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could be used to automatically discover new optimal auction 
mechanisms for automated electronic marketplaces populated by 
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are often unlike traditional mechanisms designed by humans for 
human traders; rather, they are peculiar hybrid mixtures of 
established styles of mechanism. This previous work concentrated 
on auction marketplaces populated by software agents running the 
ZIP trader algorithm (recently shown to outperform human traders). 
In this paper we provide the first demonstration that qualitatively 
similar results (i.e., non-standard hybrid mechanism designs being 
optimal) are also given when similar experiments are performed 
using a different trader algorithm, namely Gode & Sunder's ZI-C 
traders. Thus, this paper is the first to show that the previous results 
were not specific to ZIP traders, and hence it offers significant 
evidence that evolved hybrid auction mechanisms may be found to 
out-perform traditional mechanisms for any style of trader-agent. 
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Abstract: A previous CIFEr paper demonstrated that a genetic 
algorithm could be used to automatically discover new optimal 
auction mechanisms for automated electronic marketplaces 
populated by software-agent traders. Significantly, the new auc-
tion mechanisms are often unlike traditional mechanisms de-
signed by humans for human traders; rather, they are peculiar 
hybrid mixtures of established styles of mechanism. This previ-
ous work concentrated on auction marketplaces populated by 
software agents running the ZIP trader algorithm (recently 
shown to outperform human traders). In this paper we provide 
the first demonstration that qualitatively similar results (i.e., 
non-standard hybrid mechanism designs being optimal) are also 
given when similar experiments are performed using a different 
trader algorithm, namely Gode & Sunder’s ZI-C traders. Thus, 
this paper is the first to show that the previous results were not 
specific to ZIP traders, and hence it offers significant evidence 
that evolved hybrid auction mechanisms may be found to out-
perform traditional mechanisms for any style of trader-agent.  
 
Submitted in abridged form to CIFEr’03. 
 
 

I. INTRODUCTION 
 
ZIP (Zero-Intelligence-Plus) artificial trading agents, intro-
duced in 1997 [1], are software agents (or “robots”) that use 
simple machine learning techniques to adapt to operating as 
buyers or sellers in open-outcry auction-market environments 
similar to those used in the experimental economics work of 
Smith (e.g. [2]). Although initially developed purely to 
address deficiencies in Gode & Sunder’s ZI-C traders [2], 
recent experimental work by Das et al. at IBM [4] has shown 
that ZIP traders (unlike ZI-Cs) consistently out-perform 
human traders in human-against-robot auction marketplaces. 
 
The operation of ZIP traders has been successfully demon-
strated in experimental versions of continuous double auction 
(CDA) markets similar to those found in the international 
markets for commodities, equities, capital, and derivatives; 
and in posted-offer auction markets similar to those seen in 
domestic high-street retail outlets [1,2]. In any such market, 
there are a number of parameters that govern the adaptation 
and trading processes of the ZIP traders. In the original for-
mulation [1], the values of these parameters were set by hand, 
using “educated guesses”.  However, at CIFEr’98, the first 
results were presented from using a standard genetic algo-
rithm (GA) to automatically optimise these parameter values 
[5], thereby eliminating the need for skilled human input in 
deciding the values of the parameters; more details of these 
GA results were subsequently given in [6].  
 
In all previous work using artificial traders, ZIP or otherwise, 
the market mechanism (i.e., the type of auction the traders are 

interacting within) had been fixed in advance. Well-known 
market mechanisms from human economic affairs include: 
the English auction (where sellers stay silent and buyers 
quote increasing bid-prices), the Dutch Flower Auction 
(where buyers stay silent and sellers quote decreasing offer-
prices); the Vickery or second-price sealed-bid auction 
(where sealed bids are submitted by buyers, and the highest 
bidder is allowed to buy, but at the price of the second-
highest bid -- this curious mechanism encourages honesty 
and is robust to attack by dishonest means); and the CDA 
(where sellers announce decreasing offer prices while simul-
taneously and asynchronously the buyers announce increas-
ing bid prices, with the sellers being free to accept any 
buyer’s bid at any time and the buyers being free to accept 
any seller’s offer at any time).   
 
At CIFEr’02, Cliff [7] presented the first ever results from 
experiments where a GA optimised not only the parameter 
values for the trading agents, but also the style of market 
mechanism in which the traders operate. To do this, a space 
of possible market mechanisms was created for evolutionary 
exploration. The space included the CDA and also one-sided 
auctions similar (but not actually identical to) the English 
Auction (EA) and the Dutch Flower Auction (DFA); and sig-
nificantly this space is continuously variable, allowing for 
any of an infinite number of peculiar hybrids of these auction 
types to be evolved, which have no known correlate in natu-
rally occurring market mechanisms. While there was nothing 
to prevent the GA from settling on solutions that correspond 
to the known CDA auction type or the EA-like and DFA-like 
one-sided mechanisms, Cliff [7,8] repeatedly found that the 
GA settles on hybrid solutions and that these hybrids lead to 
the most desirable market dynamics. Although the hybrid 
market mechanisms could easily be implemented in online 
electronic marketplaces, they have not been designed by hu-
mans: rather they are the product of evolutionary search 
through a continuous space of possible auction-types. Thus, 
the CIFEr’02 paper [7] was the first ever demonstration that 
radically new market mechanisms for artificial traders may 
be designed by automatic means, thereby establishing the 
new field of automated mechanism design. Independently, 
some similar work was under development elsewhere, and 
was published a couple of months later [9]. 
 
As all of Cliff’s results [7,8] were from marketplaces popu-
lated by ZIP traders, an obvious question to ask is to what 
extent those results were dependent on the use of ZIP traders. 
That is: if non-ZIP trader-agents had been used, would simi-
lar hybrid auction mechanisms still be found to be optimal by 
the GA? In this paper we present the first demonstration that 
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Cliff’s [7,8] results were not specific to the use of ZIP trad-
ers.  Section II gives an overview of the background experi-
mental methods and results as published by Cliff [5,6,7,8]. In 
Section III we present new ZIP-trader data, visualising the 
“fitness landscapes” explored by the GA. In Section IV we 
then show comparable fitness landscapes calculated for Gode 
& Sunder’s ZI-C trader-agents. In Section V we discuss the 
strong qualitative similarities between the ZIP and ZI-C land-
scapes, and conclude that they offer firm evidence for the 
claim that automated mechanism design can find hybrid auc-
tion styles that give desirable performance, whatever the style 
of trader-agent used in the marketplace.  Note that, in the rest 
of this paper, we use v=U[x,y] to denote a random real value 
v generated from a uniform distribution over the range [x,y].    
 
 

II. BACKGROUND 
 
A. Zero-Intelligence Plus (ZIP) Traders 
 
ZIP traders are described fully in [1], which includes sample 
source-code in the C programming language. For the pur-
poses of this paper a high-level description of the key pa-
rameters is sufficient. Each ZIP trader i is given a private 
(secret) limit-price, λi, which for a seller is the price below 
which it must not sell and for a buyer is the price above 
which it must not buy. If a ZIP trader completes a transaction 
at its λi price then it generates zero utility (“profit” for the 
sellers or “saving” for the buyers). For this reason, each ZIP 
trader i maintains a time-varying margin µi(t) and generates 
quote-prices pi(t) at time t according to pi(t)=λi (1+µi(t)) for 
sellers and pi(t)=λi (1-µi(t)) for buyers. The “aim” of traders 
is to maximise their utility over all trades, where utility is the 
difference between the accepted quote-price and the trader’s 
λi value. Trader i is given an initial value µi(0) (i.e., µi(t) for 
t=0) which is subsequently adapted over time using a simple 
machine learning technique known as the Widrow-Hoff rule 
which is also used in back-propagation neural networks. This 
rule has a “learning rate” parameter βi that governs the speed 
of convergence between trader i’s quoted price pi(t) and the 
trader’s idealised “target” price τi(t). When calculating τi(t), 
traders introduce a small random absolute perturbation gener-
ated from U[0,ca], and also a small random relative perturba-
tion coefficient generated from U[1-cr,1] (when a trader is 
reducing its pi(t)) or U[1,1+cr] (when increasing  pi(t)) where 
ca and cr are global system constants. To smooth over noise 
in the learning system, there is an additional “momentum” 
parameter γi for each trader (such momentum terms are also 
commonly used in back-propagation neural networks).  
 
Thus, adaptation in each ZIP trader i has the following pa-
rameters: initial margin µi(0); learning rate βi; and momen-
tum term γi.  In an entire market populated by ZIP traders, 
these three parameters are assigned to each trader from uni-
form random distributions each of which is defined via “min” 
and “delta” values in the following fashion: µi(0)= U(µmin, 
µmin+µ∆); βi=U(βmin, βmin+β∆); and γi=U(γmin, γmin+γ∆).  

Hence, to initialise an entire ZIP-trader market it is necessary 
to specify values for the six market-initialisation parameters 
µmin, µ∆, βmin, β∆, γmin, and γ∆; and also for the two system con-
stants ca and cr. And so it can be seen that any set of initiali-
sation parameters for a ZIP-trader market exists within an 
eight-dimensional real space, conventionally denoted by R8. 
Vectors in this 8-space can be considered as genotypes, and 
from an initial population of such genotypes it is possible to 
allow a GA to find new genotypes that best satisfy an appro-
priate evaluation function. This is exactly the process that 
was introduced at CIFEr’98 [5,6], as described in Section 
II.C below. Before that, we discuss the issue of simulating 
the passage of time. 
 
When monitoring events in a real auction, as more precision 
is used to record the time of events, so the likelihood of any 
two events occurring at exactly the same time is diminished. 
For example, if two quotes made at five minutes past nine are 
both recorded as occurring at 09:05, then they appear in the 
record as simultaneous; but a more accurate clock would 
have been able to reveal that the first was made at 
09:05:01.64 and the second at 09:05:01.98. Even if two 
events occur absolutely at the same time, very often some 
random process (e.g. what direction the auctioneer is looking 
in) acts to break the simultaneity.  
 
Thus, we may simulate real marketplaces (and implement 
electronic marketplaces) using techniques where each signifi-
cant event always occurs at a unique time. We may choose to 
represent these by real high-precision times, or we may ab-
stract away from precise time-keeping by dividing time into 
discrete (possibly irregular) slices, numbered sequentially, 
where one significant event is known to occur in each slice. 
Such a time-slicing approach was used in previous work 
[1,5,6,7,8]. In each time-slice, the atomic “significant event” 
is one quote being issued by one trader and the other traders 
then responding either by ignoring the quote or by one of the 
traders accepting the quote. (NB in [4] a continuous-time 
formulation of the ZIP-trader algorithm was used).  
 
In the markets described here and in [1,5,6], on each time-
slice a ZIP trader i is chosen at random from those currently 
able to quote (i.e. those who hold appropriate stock or cur-
rency), and trader i’s quote price pi(t) then becomes the “cur-
rent quote” q(t) for time t. Next, all traders j on the contraside 
(i.e. all buyers j if i is a seller, or all sellers j if i is a buyer) 
compare q(t) to their own current quote price pj(t) and if the 
quotes cross (i.e. if pj(t)<=q(t) for sellers, or if pj(t)>=q(t) for 
buyers) then the trader j is able to accept the quote. If more 
than one trader is able to accept, one is chosen equiprobably 
at random to make the transaction. If no traders are able to 
accept, the quote is regarded as “ignored”. Once the trade is 
either accepted or ignored, the traders update their µ(t) values 
using the learning algorithm outlined above, and the current 
time-slice ends. This process repeats for each time-slice in a 
trading period, with occasional injections of fresh currency 
and stock, or redistribution of λi limit prices, until a maxi-
mum number of time-slices have completed.   
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B. Space of Possible Auctions 
 
Now consider the case where we implement a ZIP-trader con-
tinuous double auction (CDA) market. In any one time-slice 
in a CDA either a buyer or a seller may quote, and in the defi-
nition of a CDA a quote is equally likely from each side.  
One way of implementing a CDA is, at the start of each time-
slice, to generate a random binary variable to determine 
whether the quote will come from a buyer or a seller, and 
then to randomly choose one individual as the quoter from 
whichever side the binary value points to. Here, as in previ-
ous ZIP work [1,5,6] the random binary variable is always 
independently and identically distributed over all time-slices. 
  
Let Q=b denote the event that a buyer quotes on any one 
time-slice and let Q=s denote the event that a seller quotes, 
then for the CDA we can write Pr(Q=s)=0.5 and note that 
because Pr(Q=b)=1.0-Pr(Q=s) it is only necessary to specify 
Pr(Q=s), which we will abbreviate to Qs hereafter. Note 
additionally that in an EA we have Qs=0.0, and in the DFA 
we have Qs=1.0. Thus, there are at least three values of Qs  
(i.e. 0.0, 0.5, and 1.0) that correspond to three types of 
auction familiar from centuries of human economic affairs.  
 
However, although the ZIP-trader case of Qs=0.5 is indeed a 
good approximation to the CDA, the fact that any ZIP trader j 
will accept a quote whenever q(t) and pj(t) cross means that 
the one-sided extreme cases Qs=0.0 and Qs=1.0 are not exact 
analogues of the EA and DFA.  Nevertheless, consider the 
implications of considering values of Qs of 0.0, 0.5, and 1.0 
not as three distinct market mechanisms, but rather as three 
points on a continuum. How do we interpret, for example, 
Qs=0.1?  Certainly there is a straightforward implementation: 
on the average, for every nine quotes by buyers, there will be 
one quote from a seller. Yet the history of human economic 
affairs offers no examples (as far as we are aware) of such 
markets: why would anyone suggest such a bizarre way of 
operating, and who would go to the trouble of arbitrating 
(i.e., acting as an auctioneer for) such a mechanism? Never-
theless, there is no a priori reason to argue that the three 
known points on this Qs continuum are the only loci of useful 
auction types. Maybe there are circumstances in which values 
such as Qs=0.1 are preferred. Given the infinite nature of a 
real continuum, it seems appealing to use an automatic explo-
ration process, such as a GA, to identify useful Qs values.   
 
Thus, a ninth dimension was added to the search space, and 
the genotype in the GA is now the eight real values for  ZIP-
trader initialisation, plus a real value for Qs, so the GA is 
searching for points in R9 that give the best market dynamics.  
 
 
C. The Genetic Algorithm 
  
A simple genetic algorithm was used. In each experiment 
reported in [5,6,7,8] a population of size 30 was used, and 
evolution was allowed to progress for some number of gen-

erations ng. In each generation, all individuals were evaluated 
and assigned a “fitness” value (reflecting how good that 
genotype’s market dynamics were); and the next generation’s 
population was then generated via mutation and crossover on 
parents identified using rank-based selection. Elitism (where 
an unadulterated copy of the fittest individual from genera-
tion g is inserted into the population of g+1) was also used.    
 
The genome of each individual was simply a vector of nine 
real values. In each experiment, the initial random population 
was created by generating random values from U[0,1] for 
each locus on each individual’s genotype. Crossover points 
were between the real values, and crossover was governed by 
a Poisson random process with an average of between one 
and two crosses per reproduction event. Mutation was im-
plemented by adding random values from U[-m(g),+m(g)] 
where m(g) is the mutation limit at generation g (starting the 
count at g=0). Mutation was applied to each locus in each 
genotype on each individual generated from a reproduction 
event, but the mutation limit m(g) was gradually reduced via 
an exponential-decay annealing function of the form: 
log10(m(g))=-(log10(ms)-(g/(Ng-1))log10(ms/me)) where Ng is 
the maximum number of generations and ms is the “start” 
mutation limit (i.e., for m(0)) and me is the “end” mutation 
limit (i.e., for m(ng-1)). In all the experiments reported here 
and in earlier papers [7,8], Ng=103, ms=0.05, and me=0.0005.    
 
If ever mutation caused the value at a locus to fall outside 
[0.0,1.0] it was simply clipped to stay within that range. This 
clip-to-fit approach to dealing with out-of-range mutations 
biases evolution toward extreme values (i.e. the upper and 
lower bounds of the clipping), and so Qs values of 0.0 or 1.0 
are, if anything, more likely than values within those bounds. 
Initial and mutated genome values of µ∆, β∆, and γ∆ were also 
clipped to keep genome vectors within the unit hypercube, 
i.e. to satisfy the constraints (µmin+µ∆)<=1.0,  (βmin+β∆)<1.0, 
and (γmin+γ∆)<1.0. 
 
The fitness of genotypes was evaluated using the same meth-
ods as described in [5,6,7,8]. One trial of a particular genome 
was performed by initialising a ZIP-trader market from the 
genome, and then allowing the ZIP traders to operate within 
the market for a fixed number of trading periods, with alloca-
tions of stock and currency being replenished between trad-
ing periods. Each trading period ended either when no more 
trades are possible, or a maximum number of time-slices is 
reached.  
 
During each trading period, Smith’s α measure [2] of devia-
tion of transaction prices from the theoretical market equilib-
rium price was monitored, and a front-weighted average was 
calculated across the trading periods in the trial. As the out-
come of any one such trial is influenced by stochasticity in 
the system, the final fitness value for an individual was calcu-
lated as the arithmetic mean of 100 such trials. Note that as 
minimal deviation of transaction prices from the theoretical 
equilibrium price is desirable, lower scores are better: the 
intention here is to minimise the fitness value.  
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In the CIFEr’02 paper [7] the number of generations ng for 
each experiment was set to equal Ng (i.e., 1000), but all the 
significant evolutionary activity was found to occur in the 
first 500 generations; hence in subsequent work [8] ng=500 
was used. Thus, in any one experiment, there are 30 individu-
als evaluated over 500 generations where each evaluation 
involves calculating the mean of 100 trials, so a total of 1.5 
million market trials would be executed in any one GA ex-
periment. Nevertheless, the progress of each GA experiment 
is itself affected by stochasticity (e.g. the GA may become 
trapped on local optima) and so to generate reliable results 
each experiment was repeated 50 times, requiring a total of 
75 million market trials. On a current single-CPU PC, 50 
repetitions of the single-schedule experiments from [7] take 
around four days to complete, while 50 repetitions of the 
dual-schedule experiments from [8] take nearer eight days.  
New results from 45 such 50-repeat ZIP-trader experiments 
are shown in Section III, which would have required over 250 
days of continuous processing had a single CPU been used. 
 
 
D. Previous Results 
 
In the CIFEr’02 paper [7], three differing market supply and 
demand schedules were used, shown here in Figures 1, 2, and 
3, and hereafter referred to as markets M1, M2, and M3 re-
spectively.  Each of Figures 1 to 3 shows a supply and de-
mand schedule for a marketplace with 11 buyers and 11 sell-
ers, each empowered to buy/sell one unit of commodity, and 
all three are similar (or identical) to the schedules used by 
Smith [2]. Figure 4 shows results from 50 repetitions of an 
experiment where the GA explores the R9 subspace in an at-
tempt to optimise the ZIP-trader market parameters for oper-
ating in M1: for each experiment, the fitness of the best 
(elite) member of the population is recorded. The results are 
clearly tri-modal. Of the 50 repetitions, in five the elite ends 
up on fitness minima of about 3.2, while the other two elite 
fitness modes are on less-good minima of around 4.0 and 
4.75. For comparison, Figure 5 shows the results of 50 re-
peats of the same experiment, where the value of Qs was not 
evolved, being instead clamped at 0.5: i.e. the CDA value. 
The CDA mechanism is often applauded as an auction 
mechanism in which equilibration is rapid and stable, so we 
could expect the best fitness from using this market type. 
With the fixed CDA auction style, an average elite fitness of 
around 4.5 is settled on by the majority of experiments (48 
repetitions) while a small minority (2 repetitions) settle on a 
less good mode of around 5.1. Clearly then, the evolved-
mechanism results are better than the fixed-mechanism CDA 
results; that is, when the GA is allowed so find its own value 
of Qs rather than have the CDA Qs value of 0.5 imposed on it, 
it finds fitter solutions – solutions with less deviation of 
transaction prices from the equilibrium price.  As it happens, 
the Qs value found in the best elite mode for the evolving-
mechanism M1 experiments is zero [7], and for M2 the best 
Qs was also zero [7]. But, surprisingly and significantly, for 
M3 the best Qs was neither zero, nor 0.5, nor 1.0 – i.e. none 

of the Qs values corresponding to traditional human-designed 
auction mechanisms. Rather, for M3, the best Qs value was 
found to be around 0.16 [7].  
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Figure 1: Supply and demand schedules for market M1. Vertical axis is 
Price; horizontal axis is Quantity. 
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Figure 2:  Supply and demand schedules for market M2. 
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Figure 3:  Supply and demand schedules for market M3. 
 
All of the results in the CIFEr’02 paper came from experi-
ments in which the same static supply/demand schedule was 
used for the duration of each evaluation of every genotype. 
This is a somewhat unrealistic simplification, for two rea-
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sons. First, a primary reason why auction mechanisms such 
as the CDA are of interest is their ability to adapt to changes 
in the market’s supply and demand curves. Second, it is 
likely that the GA exploited this regularity and over-fitted the 
ZIP-trader parameters to the particular market schedules used 
(e.g. a genome that does well in M1may perhaps perform 
poorly in M2). Thus, in a subsequent paper [8], similar ex-
periments were run but in these new studies the evaluation of 
a genotype involved six trading periods on one market sched-
ule, followed by a shock-change to another schedule, and 
then another six trading periods on the new schedule; with 
the fitness of the genotype being calculated over the entire 
twelve periods of trading.  
 

 
Figure 4: Elite fitness values from 50 repetitions of the 1000-generation 
evolving-mechanism (EM) experiment operating with M1. Lower values are 
better solutions (less deviation from equilibrium). Results are trimodal, with 
five of the repetitions (10% ) settling to values around 3.2.   

 
 
Figure 5: Elite fitness values from 50 repetitions of a 500-generation experi-
ment operating with M1, but with a fixed-mechanism (FM) CDA of Qs=0.5: 
bimodal results, with 96% of the repetitions settling to fitness values around 
4.5 and the remaining 4% at around 5.2.  
 
 
Hence in these experiments the genotypes had to optimise not 
only the ZIP-trader’s ab initio adaptation to the first schedule 
but also their re-adaptation to the new schedule introduced 
half-way through the evaluation process. Two sets of experi-
ments were performed: one in which the ZIP traders operated 
in M1 for six periods followed by a shock-change to M2 for 
the final six periods (referred to as the M1M2 experiments); 
and another in which the order was M2 followed by M1 (re-

ferred to as M2M1). It was demonstrated [8] that the order 
was significant: the M1M2 results differed significantly from 
the M2M1 results. Although in the single-schedule experi-
ments both M1 and M2 were found to have optima at Qs=0, 
when the two schedules were both used in one trial then non-
zero values of Qs evolved: for M1M2 the best-mode value 
was a “hybrid” of around 0.25; while for M2M1 the best 
value was 0.45, which did not yield statistically significant 
differences in performance from the CDA value of 0.5. 
 
Having established the background to our current work, we 
now proceed with introducing our new results. 
 

III. ZIP-TRADER FITNESS LANDSCAPES  
 
A. Methods and Results 
 
As was stated in the previous section, the genotypes in the 
ZIP-trader experiments are within R9 (strictly, they are all 
within the real unit hypercube [0.0,1.0]9). For any such geno-
type, one evaluation (e.g. taking the mean score from 100 
trials, as used here) will give a fitness score for that genotype; 
and so it is possible in principle to visualise the “fitness land-
scape” as a surface over the 9-d axes of the genotype space. 
Visualising such a 10-d object in the two or three dimensions 
that we humans are familiar with communicating in is mani-
festly problematic; yet appropriate visualisations can be 
highly valuable in demonstrating that the results of the GA’s 
evolutionary search are indeed a plausible global optimum. 
Thus, in this section, we present new data showing visualisa-
tions of the fitness landscapes for all five of the ZIP-trader 
experiments reported in [7] and [8] (i.e., M1, M2, M3, 
M1M2, and M2M1), before showing in Section IV the fitness 
landscapes from comparable experiments where the markets 
are populated by ZI-C traders.  
 
To understand the visualisation, consider Figure 5. In this set 
of fifty M1 experiments the value of Qs was fixed at 0.5 and 
by generation 500 there are two clear elite-fitness modes: one 
at approx 4.5 and one at approx 5.2. Of the fifty repetitions, 
96% settle to the first mode and 4% settle to the second. This 
could be represented by a histogram where the horizontal axis 
represents discretized (“binned”) values of the elite-fitness 
mode, and the vertical axis represents the frequency with 
which each mode is observed; for the M1 Qs=0.5 data of Fig-
ure 5 we would see two distinct peaks in the histogram: a big 
one around 4.5 and a smaller one around 5.2. 
 
Now to visualise the entire fitness landscape for ZIP traders 
in M1, run more fixed-mechanism experiments but for each     
set of 50 repetitions hold the value of Qs fixed at some value 
while all the other 8 ZIP parameters on the genome are opti-
mised by the GA. These data allow us to plot a 3-d projection 
of the 10-d fitness landscape: in our projection, one horizon-
tal dimension is the fixed value of Qs; another is the elite-
fitness mode-value; and the vertical axis shows the frequency 
with which the different mode values are reached for each of 
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the Qs values. Figure 6 shows a perspective projection of 
such a 3-d histogram, calculated for ZIP traders in M1. An 
alternative view of the same data is presented in Figure 7, i.e. 
as a contour plot with a logarithmic compression function 
applied to the frequency values. For comparison, Figures 8, 9, 
10, and 11 show such contour plots of the fitness landscape 
for ZIP-trader experiments with markets M2, M3, M1M2, 
and M2M1 respectively. 

 
Figure 10: Contour plot of fitness landscape for ZIP traders in M1M2. Scale 
as for Figure 7. Nonzero frequencies for Qs=1.0 lie off the scale to the right. 
 
 

 

 
Figure 11: Contour plot of fitness landscape for ZIP traders in M2M1. Scale 
as for Figure 7. Nonzero frequencies for Qs=0.0 and Qs=1.0 lie off the scale 
to the right. 
 
 
B. Discussion 
 
All of the contour plots of the fitness landscapes show good 
agreement with the previous experimental results, in the 
sense that the minima (i.e. left-most data points) on the con-
tour plots are in good agreement with the values discovered 
by the evolving-mechanism GA experiments reported on in 
[7,8] and summarised in Section II.D: markets M1 and M2 
both have minima at Qs=0.0; M3 has a minimum between 
Qs=0.125 and Qs=0.25; M1M2 has a clear minimum at 
Qs=0.25; and M2M1 has a minimum at Qs=0.5. It is also 
worth noting that all the contour plots show some degree of 
multi-modality for some values of Qs.  

Figure 6:  3-d histogram showing fitness-mode frequency data from multiple 
repetitions of ZIP-trader GA experiments in M1 over a variety of fixed Qs 
values. The narrow horizontal axis is Qs (from 0.0 at the rear to 1.0 at the 
front, increasing at intervals of 0.125); the long horizontal axis is elite-fitness 
value from 3.0 at the left to 8.0 at the right, in “bins” of 0.125; the vertical 
axis shows the frequency with which the GA settles to each elite-fitness (out 
of 50 repetitions at each fixed Qs value). Note that the elite-fitness values for 
Qs=1.0 are so poor (i.e., so high) that their histogram data lie off the scale to 
the right.  
 Thus, the evolving-mechanism results from [7,8] are sup-

ported by this brute-force exploration of the fixed-mechanism 
fitness landscapes for each market schedule: in each case, the 
evolved value of Qs is very close to the value identified by 
empirical examination of the fitness landscapes, and the mul-
ti-modality of each fitness landscape justifies the use of 
multiple repetitions of each experiment in order to identify 
the true optimal solution. 

 
Figure 7:  Contour plot of the data shown in Figure 6. Horizontal axis is 
fitness values from 2.0 at the left to 7.5 at the right (grid-spacing is 0.125); 
vertical axis is Qs from 0.0 at the top to 1.0 at the bottom (grid-spacing is 
0.125). Darker shading represents higher frequency. Nonzero frequencies for 
Qs=1.0 are so poor that they lie off the scale to the right. 

 
Having established that for ZIP-traders the fitness landscapes 
are good illustrations of the optimising performance of the 
evolving-mechanism GA, we now go on to demonstrate that 
qualitatively similar results can be observed in marketplaces 
populated by non-ZIP traders.  

  
 Figure 8: Contour plot of fitness landscape for ZIP traders in M2. Scale as 

for Fig. 7. Nonzero frequencies for Qs=1.0 lie off the scale to the right.  

 

IV.  FITNESS LANDSCAPES FOR ZI-C TRADERS 
 
A. Methods 
 
To explore whether the previous results were specific to ZIP 
traders, we ran a new series of parallel experiments, using a 
different trader algorithm: Gode & Sunder’s “zero intelli-
gence constrained” (ZI-C) algorithm [3]. The ZI-C trader 

Figure 9: Contour plot of fitness landscape for ZIP traders in M3. Scale as 
for Figure 7. Fitness values for Qs>=0.875 lie off the scale to the right. 
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algorithm is minimally simplistic: each trader generates a 
quote price at random from a uniform distribution over 
U[qmin, λi ] for buyers and U[λi , qmax ] for sellers, where qmin 
and qmax are system constants. Quotes that “cross” lead to a 
trade. That is: if ever a buyer’s bid-price is greater than the 
last seller’s offer price, the offer is considered “accepted”; 
and if ever a seller’s offer-price is less than the last buyer’s 
bid-price, the bid is considered “accepted”.  
 
The ZI-C traders are so simple that there are no control pa-
rameters for which it would be sensible to employ a GA to 
optimise the values of.  Nevertheless, we can simply study 
the performance of markets populated by ZI-C traders as we 
vary the value of Qs in those markets, deriving fitness land-
scapes comparable to those shown in Figures 7 to 11. 
  
Gode & Sunder’s central result in [3] was the demonstration 
that CDA markets populated by ZI-C traders could generate 
allocative efficiency scores close to 100% -- very similar to 
the values that human traders scored in similar or identical 
CDA market experiments. As ZI-C traders have some severe 
difficulties in equilibrating in asymmetric market schedules 
such as M2 [1], it is not appropriate to use Smith’s α measure 
as the basis of the fitness function. Rather, we simply calcu-
late the allocative efficiency of the ZI-C marketplace at a 
number of values of Qs between zero and one. If ZI-C traders 
perform best when using a “standard” mechanism design, we 
would expect to see peak performance (i.e., highest values of 
allocative efficiency) at Qs values of zero, one, or 0.5. Sig-
nificantly, these peaks do not always appear.  For full details 
of these ZI-C experiments, see [10].  
 
 
B. Results  
 
For each market schedule M1, M2, and M3, ZI-C trader allo-
cative efficiencies were calculated by taking the arithmetic 
mean of 10,000 market trials at values of Qs ranging from 0.0 
to 1.0 in steps of 0.001. In all three cases, there were severe 
sharp attenuations in allocative efficiencies at the extreme Qs 
values of 0.0 and 1.0, caused by the fact that trades only hap-
pen when quotes from a buyer and a seller “cross” (as de-
scribed above) and so if there are no quotes coming from one 
side of the market, no trades can occur. Allocative efficiency 
results are shown for ZI-Cs operating in markets M1, M2, 
and M3 in Figures 12, 13, and 14 respectively. Note that the 
data in all three figures show clear asymmetries, and for M1 
and M3 the peak performance occurs at hybrid values of Qs 
different from the standard values of 0.0, 0.5, and 1.0. 
 
As further exploration, such experiments were also run with 
ZI-C traders operating under two new market schedules not 
used in the previous work. In the each of these new sched-
ules, referred to here as M4 and M5, there are six sellers and 
six buyers; each empowered to sell or buy one unit at a given 
private limit price. In M4 the seller limit prices are 3, 3, 6, 6, 
7, and 7; while the buyer limit prices are 8, 5, 4, 4, 2, and 2. 

In M5 the seller limits are 2, 6, 6, 6, 7, and 8; and the buyer 
limits are 8, 8, 4, 4, 2, and 2. These supply and demand 
schedules are illustrated in Figures 15 and 16 respectively. 
The resulting ZI-C allocative-efficiency landscapes for M4 
and M5 are shown in Figures 17 and 18 respectively.  Again, 
these figures show clear asymmetries and have maximal fit-
ness at hybrid Qs values. 

 
Figure 12: M1 ZI-C fitness landscape, showing allocative efficiency (vertical 
axis: 97.0 to 98.6) obtained for Qs=0.0 to Qs=1.0 (horizontal axis). Search by 
a GA reveals the peak fitness to be around Qs=0.39.  

 
Figure 13: M2 ZI-C fitness landscape, showing allocative efficiency (vertical 
axis: 75.0 to 100.0) obtained for Qs=0.0 to Qs=1.0 (horizontal axis). Search 
by a GA reveals the peak fitness to be around Qs=0.01.    

 
Figure 14: M3 ZI-C fitness landscape, showing allocative efficiency (vertical 
axis: 97.0 to 98.8) obtained for Qs=0.0 to Qs=1.0 (horizontal axis). Search by 
a GA reveals the peak fitness to be around Qs=0.42.  
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Figure 18: M5 ZI-C fitness landscape, showing allocative efficiency (vertical 
axis: 90.0 to 98.0) obtained for Qs=0.0 to Qs=1.0 (horizontal axis).  Search by 
a GA reveals the peak fitness to be around Qs=0.74. 

Figure 15: Supply and demand schedules for market M4.  
 
  
   

V. DISCUSSION AND CONCLUSION 

 

 
Section III showed the newly-calculated fitness landscapes 
for ZIP traders operating in marketplaces with supply and 
demand schedules M1, M2, M3, M1M2 and M2M1 as ex-
plored by the GA in previous papers [7,8]. All of the ZIP fit-
ness landscapes are asymmetric (in that they do not show a 
symmetry around the Qs=0.5 line, which might be expected). 
And several show peak performance (i.e. minimum deviation 
of transaction prices from the equilibrium price) at non-
standard “hybrid” values of Qs such as 0.25 or 0.16, as dis-
covered by the GA.  Although computationally expensive to 
calculate, these fitness landscapes reinforce the claim that in 
[7,8] the GA was identifying the global optima. 
 
The primary contribution of this paper came in Section IV 
with the demonstration (in Figures 12, 13, 14, 17, and 18) 
that marketplaces populated by traders other than ZIPs sur-
prisingly also exhibit maximal performance at non-standard 
“hybrid” values of Qs. In all of the ZI-C fitness landscapes 
there is also a clear asymmetry, and peak performance occurs 
at non-standard values of Qs. The differences in style of 
asymmetry and optimal value of Qs between Figures 12 to 16 
can only be attributable to the differences in the underlying 
market supply and demand schedules.  See [10] for further 
exploration of this issue. 

Figure 16: Supply and demand schedules for market M5. 
 
 
 
 

 

 
The simplicity of the ZI-C algorithm is appealing, as it offers 
the prospect of greater analytic tractability in attempting to 
identify and understand what factors in the supply and de-
mand schedules give rise to the observed asymmetries and 
optima in the performance landscapes. Further research will 
be directed at understanding these interactions, as their nature 
is currently unclear. Nevertheless, the fact that the fitness 
landscapes for both ZIP and ZI-C traders exhibit these 
asymmetries and optima at non-standard values of Qs adds 
strong weight to the claim that any online electronic market-
place populated by software-agent traders may give better or 

Figure 17: M4 ZI-C fitness landscape, showing allocative efficiency (vertical 
axis: 84.0 to 96.0) obtained for Qs=0.0 to Qs=1.0 (horizontal axis). Search by 
a GA reveals the peak fitness to be around Qs=0.26. 
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optimal performance if a non-standard value of Qs is used.  
 
While the GA has been demonstrated to be one way of identi-
fying appropriate non-standard values of Qs, it is essentially 
an off-line “batch-mode” process, poorly suited to identifying 
appropriate values for Qs “online” as the market supply and 
demand curves alter in real-time. The search for methods that 
incrementally alter Qs to appropriate values in real time while 
the market is “live” remains a topic for further research. 
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