

The HP Time Vault Service: Innovating the Way
Confidential Information is Disclosed, at the Right Time

Marco Casassa Mont, Keith Harrison, Martin Sadler
Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2002-243
September 4th , 2002*

E-mail: marco_casassa-mont@hp.com, keith_harrison@hp.com, martin_sadler@hp.com

TIME VAULT,
IBE,
confidentiality,
time, trusted
system,
privacy
infrastructure

Digital information is increasingly more and more important to
underpin interactions, transactions and exchanges of knowledge. On
the other hand, leakages of sensitive digital information can spread
rapidly with harmful effects for people, organizations and
governments. This paper focuses on the problem of protecting
confidential information from unauthorized disclosures, subject to
time-based criteria: it is a common issue in the industry,
government and day-to-day life. We introduce an innovative
service, the Time Vault Service, that leverages the emerging
Identity-based Encryption (IBE) cryptography schema to enforce
time-based confidentiality of digital documents and simplify their
distribution. We discuss the advantages of this approach against a
similar approach based on traditional cryptography. A working
prototype of the Time Vault Service is described, as proof of the
concept.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

2

1. Introduction

In today’s world digital information is more and more relevant for people, enterprises
and institutions to underpin and enable interactions, transactions and exchanges of
knowledge.

The Internet and the web boosted the process of representing, accessing and
distributing information in a digital way. On one hand this is a very important step
towards a more global and simpler way to distribute and access information. On the
other hand digital information can be very sensitive and valuable to their owners or
the entities that are affected by it: dealing with confidentiality and privacy issues is of
primary importance.

It is common practice, in the ordinary life, to deal with aspects related to the
confidentiality of information. People handle secrets and sensitive information on
daily basis, including their personal profiles, their identity information, their financial
details, etc. Enterprises define policies and mechanisms to enforce the correct
management of confidential documents such as strategic business decisions, research
activities and customers’ information. Similarly, governments and social institutions
address analogous issues when dealing with citizens’ data and profiles.

It happens more and more frequently to hear about leakages or disclosures of sensitive
digital information by unauthorised entities and the consequent negative impacts on
business reputations, people’s careers and financial markets. A recent case in the
computer industry involved the unauthorised disclosure of confidential e-mails and
voice-mails to mass media. The implications of this action have been severe,
including fluctuations in company’s stock price, disruptions in the working and
business environment and legal disputes.

The paradigm shift from paper-based documents to digital documents has amplified
the consequences that leakages of confidential information might have, because of the
rapidity by which digital data can be propagated across the Internet and the large
availability of tools enabling digital communication.

Information leakages can be due to people that fraudulently take advantage of their
roles, their knowledge and the trust granted to them. Other leakages happen as a result
of hacking activities or faults on IT systems and services. Others again are accidental,
because of incompetence or inadequacy of IT systems and services.

Dealing with the confidentiality aspect of digital documents is a complex task. It has
strong implication in term of security and privacy. In involves the management of
disclosure conditions and constraints, access control, the satisfaction of trading and
business policies along with their legal and legislative implications. In some cases it
is purely a matter of trust: this implies relying on people to act in a trustworthy way.
In other cases technology can be used to address part of the involved problems [1].

This paper describes the Time Vault Service, an innovative technical work done at HP
Laboratories, Bristol, UK to enforce the confidentiality of digital documents until
their intended disclosure time.

3

2. Addressed Problem

This paper addresses the problem of enforcing the confidentiality of digital documents
according to predefined constraints (policies) and facilitating an efficient distribution
of the content of these documents.

In general, any kind of constraint can be used to specify the conditions under which
information can be disclosed. We focus on a specific aspect: the time of disclosure of
confidential information .

In other words, the addressed problem involves two factors: a digital document to be
kept confidential and its intended disclosure date and time.

This problem is quite common in the physical world and has personal, social and
business implications. A few examples follow:

• In the enterprise and business environment, confidential documents
(containing business analysis, strategic decisions, communications to
employees, etc.) are generated for the consumption of managers, boards or
working groups: quite often these documents can be disclosed to the
employees and stakeholders only at well defined points of time, dictated by
trading, business and legislative constraints.

• In the B2B and e-commerce environments (such as auctions, e-marketplaces,

supply-chains) confidential information is exchanged to enable interactions or
transactions. The involved parties might be prevented form accessing the
exchanged information for predefined periods of time. For example, in blind
auctions a market maker can only access and potentially disclose participants’
bids at the end of the bidding time.

• In the ordinary life, for example, students know the content of their exams or

their final marks only at the time dictated by local authorities or the
department of education.

The period of confidentiality of digital documents can vary depending on the context.
Some confidential documents need to be kept secret for short periods of time. In other
cases secrets might need to be preserved for months or years (for example in case of
top-secret documents, in the military environment).

There are people who know about the content of confidential information since it was
generated. Other people will have access to this content only at well-defined points in
time. For the former category of people, trust and accountability are fundamental
requirements. When they deal with confidential material, on one hand they need to
take the proper precautions to avoid unwanted leakages and, on the other hand, they
must ensure that information is accessible and available to the interested parties once
disclosed.

4

In a traditional scenario, confidential information is protected against the access of
unauthorised people and disclosed to them only at a specific point in time, as shown
in Figure 1a:

time

Starting to Protect
Confidential Data

Disclosure

Generation of
Confidential Data

+
Disclosure Time

Figure 1a: Reference Scenario #1

In the above picture, a confidential document is generated by an entity (person,
system, application, service, etc.) with a clear indication of its intended disclosure
time. This document is protected (and kept secret) from unauthorised accesses till its
intended disclosure time. Afterwards, it is distributed to the intended parties.

In the physical world confidential information is usually protected and stored in a
secure place until it can be disclosed. Similarly, confidential digital information has to
be protected and secured for its entire period of confidentiality.

An alternative scenario consists of distributing confidential documents to the intended
recipients by making sure that their contents are unintelligible (obfuscated) until their
disclosure time, as shown in figure 1b:

time

Starting to Protect
Confidential Data

Disclosure

Generation of
Confidential Data

+
Disclosure Time

Figure 1b: Reference Scenario #2

5

This scenario is particularly interesting, as it allows a gradual distribution of digital
information without compromising its confidentiality. It would simplify the life of
people and administrators in many situations. For example in large organisations, the
distribution of confidential information could be planned in advance, to avoid peaks
of network traffic. Even for small group this could be convenient. In case of people
that frequently travel (or are remotely located) and need to be kept up-to-date with the
content of presentations or enterprise communications, they might download in
advance large confidential presentations or documents and access their contents once
their intended disclosure time comes. In the day-by-day life, people could receive in
advance confidential information and documents and access their content afterwards,
once approved for disclosure: this would apply in case of results of contests and
lotteries (people will know if they are the winners only at a precise date and time), the
result of school tests, people could receive in advance their renewed digital
credentials and access them when the current ones are expired, etc.

In the above scenario, the additional problem is to allow people to access the content
of the confidential documents (they received in advance), once the time is right for
disclosure.

This paper mainly focuses on aspects related to this scenario although the proposed
solution applies also for the scenario in Figure 1a.

In this paper we do not specifically address the problem of who can access
confidential information once it has been disclosed: it is an orthogonal problem and it
is of secondary importance if compared to the problem of keeping this information
confidential until its intended disclosure time.

3. Requirements

In today’s world it is not straightforward to enforce the confidentiality of digital
information for predefined periods of time. Enterprises, governments or organisations
usually define policies to address this problem but, at the very end, it is up to the
individuals to understand and implement them. This usually happen by adopting ad-
hoc solutions and specific tactics for each specific case. In some cases there is a lack
of knowledge about how to achieve it and a lack of simple mechanisms and tools to
address this problem.

The event of disclosing confidential information can generate large interest. Large
masses of people might try to access this information at the same time. This could
cause delays and frustration when the information is not immediately accessible (for
example on the Internet or the Intranet) because of the high traffic and the inadequacy
of the underlying distribution infrastructure. Planning in advance the way confidential
data is made available to people (and systems), once disclosed, is fundamental. As
anticipated in the previous chapter, in some cases it would help to distribute in
advance digital confidential documents to the intended recipients, before their
intended disclosure time, without disclosing their content.

Solutions dealing with the management of the time-based confidentiality problem
should:

6

1. Provide a professional and accountable service. People (systems and

applications) should have access to mechanisms, infrastructures and services
that are run by competent and accountable entities, with the adequate levels of
security, availability and assurance;

2. Provide mechanisms that strongly enforce the constraints on the disclosure

time, associated to confidential documents. Specifically these mechanisms
must not allow the access to the content of confidential information until their
intended disclosure time;

3. Avoid bottlenecks: these solutions should provide mechanisms that allow the

(gradual) distribution of confidential documents to the intended recipients with
the assurance that these recipients will be able to access their content only at
or after their intended disclosure time.

4. Be Simple: people should be able to deal with confidentiality aspects of

information in an intuitive and straightforward way.

These requirements equally apply for solutions that are deployed in business, social
and government environments.

Chapter 4 describes the current approaches that can be used to address the time-based
confidentiality problem and highlights their weak points. Chapter 5 and 6 describes an
alternative approach, invented at HP Labs, Bristol.

4. Current Approaches

Different mechanisms and technologies are currently available to enforce the
confidentiality of digital documents for a predefined period of time:

• Usage of strong access control to protect the access to data;
• Encryption of confidential data;
• Hybrid models based on the above two models.

Access control mechanisms [2], [3], [4] allow the definition of which entities can
access confidential information and what they can do with it. Access control can be
modified over time.

The encryption of confidential data [5] adds further protection as the original content
can only be accessed only if the proper decryption key is known. This has strong
implications on protecting and storing decryption keys in a secure and safe way till
the intended disclosure time.

Secure infrastructures and systems are necessary to underpin the correct working of
both access control and encryption mechanisms, including secure storage systems.

Many access control products and solutions (including IBM/Tivoli, CA and Netegrity
security products) are currently available within enterprises, e-commerce and web
sites to locally protect the access to digital documents. Solutions based on access

7

control mechanisms can be used to make sure that only authorised people can access
confidential documents by defining proper access control list. Of course
administrators of these solutions must be accountable for running them in a
convenient and professional way. Access control lists (ACLs) must be modified to
extend the access to other people. Current Access Control systems, based on ACLs,
do not involve the explicit management of time factors. On their own, access control
mechanisms only provide and enforce barriers to the access of documents. If, for any
reason, these barriers are defeated, the content of documents can be directly accessed.

Strong encryption mechanisms are more suitable to enforce the confidentiality of
digital documents. They can be used to encrypt and obfuscate the content of a
confidential document for a well-defined period of time. The intended disclosure date
of a confidential document must in some way be associated to the correspondent
encrypted document and protected against manipulations. Once a digital document is
encrypted it can potentially be distributed to third parties. The correspondent
decryption key is distributed to the intended recipients only after the intended
disclosure time.

Traditional encryption mechanisms rely on public key cryptography [5] (including
RSA cryptography), symmetric key cryptography [5] or hybrid combinations [6] of
the two (such as enveloping techniques). These mechanisms require the generation of
a decryption key at the encryption time. In case of public key cryptography, when a
public key is created, the correspondent private key is generated as well, because of
the way cryptographic algorithms work. In case of a symmetric key, this key is used
both for encryption and decryption purposes.

Back to the problem of keeping a document confidential for a predefined period of
time, when this document is encrypted, the correspondent decryption key must be
protected for the whole period of confidentiality.

This has implications on keeping the decryption key secure and safe: it must
“survive” until the correspondent documents can be disclosed. The involved risks and
costs might increase with the length of the confidentiality period. The more digital
documents need to be kept confidential for different periods of time the more different
“secrets” need to be generated, protected and preserved. Management systems must
be used to deal with the storage and the secure preservation of secrets along with their
associations to the correspondent encrypted documents. Scalability and management
of comple xity are two key aspects that need to be addressed. In addition, running
these management systems has strong implications in terms of accountability and
liability.

Services can be built on top of cryptographic mechanisms to provide added value
functionalities to users, store and protect secrets and be outsourced to expert and
accountable service providers.

An example of such a service, built by using traditional cryptography, allows people
to encrypt and distribute confidential documents, along with their intended disclosure
time. The encryption mechanism is based on enveloping techniques, involving
symmetric keys and a certified public key associated to the service (which has the
correspondent private key). A confidential document is encrypted with a symmetric

8

key generated on-the-fly. The symmetric key is encrypted with the public key of the
service. Encrypted documents can be distributed to third parties. A receiver of the
document must interact with the service to obtain the correspondent decryption key
(symmetric key): the service will reveal it only at or after the intended disclosure time
of the document. A detailed description of the above service can be found in chapter
7.

Identity-based Encryption (IBE) schema [7], [8] an emerging cryptography schema,
can be used to build services that are simpler and more efficient than the ones based
on traditional cryptography (based on RSA public key cryptography, or similar, and
symmetric key cryptography). The next chapter describes the properties of this
schema.

Chapter 6 describe the time vault service, an innovative service built to enforce the
time-based confidentiality of digital documents, based on the IBE technology.

Chapter 7 compares this service with a similar service built by using traditional
cryptography.

5. IBE Approach

The ideal solution to the time-based confidentiality problem would be a cryptographic
mechanism where “decryption keys” are generated only at the intended disclosure
time of the encrypted documents: no secret would exist before that time. This would
avoid additional cost in managing and storing secrets, as they would be generated
only at the decryption time.

Unfortunately there is not such a kind of solution available today, as all known
solutions directly or indirectly rely on one or more initial secrets (that must then be
protected over time).

This should not prevent researchers from investigating alternative approaches that
help to build simpler, easier to secure and more efficient solutions that the ones that
can be built today by using traditional cryptography.

The Identity-based Encryption schema (IBE a.k.a. ID-PKC [7]) is an emerging
encryption schema that can be successfully used to achieve these objectives. Next
section briefly describes the IBE core propertie s and the IBE basic interaction model.
Please read the Appendix A for more details about the QR IBE cryptographic schema.

5.1 IBE Cryptography Schema

The IBE cryptography schema has two basic properties:

• 1st Property: any kind of string can be used as an IBE encryption key (public
key). This “string” can consist of any sequence of characters or bytes such as a
text, a name, an e-mail address, a picture, a list of terms and conditions, etc.
Information is encrypted by using a string along with a “public detail”,
uniquely associated to a specific trusted third party, referred in this paper as

9

trust authority. This trust authority is the only entity that can generate the
correspondent IBE decryption key;

• 2nd Property: the generation of an IBE decryption key (associated to an IBE

encryption key, i.e. a string) can be postponed in time. In other words an IBE
decryption key can be generated (by a trust authority) a long time after the
correspondent IBE encryption key was created.

Figure 2 shows the details about the (three corners-based) IBE interaction model:

Alice

Trust
Authority

Secrets = {p, q}

Bob

2. Alice knows the Trust Authority's
published value of N { = p*q}
(N, the Public Detail, is well known or
available from reliable source)

3. Alice chooses an appropriate
Encryption Key (Public Key).
She encrypts the message:

Encrypted message
= {E(msg, N, public key), public key}

4. Alice Send the encrypted Message
to Bob, along with the Encryption
Key

5. Bob request the Decryption
Key associated to the Decryption
Key to the relevant
Trust Authority,

6. The Trust Authorities issues
Decryption Key
corresponding to supplied
Encryption Key.
Should only do so if he is
happy with Bob’s
entitlement to the Decryption
Key.
Needs some secret material
(p, q) to perform the
computation.

1. Trust Authority
publishes a Public Detail
(N = p*q)

4

5 6

Figure 2: High-level IBE Interaction Model

Three players are involved in the above interaction model: a sender of an encrypted
message (Alice), the receiver of the encrypted message (Bob) and a trust authority in
charge of issuing decryption keys.

Alice wants to send an encrypted message to Bob. Alice and Bob trust a third party,
the trust authority (TA). The following steps take place:

1. During the TA’s initialisation phase, the TA generates a secret (stored and
protected at the TA site) and a correspondent “public detail” that is made
publicly available.

2. Alice trusts the TA. She retrieves the public detail from the TA site;

3. Alice wants to send a message to Bob. She defines an appropriate IBE

encryption key (public key) to encrypt this message. The IBE encryption key
can be any type of string, for example Bob’s e-mail address. Alice’s message
is encrypted by making use of this IBE encryption key and the TA’s public
detail.

4. Alice sends the encrypted message to Bob, along with the IBE encryption key

she used to encrypt the message.

10

5. Bob needs the decryption key associated to the above IBE encryption key, to

decrypt Alice’s message. Bob has to interact with the trust authority. He
might have to provide additional information (credentials) to prove he is the
legitimate receiver of the message.

6. The trust authority generates and issues to Bob the IBE decryption key

(associated to the IBE encryption key chosen by Alice) if it is satisfied by
Bob’s “credentials”. The trust authority might decide to generate the IBE
decryption key depending on the fulfilment of specific constraints as specified
by the correspondent IBE encryption key. For example a trust authority might
issue an IBE decryption key to Bob only if he is compliant with a well-defined
list of terms and conditions. Please notice that the IBE public key (i.e. a
string), used to encrypt the document, would directly specify the list of these
terms and conditions.

5.2 Leveraging the IBE schema

A service can be built to address the time-based confidentiality problem by leveraging
the two core IBE properties:

• Any string can be used as an IBE encryption key (public key). Specifically,
this string could be the date and time of disclosure of the confidential
document. For example, the string “GMT200301011200” can be used to
encrypt a document and specify that its disclosure date is on January, 1st, 2003,
at 12:00 noon (GMT).

• An IBE decryption key can be generated after the creation of the

correspondent IBE encryption key. Specifically this decryption key can be
generated by a trust authority exactly at the time of the intended disclosure of
the document. The IBE encryption key itself specifies the intended disclosure
time, as described above.

The entity that provides the above service runs a trust authority in charge of
generating the IBE decryption keys. Of course it has to create, store and protect the
trust authority’s secret necessary to generate all the subsequent decryption keys.
Nevertheless, this is the only secret (independent by the number of decryption keys
that are generated from it) that needs to be preserved and security efforts can be
concentrated to protect it.

The IBE encryption keys used to specify time-based constraints are intuitive strings,
intelligible both to humans and computers. They are self-contained: they are used for
encryption purposes and, at the same time, define the constraints under which IBE
decryption keys can be generated.

The problem of storing and protecting the corresponding IBE decryption keys does
not exist, as they are physically generated by trust authorities only when they are
required.

Chapter 6 describe in more details this service, named “The Time Vault Service”.

11

Chapter 7 compares this service with a correspondent service based on traditional
cryptography and highlights its advantages.

6. The Time Vault Service

The “Time Vault Service” is an innovative service based on IBE cryptography,
designed to address the time-based confidentiality problem. It can be used to encrypt
sensitive information and ensure that the correspondent decryption keys are issued
only at its disclosure time.

Figure 3 shows the high-level aspects of this service:

Time=“GMT200301011200”
Decryption Key = sdfsdfsdf32

Bob has to wait until
The right time has come
before the decryption key
Is made available by the
Time Vault Service

Alice encrypts document
with “GMT200301011200”
encryption key (disclosure time of
the document) and then distributes
it.

Here Alice uses a predictable
encryption key knowing that
the corresponding decryption
key will only be available after
a specific time

Time Vault Service

Figure 3: Time Vault Service: key aspects

Alice has a confidential document. She wants to send it to Bob but at the same time,
she wants to keep its content confidential till a predefined date and time, for example
January 1st, 2003, 12:00 noon (GMT). She uses the time vault service, a service run
by an accountable trusted third party. She has to encrypt her document with a string,
an IBE encryption key. This string contains the date and time of disclosure of the
document (for example “GMT200301011200” , i.e. January 1st, 2003 – 12:00 noon
(GMT)). To achieve this she also need to use the IBE public detail associated to the
time vault service (the time vault service is providing the functionality of a trust
authority). She sends the encrypted document to Bob, along with the expected
disclosure time (IBE encryption key).

The time vault service continually generates and publishes IBE decryption keys
(given a predefined frequency) associated to the current date and time (obtained by a
trusted clock). Please notice that the current date and time is interpreted as if it was
an IBE encryption key. For example, the time vault service could have been
configured to generate an IBE decryption key every hour. If the current time is, for
instance, August 8th, 2002, 13:15 (GMT), the time vault service will generate an IBE
decryption key at 14:00, correspondent to the “GMT200208081400” IBE encryption key.

12

It did exactly the same thing at 13:00, by generating an IBE decryption key associated
to the “GMT 2002080813:00” IBE encryption key and so on. The time vault service is
completely unaware of the usage that people make of the IBE decryption keys it
generates.

The IBE decryption key that Bob needs to decrypt Alice’s document will be generated
by the time vault service only at the date and time specified by Alice’s IBE encryption
key. Nevertheless, because of the above property, the time vault service does not need
to know about the existence of Alice’s IBE encryption key and the fact that Bob is
waiting for the correspondent decryption key.

When Alice generates her time-based IBE encryption keys, she must use the same
(string) format adopted by the time vault service for its time-based IBE encryption
keys (used to generate the correspondent IBE decryption keys).

In the specific example, Bob has to wait until January 1st, 2003, 12:00 noon (GMT) to
obtain the decryption key necessary to decrypt Alice’s document: only at that time,
the time vault service (independently by Bob’s needs) will generate the required IBE
decryption key.

With this simple service it is possible to encrypt a confidential document just by
specifying its disclosure time as an IBE encryption key. The encrypted document can
then be distributed to the intended receivers. These receivers rely on the time vault
service for generating the decryption keys at the right time.

Figure 4 shows more details about the architecture of the time vault service:

secret

<Date Time,
Decryption Key>

IBE
Encryption
Module

IBE decryption
key Generator

Trusted
Time Server

(Trusted Authority)

Distribution Service

IBE
Crypto Libraries

PD

IBE
Decryption
Module

GUI Trusted
Clock

IBE
Crypto Libraries

Client Application/
Plug-in

WS APPS DB

WS APPS DB

WS APPS DB

Figure 4: Time Vault Service: High Level Architecture

This architecture consists of three main components:

13

• Trusted Time Server: it is based on an IBE trust authority. A public detail is
initially created by this server and publicly made available. The correspondent
secret is locally stored and secured. The purpose of the time server is to
continually issue IBE decryption keys correspondent to the current date and
time, independently by the usage that third parties are going to make of it.
Specifically, the frequency of issuances of these decryption keys depends on a
predefined granularity, such as every minute or every hour or every day.
 The current date and time is considered by the time server as an IBE
encryption key (public key). The time server issues decryption keys
correspondent to these IBE encryption keys, based on a date and a time. For
example if the current time is 2002-08-08 12:00 GMT, the trust server will
issue an IBE decryption key associated to the “GMT200208081200”
encryption key (assuming that this is the string format used to represent the
current date time and it is used as an IBE encryption key).
The time server is built in a way that it cannot generate decryption keys that
correspond to points of time greater than the current time. Once IBE
decryption keys are generated, they are publicly disclosed and published on an
external distribution service along with their correspondent IBE encryption
keys (i.e. strings containing a date and time).
The time server makes use of a reliable and secure clock, for example an
atomic clock. In general the time server is built with secure and fault tolerant
technology: it is run in a protected environment inaccessible from the external
world. It is important to notice that the time server is a self-contained
component. It is a robust component that does its job independently of how the
decryption keys it generates are going to be used (if they are). Because of this
aspect, it is possible to minimise the interactions the time server has with the
external world (basically it only interacts with the distribution service with an
outgoing interaction, to publish key pairs), strongly protect and secure it.

• Distribution Service: the distribution service is an Internet portal specialised
in publishing IBE decryption keys (along with the correspondent time-based
IBE encryption keys) issued by the time server. Basically the distribution
service stores, indexes and publishes <IBE encryption key, IBE decryption
key> pairs, where the first component is a formatted date-time IBE encryption
key and the second component is the correspondent IBE decryption key as
generated by the time server.
Users can access this information either by means of traditional browsers or
programmatically, by querying the portal with a date and time (IBE encryption
key) and obtaining back the correspondent IBE decryption key (if currently
available).
For example, if a person wants to know what is the IBE decryption key
associated to the “GMT200208081200” encryption key, they will use this
string to query the distribution service. The distribution service will return the
correspondent decryption key if it has been issued by the time server,
otherwise an error message will be thrown.
The distribution service can be implemented as a fairly traditional Internet
portal including a web server, front-end scripts (such as CGI scripts, servlets,
etc.) and back-end applications and databases. These resources might be
replicated across multiple web servers for load balancing. Similarly, the stored
information (<IBE encryption key, IBE decryption key> pairs) can be

14

replicated across distributed databases which are securely run in the back-end
of the portal infrastructure.
The distribution service has to be reasonably protected against denial of
service attacks and attempts to modify or destroy its information.
Nevertheless if any part of this information is destroyed or lost, it can be
recreated by the time server, up to the current date and time.

• Client Application: it is the application installed at the client’s site (it might
be a plug-in installed in traditional web browsers) that allows people to
encrypt documents to be kept confidential and decrypt them only at their
intended disclosure time.
The client application contains IBE encryption and decryption modules and it
knows the IBE public detail associated to the time server.
A user that has a sensitive document to be kept confidential till a well-defined
date and time can encrypt this document by simply specifying the date and
time of its intended disclosure. The client application transparently derives an
IBE encryption key (string) from this date and time, encrypts the document
with it and adds the necessary metadata to the encrypted document (such as
the IBE encryption key, i.e. the date and time of its intended disclosure). The
client application does not need to interact with the external world or be online
to achieve this. Everything can be done on a standalone system.
The user can then distribute the encrypted document to whoever he/she think it
might be of interest, by using any digital communication mechanism, such as
e-mail, web site, newsgroup, etc.

The receiver of the encrypted document must have installed the same client
application. By using this application he/she can try to decrypt the received
document. The client application interprets the metadata associated to the
encrypted document, retrieves from it the associated IBE encryption key (date
and time of disclosure of the document) and interacts (on-line) with the
distribution service to fetch the correspondent IBE decryption key, if it has
been published by the time server. In case the decryption key is available, the
client application decrypts the document. In case the decryption key is not yet
available, the client application warns the user about the date and time by
which the decryption key will be generated and published.

The client application can be downloaded by a trusted site, such as the time
server site or the distribution service portal.

The time vault service provides a simple service that:

• enables people to encrypt confidential documents by specifying the date time
of their disclosure;

• ensures that decryption keys are issued by the time server (and published by

the distribution service) only in correspondence of the current date and time,
given a predefined frequency.

The time vault service satisfies the requirements described in chapter 3.

15

• It can be outsourced and run by a trusted third party. This service provider is
accountable for the management of the time server’s secret and its correct
functioning;

• It is simple to use. Decisions about the confidentiality of documents and their

disclosure time still need to be made by people. Nevertheless, after this
decision is made, the client application transparently encrypts these documents
depending on the specified disclosure time. It also transparently retrieves the
correspondent decryption key from the distribution service, if it is available, or
provides useful information to the user about when the decryption key will be
made available;

• It is simple to run. Its components are self-contained. Security efforts can be

concentrated on the core component, the time server: because of how it works,
it is possible to minimise security threats and vulnerabilities;

• It enables the distribution of encrypted digital documents by preserving

efficiency during the decryption phase. Once a document has been encrypted,
it can be distributed to the intended receivers or published. People can receive
it by e-mail or download it (in their encrypted form) in advance, before its
intended disclosure time.
Documents might be very large in size and it might take time and resources for
a complete distribution to the intended audience. The time vault service allows
for the planning of distribution of confidential information in a balanced way,
to avoid peaks and excessive traffic. For example confidential decisions,
reports, presentations and results, can be progressively distributed to the
employees of large companies in their encrypted format, before their content is
actually disclosed.
Once the disclosure time of a document comes, people (by means of their
client applications) can access the distribution service to retrieve the
decryption keys. Large number of people could try to do this at the same time
but they only need to download a few hundred bytes, corresponding to the
desired IBE decryption key. The traffic generated (in term of transferred
bytes) is orders of magnitude smaller than the case where whole documents
need to be downloaded once their content is publicly disclosed.

Next section briefly describes a prototype of the time vault service. Chapter 7
compares this service (based on IBE cryptography) with a similar service based on
traditional cryptography (such as RSA cryptography) and highlights its advantages.

6.1 Prototype

A simple fully working prototype of the Time Vault Service has been implemented, as
a proof of concept.

Figure 5 shows the main components of this prototype:

16

<Date Time,
Decryption
Key>

Pub. Key Dec. Key

(.NET)
Web Service

Web Server
(IIS)(.NET) Application

SQL
Server

Time ServerDistribution Service
Client Application/

Plug-in

Any Type
Of File

.TLF file
(encrypted data +

metadata)

(.NET)
Application

date time
(Encryption
Key)

IBE
Decryption
key

secret

IBE decryption
key generator

PD

PC
Clock

IBE
Crypto Libraries

IBE
Encryption
Module

IBE
Crypto Libraries

IBE
Decryption
Module

GUI

ASP
scripts

Figure 5: Prototype: The Time Vault Service

This prototype has been implemented by using the Microsoft .NET framework –
release version [9].

The time server has been implemented as a .NET application, running on a PC and
getting the current date and time information from the local clock (this is fine
considering the fact that it is a prototype. In a real implementation, this clock must be
reliable, trusted and secured). It uses IBE libraries developed in C (for performance
reasons). The IBE secret (associated to the time server) is generated at the
initialisation serialised and locally stored in a protected XML file. Similarly the IBE
public detail (associated to the time server) is generated at the initialisation time and
then locally stored in a XML file.

Figure 6 shows the a GUI console used to monitor the activity of the time server:

Figure 6: Time Server – Monitoring GUI Console

17

The above figure shows the list of IBE decryption keys generated by the time server
so far, along with the correspondent IBE encryption keys (for example
“GMT200208081621”). For demo purposes the frequency of issuance of IBE
decryption keys was set to 1 minute.

The distribution service is build on top of a Microsoft IIS web server. It consists of
an ASP script, a web service and a SQL server. It runs on a second PC. The web
service exposes a method to publish a key pair (<date and time of disclosure (i.e. IBE
encryption key), IBE decryption key>) in a table of the local Microsoft SQL server. It
is deployed in the distribution service back-end and it can only be accessed by the
time server. The time server remotely invokes its method every time it generates a
new IBE decryption key. The ASP script, accessible through the IIS web server,
allows remote users to query the SQL database for a specific date and time. If
successful, the ASP script returns an XML file containing the correspondent IBE
decryption key.

Figure 7 shows the GUI console used to monitor the IBE encryption and decryption
keys stored in the distribution service:

Figure 7: Distribution Service – Monitoring GUI Console

The client application is a standalone .NET application, containing IBE encryption
and decryption modules, developed in C (for performance reasons). The
functionalities of the client application are exactly the ones described in the previous
chapter. Any kind of document and file can be encrypted by this application: the
encrypted file (.tlf file – time locked file) contains metadata (a header) which includes
the IBE encryption string (date and time of disclosure) used to encrypt the document.
The client application programmatically interacts with the distribution service by
means of the HTTP protocol (the URL of the distribution service in contained in a
local configuration file).

Figure 8 shows the client application:

18

Figure 8: Client Application

Figure 9 shows an example where a file (IBEDemo.ppt) is encrypted with a disclosure
date and time (IBE encryption key) specified by the user, specifically January, 1st
2003 – 12:00 noon (“GMT200301011200”):

Figure 9: Example: Time-based Encryption

The user simply specifies the name of the file and the date and time of disclosure. The
encrypted .tlf file is automatically generated along with the associated metadata.

Figure 10 shows an attempt of decrypting the file before its disclosure time:

Figure 10: Example: Failure in attempting to decrypt a file before its disclosure time

19

In the above example, the client application notifies the user that the IBE decryption
key is not yet available: it will be issued on January, 1st 2003 at 12:00 noon.

The above components have been deployed on different PCs and configured to
interact by means of standard protocols such as SOAP and HTTP.

7. Discussion

The time vault service described in this paper relies on IBE cryptography to provide
its functionality. A similar service can be implemented by making use of traditional
cryptography. The aim of this chapter is to discuss and compare the two approaches.

Figure 11 shows the interactions between a sender of confidential information, a
receiver and the time vault service, implemented by using IBE cryptography:

Time Vault Service: IBE-based Approach

Time
Server

Sender

Receiver(s)

Distribution
Service

1. Generate Symmetric Key Sk
2. Encrypt Document with Sk
3. Encrypt Sk with disclosure date

i.e. IBE encryption key
4. Bundle the encrypted document with

the above metadata: get an
extended document

5. Distribute the
extended document

8. Decrypt or
wait …

6. Ask for IBE decryption key
associated to IBE encryption
key (stored in document’s metadata)

*. (repeated) The Time Server
continuously generates and
publishes IBE decryption keys
associated to the current time

(IBE encryption key)

7. Return decryption key
or an Error

Figure 11: Time Vault Service: IBE-based approach

Let us assume that Alice, the sender, wants to send a confidential document to Bob,
and make sure that Bob can access its content only after a specific date and time.

The following steps take place:

*. Repeated step: the time server continuously generate and publishes IBE
 decryption keys associated to the current date and time (i.e. an IBE
 encryption key);

1. The client application, on Alice’s PC, generates a symmetric key, Sk (purely

for efficiency reasons. The usage of symmetric keys can be avoided as the IBE
encryption key can be used directly, but at a greater cost in compute time);

2. The client application encrypts the document with the symmetric key, Sk;

20

3. The client application encrypts the symmetric key, Sk, with the date and time
of disclosure of the document, i.e. the IBE encryption key;

4. The client application bundles together the encrypted document, the encrypted

symmetric key and the IBE encryption key: it creates an extended document;

5. Alice sends the extended document to the receiver, Bob;

6. The client application, on Bob’s PC, retrieves the IBE encryption key from the
extended document and notifies Bob about the date and time by which the
correspondent IBE decryption key will be issued. Bob decides to ask the time
server for this key. The client application connects to the distribution service
asking for the IBE decryption key associated to the IBE decryption key;

7. The distribution service looks for the decryption key in its database. If the

decryption key is available (i.e. the time server has generated and published it)
it will return it to Bob, otherwise an error message is thrown;

8. The client application, on Bob’s PC, decrypts the message if the correct IBE

decryption key is available or notifies Bob to wait till the disclosure time.

A similar service can be implemented by using traditional (RSA-based) cryptography.
Figure 12 shows the interactions between a sender of confidential information, a
receiver and the “correspondent” time vault service, build with RSA public key and
symmetric key cryptography:

Time Server

1. Define disclosure date (string)
2. Generate Symmetric Key Sk
3. Encrypt Document with Sk
4. Encrypt Sk with Time Server’s Public Key
5. Cluster the encrypted document with

the above metadata: got an
extended document

6. Distribute your extended document

Sender

Receiver(s)

7. Send metadata
to Time Server (through its Access Point)

8. Interpret Metadata: decide if disclosure
time has come.
If it has, decrypt the encrypted symmetric
key Sk

9. Return symmetric key
or an Error

10. Decrypt or
wait …

Time Vault Service: Traditional RSA-based Approach

Access Points

Figure 12: Time Vault Service: RSA-based approach

21

In this case, we assume that the time server has a private key (that is kept secret) and
an associated PKI X.509 identity certificate, that is publicly made available. The
following steps occur:

1. Alice defines the intended disclosure time of a document, i.e. a string;

2. The client application, on Alice’s PC, generates a symmetric key, Sk;

3. The client application encrypts the document with the symmetric key, Sk;

4. The client application encrypts the symmetric key, Sk, and the disclosure time

with the time server’s public key, contained in its PKI X.509 identity
certificate.

5. The client application bundles together the encrypted document, the encrypted

symmetric key (and the disclosure time) and clear text including the string
representing the disclosure time: it creates an extended document.
Specifically, with the term “metadata” we mean the bundle containing the
encrypted symmetric key and the string containing the disclosure time;

6. Alice sends the extended document to the receiver, Bob;

7. The client application, on Bob’s PC, retrieves the metadata from the extended

document and notifies Bob about the date and time of disclosure of the
document. Bob decides to ask the time server for the symmetric key, necessary
to decrypt the document. The client application connects to the time server’s
access service and passes to it the document’s metadata (date and time of
disclosure and encrypted symmetric key);

8. The access service interprets the metadata: it retrieves the string containing the

date and time of disclosure. If the current time is greater than the disclosure
time, it asks for the decryption key to the time server in order to decrypt the
encrypted symmetric key (the time server uses the private key associated to its
public key published in its X.509 identity certificate). Please notice that the
time server should double check that the intended disclosure time encrypted in
the metadata (as originally specified by Alice) is really antecedent to the
current time;

9. In case of success, the symmetric key is sent back to Bob. Otherwise an error

message is thrown to Bob;

10. The client application, on Bob’s PC, decrypts the message if the symmetric
key is available or notifies Bob to wait till the disclosure time.

Both models rely on an accountable and professional trusted third party to run the
service and promptly issue decryption keys at the right time. In both models the time
server has a secret (either an IBE secret or a PKI private key) to be protected, as it is
the core component used to generate decryption keys.

22

Nevertheless the IBE-based model has a clear advantage on the other model, in term
of security, simplicity and efficiency.

In the model based on traditional cryptography, every confidential document can only
be decrypted by heavily interacting with the time server. The access point, associated
to the (RSA-based) time server, has to interpret documents’ metadata to verify if the
constraint on the associated disclosure time is satisfied. In such a case, the time server
needs to decrypt the metadata (as it contains the symmetric key used for encryption).
This needs to happen as the time server is the only entity that has access to its private
key (for security reasons). Both the time server and its access point(s) might have to
deal with peaks of users’ requests and the time server is directly involved in the loop,
every time a decryption activity need to take place. This might create delays and
introduce potential vulnerabilities. Caching mechanisms and replication can be put in
place to mitigate part of the problem but this increases the complexity of the overall
service.

The time server based on the IBE cryptography model is compartmentalised and
standalone: its activity is completely independent by users’ requests for decryption
keys. The only allowed interaction is with the distribution service by means of an
outgoing connection. Because of these two aspects it is easier to protect this time
server than the one based on traditional cryptography.

The service based on the IBE cryptography model is simpler to run than the other
model as it is more modular, each component is self contained and interactions about
these components are trivial.

It is also potentially more efficient. In the IBE-based model, users’ interactions with
the distribution service do not trigger any complex or heavy cryptography
computation, as instead it happens for the other model. Even in case of peaks of
requests, the distribution service only need to execute simple database queries and
return a few hundred bytes to the client (the size of the decryption key). The potential
overhead of this model is due to the fact that the time server has to continuously
generate IBE decryption keys, even if they are not required. Nevertheless, this activity
exclusively depends on a predefined frequency of issuance of decryption keys: it can
be addressed during the configuration phase of the time server.

In term of extensibility, the IBE-based model can be easily used in other contexts,
where a broadcasting model applies. For example, the time server’s capability of
generating IBE decryption keys based on the current time could be coupled with radio
time-signal services (such as [10]) currently operated in many countries: decryptions
keys could be distributed along with the radio signal to any appliance or device able
to understand and interpret the signal.

8. Conclusions

The management of confidential documents is an important issue in the business and
government environments and in the day-by-day life.

23

In this paper we focused on the time-based aspect on confidentiality i.e. the case
where confidential digital documents can only be disclosed after a well-defined date
and time.

We considered two categories of related scenarios: a first category, where confidential
documents are locally protected and distributed to the intended receivers only at their
disclosure time. A second category, where confidential documents are potentially
distributed in advance but their content is made intelligible only at their disclosure
time.

Common approaches to the addressed problem are based on access control and
traditional cryptography mechanisms (including RSA cryptography) along with the
provision of solutions and services that allow the access to confidential documents or
the disclosure of decryption keys only at their disclosure time.

These solutions and services need to be run by professional and accountable entities,
including trusted third parties.

We introduced and innovative service, the time vault service, based on the emerging
IBE cryptography schema. Simple strings can be used to describe the date and time of
disclosure of confidential documents: these strings are also used to encrypt these
documents. Users can encrypt confidential document off-line, without interacting with
the time vault service. The decryption key is unknown at the encryption time.
Encrypted documents can be distributed to the intended receivers. The time vault
service will issue the correspondent decryption keys only at the right time.

We compared the time vault service with a correspondent service built with traditional
cryptography: we showed that the service built by leveraging IBE technology is
simpler, more efficient and easier to protect. A prototype of the time vault service has
been implemented and described in this paper as a proof of concept.

9. Acknowledgement

We would like to thank David Soldera for designing and implementing the core IBE
cryptographic modules used to build the Time Vault Service prototype. A special
thank also to Pete Bramhall for his feedback and comments.

10. References

[1] F. Gallegos, D. P. Manson, S. Allen-Senft – Information Technology
Control and Audit. Auerbach – 1999

[2] R. S. Sandhu, P. Samarati - Access Control: Principles and Practice, IEEE

Communications Magazine. pp. 40-48 - September 1994

[3] D.D. Clark and D.R. Wilson - A Comparison of Commercial and Military

Computer Security Policies. In IEEE Symposium on Computer Security and
Privacy - April 1987.

24

[4] D. Ferraiolo, R. Kuhn – Role-based Access Control. NIST - 1992

[5] W. Diffie, M.E. Hellman – New Directions in Cryptography – 1976

[6] RSA Laboratories – PKCS#7: Cryptographic Message Syntax Standard .

Version 1.5 – 1993

[7] C. Cocks - An Identity Based Encryption Scheme based on Quadratic

Residues. Communications-Electronics Security Group (CESG), UK.
http://www.cesg.gov.uk/technology/id-pkc/media/ciren.pdf - 2001

[8] D. Boneh, M. Franklin – Identity -based Encryption from the Weil Pairing .

Crypto 2001 – 2001

[9] Microsoft – Microsoft .NET framework . http://www.microsoft.com/net -

2002

[10] National Physical Laboratory - The time signal: PIPS service.

http://www.npl.co.uk, UK - 2002

25

Appendix A: An Introduction to the QR IBE Scheme

In this appendix we explain how the quadratic residuosity (QR) Identity-based
Encryption scheme works. We accomplish this by giving an annotated description of
the various algorithms. For a more formal description, see [7].

A.1. The Interaction Model
There are three players in the interaction model - traditionally named Alice, Bob and
Trent.

Alice is trying to get a single bit of information to Bob in such a way that anyone else
that receives the message cannot understand it. That is, Alice is going to encrypt the
message in such a way that only Bob can decrypt it.

Alice does not necessarily trust Bob but she does trust Trent. She is going to trust
Trent to give the decryption key to Bob if and only if Trent is satisfied that Bob is
entitled to it.

A.2. Initialisation
Trent must be initialized before Alice can encrypt the message. The following
example shows an instance of the required initialization steps:

1. Choose a prime p such that p = 3 mod 4
2. Choose a different prime q such that q = 3 mod 4
3. Compute N = p*q
4. Keep p and q secret
5. Publish N

Please notice that:

• We assume that both p and q are big numbers, say 150 decimal digits long. It is
important that these random primes are generated by a cryptographically strong
random number generator.

• We assume that both Alice and Bob know the value of N (but not p and q)

A.3. Encryption
We assume that Alice wishes to encrypt a single bit, m, so that only Bob can decrypt
it. We also assume that Alice knows the public value, N, corresponding to the chosen
Trent and that Alice has chosen an encryption key string that is acceptable to Trent,
for example, Bob’s e-mail address Bob@trent.com.

Alice goes through the following steps:

1.Let r = 2*m – 1. i.e. r = -1 if m = 0 and r = 1 if m = 1.
2.Choose a random number, t, in the range 1 .. N-1 such that jacobi(t, N) = r
3.Compute h = hash(“Bob@trent.com”)
4.Compute s = (t + h/t) mod N
5.Send s and “Bob@trent.com” to Bob.

26

Please notice that:

• The hash function converts the string into an integer in the range 1 .. N-1. This
hash function is required to return a value, h, that satisfies jacobi(h, N) = 1. The
hash function should have the additional property that it is difficult to choose a
string that hashes to a given value of h.

• We assume that t is generated by a cryptographically secure random number
and is in the range 1..N-1. We also assume that Alice keeps t secret.

• The jacobi function, jacobi(a,b) is defined to return 1 if the equation x^2 = a
mod b has a solution and –1 otherwise. This function may be efficiently
computed.

A.4. Decryption
Assume that Bob has just received the encrypted message, s, from Alice. Alice will
also have told him which Trent she used, and the string “Bob@trent.com” that she
used as the encryption string. Bob goes through the following steps:

1.Get the decrypt key, b, corresponding to “Bob@trent.com”, from Trent.
2.Compute m = jacobi(s + 2*b, N)
3.msg = (m + 1) / 2 i.e. msg = 0 if m = -1 and msg = 1 if m = 1.

A.5. Conversion of the Encryption String to the Decryption Key
Trent’s role is to be someone that Alice can trust to issue a decryption key
corresponding to a supplied encryption string to the right person.

Trent computes:

1.Compute h = hash(“Bob@trent.com”)
2.Compute b = sqrt(h) mod N
3.Send “b” to Bob, only if Trent is convinced that the person claiming to be Bob
 really is the Bob that Alice specified.

It is outside the scope of this model to cover how “b” is securely conveyed to Bob.
However, there are ma ny traditional encryption schemas that can be used to maintain
the necessary confidentiality and integrity. In that Bob will already be known by
Trent, they will have previously agreed the mechanism to use for this and will have
the necessary local capabilities and support infrastructure in place.

Please notice that:

• The hash function is the same hash function as used by Alice when encrypting.
Indeed, the value of h computed here is the same as the value Alice would have
computed.

• In practice it is not always possible to compute b. In this case Trent should
compute b = sqrt(-h) mod N instead and Alice should compute s = (t – h*x)
mod N. If Alice does not know whether Bob is “positive” or “negative” then
she should compute both values of s (using different random values of t) and
send both values to Bob. It is up to Bob to choose the correct value of s to
decrypt.

