

Carmen: A Dynamic Service
Discovery Architecture

Sergio Marti, Venky Krishnan
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-257
September 16th , 2002*

E-mail: {sermarti, venky} @hpl.hp.com

ubiquitous
computing,
peer-to-peer,
service
discovery

As the growth of connected devices accelerates, it becomes
increasingly necessary and difficult to locate useful services
quickly, no matter where they may be hosted. Local service
discovery protocols are limited to nearby services. Centralized
directory servers often contain out-of-date information and are
unaware of resources local to the consumer [4] [29]. A method of
bridging the two is needed. We present a service discovery
architecture that scales to global proportions, maintains up-to-date
information on short- lived services, and allows any provider to
input its own service descriptions. It is sufficiently flexible to work
well as a statically arranged contextual hierarchy or as a dynamic
peer-to-peer network.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 1

Carmen: A Dynamic Service Discovery Architecture
Sergio Marti, Venky Krishnan

Hewlett-Packard Labs
{sermarti, venky}@hpl.hp.com

September 10, 2002

 Abstract

As the growth of connected devices accelerates, it becomes increasingly necessary and difficult to
locate useful services quickly, no matter where they may be hosted. Local service discovery proto-
cols are limited to nearby services. Centralized directory servers often contain out-of-date
information and are unaware of resources local to the consume r [4][29]. A method of bridging the
two is needed. We present a service discovery architecture that scales to global proportions, main-
tains up-to-date information o n short-lived services, and allows any provider to input its own service
descriptions. It is sufficiently flexible to work well as a statically arranged contextual hierarchy or as
a dynamic peer-to-peer network.

1 Introduction
The next few years will see a massive increase in the
availability of powerful wireless mobile devices [11].
These devices may be able to provide different compli-
mentary services, such as GPS, web access, or machine
controls. Working together they can augment their
functionality and provide more powerful tools to their
users. However, their mobility constrains their ability to
statically identify services. Therefore it will be essential
to provide an automatic method for dynamic service
discovery in a wide area network.

Current network nodes participating in service ex-
changes can be classified as two types: dynamic hosts
and backend servers. Backend servers are characterized
by static network addresses and very little downtime.
These tend to be web service providers maintained by
large organizations, or consumers in business-to-busi-
ness applications. Dynamic hosts include both mobile
devices and typical PCs that are turned off or discon-
nected when not in use. These machines have tradition-
ally been only service consumers. Peer-to-peer applica-
tion networks have changed this by allowing dynamic
hosts to connect together and share information and
resources, such as files, with each other thus acting as
both service providers and consumers. This trend will
continue into the future as consumer devices become
faster and better connected [44]. We have designed the
Carmen dynamic service discovery network to enable a
very large number of heterogeneous nodes, both dy-
namic and static, to offer and search for an unlimited
number of services and information.

A key underlying assumption in this research is that
clients (dynamic nodes) use wireless network interfaces
like cellular, 802.11, or Bluetooth for network connec-
tivity. In such environments, the clients access servers
in the Internet by going through a static node – an
access point or edge server. The access point acts as a
gateway for the client. HotSpot servers [15], a service
delivery environment for nomadic users, define one
such system. Carmen is the service discovery mecha-
nism for such environments and was developed as part
of the HotSpot research.

The Carmen architecture can be described as an appli-
cation network with three types of nodes (that mirror the
network structure described above):

1. Carmen client: an end user agent that typically
requests resources/services.

2. Carmen proxy: provides the link between cli-
ents and services. This mimics the functionality
of an access point.

3. Carmen service provider: the service provider.

Throughout the paper we describe Carmen as a platform
and mechanism for service discovery between consumer
nodes and service providers. One function of such a
network is search capabilities across a vast number of
domains. A highly distributed Carmen network could
provide the functionality of search engines but with the
freshness of information of peer-to-peer networks. In
fact, though the Carmen architecture is most efficient
when manually configured into contextual hierarchies, it
can also function well as a collection of autonomous

 2

nodes that dynamically build a tree hierarchy. In this
manner it does resemble a structured hybrid peer-to-
peer network.

Clients connect to the proxies as leaves of the tree. They
advertise the services they make available, and/or query
for services they need. The system is targeted towards a
semi-static network topology. End hosts may be very
mobile and connect and disconnect frequently, but the
proxies will mostly be located at static servers through-
out the Internet. To reduce traffic and improve search
results we use context information to construct the
proxy tree and impose service domains on the proxies.
Maintaining sufficient reliability and availability in such
a large network requires several fault tolerance and
replication techniques, which we will discuss.

Section 2 illustrates some of the application scenarios
that would use dynamic wide-area service discovery.
The next three sections describe the main contributes of
this research. Section 3 covers the Carmen network
architecture. Section 4 deals with how service descrip-
tions are used. Contextual hierarchies, our method for
enabling efficient searches, are described in Section 5.
The current implementation status is covered in Section
6. Section 7 discusses scalability, fault tolerance, and
security issues in the network. Finally, we summarize
and conclude in Section 8.

2 Motivation
The growth of ubiquitous computing will see the spread
of autonomous agents and distributed systems in
devices surrounding us. To be effective these devices
will need to interact and leverage each other’s services
in order to provide the user with a productive and/or
entertaining experience. But in order to work together
there needs to be a mechanism for devices to find each
other based on the complementary services they require.

The Carmen project began as an effort to design a
powerful service discovery protocol for “smart” access
points capable of delivering a variety of services to
mobile hosts [15]. Because of our focus on mobile
users, we are targeting an environment of both mobile
and static end user devices connected to the Internet
through static access points. We wish to use the static
nature of the core network to facilitate search and
service discovery for dynamic users. Though originally
targeted to pervasive computing, Carmen can be
deployed in a variety of environments and can bridge
the gap between local dynamic service discovery and
global static search.

In this section we look at two possible future applica-
tions in such an environment that would need such a

discovery mechanism. We then look at the specific
requirements of the discovery system, which we hold as
the goals of the Carmen system. Finally, we look at
how currently deployed technologies must evolve to
meet the needs of future applications.

2.1 Scenarios
The following two scenarios demonstrate applications
that use global dynamic search capabilities to share and
locate information globally, even among mobile hosts.
These are only two of the various services we have
envisioned, all using one global distributed service
discovery system.

2.1.1 Comparison-Shopping
Mike is driving across the country when his car breaks
down a few miles from the nearest town. He pulls out
his personal digital assistant with wireless support and
connects to the nearest access point. Using his service
locator application he requests information on tow
trucks within the city limits and gets back a list of
replies including their cost of tow and estimated time of
arrival. He selects the closest one. While the tow truck
is on the way he searches for nearby mechanics and
requests the soonest appointment time available. He
picks Big Bob’s Garage, which replies that it can
service his car in an hour. By now the tow truck has
arrived and Mike directs it to Big Bob’s place.

On the way to the garage, Mike realizes it’s 1pm, he’s
really hungry, and in the mood for pasta. So using his
PDA he requests a list of Italian restaurants within a
couple of blocks of the garage with wait times of less
than 15 minutes. He selects Don Giovanni and makes a
reservation for 1:15. Once the car is safely delivered to
Big Bob, Mike heads over to the restaurant to eat.

The preceding scenario illustrates a comparison-
shopping service that allows users to easily request
service information matching a wide variety of criteria,
including geographic and temporal locality. To provide
real-time information the service providers themselves
must be queried directly if their static characteristics
match the request. The HP Cooltown initiative reflects
scenarios like the one above [25].

2.1.2 B2B
ACME Supplies makes office equipment using plastic
widgets. A large order arrives and their supply man-
agement system realizes there aren’t enough plastic
widgets in stock to complete the order. So a request is
sent to plastic widget manufacturers, asking which of
them can deliver the necessary amount of widgets
within 2 days. Widgetron Inc., a plastic widget manu-

 3

facturer, receives the request at their Sales department.
Their system, in turn, queries their corporate ware-
houses to see if any warehouse has sufficient widgets to
meet the order and deliver them to ACME on time. The
inventory system at warehouse 21 replies that they have
enough widgets in their inventory and are located close
enough to ACME to deliver them in a day. The Sales
system records the information, replies to ACME that it
can meet their needs, and provides a URI to complete
the order process.

When the order is processed and delivered to the man-
ager at warehouse 21, she checks which packaging team
at the warehouse is currently available to handle the
order and forwards it to them. The next afternoon a
large shipment of plastic widgets arrives at ACME
Supplies in time to meet their order deadline.

2.2 Goals
The scenarios above illustrate certain requirements the
end applications would need from the discovery proto-
col. Below we discuss each of these requirements, and
see if and how they are handled today.

2.2.1 Dynamic
In a network composed primarily of dynamic hosts
offering services it is vital that the service discovery
mechanism use fresh up-to-date information. Due to
node mobility and increased interaction, advertised
services may be available for the span of minutes, not
months. And as the number of service providers
increases, a centralized directory will not be able to
maintain fresh and accurate information about the
services and their characteristics. We believe a distrib-
uted directory service is needed to handle the enormous
number of updates required in order to have fresh
service location information. Currently used global
service directories, such as the Universal Description,
Discovery and Integration of Business for Web (UDDI)
[45], are centralized directories geared only towards
static persistent services to backend servers. Such
solutions will not adapt to the rise of dynamic host
services.

For some providers, though the types of services offered
may rarely change, the characteristics of the current
service may be constantly changing. Propagating such
dynamic service attributes with service advertisements
greatly increases network traffic, message processing
time, and server state, while not giving any benefits to
query processing since the attribute information may be
stale. By routing queries to service providers based
solely on service name and allowing the provider to
process the service attribute requests gives consumers
freshest responses possible, while greatly decreasing the

cost of advertisement propagation, but with an increase
in query propagation.

2.2.2 Scalable
Though there are several standardized service location
protocols for use within a local area network, little
research has been done on providing service discovery
across many administrational domains approaching a
global solution to service discovery. An architecture
capable of spanning the range of local service discovery
to global search capabilities would have to be highly
scalable. The need for such a scalable service discovery
protocol suggests using a hierarchical organization
similar to the Domain Name System (DNS), a global
service for mapping human readable names to internet
addresses [35][36].

2.2.3 Context-based routing
Current peer-to-peer networks of dynamic nodes suffer
from large traffic overhead for disseminating service
information and propagating queries throughout the
entire network. If some nodes are known to be relatively
static, they can be used to organize the service informa-
tion and coordinate query propagation. By putting some
contextual knowledge related to the service queries into
the proxies it is possible to make more intelligent query
and advertisement routing decisions. This would
decrease network traffic while maintaining or improving
query results as compared to the current blind flood
routing methods of peer-to-peer networks. Methods of
constructing peer-to-peer topologies based on connect-
ing nodes with associated resource categories have been
researched [10][38].

2.2.4 Access Control
Disregarding the scalability is sue with a centralized
service discovery architecture, there is one major
functional limitation of such a system. A single direc-
tory server would prohibit service providers from
confidently limiting access to their service announce-
ments as they see fit. Most service providers will want
to offer a different set of services to different entities
based on their relationship to those entities. Also,
many services are only appropriate within a domain and
knowledge or access to those services outside of the
domain must be prohibited.

For example, in the second scenario, Widgetron Inc.
handles requests for plastic widgets. Their warehouses
answer queries regarding their current inventory, but
only if the queries come from within the corporation.
Therefore, though Widgetron may advertise plastic
widgets globally, warehouse services should not be
advertised outside of the company, nor should requests

 4

for such services originating from outside be accepted.
Similarly local packaging services at the warehouse do
not need to be advertised to the other departments of the
corporation.

This implies the need of a multi-tiered access control
system. A completely centralized service discovery
approach would either offer no fine-grain service access
control, or require service providers to trust the central
directory with managing access to all of their services.

Today, multi-level service lookup is commonly handled
by separate directory servers at different levels of an
organization. Global services are advertised through
UDDI [45]. Corporate services are accessed via LDAP
[49]. Local services may be discovered using Universal
Plug and Play (UPnP) [20][33] or a Service Location
Protocol (SLP) [23][24] directory agent to search
beyond a subnet. This requires clients to know which
server to contact for each type of service request or
advertisement, adding extra management overhead
beyond the required access control at the servers. We
believe it is preferable to remove directory server
configuration information from the end clients and
embed it in the service location network, while main-
taining access control restrictions at the servers.

2.2.5 Flexible
The architecture must allow service providers to adver-
tise services that may not be registered with a central
authority, yet support interoperability between service
consuming applications and service providers. New
services should provide a service description template
specifying the attribute names, types, and values related
to the service. If the service descriptions adhere to a
specified schema then applications can present human
users with service-specific query forms and browsers
for any service, without having any a priori knowledge
of the service or its attributes and syntax.

It is equally important for a service discovery mecha-
nism to facilitate programmatic service discovery
performed by an application without the user’s input.
For widely accessed services a central authority to
standardize services and their descriptions would allow
interoperability between various consumers and provid-
ers. This is the method adopted by SLP [23] and UDDI
[45]. Service standardization is not necessary when both
the end point applications are developed by the same
entity, as is the case with most low profile software.

Many of the proposed and available service discovery
protocols accomplish some of the goals we have set
forth, but none accomplish all the goals at an acceptable

level for the applications and scenarios we have in mind
for Carmen.

2.3 Current Technologies
Perhaps the most well known type of discovery service
used is the web search engine. Search engines, such as
Google [21] and Altavista [3], create massive indices of
the millions of web pages they crawl; allowing users to
query for pages relevant to their interests using pattern
matching. Search engines have progressed from only
cataloging web pages to allowing searches on images,
Usenet newsgroups, media files, and more. To assist in
searching for information on specific topics, sites such
as Yahoo! [51] provide directories of all web sites
sorted into subject-related categories and sub-categories.
This allows users to use the directory service like a
Yellow Pages for services, or to narrow the subject
scope of the index for their pattern match search.

Though search engines and directory services work well
with static web services and information, they are not
suitable for searching for dynamic services. Because of
the enormous amount of information, web search
engines cannot maintain a fresh index of all websites.
Though the most popular sites may be crawled more
often, the average website index may be months old
[4][29]. Directories with months-old stale information
are not going to be suitable for locating web services
with lifespans of minutes or hours.

By distributing the index of content and services across
many different servers, the time and cost of maintaining
the index in each server’s scope is greatly reduced.
Web services can register and update the directory
servers handling their most specific categories. A large
distributed directory service must determine where
queries are sent and how to efficiently route them.

The two largest peer-to-peer file-sharing networks,
Gnutella [19] and FastTrack [17], have millions of users
sharing terabytes of data. But peer-to-peer networks
suffer from two deficiencies. First, the traffic overhead
of propagating file queries to all nodes is enormous.
And second, the scope of the queries is too constrained,
limited only to files, and not sufficiently flexible to
allow users to create file categories to search within.

Existing peer-to-peer networks and research in the area
have tackled the first problem through various means
such as biased random walks [1], incremental radius
[53], smart replication [29], and distributed hash tables
(DHT) [39][41][42][54]. One improvement commonly
used by public hybrid peer-to-peer networks is super-
nodes [17][26][52]. These are specific nodes shown to
be reliable and persistent over a period of time that are

 5

chosen to index the information cached at their
neighbors. Queries then need only be routed among
supernodes to check for matches. Therefore supernodes
act as a higher tier in the network, above most of the
nodes. This two-tier hierarchy could be expanded to
more levels and further decrease query traffic.

3 Carmen Network
Architecture
Carmen’s basic operation involves service providers
advertising the types of services they offer to a local
proxy, which propagates the advertisement throughout
the Carmen network. Consumer nodes can request a
specific service with certain attribute constraints or
request a list of available services whose names match a
given regular expression. These requests are sent to the
consumer’s local Carmen proxy, which forwards the
request through the network. Queries reach the service
providers advertis ing the requested service. The pro-
viders check if they can meet the service demands
specified in the query attributes and reply directly to the
consumer if they match. The providers send the contact
address or URL of the service and any additional
service information. The consumer may then choose a
service provider from the replies it received and negoti-
ate directly with that provider to access its service.

In order to minimize the amount of service advertise-
ments that are propagated up the hierarchy only a
service’s name, short description, and template pointer
(URL) are advertised and propagated through the
network. Service attribute information is not included
in advertisements. Though this requires that service
queries reach the service providers, this decreases the
service advertisement size and improves the freshness
and semantic power of query processing by having the
service provider handle it.

Carmen allows nodes to offer and request new services
by creating simple service descriptions in the Extensible
Markup Language (XML) [48] conforming to a general
schema or DTD. These service description templates
may be standardized by an authorized organization, or
simply be promoted by their developers. Service
descriptions are described in Section 4.

3.1 Topology
To support a very large number of consumers and
service providers with relatively static nodes that
constitute a distributed lookup service we arrange the
nodes in a hierarchical tree topology. This structure
allows for large scalability and facilitates our context -
based routing schemes. For example, the Domain Name

System operates as a hierarchical structure handling
billions of lookup requests every day [31].

The way the tree structure is used in Carmen is as
follows: When a Carmen proxy receives a message
with service advertisements, from a Carmen agent or
from a child proxy, it records the source node and adds
the received advertisements to its list of advertised
services. It then forwards its expanded list of services
up to its parent, which repeats the process. Each proxy
maintains, for each child, the services it advertises, and,
for each service, the child nodes that advertise it.

When a proxy receives a query message directly from a
consumer or one of its child proxies it propagates the
message up to its parent. It also checks to see if other
child proxy advertises the service requested. If so it
forwards the query to it. When a proxy receives a query
message from its parent, it checks its children and
forwards the query to any child proxy or service pro-
vider that advertises the service. The service providers
process the query and reply directly to the proxy local to
the requesting consumer on a positive match.

Advertisement and query messages contain hop counts,
which are decremented each node up the tree towards
the root and not propagated any further when the count
reaches 0. This limits traffic and exploits the contextual
information embedded in the tree structure, and is
further discussed below.

A one-tier network would consist of a Carmen proxy
connected to one or more consumers and service pro-
viders. The providers advertise their services to the
proxy. The consumers send service queries to the
proxy, which then forwards them the any provider
advertising that service. A one-tier Carmen network is
similar to many other service discovery protocols. The
Carmen proxy is equivalent to the SLP Directory Agent
[23] or the Jini lookup server [43]. In fact it is possible
to merge currently deployed service discovery protocols
onto the leaves of a wide area Carmen network.

3.2 Bootstrapping (Joining the
network)
When a Carmen client starts, it must locate the nearest
Carmen proxy. The address may be manually supplied
by the user to the application or determined automati-
cally from the network.

Manual configuration would work for static computers
and devices. It would also be the most likely choice for
configuring the proxies themselves, allowing the net-
work administrators to determine the structure of the
Carmen network within their domain.

 6

But for most end users, their devices should dynami-
cally locate the closest proxy. The address of the local
proxy could be provided to a connected node through an
extension to the DHCP protocol. DHCP Option 78 is
already used to distribute the addresses of SLP Direc-
tory Agents. A similar technique would work well for
Carmen. Another solution would be for nodes to use a
well-known universal name that is locally mapped to the
local Carmen proxy. For example http://local-carmen-
proxy/ could be resolved by the local DNS server to the
address of the local Carmen proxy.

If no infrastructure support is available to provide the
address of the nearest Carmen proxy then the joining
node can use multicast discovery. HELLO messages
are sent to a well-known Carmen multicast address with
increasing TTLs. Any proxy receiving a HELLO
message responds with its own address and information.
The new node chooses a proxy from the responses and
connects to it. Once contact with a proxy is established
a node registers its service advertisements with the
proxy.

Carmen proxies also support dynamic network configu-
ration. This allows users to build an ad hoc Carmen
network when disconnected from the Internet. Proxies
use multicast advertisements to locate one another. If
one of the proxies belongs to an established network of
two or more nodes, it invites the new arrival to join as a
sibling by giving it its parent’s address. The new node
then contacts the parent proxy, which can accept it as a
child or reject it if the new node is not authorized to

join. If a parent proxy has too many children, it divides
its children into groups, and elects a leader node for
each group. Each group’s members now connect to the
group leader, which then connects to the parent node.
In this manner the network slowly grows the tree as the
number of nodes grow.

3.3 Protocol Messages
Carmen messages are broken down into three types:
service advertisements or updates, queries, and network
management messages. Below each type is discussed in
detail.

3.3.1 Advertisements
Service advertisement messages are used to propagate
service information. A message can contain either a
complete list of services advertised by a node and its
descendants, or it can contain only the changes in its
service list since the last advertisement was sent. A flag
in the message specifies whether it is an absolute or
delta list. For each service its name, description
template URL, and optional short description is
provided. In addition a hop count is added specifying
how far up the tree this service advertisement should be
propagated. This reduces advertisement traffic higher up
the tree and decreases the queries handled by local
service providers.

When a node receives an advertisement message it
updates the list of services offered by the sending child
and prepares an updated service list to send to its parent.

Figure 1: Illustration of service advertisement propagation and aggregation

L2 Proxy

Proxy Proxy Proxy

Client Client Client Client Client Client

printers
monitors

milk
cheese

cars
coffee

printers
toner
paper

PDAs
TVs

printers cheese
monitors toner
cars paper
coffee PDAs
milk TVs

printers
monitors

cars
coffee
milk
cheese

printers
toner
paper
PDAs
TVs

Client

 7

When a client leaves the network its proxy removes the
services advertised only by that client and constructs a
new list of service advertisements from its remaining
clients. The proxy creates a delta of the removed
services and propagates this delta to its parent node,
which repeats the process. This allows service adver-
tisements to be cleanly revoked when clients disconnect
from the network.

3.3.2 Queries
Query messages are used to forward requests from
consumers through the Carmen Network. A query
consists of a service name and a list of zero or more
attribute specifications. An attribute is specified with its
name, its type (string, integer, Boolean, etc), and the
acceptable values for the consumer wishing to use the
service. The attributes in a service query should be a
subset of the attributes specified in the service’s XML
template. A pointer to the service template is provided
with every service description. In addition the Carmen
client API provides a special function to return the
attributes for a given service.

Each query message contains a hopcount specifying the
distance up the Carmen tree the request should be
allowed to propagate. This allows for more accurate
searches within a specific context (e.g. local services in
a geographic context) and also reduces the total query
traffic.

While advertisements are only updated on a periodic
basis, queries must be propagated on demand to lower
service discovery latency. This means request traffic is
not automatically bounded. Therefore, several tech-
niques can be used to limit the network cost of a large
number of queries, especially at the higher levels of the
Carmen tree. Such methods include child proxy polling,
query batching, and simply dropping queries at
overloaded proxies. Some of these techniques are
discussed in Section 7.1.

If a service provider wishes to reply to a consumer’s
query, it notifies its local proxy, which sends a reply
message directly back to the consumer’s local proxy.
The message contains one or more ServiceProvider tags.
Each tag specifies the name and address of a service
provider node and the method to contact it to negotiate
service usage. It can also include additional service
attributes to help the consumer decide between several
responding providers.

3.3.3 Control Messages
Control messages deal with creating and maintaining
the Carmen network structure. When a Carmen node
wishes to join the Carmen network it sends a HELLO
message to the address of an established Carmen proxy
specified manually in its configuration or retrieved
automatically. The proxy responds with its own HELLO
message accepting it as a new child or rejecting it.

Figure 2: Illustration of service query propagation. Client 1 sends a request for service “printers” to its
local Carmen Proxy.

Level 2 Proxy

Proxy Proxy Proxy

Client 1 Client 2 Client 3 Client 5 Client 6 Client 7

printers
monitors

milk
cheese

cars
coffee

printers
toner
paper

PDAs
TVs

printers
monitors

cars
coffee
milk
cheese

printers
toner
paper
PDAs
TVs

printers cheese
monitors toner
cars paper
coffee PDAs
milk TVs

Client 4

 8

Control messages are also used to maintain local net-
work topology information among proxies and to detect
and repair node failures. Each parent node periodically
sends its children keepalive messages with a list of its
parents and its child nodes. The information is used by
the children to elect a new parent node, should the
existing parent fail. This is discussed in more detail
below in the section on fault tolerance.

Child nodes do not need to generate separate keepalive
messages since such information is piggybacked on
service advertisement messages. They use them to
detect and recover from parent node failure.

3.4 Interoperability
The architecture and protocol presented here is used for
all communication between proxies, consumers, and
providers. This does not need to be the case. It is likely
that real-world deployments would use other service
discovery protocols such as SLP, UPNP, or Jini in the
local area. A Carmen proxy could easily encapsulate
local service information into the Carmen format and
propagate the information into a Carmen wide-area
network. This gives the advantage of allowing different
organizations to use whatever service discovery proto-
cols are most efficient for their local area needs and use
Carmen to connect the heterogeneous local protocols
into one large global service discovery network.

4 Service Descriptions
All service advertisements are required to include a
URL to a valid service description template. This
template is an XML document that conforms to the
Carmen service description DTD. As an example, a
service description for network printers is provided in
Appendix A.

4.1 Standardized Templates
The use of a standard service description DTD allows a
Carmen-aware application to fetch any service’s de-
scription template, parse it, present the choices to the
user, and construct a valid service request based on the
user’s input.

Though any service provider can create their own ser-
vice name and description and advertise it in the
Carmen network, for consumer applications to effec-
tively discover and access services through Carmen,
they must have a priori knowledge of the services and
their attributes. Therefore, automated con-
sumer/provider interoperability requires an officially
recognized service template repository, which provides
a one-to-one mapping between a service name and a
“well-known” standard template. Service providers

may submit their service descriptions with this central
authority. By using standardized service descriptions
different consumers and service providers can negotiate
service agreements. This is similar to the SLP approach
of registering document templates with the Internet
Assigned Numbers Authority (IANA) [23] or the UPnP
Forum standardizing service schema and templates [46].

Global attribute-based service discovery is only viable if
service descriptions and their templates are standard-
ized. For Carmen to be accepted by the public its proto-
cols and templates must be approved by a standards
committee.

4.2 Ad Hoc Templates
Carmen also permits non-standard ad hoc services to be
advertised by providers. This allows quick deployment
of new services or services that will require user attrib-
ute input. A consumer application, though not familiar
with a service’s description, can request its template and
present the attributes to a user for them to choose the
search criteria. In fact in the current implementation all
proxies have a web front-end (as well as an API front-
end) allowing anyone to connect using a web browser,
request list of services, request service information, and
make attribute-specific queries. The proxy then returns
a list of responding service providers with their contact
addresses.

As an example of a human interactive application of
Carmen we will use the example of a person shopping
for a car online using a Carmen-aware shopping appli-
cation to look for services related to cars. The network
will return advertised services whose short descriptions
mention cars. The application presents these descrip-
tions to the user. The user selects a specific service type
and the application fetches that service’s temp late. The
application then presents to the user the service attrib-
utes and possible values. The user selects the attributes
they care about (automatic or standard, color, price
range, etc) and leave the others blank. The application
then queries the network for this service type with the
specified attribute constraints. Online car sellers will
receive the query, check their inventory for matches,
and reply to the user with more detailed information
about the matching cars and their online web address.

The issue with allowing any service provider to adver-
tise any service name and description without having to
be globally recognized deals with service name colli-
sion. Normally, when a proxy receives advertisements
with the same service name from two children, it as-
sumes they refer to the same service and therefore it
only forwards one advertisement for the service. But
two providers may advertise using the same service

 9

name but different service description templates. There
are a few solutions to this problem. A proxy that re-
ceives two contradicting service advertisements should
see if one uses a standardized template and accept only
that one. A standardized template’s URL would refer-
ence a valid XML document located at the central au-
thority’s well-known server. If neither service template
is registered with the central authority then another cri-
teria could be used to choose one over another, such as
age (older or newer), reputation of the provider, or
number of providers advertising a given template. In
addition, a message could be sent back to the service
provider informing them of the name collision. Another
solution would be to associate a unique identifier to
each service to distinguish the two within the Carmen
network similar to namespaces in XML [48].

5 Contextual Hierarchies
One of the goals of Carmen is to use the hierarchical
layout of the network to improve query efficiency. By
assigning context roles to the proxies we focus their
scope of interest. This limits the traffic they receive to
traffic related to their area of specialization, allowing
them to maintain more up-to-date information within
their category and provide faster, more accurate
response to consumers. To illustrate this point we shall
use two different contextual hierarchy examples.

In most of the paper we have assumed a Carmen tree
layout based on geography and administrational
domains. This is one useful contextual hierarchy. As a
query is propagated up the tree the scope of the proxies
it visits increases. For example, the first proxy may be
located at a wireless access point and be familiar with
services within its range. The next proxy may know
about all services available on the current floor. The
next knows about services in the entire building, the
next the whole campus, and so on up through the corpo-
ration to a global listing of public services that can be

accessed by other consumers. If someone wishes to
print something, they would want to use a printer lo-
cated on their floor. Therefore they limit their query
with a hop count of 2. Likewise, printers would only
propagate advertisements to a hop count of 2. So que-
ries and advertisements for local services remain near
the bottom of the tree. Examples of globally announced
services in this example may be B2B service descrip-
tions similar to the UDDI.

Another example is a categorical hierarchy similar to
the Yahoo! directory structure [51]. Each proxy main-
tains service information for services within its assigned
category, such as Food & Drink. Each if its child
proxies are in charge of a subcategory, like Cooking or
Restaurants. Service providers connect directly to the
most specific category proxy possible. With large cate-
gories multiple proxies may be needed. Such a structure
optimizes service information and advertisement aggre-
gation, since all providers of the same service will
connect to the same proxy, or proxy group, so only one
advertisement is propagated up the chain. By main-
taining an easily accessible category to proxy map, con-
sumers requests can be routed up the tree through the
most likely category match, thus decreasing response
latency. Use of hop count for queries can limit service
type searches to providers within a category at any level
of the hierarchy.

A deployment of a categorical hierarchy would have
geographically near proxies as the leaf nodes of the
network. These nodes would maintain a cached direc-
tory listing with mappings of categories to proxy ad-
dresses. The proxy would route any local requests or
advertisement messages to the most appropriate address
without the end user having to be involved.

HPL

HP

HP Corp

Palo Alto Bristol

1U

B10

1L 2U

D15

a) Sample administrational hierarchy b) Sample categorical hierarchy

Shopping & Services

Business & Economy

Business to Business

Food & Drink Real Estate

Cooking

Chinese

Grocers Restaurants

Italian

Computers

Figure 3: Two sample contextual hierarchies.

 10

5.1 Multiple Interleaved
Hierarchies
The preceding examples demonstrate how limiting the
contextual scope of the service information in the nodes
of the Carmen network allows for more efficient and
precise searches without limiting the power of the
queries. There are many different useful contextual
hierarchies. Each can be geared for different service
and query categories. With a global Carmen network
we are not limited to one contextual hierarchy. Each
proxy may participate as a node in different contextual
hierarchies. This is especially useful for public Carmen
networks that provide service discovery to the whole
world, such as the in the second example. If queries
specify which contextual hierarchy benefits them, they
can be filtered and routed through the network in that
manner.

6 Implementation
We currently have a working Carmen proxy prototype
implementation written in Java. We are using a multi-
tiered hierarchy in our test environment. The proxies
are manually configured with which proxy to connect
to. Several sample service descriptions have been
created and a web browser accessible front-end is built
into every proxy allowing us to test user-driven request
and response behavior.

An API has been developed and Java stub classes are
being used to add service discovery functionality to
applications. We have also written a prototype applica-
tion for testing and demonstrating the uses of the
Carmen network. This application allows users to dy-
namically create a shared group and easily do remote
file search and access across all the peers in the group.
Current application work is targeted at the trusted LAN
environment, but further work will be done to improve
authentication and functionality of the application for
wide area usage.

Our choice to not distribute a service’s attribute infor-
mation in its advertisement was to limit the size of the
service advertisements, take advantage of service de-
scription aggregation at higher levels, and allow highly
dynamic service providers to process requests them-
selves. This solution can result in a large amount of
query traffic both up and down the tree if certain service
names are used for very popular or broad services. Pro-
viding some attribute information in service advertise-
ments, at least for static attributes, may decrease overall
Carmen traffic. This is one of the optimizations we
hope to investigate in the future.

7 Discussion
This section covers design details to several issues that
have not yet been implemented. Currently Carmen’s
fault tolerance protocol is not fully implemented. Nor is
there currently support for multiple interleaved context -
based hierarchies. More detailed analysis of the protocol
must precede finalizing an implementation of these
functions.

7.1 Scalability
A hierarchical tree structure organizes the network into
manageable structure and reduces the total amount of
traffic significantly compared to a flooding approach,
but it still suffers from high strain on the upper nodes of
such a large tree. Therefore, we propose several tech-
niques for reducing the demand on high-level nodes.

At the higher levels nodes must handle the accumulated
service advertisements and queries generated in their
subtrees, which may be composed of millions of nodes.
One solution is to divide the message processing among
a group of proxies. We propose using service name-
space division to alleviate highly loaded proxies. Each
group member will be allocated a subset of the service
namespace. For example, proxy 1 would process
messages relating to services beginning with a-f, proxy
2 would handle g-k , and so on. Child proxies would
forward service advertisements and queries to the corre-
sponding proxy based on the service name. The group
members could maintain statistics and dynamically re-
allocate the namespace as necessary to balance load
based on metrics such as total services advertised per
node, or queries per second. At the next higher level of
the hierarchy it may be necessary to have more proxies
in the group and more finely divide the services. This
addressing method is similar to that used by certain
DHTs [41][54]. The division does need not be done
simply by first letter(s) of the service names, but any
hashing method that maps identifiers to a uniform
space.

Another proxy group method for increasing availability
and reducing per proxy traffic is to multicast messages
to a group of proxies instead of just one. The two
extreme options here are: advertise one/query all, or
inversely, advertise all/query one (though intermediate
solutions are also viable [18]). In the former method
service advertisements are sent to only one proxy in the
group while service queries are sent to all. In the latter
service advertisements are sent to all proxies in the
group while queries are only sent to one. Since service
queries cause much more traffic than the managed
periodic service information updates, the latter approach
would be preferable.

 11

As mentioned above, both advertisements and queries
contain hop count fields to limit the diameter of the dis -
covery process. The end agents primarily use this to
limit searches to local geographic or contextual reasons.
Intermediate nodes may shorten the hop count further
given semantic knowledge of the search context, or
based on current network congestion.

If the query rate at a proxy becomes too great it may ask
its child nodes to aggregate queries into single messages
and periodically send it batch query messages. This will
decrease the per query cost of connection maintenance
and XML parsing. The switch from reactive to proactive
query propagation could happen when a proxy passes a
query rate threshold and return to reactive forwarding
the rate becomes manageable. This technique intro-
duces query buffers in the child nodes. A query buffer
limit may be set at which point queries begin to be
dropped, similar to IP routing. A control message may
be sent back to the request originator when their
message is dropped.

Periodic query batches will also increase total
request/response latency. The farther up the tree a
query is, the greater the chance there is an acceptable
service provider in the subtree below it. Delaying the
query propagation at the upper levels will increase
service discovery latency for consumers who are
searching for rare items or services, or wish to collect a
very large number of results before choosing. In most
cases of automated service discovery hidden from the
user, the service searched for will either need to be rela-
tively nearby in the Carmen network so search latency
will be low.

As the size of a proxy’s subtree grows the expected ag-
gregation of service advertisements for the same service
is expected to increase. Though the amount of adver-
tisement aggregation will be less than using other
methods, such as Bloom filters [8][13], it provides loss-
less aggregation and allows partial lookups on service
names or descriptions.

7.2 Fault Tolerance
The problem with hierarchical networks is the increased
single points of failure. Any intermediate Carmen node
that fails will partition its entire subtree from the rest of
the Carmen network, assuming no replication. There-
fore it is important to provide a robust method to be able
to quickly detect and repair node failures in the tree. In
a highly distributed large network cross various admin-
istrational domains system managers will likely handle
the failure of a high-level inter-domain node manually.

But Carmen does provide for automatic failure recov-
ery.

Both parent and child nodes send each other periodic
management messages to inform each other of their
current status. This is especially important for detecting
intermediate node failure and repairing breaks in the
tree. If a node fails it is the responsibility of its children
to elect a new parent to replace it and connect to the
failed nodes parent. In each control message a parent
includes a list of its children and a list of its parent
proxies. When a proxy goes down, the child nodes must
agree on one of their nodes to take the place of the
failed proxy. One simple solution is to automatically
elect the first child on the children list provided by the
failed node to replace it. The parent could order the list
based on some metric it has about its children, such as
reliability, bandwidth, or latency.

When node detects a connected node may have failed it
sends it a HELLO message expecting an immediate
reply. If no reply arrives it declares the node dead.
When a child node fails, the parent node simply
removes it from its list of children. When a parent node
fails, any child that detects it contacts the first child on
the latest children list it has received from the parent,
notifies it that the parent node has failed and that it
should take over. That node then contacts the other
child nodes and the failed nodes parents, informing
them that it is replacing the failed node. The other
children now send full service lists to the promoted
node so that it has a fresh list of all services advertised
below it.

7.3 Security
Hierarchies effectively model administrational struc-
tures that the offered services may belong to. Different
subtrees within the large global network constitute
different organizations or companies. Within these sub-
trees smaller subtrees may correspond to departments.
Having each subtree have a single root node, simplifies
enforcing service discovery policies. Acting much like
a firewall an administrational root node can be config-
ured to allow only certain services to be advertised
outside of its domain. Likewise, it can limit which
types of service requests (and by who) are allowed into
the domain.

Carmen does not inherently provide any security or au-
thentication of consumers or services. It does not
provide any protection for service discovery. The
service providers and consumers themselves should
negotiate any authentication or privacy needs when at-
tempting to access the service. Within a protected
domain, such as behind a firewall, access is often

 12

equated with authorization. In such situations security
of resource discovery may not be necessary. Other
services are publicly advertised and their locations are
well known. Protection is needed at trust domain edges.
One simple method is to place service and query propa-
gation policy at administrational domain boundaries.
For higher security other techniques are available.

Methods have been developed for securing service dis -
covery in similar networks. Most notable is the work at
Berkeley on securing their Service Discovery Service
[13]. The methods developed there could be applied to
the Carmen network but we see them as unnecessary for
our target scenarios.

8 Conclusion
Our work on Carmen has given us insight into the re-
quirements of a scalable, dynamic service discovery.
We believe it is possible to effectively meet these re-
quirements with a distributed architecture based on
contextual hierarchies. The current prototype imple-
mentation of the Carmen proxy has proven sufficiently
flexible to allow easy testing of different routing
schemes and construction of applications that use the
Carmen network to search for and share information in
ways we had not originally envisioned. With continued
development and focus on large-scale simulation using
real data from our testbed, we hope to soon demonstrate
its effectiveness as a system for locating services across
the whole Internet.

Acknowledgements
The authors would like to thank Lada Adamic, John
Barton, Vana Kalogeraki, Harumi Kuno, and Jeff
Morgan for their helpful advice and comments on early
drafts of this paper.

References
[1] L. Adamic et al. Search in power law networks.

Physical Review, E 64 (2001), 46135-46143.

[2] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan and J.
Lilley. The design and implementation of an intentional
naming system . 17th ACM Symposium on Operating
Systems Principles. 1999.

[3] Altavista – The Search Company. www.altavista.com

[4] P. Bailey, N. Craswell and D. Hawking. Dark matter
on the Web. In Poster Proceedings, 9th World-Wide
Web Conference, 2000.

[5] M. Balazinska, H. Balakrishnan and D. Karger.
INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery. Pervasive 2002 - In-
ternational Conference on Pervasive Computing,
Zurich, Switzerland, August 2002.

[6] J. Barton. Personal Communication. August 2002.

[7] C. Bettstetter, and C. Renner. A Comparison of Service
Discovery Protocols and Implementation of the Service
Location Protocol. Proc. 6th EUNICE Open European
Summer School: Innovative Internet Applications
(EUNICE'00), Twente, Netherlands, September 13-15,
2000.

[8] B. Bloom. Space/Time Tradeoffs in Hash Coding with
Allowable Errors. Communications of the ACM,
13(7):422-426, July 1970.

[9] P. Castro et al. Locating Application Data Across
Service Discovery Domains. Proceedings of the
Seventh Annual International Conference on Mobile
Computing and Networking. 2001.

[10] E. Cohen et al. Finding Interesting Associations
without Support Pruning. Technical Report, Computer
Science Department, Stanford University, 2001.

[11] Computer Industry Almanac Inc. Press Release, March
21 2002. www.c-i-a.com/pr032102.htm.

[12] N. Craswell, P. Bailey and D. Hawking. Server selec-
tion on the World Wide Web. In Proceedings of the
Fifth ACM Conference on Digital Libraries, pages 37-
46, 2000.

[13] S. Czerwinski et al. An Architecture for a Secure
Service Discovery Service. Proceedings of the Seventh
Annual International Conference on Mobile Computing
and Networking. 1999.

[14] P. B. Danzig, K. Obraczka, and A. Kumar. An analysis
of wide-area name server traffic: a study of the Internet
Domain Name System . ACM SIGCOMM Computer
Communication Review, v.22 n.4, p.281-292, Oct.
1992.

[15] D. Das et al. HotSpot! – a service delivery environment
for Nomadic Users System Architecture. HP Labs
Technical Report, HPL-2002-134, May 9 2002.

[16] K. F. Eustice, T. J. Lehman, A. Moralies, M. C.
Munson, S. Edlund and M. Guillen. A universal
information appliance. IBM Systems Journal, vol. 38,
no. 4, 1999. www.research.ibm.com/jour-
nal/sj/384/eustice.html

[17] FastTrack. 2002. www.fasttrack.nu/

[18] D. K. Gifford. Weighted voting for replicated data.
Proceedings of 7th ACM Symposium on Operating
Systems Principles, pp. 150-62, December 1979.

[19] Gnutella. 2002. www.gnutella.com

[20] Y. Goland et al. Simple Service Discovery
Protocol/1.0. IETF, Draft draft-cai-ssdp-v1-03,
October 28 1999. http://www.upnp.org/down-
load/draft_cai_ssdp_v1_03.txt

[21] Google. 2002. www.google.com

[22] S. Gribble et al. The Ninja Architecture for Robust
Internet-Scale Systems and Services . Special Issue of
Computer Networks on Pervasive Computing, 2000.

 13

[23] E. Guttman. Service Location Protocol: Automatic
Discovery of IP Network Services . IEEE Internet
Computing, vol. 3, no. 4, pp. 71-80, 1999.

[24] E. Guttman, C. Perkins, J. Veizades, and M. Day.
Service Location Protocol, Version 2. IETF, RFC 2608,
June 1999.

[25] Hewlett-Packard Company. cooltown. August 2002.
cooltown.hp.com.

[26] V. Kalogeraki. Personal Communication. August 2002.

[27] KaZaA. 2002. www.kazaa.com.

[28] Butler W. Lampson, Designing a global name service.
Proceedings of the fifth annual ACM symposium on
Principles of distributed computing, p.1-10, August 11-
13, 1986, Calgary, Alberta, Canada

[29] S. Lawrence and C. Lee Giles. Accessibility of
information on the web. Nature, 400:107-109, July
1999.

[30] C. Lv and P. Cao and E. Cohen and E. Felten and X. Li
and S. Shenker. Search and replication in unstructured
peer-to-peer networks. Proc. 2002 ACM
SIGMETRICS, 2002.

[31] C. D. Marsan. Verisign CEO talks about strategy,
integration. Network World, p. 18, April 15 2002.

[32] R. E. McGrath. Discovery and Its Discontents:
Discovery Protocols for Ubiquitous Computing.
Department of Computer Science University of Illinois
Urbana-Champaign, Urbana UIUCDCS-R-99-2132,
March 25 2000.

[33] Microsoft Corporation. Understanding Universal Plug
and Play: A White Paper. June 2000.

[34] D. Milojicic et al. Peer-to-Peer Computing. HP Labs
Technical Report, HPL-2002-57, March 8 2002.
www.hpl.hp.com/techreports/2002/HPL-2002-57.html

[35] P. Mockapetris. Domain names – concepts and
facilities. RFC 1034, ISI, Nov. 1987.

[36] P. Mockapetris and K. J. Dunlap. Development of the
domain name system . Symposium Proceedings on
Communications Architectures and Protocols, 1988.

[37] B. Oki, M. Pfluegl, A. Sigel, and D. Skeen. The
Information Bus – An Architecture for Extensible
Distributed Systems. Proceedings for the 14th
Symposium on Operating System Principles, 1993.

[38] M. K. Ramanathan, V. Kalogeraki, and J. Pruyne.
Finding Good Peers in Peer-to-Peer Networks. HP
Labs Technical Report, HPL-2001-271, Oct 23 2001.

[39] S. Ratnasamy et al. A scalable content-addressable
network. In Proc. Of the ACM SIGCOMM Conference,
San Diego, CA, 2001.

[40] J. Rosenberg, H. Schulzrinne and B. Suter. Wide area
network service location. IETF Internet Draft,
November 1997.

[41] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM Middleware,
Heidelberg, Germany, 2001.

[42] I. Stoica et al. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proc. Of the ACM
SIGCOMM Conference, San Diego, CA, 2001.

[43] Sun Microsystems. Technical White Paper: Jini
Architectural Overview.1999. www.sun.com/jini/.

[44] B. Thomas. IT Trends: Global Mobile Wireless
Services 2002 to 2005. Giga Information Group, Inc.,
June 27 2002.

[45] Universal Description, Discovery and Integration
(UDDI) Project. www.uddi.org.

[46] Universal Plug and Play Forum. 1999. www.upnp.org.

[47] S. Vaghani et al. Infospaces: A Large-Scale Content
Classification and Dissemination Network. April 2001.
www-
db.stanford.edu/~svaghani/projects/infospaces/InfoSpa
ces-paper.pdf

[48] W3C. Extensible Markup Language (XML)
Specification 1.0. www.w3.org/TR/2000/REC-xml-
20001006.

[49] M. Wahl, T. Howes, and S. Kille. Lightweight
Directory Access Protocol (v3). IETF RFC 2251,
December 1997.

[50] S. Waterhouse. Jxta search: Distributed search for
distributed networks. Sun Microsystems, Inc., 2001.

[51] Yahoo!. 2002. www.yahoo.com

[52] B. Yang and H. Garcia-Molina. Comparing Hybrid
Peer-to-Peer Systems. in Proc. of the 27th International
Conference on Very Large Data Bases, September
2001.

[53] B. Yang and H. Garcia-Molina. Improving Search in
Peer-to-peer Networks. ICDCS, 2002.

[54] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April
2001.

 14

Appendix A: Sample Service Description
(Network Print Service)

<?xml version='1.0' encoding='utf-8'?>
<?xml-stylesheet
 href="http://weblab.hpl.hp.com/~carmen/xml/services/carmen_service.xsl"
 type="text/xsl"
?>

<!DOCTYPE Carmen:Service SYSTEM
 "http://weblab.hpl.hp.com/~carmen/xml/dtd/carmen_service.dtd">

<!-- XML definition of a print service query form -->

<Carmen:Service xmlns:Carmen="http://weblab.hpl.hp.com/~carmen/"
 name="print"
>
 <Carmen:Description>
 Allow access to printing services
 </Carmen:Description>

 <Carmen:Attribute name="Quality" type="String">
 <Carmen:Choices>
 <Carmen:Choice>High</Carmen:Choice>
 <Carmen:Choice>Medium</Carmen:Choice>
 <Carmen:Choice>Low</Carmen:Choice>
 </Carmen:Choices>
 </Carmen:Attribute>

 <Carmen:Attribute name="Color Depth" type="String">
 <Carmen:Choices>
 <Carmen:Choice>B/W</Carmen:Choice>
 <Carmen:Choice>Grayscale</Carmen:Choice>
 <Carmen:Choice>Line Art</Carmen:Choice>
 <Carmen:Choice>Photorealistic</Carmen:Choice>
 </Carmen:Choices>
 </Carmen:Attribute>

 <Carmen:Attribute name="Paper Size" type="String">
 <Carmen:Choices>
 <Carmen:Choice>Letter</Carmen:Choice>
 <Carmen:Choice>Legal</Carmen:Choice>
 <Carmen:Choice>Envelope</Carmen:Choice>
 </Carmen:Choices>
 </Carmen:Attribute>

 <Carmen:Attribute name="DPI" type="Integer" />

</Carmen:Service>

 15

Appendix B: Carmen Message Specification
This DTD describes the currently used message format in the Carmen implementation.

<?xml version='1.0' encoding='utf-8'?>
<!-- Basic DTD for Carmen messages -->

<!ELEMENT Carmen:Message (Carmen:ControlMessage|Carmen:QueryMessage|Carmen:InfoMessage)>
<!ATTLIST Carmen:Message
 xmlns:Carmen CDATA #REQUIRED
 protocol CDATA #REQUIRED
 id CDATA #REQUIRED
 ttl CDATA #REQUIRED
>
<!ELEMENT Carmen:ControlMessage
(Carmen:ControlHello|Carmen:ControlRequest|Carmen:ControlReply)>
<!ATTLIST Carmen:ControlMessage
 type CDATA #IMPLIED
>
<!ELEMENT Carmen:QueryMessage (Carmen:ServiceRequest|Carmen:ServiceResponse)>
<!ATTLIST Carmen:QueryMessage
 type CDATA #IMPLIED
>
<!ELEMENT Carmen:InfoMessage (Carmen:ServiceList)>
<!ATTLIST Carmen:InfoMessage
 type CDATA #IMPLIED
>
<!ELEMENT Carmen:ServiceList (Carmen:ServiceOffer*)>

<!ELEMENT Carmen:ControlHello (Carmen:SourceNode)>
<!ELEMENT Carmen:ControlRequest (Carmen:SourceNode, Carmen:ParentNodes,
 Carmen:ChildNodes)>
<!ELEMENT Carmen:ParentNodes (Carmen:Node*)>
<!ELEMENT Carmen:ChildNodes (Carmen:Node*)>

<!ELEMENT Carmen:ControlReply (Carmen:SourceNode)>

<!ELEMENT Carmen:ServiceRequest (Carmen:SourceNode, Carmen:Attributes,
 Carmen:LastNode)>
<!ATTLIST Carmen:ServiceRequest
 name CDATA #REQUIRED
 form CDATA #REQUIRED
>

<!ELEMENT Carmen:ServiceResponse (Carmen:SourceNode, Carmen:ServiceProvider+)>
<!ATTLIST Carmen:ServiceResponse
 name CDATA #REQUIRED
 form CDATA #REQUIRED
>

<!ELEMENT Carmen:SourceNode (Carmen:Node)>
<!ELEMENT Carmen:LastNode (Carmen:Node)>

<!ELEMENT Carmen:Node (Carmen:AddedServices?, Carmen:RemovedServices?)>
<!ATTLIST Carmen:Node
 address CDATA #REQUIRED
 protocol CDATA #REQUIRED
 type CDATA #REQUIRED
>

<!ELEMENT Carmen:AddedServices (Carmen:ServiceOffer*)>
<!ATTLIST Carmen:AddedServices
 type (delta|full) #IMPLIED
>
<!ELEMENT Carmen:RemovedServices (Carmen:ServiceOffer*)>

 16

<!ELEMENT Carmen:ServiceOffer (#PCDATA)>
<!ATTLIST Carmen:ServiceOffer
 name CDATA #REQUIRED
 form CDATA #REQUIRED
>

<!ELEMENT Carmen:ServiceProvider (Carmen:Attributes)>
<!ATTLIST Carmen:ServiceProvider
 address CDATA #REQUIRED
 protocol CDATA #REQUIRED
 api CDATA #REQUIRED
>

<!ELEMENT Carmen:Attributes (Carmen:Attribute*)>

<!ELEMENT Carmen:Attribute (#PCDATA)>
<!ATTLIST Carmen:Attribute
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 comp (Equal|Less|Greater|LessOrEqual|GreaterOrEqual) #REQUIRED
 value CDATA #REQUIRED
>

<!ELEMENT Carmen:Address (#PCDATA)>
<!ELEMENT Carmen:Protocol (#PCDATA)>

 17

Appendix C: Consumer/Service Provider API
This is the Java API used by Carmen clients to advertise and query services from the network. It initializes
the Carmen Stub classes which communicate with a specified proxy.

package com.hp.carmen.api;

import java.util.*;

/**
 This interface defines the methods consumers and service providers
 should use to interact with a Carmen proxy using a stub.
**/

public interface CarmenAPI {

 // Stops accepting Carmen-related messages
 public void stop();

 // Returns a list of serviceNames and their corresponding description URLs
 // given a regular expression to search for
 public int getServiceList(String regexp, List serviceNames,
 List serviceForms)
 throws CarmenException;

 // Returns a list of ServiceAttributes for a given service
 public List getServiceInfo(String serviceName) throws CarmenException;

 // Initiates a search for the given query with the given ServiceAttributes.
 // Asynchronous: A ResponseHandler callback object must be provided.
 public int doServiceQuery(String serviceName, Vector attrs,
 ResponseHandler rh)
 throws CarmenException;

 // Begin advertising a service with the given service description URL
 // Must provide a RequestHandler callback object to handle requests
 public boolean offerService(String serviceName, String serviceForm,
 RequestHandler rh)
 throws CarmenException;

 // Send out query for service with given attributes.
 // Return strings containing address API form URL pairs

 public boolean removeServiceOffer(String serviceName)
 throws CarmenException;

}

===

package com.hp.carmen.api;
import java.util.*;
import com.hp.carmen.info.*;

/**
 This interface defines the callback methods consumers need to provide.
 When a request for a service provided by the consumer is received this
 function will be called along with the request attributes.
**/

public interface RequestHandler {

 /**
 The only callback function. Takes the service, query attributes, and
 an empty ServiceProvider.
 Returns true if it can service the request and fills in the
 ServiceProvider object. If not returns false
 **/

 18

 public boolean handleRequest(String service, Vector attributes,
 ServiceProvider sp);
}

===

package com.hp.carmen.api;
import java.util.*;
import com.hp.carmen.info.*;

/**
 This interface defines the callback methods consumers need to provide.
 When a request for a service provided by the consumer is received this
 function will be called along with the request attributes.
**/

public interface ResponseHandler {

 /**
 The only callback function. Takes the service, query attributes, and
 an empty ServiceProvider.
 Returns true if it can service the request and fills in the
 ServiceProvider object. If not returns false
 **/

 public boolean gotResponse(int id, String service,
 ServiceProvider sp, Vector attributes);

}

