaches are the capabilities
of self-organization and fault-tolerance. We analyze and
“factor-out” these capabilities, making them also usable in
the setting of other dynamic distributed systems, for
example in mobile computing.

1 Introduction

Grid computing arose in the early 1990’s in the
supercomputing community with the goal of making
underutilized computing resources easily available for
complex computations across geographically distributed
sites. The idea of the Grid is to provide a transparent and
secure access to the resources by a software layer installed
on the machines of participating organizations. This layer
provides a multitude of functions, including resource
virtualization, discovery and search for resources as well
as the management of running applications. In addition to
proprietary Grid software, two major software
frameworks are in use today: the open-source Globus
toolkit [26] and the Grid Engine [24].

A major development in Grids is the Dynamic Grid
Computing [27]. This research trend focuses on
harnessing dynamic resources in the Grid by providing the
applications with self-awareness of their changing

environment. For example, the applications will possess
the capability to migrate from site to site during the
execution depending on both the changing resource
availabilities and their own needs. We envision this trend
also as an answer to both the increasing scale of Grids and
to the correlated high costs of their manual management.
In this paper we anticipate this basic functionality and
illustrate how it can be used to increase the degree of
automation in Grid systems. Another trend in Grids
stressing its dynamic nature is to integrate, develop and
use services in a grid environment according to the Open
Grid Service Architecture (OGSA) [8] (we will therefore
use the terms application and service interchangeably in
this paper).

Suitable placement of services or applications on
resources is the primary factor for the economic
utilization of underlying resources in such dynamic
systems. A good solution for this problem prevents
overloading server environments or the communication
infrastructure, keeps resource utilization and response
times in balance, and achieves higher availability and
fault-tolerance. This paper describes and evaluates several
algorithms which provide suitable service placement
while considering fault-tolerance and self-organization.

As a by-product we study universal approaches and
paradigms for controlling large and potentially instable
distributed systems under the aspects of self-organization
and fault-tolerance. We believe that the resulting insights
are useful as building blocks for a multitude of related
problems (e.g. resource revocation) in distributed systems
with dynamic nature, such as those occurring in mobile
computing and ubiquitous computing. These elements are
partially independent of other aspects of the algorithms
and can be “factored out” from the proposed approaches.

Overview of the paper. In Section 2 we discuss several
issues related to management of dynamic distributed
systems in more detail. We describe in more depth the
problems and challenges in this field. We further
illustrate the trade-off between algorithm reactiviness and

- 2 -

the solution quality. A part of Section 2 is devoted to
defining functions that evaluate the placements of
applications.

The first considered algorithm, based on the so-called
Ant Colony Optimization, is presented in Section 3. This
paradigm comes from the study of behavior of real ants
and incorporates elements of machine learning via
recording the best partial solution by a “pheromone”.
The approach has been applied successfully to a variety
of problems, including routing in telecommunication
networks, matching problems and the famous Traveling
Salesman Problem. Its strengths are high scalability, the
possibility of balancing solution time against solution
accuracy and the robustness against failures of even large
parts of the system.

In Section 4 we discuss an approach taken from the
coordination of mobile robots, called the Broadcast of
Local Eligibility (BLE). We extend this method to
provide better scalability than the original solution and
suggest improvements in terms of communication costs
by applying gossiping algorithms. While this algorithm is
simple and has short reaction time, the placement
proposed by the algorithms might be far away from the
optimum. Therefore the use of this algorithm is mainly
for discharging of “hot-spots”, less for optimizing
service-to-server assignments.

The algorithm presented in Section 5 combines a notion
of intelligent agents which represent groups of services
with P2P-based overlay networks information services.
The advantages of this novel approach are exploiting the
self-organization properties of P2P-networks, high
scalability and the ease of further extensions.

Section 6 discusses two simple algorithms, which are
easy to implement yet do not let us expect a good
placement quality.

In Section 7 we describe related work, while the Section
8 is devoted to the conclusion.

2 Management of Dynamic Distributed
Systems

2.1 Problem Domain
Balancing demand and supply. A major aspect of grids
is to match resource supply with application demand.
Resource capacities should also be provided locally to
where demands occur avoiding cross-network traffic.
Since demands are fluctuating over time and locations,
application placements need to be adjusted accordingly,
ideally completely automated without human
intervention. Such an automated service grid control

system then transparently regulates service demands and
supplies.

So far, most integrated management systems (in Grids
and also other computing networks) are limited in regard
to functioning in virtualized environments across
organizational boundaries. Besides automated fail-over
techniques in high-availability systems, management
systems typically automate monitoring and information
collection. Decisions are made by human operators
interacting with the management system. Major service
capacity adjustments imply manual involvement in
hardware as well as in software. Systems need to be
adjusted, re-installed and reconfigured, all expensive
manual processes.

Centralized versus distributed management. The
design of an automatic management system for Grids is
closely related to the scale of the managed system and
the rate of system changes. In an ideal case, all
information about system state could be collected in a
central instance, and as a consequence an optimal
placement could be made (modulo the computational
tractability of the problem). However, with increasing
scale and rate of system changes, this solution becomes
inappropriate. Another problem is fault tolerance.

Instead, we consider distributed algorithms for solving
the placement problem. We further strengthen the
scalability property by assuming that each individual
distributed component of an algorithm has only partial
information about the global state of the system. While
this assumption leads to reduced communication and
increased reactiviness, the obtained placement of
services to resources cannot be expected to be optimal,
i.e. only heuristic algorithms can work under these
assumptions.

Dynamic Distributed Systems. Computational Grids
and similar computational distributed systems are
inherently dynamic due to their large-scale and
complexity. Here by “dynamic” we mean the property of
a frequently changing state of resource availability as
well as the state of service requirements. In a system
comprising 1000s of servers, changes such as server
failure, overload or resource revocation might occur
every few seconds. Similarly, resource demand will
fluctuate in short time intervals.

These effects require adaptation of the system to new
conditions on a permanent basis. While it could be
possible to manage such a system by an army of human
operators, this approach is certainly not economically
viable and more error-prone. In our view, automatic
management comes into place at this point. We believe
that self-organization, fault-tolerance and adaptation to
changes in supply and demand of resources are the key

- 3 -

elements to master this challenge on the top level, i.e. the
application level.

Self-organization, fault-tolerance and adaptation. The
term “self-organization” is not defined precisely in the
literature. Intuitively, it describes an ability of a system to
organize its components into a working framework
without the need of external help or control. For our
purposes we will understand self-organization as the
capability of adding and removing system parts without
the need for reconfiguration nor the need for human
intervention. This aspect is of particular interest for us
since (non-automatic) management of systems is an
essential cost factor and source of a majority of errors.

The fault tolerance of a system is its ability to recover
from transient and also possibly permanent failures
without human intervention. There is a large amount of
literature on fault-tolerant systems; however, it is mostly
focused on fault tolerance of system components, and not
on recovery of large and complex distributed systems.
The interested reader is referred to [18].

Adaptation to changing demand/supply conditions is
closely related to load balancing. Research on this topic
has a long history in distributed systems. However, in
most cases local ensembles of resources (such as
multiprocessors or clusters of workstations) are
considered, and stable “laboratory-like” conditions are
assumed. In our case we have to meet a multitude of goals
as discussed in Section 2.3; also, the large-scale and the
dynamics of Grid-like systems make new approaches
necessary.

Paradigms for mobile computing and ubiquitous
computing. The challenges of dynamic Grid systems bear
similarities to challenges of other highly dynamic (albeit
smaller) distributed systems – those occurring in mobile
computing or ubiquitous computing. We believe that
many of the methods or techniques presented here can
become applicable or can give rise to new paradigms in
those areas. Additional motivation for this statement is the
fact that the Grid is envisioned to comprise mobile
computing devices, as stated in the OGSA roadmap [8].

Satyanarayanan points out in his paper [22] that in mobile
systems the roles of a server and client become blurred at
certain times, and mobile entities take both roles
depending on the actual system conditions and resource
supply. Such a scenario is closely related to a picture of
“dynamic mini-Grids” with needs for constant adaptation
of the computing loads. In this way, the approaches
discussed in this paper become directly applicable.

To facilitate the application of the self-organizing
elements and fault-tolerant properties in other domains,

we discuss at end of most sections the “building blocks”
for transfer of learned lessons and paradigms.

Basic assumptions. In the remainder of this paper, we
assume some lower-lever system properties which are
necessary for the functionality of the discussed
algorithms. Specifically, we assume a basic mechanism
which allows a server or other type of resource to join the
system and notify its “neighbors” (e.g. resources in the
same subnet) about its existence. Such mechanisms are
provided in the lower network protocol layer, or by the
resource discovery mechanisms in mobile systems. Note
that we do not assume any central instance to be notified:
informing only the neighbors is sufficient.

Another mechanism we build upon is the ability of each
resource to measure its distance (in network hops or
similar units) from other resources in the network. This
ability enable building “maps” of other resources
classified by their distance from a server. While this
problem is not yet solved satisfactory, there are some
promising approaches e.g. in the domain of P2P-systems
[20].

2.2 Reactiviness and Solution Quality
One of the challenges of the service placement problem is
to find algorithms that are both reactive and deliver high-
quality solutions for the control scale we are dealing with.
In practice, the responsiveness of an algorithm must be
traded against the quality of a solution. Thus,
responsiveness constitutes one parameter of the design
space. Another parameter is the type of the control
system, ranging from centralized to completely
distributed. Since it is unrealistic to find one algorithm,
which can be parameterized in both dimensions, we look
at several approaches covering most of the design space.

Figure 1 summarizes tradeoffs for algorithms used for
decision-making. The first chart symbolizes the
dependency between the solution quality and time to find
a solution. The second chart shows that centralized
algorithms usually do not scale well compared to
distributed algorithms. The next figure classifies four
algorithms in regard to solution quality vs. reactiveness.
Since being part of a control system, reactiveness of
decisions is important. Reactiveness is understood as the
time between detection an abnormality, for instance a
sudden peak demand, and the final computation of a
decision how the situation can be dealt with. Three time
scales are considered: the “design” stage of an initial
service placement, in longer periods reiterated as long-
term adjustment process in the system; a mid-term period
for periodic operational adjustments, and a shorter-term
period for discharging sudden hot spots.

- 4 -

Figure 1: Decision-making algorithm tradeoffs.

Figure 2: Comparison of four algorithms in terms of
accuracy and reactiviness.

One approach we pursued is a centralized heuristic
algorithm based on integer programming. This algorithm
(not discussed in this paper) yields high-quality solutions
but at a cost of longer running time and limited
scalability. For improved responsiveness and larger scale,
we explore agent-based and distributed algorithms
described below. Such algorithms are composed of
several simple decision-making instances, sometimes also
referred to as agents. They communicate with each other
directly or indirectly in order to approximate a solution.
Each decision-making instance has, in general, only
partial knowledge of the system. This facilitates
scalability of such approaches. Furthermore, failure of any
of the decision-making instance does not make the overall
algorithm fail.

One agent-based approach is based on the Ant Colony
Optimization paradigm [6], [23]. This fully distributed
algorithm has medium responsiveness and can be used for
periodical reassignments of services onto servers.

As an alternative approach, we evaluate an agent system
based on a paradigm known as Broadcast of Local
Eligibility (BLE), used for coordination of robot teams
[28]. This partially distributed algorithm allows faster
rebalancing of the managed services for the price of
potentially lower-quality assignments.

Another approach uses more “intelligent” agents moving
in the system guided by an self-organizing overlay

network. This fully distributed approach can be
parameterized in order to react either fast yet less optimal
or slower but yielding a better-quality solution. It can be
used for both fast discharging of hot spots or for mid-term
operational adjustments. A comparison of these
approaches in respect to the reactiviness/accuracy-tradeoff
is presented in Figure 2.

2.3 Control Objectives and the Partial Objective
Function (POF)

General control objectives. As discussed in the
beginning of this section, the goals for optimal placement
might vary in general. Therefore, the following algorithms
are designed to be generic enough to support new
objectives without fundamental changes. However, we
focus on only few aspects to be achieved by control
decisions. These are:

1. Balancing the server load such that the utilization of
each server is in a desired range.

2. Placing services in such a way that communication
demand among them does not exceed the capacity of
the links between the hosting server environments.

3. Minimizing the overall network traffic aiming to
place services with high traffic close to each other on
nearby servers (nearby in the sense of a low number
of communication hops across nodes).

The Partial Objective Function. We want to be able to
compare different placement options in a quantitative
way. To this aim we introduce a partial objective function
(POF) fPOF, which is derived from a balanced sum of two
characteristics. The first one, cT, is the sum of traffic costs
between the services on a pair of servers weighted by the
distance of these servers. The second number, uT, is the
variance of the processing capacity usage among the
servers. This leads to the POF computed by the formula:

() ,
)1(TT

POF uc
f

⋅−+⋅+
=

ααβ
β

where α is the balancing factor between 0 and 1, and β a
parameter described below. In our setting, both a lower
weighted traffic cost and a lower variance are better. This
is reflected in the value of the POF, which has a higher
“score” for smaller cT or uT. Note that the value of fPOF
ranges between 0 and 1; β must be chosen according to
the maximum possible values of cT and uT in order to
ensure a relatively uniform distributions of the values of
the POF.

It is of course possible to exchange each of the above two
characteristics. Especially, instead of cT one might

accurate

slow

fast

approximating

BLE-based

Integer
Agents in Overlay Networks

Ant Colony

longer-term
service placement

mid-term operational
adjustments

shorter-term hot

spot discharging

computation time centralized vs. distributed

solution

quality
scale

Quality vs. Time Scale vs. Centralization

- 5 -

imagine function which returns the total number of servers
used for placement. Such a function can be implemented
in the way described in [4].

Our POF is evaluated for a set V of servers and a set S of
services. It is important to note that such a set might not
contain all services or all servers in the system. In case of
services this is motivated by a fact that for larger systems
we can frequently isolate groups of interdependent
services (i.e. services communicating with each other).
While it makes sense to consider all services in such a
service group for a placement decision, we do not need to
consider services outside the group.

The rationale for considering only few and not all servers
is dictated by scalability issues. In large systems, it is
simply impossible to take all servers into consideration.
The algorithms described in the following select an
appropriate subset of the servers from the system in a
heuristic fashion. The subsets are then subject to
evaluation in the POF.

In the following, we give formal definitions for the
characteristics cT and uT. We assume a fixed assignment
of services in the set S to the servers in the set V.

For two servers v and v’, we designate by cv,v’ the
estimated total traffic between all services placed on v and
all services placed on v’, measured in the number of
exchanged IP packets. If proxv,v’ is the network distance
of servers v and v’ (in terms of IP-hops), then the total
weighted communication cost cT is given by the formula:

,1

'
',',��

∈ ∈

⋅=
Vv Vv

vvvvT cprox
M

c

where M is the total number of exchanged IP packets
times the maximum distance between two servers in V.

For a server v, let uv be the fraction of its processing
capacity used by all services placed on this server. We
assume that uv is a real number in [0, 1]. Then the
variance uT of these numbers is defined by:

.
||

1
2

2
�
�

�

�

�
�

�

�
−= ��

∈∈ Vv
v

Vv
vT u

V
uu

Necessary conditions of an assignment. An assignment
must fulfill certain necessary conditions; for example, we
cannot assign a service to a server with insufficient
processing capacity. By slightly abusing the notion of an

“objective function”, we can use fPOF to ensure that such
requirements are fulfilled. Specifically, we set the value of
the POF to 0, if any of the following conditions is
violated:

− Each service is placed at exactly one server.

− For each server v, the total processing demand of all
services assigned to v is at most the processing
capacity of v.

− For each server v, the total storage demand of all
services assigned to v is at most the storage capacity
of v.

− For each pair (v, v’) of servers, the total network
traffic between the services hosted on these servers
should not exceed the link capacity between v and
v’.

− The entries of a so-called affinity/repulsion matrix, if
present, are respected; they indicate that a service
must not or must be placed on a certain server.

3 Ant-Based Control Algorithm

In the classical Ant Colony Optimization [6], the path
taken by an ant on its way between objects (e.g. cities in
the Traveling Salesman Problem) represents a possible
solution to the optimization problem. In our case, the
objects would be both servers and services, and the
alternating path would represent an assignment of services
to servers. However, this approach is centralized and not
really scalable for the following reasons:

1. The ant must “remember” the whole path it has
taken; this information might become very large.

2. The ant must visit all objects on its tour. In a large
and dynamic system, this is a serious drawback.

3. Finally, each solution (path) must be evaluated
against others. This requires central knowledge.

3.1 Overview
For these reasons, we evaluate another approach not
common in the classical Ant Colony Optimization yet
leading to a better scalability. First we give an informal
overview of this algorithm.

In our system, for each service s we instantiate a “demon”
Ms called a service manager of s. If the service s is not yet
placed or an overload condition has occurred, Ms creates
multiple ants (“agents”) and sends them out to the server
network. Each ant has a service list containing s and the
services cooperating with s. For each such a service, it
knows the current resource requirements; also, it knows

- 6 -

the current communication requirements among the
services in the service list.

The ant travels from one server to another choosing the
servers along the path based on a probability computed
locally. In each step, one of the services from the list is
assigned to the current server. The path created in this
way represents a partial solution to the placement problem
as found by this particular ant. When the ant has assigned
all the services, it reports its path to the service manager
Ms of s and terminates. The manager compares the
reported paths using the POF, where the set V of the POF
is constituted by the servers visited by this ant, and the set
S is the service list of s. This assignment is compared with
the current placement of those services. Finally, Ms
decides of a possible rearrangement of the placement.

On each server, the ant evaluates the score of the server in
respect to each service from its list. For each pair
(service, server), this placement score expresses how well
this server is suitable to host the service. It is computed
also using the POF in the way described below.
Furthermore, the ant causes the pheromone table of the
current server to be updated. This table contains
pheromone scores for certain pairs (service, server).
Those are essentially weighted sums of placement scores
of the ants that evaluated this particular (service, server)-
pair. The table is used to help an ant to decide which
server to visit next. The server managers of neighboring
servers periodically exchange these tables, thus providing
a mechanism to disseminate the local information across
the system.

3.2 Ants, Service Managers and Server Managers
In our algorithm we have three entities that store and
manipulate data:

− a service manager Ms of a service s,

− an ant representing s,

− a server manager (corresponding to a single server)
which executes the ant code, and maintains and
updates the pheromone table of its server.

The data held by a service manager comprises the service
list of s, the number of spawned ants and the currently
best assignment reported by an ant. A service manager
also knows how to evaluate the POF and its value for the
current placement of the services in the service list.

An ant is launched with the following data that are “static”
during its lifetime: the service list together with the
current demand profiles of each service in the list, and the
communication demand profiles between those services.
This information is necessary to compute the score via a
POF. The dynamic data carried by an ant are the scores of

the already assigned services from the service list, and
data about already visited servers, including link
capacities.

Finally, a server manager holds the pheromone table of its
server. The structure of the pheromone table is shown in
Table 1. For each pair (serviceId, serverId) existing in this
table, we record the known pheromone score, the age of
this score and the number of ants which contributed to
establish this score.

serviceId serverId pheromone
score

score
age (sec)

ants

apache-01 15.1.64.5 0.572 95 15

apache-01 15.1.64.7 0.356 120 9

oracle-02 15.1.64.1 0.012 62 12

… … … … …

Table 1: An example pheromone table

3.3 Functionality of the System Components
In this section we describe in detail the behavior of the
entities introduced above.

Service managers. A service manager constantly watches
the performance of “its” service and evaluates the current
assignment by a POF. On two occasions it spawns ants
starting a process described below:

− If the POF value is larger than some critical limit;
this corresponds to the case of an occurrence of a
“hot spot”.

− If a certain period of time has passed since the last
launch of the ants. The purpose of this step is to
periodically “rebalance” the wholes system towards
an optimal utilization.

The process from the decision of launching ants until its
termination includes the following steps.

1. Synthesize the ant data described in Section 3.2.

2. Place cs copies of such an ant in the server
network. The placement method and the value of
cs is described in Section 3.6.

3. Collect the assignments and the corresponding
scores sent by the ants that terminated.

4. Once all ants have finished (or a timeout has
occurred), compare the reported assignments by
the POF and choose the one with the best POF
value.

5. If the service s has already been placed, compare
the current POF of s and the cooperating services
with the one found in Step 4. If the new
assignment is better by a threshold ts

- 7 -

(representing the “penalty” for reassigning
services to servers), continue with the next step;
otherwise, terminate this epoch of ant launching.

6. If s is not placed, or the evaluation in Step 5. led
to this step, reassign the services to servers in a
following way.

a. Contact all servers to be used in the new
assignment of services and verify that
their scores are still (approximately)
valid. If this is not the case, start a new
epoch of ant launching (i.e. begin from
Step 1.)

b. Contact the service managers of all
cooperating services and let them stop
any running ant-based evaluations.

c. Contact the servers to be used in the
new assignment and let them reserve the
required resource capacities.

d. Start installing and starting the services
on their new locations.

e. When step d. is finished, shut down the
services in the old placement.

f. Finally, start the service managers of
the newly installed services.

Ants. An ant created by a service manager Ms of a service
s “travels” from one server manager to the next one
(usually residing on an another physical entity).
Technically, it is done by contacting the next server
manager, transmitting the ant data to it and initiating
executing the ant code for this ant instance. The choice of
the next server manager is done in the way described
below. The ant has the following life cycle after it has
arrived on a new server manager:

1. Evaluate for each service in the service list the
score in regard to this server. This is done via the
POF for this server as described in Section 3.4.

2. Update the pheromone table of the current server
by passing the computed scores to the server
manager.

3. Choose the service with the highest computed
score among the not yet assigned services and
remember this assignment.

4. If all services from the internal list have been
assigned, report the resulting assignment to the
“original” service manager Ms, then terminate.

5. Otherwise, move to the next server manager and
continue with 1.

Server managers. Both entities described above have
essentially a fixed order of tasks to be executed. By way
of contrast, a service manager acts in an asynchronous
way, providing “services” to the other two entities. Its
roles comprise the following tasks:

1. It provides an environment where the ants are
executed. Especially, it can asynchronously
receive messages from other server managers
which send the ant data. Once this data is
received, it executes the locally stored code
representing an ant.

2. It lets an ant update the pheromone table with the
scores computed for the services in the service
list.

3. It maintains the pheromone table by updating the
age of the pheromone scores and pruning the
table. The last step is necessary, because in the
extreme case, the pheromone table could attain a
size proportional the to number of servers
multiplied by the number of services; this would
seriously impede scalability. During the pruning,
the oldest entries (except for those regarding the
neighboring servers) are removed, until the
desired table length is reached.

4. Finally, a server manager sends periodically its
own pheromone table to the neighboring servers,
keeping the information of the neighbors up to
date.

The last function provides a mechanism for dissemination
of the local knowledge throughout the system. This
reduces the gap between a distributed system where each
participant has only local knowledge, and a centralized
system with the complete, global knowledge of the
system. The size of the time interval between the updates
and the size of a pheromone table controls the degree of
the “global knowledge” in the system. An antagonistic
trend is the rate of changes in the system and
consequently the ageing rate of the pheromone. Also,
albeit a high degree of this knowledge is very useful for
choosing the next server in a correct way, attaining it
costs a lot of resources, mostly network bandwidth and
storage for the pheromone tables.

3.4 Placement Scores and the Pheromone Table
Recall when an ant reaches a new server manager, it
computes placement scores for all services from its list in
respect to the current server. For such a pair (service s,
server v), this computation is done via the POF as
follows. The current server v and servers already visited
by an ant become the set V. Furthermore, s and all
already assigned services from the ant's service list

- 8 -

constitute the set S. Then the value of the POF is
computed for the (partial) assignment of services to
servers already chosen by this ant, together with the
mapping of s to v. We assume that information about link
capacities between the servers is buffered by the ant or
can be obtained from the server manager, if necessary.

Let us describe now how the pheromone tables are
updated. Assume that an ant has computed a fresh
placement score r for the pair (service, server). If such a
pair does not exist in this server manager's table, it is
simply inserted with the pheromone score being equal to
the placement score. Otherwise, the new value p' for this
pair's pheromone score is computed from the current table
entry p and the newly computed placement score r by the
formula:

.)1(' rpp ⋅−+⋅= γγ

Here γ is a parameter between zero and one which
determines the degree of inheriting previous pheromone
score value. Note that the contribution of all other scores
decreases geometrically with the number of iterations: if
the very first ant which has visited the node has set the
pheromone score to p, then after k new ants have reached
the server, the contribution of this first ant to the current
score of the pair will only be γkp.

We also want to consider an effect known from the ant
colony systems in the nature: evaporation of the
pheromone. Due to this effect, old and probably outdated
information about affinities of services to servers will be
removed with time, even if no new ants have arrived at
this server. To this aim, a server manager scans through
its pheromone table once every T minutes, and reduces
the score p in the pheromone table according to the
formula:

,pp ⋅= δ

where delta is an aging factor between 0 and 1 (usually
close to 1). If the value of the pheromone score decreases
below a certain limit, these pairs are removed from the
pheromone table in order to save storage resources.

3.5 Choosing the Next Server
Pheromone tables are the main decision factor for
choosing the next server to be visited by an ant. Since
those tables are exchanged by the neighboring servers and
propagated through the system, an ant has a good chance
to find a pair (service s, server v) in the pheromone table
of the current server. Here v is a not too distant server and
s is a still unassigned service from the service list of this
ant. If multiple such pairs have been found, the server of
a pair with the highest pheromone score is selected.

However, if no such a pair exists, the ant chooses a set of
servers from the pheromone table with 1. most recently
updated pheromone scores, and with 2. highest
pheromone scores. Then a random server from such a set
is selected as the next host. This approach targets to
identify with high probability servers with free
computational resources.

As an alternative to each of the above cases, sometimes
we send an ant to a randomly selected not-too-distant
server. The decision for this step is taken with a (small)
probability h. Such an addition of a “noise” is helpful to
prevent the blocking problem and the shortcut problem
[23]. The blocking problem occurs if a “popular” path
found by many ants can no longer be taken, e.g. due to a
server failure. The shortcut problem occurs in a situation
where a new assignment of services to servers suddenly
becomes possible, for example due to introduction of new
servers to the system. In both cases the information
stored in the pheromone tables might cause lack of
adaptation of the ants to the new conditions. A small
amount of noise forces the ants to exploit the alternative
routes on a permanent basis.

3.6 Initial Placement of the Ants
 The initial placement of the ants is intuitively an
important factor for finding good service placements. In
our case, the service manager Ms places the ants in the
system according to the following schema.

First, it determines Nr “regions” where clusters of ants are
placed. The centers of these regions are chosen randomly
in the known system area in the way that the probability of
choosing a center distant from the service manager is
smaller than choosing a center close to Ms. To this aim,
each service manager maintains a (partial) map of the
resources in term of their network location. The resources
are categorized by their IP-distance d to the server
manager. When choosing a center of the region, in the fist
step the service manager selects randomly a class of
resources with a distance d to Ms. Then it decides to
continue with this class with probability

()
,

1
1

θd+

otherwise it chooses again a random class until success;
here θ is a parameter greater 1. If successful, a random
resource as the center of a new region is chosen.
According to the findings in [15], this approach ensures
that very rare resources can be still discovered, but
simultaneously supports clustering of services according
to the location of their inception.

In each of the regions determined in this way, the service
manager spawns Na ants on the resources close to the

- 9 -

center of the region. Here a similar approach to the one
described above is taken, yet the distances of the created
ants from the center of the region are kept smaller by
means of increasing θ. Furthermore, ants “repel”
themselves: if an ant is placed on a certain resource, then
Ms will discard all servers within a distance Dr from this
resource for further placements.

3.7 Conclusions for Self-Organization and Fault
Tolerance

The presented algorithms have some pleasant features in
respect to automating resource management. For example,
servers and resources added to the network do not need to
inform any central instance of their existence; it is
sufficient, that only their neighbors learn new topology
(by the mechanism mentioned in Section 2.1).
Furthermore, even if the majority of the servers in the
system are unavailable or unreachable, our approach will
not be prevented to work correctly in the remaining part
of the system. Also a plus is the fact that by changing the
amount of noise in the ant’s selection of its next steps
along its path we can adjust the necessary degree of
adaptability.

A disadvantage is the fact that the service manager is a
single point of failure; if it disappear, the service or a
group of them might not recover without human
intervention. The reader is referred to Section 5 for a
solution to this problem.

Building blocks for other domains. We believe that the
idea of pheromone tables deserves some attention in
conjunction with the agent technology. In the classical
agent frameworks, the communication takes place either
directly between agents or between agents and “agent
containers” (i.e. the environment executing them). It
would be interesting to exploit models where the
information between agents can be exchanged in an
undirected and passive ways, as in the case of pheromone
tables. However, we are not aware of possible
applications of this schema.

Another idea worth to be “extracted” from the above
algorithm is the dissemination of information by
exchanging it between the neighboring servers only. This
mechanism, similar to those used in Systolic Computing,
allows to blur the distinction between a situation where
only partial information of the system is known at each
node as opposed to the scenario in which every node
possess a complete system description. It would be
interesting to learn by theoretical analysis or an empirical
study how frequently information must be exchanged and
how fast the information can expire for a large part of the
system to have accurate information.

4 BLE-Based Control Algorithm

We adapt the concept of the Broadcast of Local Eligibility
used for coordination of robots [28] for the placement of
services. This concept can be used to create highly fault-
tolerant and flexible frameworks for coordination of
systems of agents. However, the originally proposed
framework has a drawback of limited scalability. To
overcome this problem, we use a hierarchical control
structure discussed below.

Decision cycle in a cluster. We consider a cluster of
servers with a distinguished server called cluster head.
Each member of the cluster has the ability to broadcast a
message to all other members of the cluster. This can be
done either directly or via the cluster head. The placement
of services in this cluster is periodically re-evaluated by
arbitration between peer servers in so-called decision
cycles. The time between two cycles is determined by the
required responsiveness to fluctuations in server
utilization and by the induced communication between
cluster members.

In each decision cycle, the following actions take place:

1. Each server broadcasts the list of services it hosts
with all new arrived services and simultaneously
updates its list of all services in the cluster.

2. Each server evaluates its own suitability to host each
service and sorts the list according to the computed
score. The evaluation is done by using the POF from
Section 2.3. In addition, a service already deployed
on a server highly increases the score.

3. Each server broadcasts a list, ordered by scores, of
those services the server can host simultaneously
without exceeding its capacity.

4. When a server receives a score list from a peer, it
compares this score with its own score for a service.
As a consequence, each server knows whether it is
the most eligible one for hosting a particular service.

5. The changes in the service placement are executed.
Notice that each server knows already whether it has
to install new or remove current services. In addition,
the cluster head compares the initial list of services
with those, which will be hosted at the end of this
decision cycle. The remaining services are passed on
to the next hierarchy level as explained below.

An important aspect is that the servers do not forget the
list of services in the cluster after a decision cycle. In this
way we provide fault-tolerance: if a server hosting certain
services fails, other servers in the cluster will
automatically install the failed services (or the cluster
head adds them to the list of unassigned services).

- 10 -

Gossiping algorithms. Note that steps 1 and 3 require
all-to-all communication, i.e. each server learns the
information from all other servers. This may lead to a
problem of the communication costs in terms of the
number of messages and the time until all members of a
cluster are informed. In infrastructures like Ethernet or
wireless LAN a cost of a broadcast is comparable to
sending a targeted message, which partially relieves the
situation. This problem becomes more serious if members
of a cluster are geographically distributed or communicate
over a switched network.

These communication costs can be reduced using
gossiping algorithms [10]. These deterministic and also
randomized [14] algorithms achieve optimal bounds for
the number of messages with a low number of
communication rounds; for example, the information
exchange can be completed in approximately 2 log2 n
steps in the deterministic case, and in roughly log n steps
in the randomized case, where n is the number of servers
in the cluster. The reader is refereed to the literature for
more detailed discussion.

Scalability by a cluster hierarchy. Obviously, the
scalability of the above approach is limited by the size of
the cluster, the communication capacity in the cluster and
the processing capacity of the cluster head.

We propose a following hierarchical approach to extend
the scalability. Basically, the cluster heads of the clusters
at level k are treated as “normal” members of a cluster of
level k+1. However, they compete only for those services,
which could not be installed in their own cluster (see step
5. above). After a decision round in the cluster of level
k+1, these pending services are possibly moved to another
peer, which is a cluster head for a cluster of level k. (The
cluster head evaluates the eligibility of the servers in its
own cluster, not its own eligibility). In the cluster of level
k, these services become part of the list of services to be
installed and participate in the normal decision cycles.

The cluster size is essential for the balance between the
responsiveness of the system and flexibility. Identifying a
correct hierarchical structure can be done similarly to
clustering algorithms used in sensor networks [7].

4.1 Conclusion: Self-Organization and Fault-
Tolerance

The above algorithm has several good properties. In
addition to being relatively simple, it ensures the
automatic recovery of services without special
mechanisms. Also, the size of a cluster can be treated as a
parameter for tuning the algorithm’s reactiviness (against
solution quality); see Section 2.2. A weakness of the
algorithm is the fact that the cluster head can become
overloaded or even temporarily be a single point of failure

(however, cluster heads building the cluster of the next
level will recover the failed head in their next decision
cycle). Another inconvenience of this algorithm is the fact
that the hierarchy of clusters must be created externally
(i.e. is not given implicitly by the algorithm), which limits
the self-organization of this approach.

Building blocks for fault-tolerance. An interesting
quality of the above approach is the implicit fault
tolerance and also implicit “negotiation” between the
resources about their assumed roles (i.e. roles as hosts for
applications). This mechanism works due to the fact that
information about all required tasks (in our settings, the
services to be hosted) and information about the
capabilities of the cluster members is known to everybody
in a cluster. While this scheme has been exploited
successfully in the BLE-approach, we think that by
extending it to a hierarchical system of cluster a true
scalability becomes possible.

5 Agents in Overlay Networks

In this section we describe an approach which combines
the advantages of agent technology techniques with the
fault-tolerant properties of peer-to-peer (P2P) networks.

Service groups and agents. As discussed in Section 2.3,
services frequently build clusters of interdependent
entities, which do not rely on further services outside the
cluster. Such a service group, if not too large, can be
treated as one (albeit not atomic) entity in the process of
the optimization. Therefore we assign to such a service
group Na instances of group agents. Each group agent has
the task to walk around in the resource network and
evaluate the current server and its neighborhood in regard
to placement of the services in the service group;
however, one agent stays on one of the servers which host
members of the service group, and evaluates only the
current placement.

The evaluation of potential new placements is initiated by
retrieving the capacity parameters and utilization data of
the current server and its neighboring servers by means of
a P2P-network described below. This data is then a
subject to evaluation by the Partial Objective Function
from Section 2.3. Periodically, the group agents belonging
to the same service group exchange their best scores. If
the score of one of them is better than the real placement
(also taking into account a penalty for moving services),
this group agent initiates a rearrangement of the
placement.

A further assignment of a group agent is to provide the
fault-tolerance to the optimization infrastructure: it is
done by constantly watching all other Na–1 group agents
for being alive; the special group agent staying close to

- 11 -

actually deployed services also watches the health of the
services. If one of the group agents fails, it is immediately
re-instantiated by other agents. Also, if one of the services
turns out to have failed, an appropriate recovery action is
initiated.

It is important to note the difference to the Ant Colony
Optimization Algorithm presented in Section 3. While
both ants and agents use a notion of a service group and
carry data of services in such a group, agents have a
different evaluation algorithm compared to ants. While an
ant assigns a service to a server in each step, an agent
evaluates a possible assignment of all services to the
current server and its neighbors in such a step.
Furthermore, agents have more “intelligence” and do not
die as opposed to ants. On the other hand, ants use the
pheromone trails to learn the best assignments.

P2P-based overlay networks. Since the evaluation of a
new agent placement incurs a lot of effort, the next jump
of an agent must be chosen carefully. To this aim agents
are guided by information from an overlay network which
provides capacity-related attributes of servers. In the
overlay network described in [3] servers are connected in
a P2P-manner to achieve fault-tolerance and self-
organizing properties (i.e. servers may join and leave
without a reconfiguration exercise). The functionality of
the network allows range queries of attributes; in our case
we are mostly interested in server processing capacity,
server storage capacity and the density values of these
attributes. The density of an attribute is the averaged
attribute value from a group of servers whose center is the
server which “labels” this density value; thus, a density
value is an indicator of the attribute (capacity) in the
surrounding of a server. The density values are
periodically computed on each server by receiving
updates from the surrounding resources.

When deciding about the next server to be visited, an
agent first collects the current utilization data from its
service group. This demand value determines the range
for which the density values are queried. The overlay
network responds with a list of servers fulfilling the
criteria. An agent sorts them according to their distance,
and chooses randomly the next server to move on,
similarly as described in Section 3.5. Once arrived on the
new server, it queries directly the surrounding servers
retrieving their individual attribute values. (If ranges of
values are necessary, the overlay network query capability
can be used.). This data is then used for the evaluation of
the POF.

5.1 Lessons Learned for Self-Organization and
Fault-Tolerance

Opposed to the ACO-approach from Section 3, the above
algorithms provides full fault-tolerance. Since agents are
guarding themselves together with the service group,
faults of even a majority of the system does not lead to
breakdown of the service group. Another positive aspect
is exploiting the self-organization properties of the
underlying P2P-network. A disadvantage of the algorithm
is the fact that each agent is a complex entity, which might
bind more resources than e.g. in case of the Ant Colony
Optimization-based algorithm.

Building blocks. The first idea deserving to be
transferred into other research domains is the symmetry of
agents in their roles (except for the one which stays at the
service group). This simplifies the overall schema and
allows a higher degree of fault tolerance. Another
noteworthy paradigm is using a P2P-network as a “lower
layer” providing the self-organization capabilities to the
system elements (and in our case, also providing the
information infrastructure). Such an architecture suggests
a layered model, where lower layers provide self-
organizing properties used by higher, more complex
layers.

6 Two Simple Algorithms

To complement the above three approaches, we discuss in
the following two algorithms for service placement
characterized by simplicity and statelessness.

6.1 Random / Round Robin (R3) Load Distribution
Algorithm

Pretty much like random or round robin scheduling, the
load distribution algorithm pushes load from an
overloaded server to a randomly or in a round robin
fashion chosen neighbor that may absorb that load if it has
the capacity, or pushes the load further on to another
server chosen in the same fashion. Once a place has been
found where the load can be absorbed, the actual
migration of the load is initiated in the underlying system.

Figure 3: The R3 Load Distribution Algorithm.

1. push load to a
 chosen neighbor

2. either accept load or
 push load further on

3. if capacity found, migrate
 the actual load

2. 1.

3.

- 12 -

The advantage of this algorithm is its simplicity and
statelessness (efforts to maintain states can be avoided).
The disadvantages are unpredictability and insufficient
(random) convergence on the chance for thrashing.

The termination problem of the algorithm can be
addressed by limiting the number of hops. Cycles cannot
be avoided due to the statelessness of the algorithm.

6.2 Simple Greedy Algorithm

Greedy Algorithms also represent a simple category of
distributed algorithms. A simple greedy algorithm just
pushes load on to the least loaded neighbor. Unlike
random algorithms that do not take any information into
account, greedy algorithms make use of locally available
information such as load conditions on neighbored servers
in our case. Servers need to exchange information in order
to keep this information up to date. However, total
consistency cannot be achieved.

Convergence is better than random. However, since load
is pushed only to most-underutilized servers, these servers
quickly become utilized with the danger of becoming
overloaded themselves. This causes greedy algorithms
tend to oscillate with the effect of thrashing service load
in the underlying system. For this reason, greedy
algorithms strongly depend on the update frequency of
load conditions in the meta-system. They also require a
bias between load states in order to defuse the oscillation
problem. Termination and cycles can also not be avoided
by the algorithm itself. Both need to be guaranteed by
limiting the number of hops. The algorithm does not
guarantee to find a solution.

The algorithms R3 and Greedy make good use of locality
by placing load on the closest server they can find. Over
a longer period, both algorithms achieve good load
balancing. However, fast reactiveness is not guaranteed.

7 Related Work

Work related to the topics of this paper can be classified
in three themes: self-organization of distributed systems;
resource management in such systems; and distributed
constraint solving.

The self-organization of distributed systems includes
contributions from P2P-systems research, mobile systems
and ubiquitous computing. In most P2P-systems
mechanisms which automatically handle joining and
leaving nodes (e.g. servers) are inherent parts of the
design. Examples include Gnutella, Pastry, Tapestry,
Chord and CAN Error! Reference source not found..
Project OceanStore [16] exemplifies an application of a
P2P-based self-organization for resource management;
another example is given in [3].

The concept of ad-hoc networks known from mobile
computing [21] is another source of paradigms for self-
organization. The focus of the research in this area are
protocols for discovering routes between dynamically
located nodes. The BARWAN project [5] addresses
aspects of self-organization and dynamic adaptation in the
domains of mobile networking and ubiquitous computing.

The most prominent project at the edge of self-
organization and resource management is IBM’s
Autonomic Computing vision [13]. This broad collection
of projects intends to create systems that are self-
configuring, self-healing and self-optimizing. Related to
this research thread is the Océano project [12]. It
addresses the designing and building a prototype of a
scalable infrastructure for a large-scale “computing utility
powerplant” that enables multi-customer hosting on a
virtualized collection of hardware resources. An
undertaking of similar flavor is HP’s Utility Data Center
project [11], [1].

There is a multitude of activities focused on using
computational Grids for sharing distributed
supercomputing resources [25], [2]. Examples include the
Globus toolkit [26], or Sun’s Grid Engine [24]. Although
these systems exhibit a mature infrastructure for resource
management, the scheduling part still lack more
sophisticated algorithms.

In the field of distributed constraint solving the most
notable thread is the research on the Distributed
Constraint Satisfaction Problems (DCSPs) [17]. In a
DCSP several computational agents try to solve a
connected Constraint Satisfaction Problem collectively.
Such a problem consists of a set of variables which take
their values in particular domains, and a set of constraints
which specify the permitted value combinations. Each
agent carries – strategy dependent – a subset of variables
or a subset of values for variables and tries to assign
values to variables while preserving consistency between
agents. Noteworthy strategies in DCSP are Asynchronous
Backtracking, Weak-Commitment Search Algorithms or
Distributed Constrained Heuristic Search [9].

8 Conclusion

The algorithms presented in this paper provide means for
distributed control of resources dynamic distributed
systems such as large Grids or federations of data centers.
The approaches exhibit different levels of the tradeoff
between reactiviness and solution accuracy, so that not a
single algorithm but a suite of them becomes necessary.
Interesting aspects of the algorithms are the capabilities of
self-organization and fault-tolerance. For each algorithm,
we discuss these capabilities with the goal of proposing

- 13 -

paradigms usable in other domains, such as mobile
computing or ubiquitous computing.

Figure 4 summarizes and classifies the behavior of
algorithms (a comparison to a centralized integer
programming approach not discussed in this paper is also
provided).

 Integer Ovl.Agts Ants BLE R3 Greedy

scalable
 - + + + + +

dense
graph + - + - ? ?

globally
accurate + - ? - - -

fast
reactivenes - + - + - -

self-organi-
sation - + + + ? ?

fail-over
capability - + - + ? ?

extensib-
ility + + - - + +

adaptability
 - + + - + +

simplicity
 + - - + + +

Figure 4: Classification of control algorithms.

References

[1] A. Andrzejak, S. Graupner, V. Kotov and H. Trinks:
Control Architecture for Service Grids in a Federation of
Utility Data Centers, HP Labs Technical Report1 HPL-
2002-235, 2002.

[2] A. Andrzejak, S. Graupner, V. Kotov and H. Trinks: Self-
Organizing Control in Planetary-Scale Computing, IEEE
International Symposium on Cluster Computing and the
Grid (CCGrid), May 21-24, 2002, Berlin.

[3] A. Andrzejak and Z. Xu: Scalable, Efficient Range
Queries for Grid Information Services, Second IEEE
International Conference on Peer-to-Peer Computing
(P2P2002), Linköping, Sweden, 5-7 September 2002.

[4] A. Andrzejak, J. Rolia, and M. Arlitt: Bounding the
Resource Savings of Several Utility Computing Models
for a Data Center, in preparation, 2002.

1 HPL-TR are available: http://lib.hpl.hp.com/techpubs.

[5] E. A. Brewer, R. H. Katz, E. Amir, H. Balakrishnan, Y.
Chawathe, A. Fox, S. D. Gribble, T. Hodes, G. Nguyen,
V. N. Padmanabhan, M. Stemm, S. Seshan and T.
Henderson: A Network Architecture for Heterogeneous
Mobile Computing, IEEE Personal Communications
Magazine, Oct. 1998.

[6] M. Dorigo, V. Maniezzo and A. Colorni: The Ant System:
Optimization by a Colony of Cooperating Agents. IEEE
Transactions on Systems, Man, and Cybernetics-Part B,
26(1), 29-41, 1996.

[7] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar:
Next century challenges: Scalable coordination in sensor
networks, Proceedings of MOBICOM, pp. 263-270,
Seattle, USA, August 1999.

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke: The
Physiology of the Grid – An Open Grid Services
Architecture for Distributed Systems Integration, DRAFT,
http://www.globus.org/research/papers/ogsa.pdf, May
2002.

[9] M. Hannebauer, On Proving Properties of Concurrent
Algorithms for Distributed CSPs, ** complete **

[10] S. T. Hedetniemi, S. M. Hedetniemi, and A. L. Liestman:
A survey of broadcasting and gossiping in communication
networks. Networks 18: 319-349, 1988.

[11] HP, Utility Data Center, http://www.hp.com/go/hpudc,
http://www.hp.com/go/always-on, November 2001.

[12] IBM, and University of Berkeley, Oceano Project,
http://www.research.ibm.com/oceanoproject.

[13] IBM, Autonomic Computing, Manifesto,
http://www.research.ibm.com/autonomic/manifesto.

[14] A.-M. Kermarrec, L. Massoulie, and A. J. Ganesh:
Reliable Probabilistic Communication in Large-Scale
Information Dissemination Systems, Microsoft Research
Technical Report MMSR-TR-2000-105, October 2000.

[15] J. Kleinberg: The Small-World Phenomenon: An
Algorithmic Perspective, Cornell Computer Science
Technical Report 99-1776, October 1999.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao: OceanStore: An
Architecture for Global-Scale Persistent Storage,
ASPLOS ‘00, MA, USA, 2000.

[17] Q. Y. Luo, P. G. Hendry, and J. T. Buchanan:
Comparison of different approaches for solving
distributed constraint satisfaction problems, Research
Report RR-93-74, Department of Computer Science,
University of Strathclyde, Glasgow G11XH, UK, 1993.

[18] E. Marcus and H. Stern: Blueprints for High Availability:
Designing Resilent Distributed Systems, John Wiley &
Sons, N.Y., 2000.

[19] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja1,
J. Pruyne, B. Richard, S. Rollins and Z. Xu, Peer-to-Peer

- 14 -

Computing, HP Labs Technical Report HPL-2002-57,
2002.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker: A Scalable Content-Addressable Network,
SIGCOMM 2001, San Diego, August 27-31, 2001.

[21] E. M. Royer, C.-K. Toh: A Review of Current Routing
Protocols for Ad Hoc Mobile Wireless Networks, IEEE
Personal Communications Magazine, Apr. 1999.

[22] M. Satyanarayanan: Fundamental Challenges in Mobile
Computing, Symposium on Principles of Distributed
Computing, 1996.

[23] R. Schoonderwoerd, O. Holland, J. Bruten, and L.
Rothkrantz: Ants for Load Balancing in
Telecommunications Networks, Adaptive Behavior 2:169-
207, 1996.

[24] Sun Microsystems, The Sun Grid Engine,
http://wwws.sun.com/gridware.

[25] The Global Grid Forum, http://www.gridforum.org/.

[26] The Globus Toolkit, http://www.globus.org/toolkit.

[27] The GridLab Project, http://www.gridlab.org

[28] B. B. Werger, and M. Matarić: From Insect to Internet:
Situated Control for Networked Robot Teams, to appear in
Annals of Mathematics and Artificial Intelligence, 2000.

