

Tailoring Java for a Pervasive
Service Infrastructure

Philippe Bernadat, Ira Greenberg, Alan Messer, Dejan Milojicic
Mobile Systems and Services Laboratory
HP Laboratories Palo Alto
HPL-2002-24
January 31st , 2002*

E-mail: [bernadat, iragreen, messer, dejan] @ hpl.hp.com

Internet,
service,
pervasive,
infrastructure,
Java,
interposition

A growing number of mobile computing devices are becoming
available that can access large amounts of data and services
over the Internet. While Java appears to be an appropriate
platform to deal with diversity, our experience reveals that in a
mobile environment it has insufficient support for system
facilities such as remote storage, disconnected operation, and
concurrent execution of multiple services. We believe that these
facilities can be provided transparently and efficiently through
the use of API interposition. We investigate the use of
interposition to provide access to a remote storage service, to
implement a cache for data and services, and to help isolate
services that are sharing a Java virtual machine. We describe
how our approach is implemented and present some
experimental results for CPU and memory usage. Based on our
results, we believe that API interposition will make it possible
to support these infrastructure features transparently and
efficiently with an acceptable overhead.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Tailoring Java for a Pervasive Service Infrastructure

Philippe Bernadat, Ira Greenberg, Alan Messer, and Dejan Milojicic
[bernadat, iragreen, messer, dejan]@hpl.hp.com

HP Labs
Abstract

A growing number of mobile computing devices are
becoming available that can access large amounts of
data and services over the Internet. While Java appears
to be an appropriate platform to deal with diversity, our
experience reveals that in a mobile environment it has
insufficient support for system facilities such as remote
storage, disconnected operation, and concurrent execu-
tion of multiple services. We believe that these facilities
can be provided transparently and efficiently through
the use of API interposition. We investigate the use of
interposition to provide access to a remote storage ser-
vice, to implement a cache for data and services, and to
help isolate services that are sharing a Java virtual
machine. We describe how our approach is implemented
and present some experimental results for CPU and
memory usage. Based on our results, we believe that
API interposition will make it possible to support these
infrastructure features transparently and efficiently with
an acceptable overhead.

Keywords

Internet, service, pervasive computing, infrastructure,
resource, concurrency, mobility, Java, interposition.

1 Introduction

Pervasive computing is increasingly becoming a reality,
with the promise of allowing people to access any ser-
vice, anywhere, at any time. A growing number of
mobile computing devices are becoming available that
have the ability to access data and services from the
Internet. This significantly increases the variety and
number of services or applications that can be accessed
from any mobile device that supports standard Internet
protocols. Throughout the paper, we refer to services
and applications interchangeably.

We would like to support the pervasive computing para-
digm where devices are anonymous “empty” boxes, and
users download the services and data they need from the
Internet. A user would select a device and request a ser-
vice, and it would be discovered, downloaded, and
installed, perhaps with the help of a service broker. The
downloaded program could be a complete, stand-alone
service or the client portion of a service. As the service

executes, user data would be written and stored persis-
tently on a remote storage service based on Internet
standards so the data can be accessed later from another
device. In this way, a user could select any device, cus-
tomize it, and use it to access any previously written
data or to resume a service.

Wireless devices have several limitations when com-
pared with wired desktops. First, disconnection from the
Internet may be more frequent, or may even be desirable
for standard operation. For example, an area may lack
sufficient coverage or a user may intentionally discon-
nect to save power or communication charges. Second,
devices may lack the storage to hold large numbers of
services or large amounts of data. Third, it is easier to
lose or damage portable devices, which can lead to the
loss of data stored on the device.

In addition, mobile, computing devices are very diverse,
and they are becoming more so. They cover a wide
range of functionality from cell phones and Personal
Digital Assistants (PDAs) to laptops, and include a vari-
ety of processors, memory units, disks, communication
channels, operating systems, etc.

These factors indicate that infrastructure support is
needed for remote storage and disconnected operation.
The ability to access a remote storage service would
allow a user to access personal and service data from
any available device and to store and work with large
amounts of data. This could also prevent from losing
data if a device is damaged or lost. Some services work
well, and make sense to use, even when the user is dis-
connected from the Internet. Disconnected operation
would allow the user to continue to work while commu-
nication is unavailable, undesirable, or unnecessary.

An obvious choice for programming diverse devices is
Java. Java is an accepted, mature technology that is
being used to write an increasing number of Internet-
based services. However, while Java has worked well
for servlets and applets on desktops, it is missing some
key functionality to support mobile services. In particu-
lar, we believe that Java requires additional transparent
support for remote storage and disconnected operation.

Another concern with Java is execution overhead. Java
already suffers a performance penalty because it is inter-
preted or compiled on the fly. We believe that it is
1

important to not introduce significant additional over-
head. For example, users would like to simultaneously
execute multiple services on a device. It would be unac-
ceptable to start a new Java Virtual Machine (JVM) for
each of the services that is executed because of the start-
up and memory overhead. However, having multiple
services share a JVM requires infrastructure support for
sandboxing, that is, for multiple namespaces, security,
and concurrent execution. Sandboxing can be provided
by enabling the Java security manager to use a different
class loader for each service, but this doesn’t solve the
problem of conflicting properties.

Our goal is to provide general, transparent support for
this environment. We believe that it is important to pro-
vide a solution that does not rely on platform-specific
features, change the Java specification, change the JVM
implementation, or require services to be written in a
special way.

Our approach is to provide infrastructure support for
remote storage, disconnected operation, and concurrent
execution, through the use of API interposition. This
will allow appropriate pieces of the infrastructure to be
transparently slipped into the execution of unmodified
programs. For example, APIs that access storage can be
replaced with accesses to a remote file system; services
and data can be stored into and accessed from a cache,
which will help with performance and disconnected
operation; and accesses to user, system, and service
properties can be mediated to support secure, concurrent
execution in a single JVM.

The paper is organized as follows. Section 2 describes
our vision for pervasive service access, its requirements,
and its general architecture. Section 3 examines the suit-
ability of the standard Java platform for our require-
ments, and the deficiencies we believe exist. Section 4
describes our approach to overcoming these deficiencies
using API interposition. Section 5 discusses the imple-
mentation of our approach. Section 6 provides our
experimental results for CPU and memory usage. We
discuss the lessons we have learned from this investiga-
tion in Section 7. Section 8 compares our approach to
related work, and Section 9 concludes the paper and
proposes some future work.

2 Requirements
We believe that in the future applications will be deploy-
able as services to a diverse set of devices. We envision
many kinds of services being delivered in this way, from
small games to enterprise applications. Such services
may be delivered over the Internet either in the form of
self-contained code or as client code for a network-
based service. Overall we foresee an architecture where
services can be located with service brokers and

deployed at runtime into any device with a standard-
based runtime (see Figure 1).

We believe users of future pervasive services will want
to be able to use services on devices with the following
characteristics:

• Anonymous Use — Any user can use any service
from any device. As a result, use of any service may
be resumed on any other device, without worrying
how to retrieve or synchronize preferences and data.

• Device Independence — Any device is as good as
another no matter what device hardware is used. Pro-
cessor type, storage capacity, etc. should not deter-
mine which devices can be used.

• Multiple Service Execution — Users will be able to
run multiple simultaneous services on any device.

• Secure, Persistent Data — A persistent version of
data is always transparently maintained to ensure the
system will tolerate data loss. Data should be stored
separately per user and per service to support security.

• Tolerant to Disconnection — Due to coverage limita-
tions or user preferences services should be to tolerate
occasional periods of disconnection.

However, we also believe that to be widely adopted,
these characteristics must be supported on devices
within the following constraints.

• Legacy Support — Legacy services must be able to
execute on the largest range of devices, especially per-
sonal and mobile devices.

• No Significant Additional Overhead — Device runt-
ime support should not add a significant amount of
performance or resource overhead to already limited
devices.

Supporting such a comprehensive set of features under
these constraints requires a comprehensive service infra-
structure. Investigation of this infrastructure is part of
the Service-on-Demand (SoD) project that we are cur-
rently undertaking at HP Labs. In this paper, we focus

Figure 1: SoD overall architecture
2

on the device-side support required to provide these fea-
tures by using as much existing infrastructure as possi-
ble.

3 Platform Analysis
Several systems meet some of our requirements, such as
Sun’s Java and Microsoft’s .NET Common Language
Run-time (CLR). When this paper was written, it was
too early to fully analyze and experiment with .NET, so
for the purposes of this paper we consider Java as a suit-
able platform. Java is also a good choice due to the large
number of existing applets and applications for various
devices.

Looking at off-the-shelf Java environments, we believe
they provide good support for device independence
using abstract bytecodes. However, we believe they do
not meet our other requirements for two reasons.

• Lacking pervasive environment support. Support-
ing anonymous use, persistent data and disconnected
operation requires support that we believe is missing
from the existing Java platform. Java platform imple-
mentations typically store data locally through several
APIs preventing anonymous use and persistence
across devices. Some Java installers cache bytecodes,
but do not consider user data or other content. We
believe that it would be difficult to support these fea-
tures unless changes are made to the source code of
legacy applications or to the JVM. We intentionally
exclude the idea of proposing new APIs for mobile
services because it is difficult to get new APIs widely
adopted. In addition, we do not think it is appropriate
to modify virtual machines because getting new JVMs
adopted for the large diversity of devices will be diffi-
cult in practice.

• Minimizing resource and performance overhead
with multiple services. Java is commonly used for
applets and servlets, but less frequently for applica-
tions. To convince users to switch from platform
native applications (such as those for Windows, Win-
dows CE, and Linux) to Java applications, the users
must perceive that the execution performance will be
comparable. It is well known that executing Java
classes causes some performance penalty because the
code is either interpreted or compiled on the fly. Add-
ing a noticeable amount of additional overhead must
be avoided.

We believe that starting a new JVM for each service is
unacceptable because of the additional storage and
execution overhead. To investigate this belief, we
sequentially executed two instances of a 6KB Java
program named SimpleTextEditor, and measured how
much memory would be incrementally consumed.
The results are reported in Table 1 for two types of

PDAs and a standard workstation. We found that a
significant amount of memory is consumed and that it
would severely limit the number of concurrent tasks
on a memory-constrained device.

We then examined the startup time. We wrote a simple
Java program that reads a given file’s last modification
date, displays it, and overwrites the file. We ran several
instances of this program sequentially. The results are
shown in Table 2. Given the very small processing per-
formed by this program, the elapsed time approximates
the startup time for the virtual machine by itself. On a
PDA device, the JVM’s startup time varies between 2
and 4s, which would add significantly to the application
startup time if a JVM where used for each application.

The additional memory overhead and, to a lesser degree,
the additional startup time overhead would significantly
degrade the overall performance. We believe that the
best solution is to execute all of the services within a
single virtual machine. The fact that some embedded
devices may not be able to concurrently execute multi-
ple virtual machines supports this approach. Using a sin-
gle virtual machine also greatly simplifies sharing
system components such as caches.

3.1 Mobile Environment

Managing user data well in a mobile environment places
strong requirements on the infrastructure. Access to
remote resources (such as Java classes, user data, and
URLs) must be detected and locally cached so that dis-
connection will be less likely to cause services to fail
and so that runtime performance will remain acceptable.

Remote storage. Roaming must be supported. A user’s
personal data and profiles should be available on any
device that the user will employ, and the data must be
stored persistently and securely. We believe that this
should be accomplished by using a third-party storage
service to store and retrieve the data. Because we want

Number
of

Instances

Jornada 720
StrongArm

Jornada
548 SH3

X86 PIII
600 Mhz

Pjava ChaiVM Pjava JDK1.3

1st 3452 3498 2398 9592

2nd 1524 2004 2398 9328

Table 1: Memory usage per program (KB)

Jornada 720
StrongArm

Jornada
548 SH3

X86 PIII
600 Mhz

Pjava ChaiVM Pjava JDK1.3

VM startup
time

2000 4000 3000 200

Table 2: Virtual machine startup time (milliseconds)
3

to support legacy services, we do not want to impose
any software changes to provide remote storage. In
addition, most embedded and mobile devices do not
offer such a remote storage facility, and even if they did,
it would probably be incompatible from device to
device.

Consequently, the remote storage facility must be part of
the SoD infrastructure and should not rely on any plat-
form-specific support. That is, it must be pure Java.

We do not intend to develop new protocols or distrib-
uted file systems. Instead, the infrastructure is designed
so that any off-the-shelf software that implements a
remote storage service can be plugged in. In our proto-
type, we use an FTP Java client developed by IBM [1]
as the storage service. The base runtime only contains
the modules to cache and synchronize the data. Our pro-
totype synchronizes storage at the granularity of a file
because this is the granularity used by FTP, but nothing
prevents the prototype from supporting different poli-
cies.

Applications use the standard java.io package to
store data. When methods from this package are
invoked, the infrastructure transparently loads the files,
and refreshes and updates them on the remote storage
server. Similarly, other methods such as
java.awt.Toolkit.getImage need to be redirected
to the remote server.

Disconnection. Continuous connectivity to the Internet
remains expensive and is not guaranteed. However,
some services can proceed locally when the user’s
device is disconnected from the Internet if the necessary
data and code is cached on the user’s device. The cache
should also be regularly synchronized and flushed, as
required. Our infrastructure caches three types of data:

1. Application Java classes. A special case of URL
content, whose refresh period can be arbitrarily
large.

2. User data. Must be synchronized periodically with
a rather small period. In our prototype, FTP URLs
are used to support file reads and writes.

3. Other URL content. Non-static content must be
refreshed adequately and URLs using the HTTP
protocol’s PUT command must bypass the cache.

The cache also contributes to better performance, espe-
cially when restarting a service and accessing user data.

3.2 Concurrency within a Single JVM

To execute multiple applications concurrently within a
single virtual machine, they must be carefully isolated
into what we refer to as sandboxes [24] so that they will
execute as securely as if they are not sharing the virtual

machine. Without this support, the applications would
share the namespace, the file system, the thread pool,
system-sensitive APIs such as java.lang.Sys-

tem.exit, and system properties. We do not consider
scheduling, resource management, or denial-of-service
issues resulting from the sharing of CPU and memory
[3, 4] because the device is dedicated to a single user.

Namespace isolation is mandatory because package and
class names may collide, but it also helps prevent appli-
cations with different trust levels from communicating.
Sharing a file system between applications can also lead
to security violations. Notice that the security problems
associated with sharing a file system can occur even
when the applications are executed in separate virtual
machines.

Disjoint namespaces. In Java, class loaders can be cre-
ated to load classes in any way desired and to establish
private namespaces. We instantiate one class loader per
application to guarantee that the class or package names
for distinct applications will not collide. The class
loader attempts to load the classes from the locations
returned by the service broker. It can download both
applications and applets as jars or collection of classes.
Each service is started from a thread in a new thread
group associated with the namespace.

There is a one-to-one correspondence between a class
loader, a namespace, and a sandbox. Any entity that is
private to an application (besides its classes) is part of
the sandbox. Examples of entities are a thread or a prop-
erty such as user.home. At any time, system APIs may
need to retrieve information from the sandbox. The
thread context cannot be used to reliably identify a sand-
box because packages such as AWT dispatch events
through a system-distinct thread. This problem is solved
through the use of a security manager as described in the
following sections.

System sensitive APIs and properties. A Java applica-
tion can create a single security manager [11] to control
access to any system-sensitive API. Within the security
manager, it is possible to walk through the invocation
stack to retrieve the class loader (i.e., the sandbox) of
the requester, and use this information to grant or deny
access to the API. This is appropriate for some APIs
such as java.lang.System.exit where the security
manager will deny the access and destroy the sandbox
instead of shutting down the virtual machine. A problem
with a security manager is that it can only allow or deny
access to a file system; it cannot redirect access to a
remote file system.

Resource access control. Because applications with
various levels of trust can run simultaneously, the
resources that each application can access must be iso-
4

lated. For storage, the ideal approach would be for the
user to specify the storage path (or set of files) that the
application is authorized to access. However, the infra-
structure could automatically create a distinct storage
space for each application by an approach such as add-
ing a directory name to each storage path.

The Java Security Manager makes it possible to grant or
deny access to a given API or resource, but it doesn't
allow the API's behavior or the resource's name or loca-
tion to be altered. The application usually opens user-
private files through some dialog and intermediate files
from the current user directory. We want to dynamically
change this behavior so that file access is performed rel-
ative to some storage private to the application and its
sandbox.

Properties. Applications access properties, such as
user.dir or java.io.tmpdir, through the
java.lang.System package. The values of these
properties need to be distinct for each application. The
security manager is contacted on each property request
and is able to either grant or deny the access. This
behavior is insufficient. We need to maintain a property
set for each sandbox so that applications do not share
the same storage space. The appropriate private property
value must be returned instead of the common system
value. One way to solve this problem is to overwrite the
shared system properties with the private sandbox prop-
erties before granting access, but there is no guarantee
that the private properties will not be changed by a con-
currently executing application before the initial appli-
cation can access them.

3.3 Affected APIs

Based on our analysis in sections 3.1 and 3.2, we identi-
fied the Java APIs for which the infrastructure must per-
form some special task. These APIs are summarized in
Table 3. We did not employ any formal method to iden-
tify all the Java APIs that access resources, so there may
be other classes to consider. For instance,
java.awt.Toolkit.getImage() may be imple-
mented through the instantiation of a java.io.File
object, but this cannot be guaranteed. Even if it is, it
would be difficult to modify the Toolkit standard
class, as we explain later. Instead, we must consider the
Toolkit class as accessing resources.

We restricted our API coverage to Java 1.1. For later
revisions, other system packages such as Swing would
require the same sort of analysis. For instance, the file
dialog class of the Swing package would require similar
interposition to the AWT file dialog class.

4 Approach
The problems we have identified require modifications
to the functionality of standard system APIs. The most
straightforward solution would be to replace the stan-
dard system packages with new implementations. How-
ever, this would be tedious because each affected class
must be fully re-implemented. In addition, it may be
impossible to do this anyway if some native code is
required.

Because the JVM and the original application source
code cannot be modified, we propose modifying API
functionality by using API Interposition to intercept
standard API invocations. This is accomplished by
extending the APIs of the standard system classes by
adding a distinct prefix to the class hierarchy
namespace. For example, an intercepted version of
java.io.File might be named inter-

posed.java.io.File. Then its constructor cannot be
magically invoked by the application code.

This approach is implemented by using the technique of
“bytecode editing” to intercept calls to constructors and
instantiate an object of the extended class. The extended
class contains methods that supersede the initial ones
and perform appropriate actions on the interposed
object. For example, for the java.io.FileInput-

Class Reason
java.io.File
java.io.FileInputStream
java.io.FileReader
java.io.FileWriter
java.io.FileOutputStream
java.io.RandomAccessFile
java.io.PrintWriter
java.util.zip.ZipFile

User files are cached locally.
The cached local file is
extended so that it can be
filled/refreshed/flushed from/to
a remote storage server.

java.awt.FileDialog
The dialog browser must
browse the content of the
remote storage server.

java.awt.Frame

Our infrastructure is 1.1 com-
pliant but requires the 1.2 get-
Frames() API. It must be
modified to keep a frame list.

java.awt.Toolkit
getImage() must look up
remote storage using the cache.

java.lang.System.
getProperties() must check for
overwritten properties on a per
sandbox basis (user.dir ..)

java.lang.Class
forName() must be intercepted
to detect the instantiation of
interposed classes.

java.net.URL Intercept openConnection()

java.net.URLConnection Cache URL content

Table 3: Affected classes and APIs
5

Stream class, the constructor is changed to instantiate a
FileInputStream object in the cache directory, and
its content is initialized from the remote storage server.
The application then interacts with this local cache
FileInputStream object. The close method could
ensure that the file content is flushed to the storage
server. Some methods of a class may not need to be
redefined in the extension.

Final classes and abstract classes cannot be intercepted
this way. By definition, it is impossible to extend final
classes. Abstract classes can be extended, but because
they cannot be instantiated, there are no constructor
invocations. Consequently, for abstract classes, we
intercept and override invocations of the specific meth-
ods whose behavior we want to modify.

In the following sections. we provide Java source code
examples to illustrate how legacy application classes
need to be transformed. In a real system, application
source code is not required, and class files are modified
as described in Section 5.

4.1 Interposing classes.

In order for instances of class A to be replaced by
instances of class interposed.A, new statements
and constructor invocations for class A must be
replaced by new statements and constructor invocations
for class interposed.A, respectively.

The following SimpleFile class

when edited to interpose class java.io.File is trans-
formed into

Changes are underlined. The public fields declaration
(File file) and method signatures (File add) are not

modified because they are exported outside of the class.
Because the newly created object is an extension, no
other statement has to be modified.

The class extension would contain statements such as:

Any number of APIs from this class can be overwritten
in the extension.

4.2 Interposing Methods

Two kinds of classes cannot be interposed as described
above.

• The class is final, and by definition cannot be
extended (e.g., java.net.URL, java.lang.Sys-

tem, java.lang.Class)
• The class is abstract, and hence is never instantiated

by the application but rather by platform-specific rou-
tines (e.g., java.awt.Toolkit, java.net.URL-
Connection)

An object from these types of classes cannot be instanti-
ated from a class extension. Consequently, instead of
replacing new and <init> method invocations, a call to
a class method that needs to be altered must be replaced
with a call to a static method of a newly created abstract
class.

4.3 Abstract Classes

An obvious example of this approach is substituting the
getProperty method from the java.lang.System
abstract class. In SoD, this method needs to be modified
so that it will return the private property value from the
sandbox. The following GetMyProperty class

would be modified as follows to interpose the Sys-
tem.getProperty method

import java.io.File;

public class SimpleFile {
 static public File file;

 public File add() {
 return new File("add");
 }

 public static void main(String argv[]) {
 file = new File("aFile");
 String name = file.getName();
 file = new SimpleFile().add();
 }
}

import interpose.java.io.File;

public class SimpleFile {
 static public java.io.File file;

 public java.io.File add() {
 return new File("add");
 }

 public static void main(String argv[]) {
 file = new File("aFile");
 String name = file.getName();
 file = new SimpleFile().add();
 }
}

package interpose.java.io;

public class File extends java.io.File {

 public File(String name)
 throws NullPointerException{
 // .. our own initialization
 }

 public long lastModified() {
 // ...
 }

 // other modified APIs ...
}

public abstract class GetMyProperty {
 public static void main(String argv[]) {
 String s;
 s = System.getProperty("foo");
 }
}

public abstract class GetMyProperty {
 public static void main(String argv[]) {
 String s;
 s = interposed.System.getProperty("foo");
 }
}

6

and the new abstract file could be

4.4 Final Classes

If a class is final but not abstract, the reference to the
object on which the initial method was called cannot be
discarded. This is handled by passing the reference as an
argument to the interposed static method. Here is an
example for the final java.net.URL class.

The modified code would be

The new abstract class would be similar to

Note that the substituted method may be a constructor
(<init>) as it would be for the URL(java.net.URL)
constructor. While the replacing method initializes an
instance of the extended class when regular class inter-
position is used, here it must return (versus initialize) an
instance of the initial class. So the following class

would be replaced by

and the abstract class could be

4.5 Reflection Support

Classes can be instantiated indirectly through the
java.lang.reflect package to allow the application
to control and manipulate Java code. Since this API pro-
vides abstract control of Java code, replacing method
invocations is insufficient. We have chosen to interpose
with access to the java.lang.Class itself and inter-
cept the forName() call to detect lookups of interposed
classes and substitute the class name. We understand
that this approach may not cover all cases (e.g., Java-
Beans) because an object can be instantiated without
using its full interface name. An alternative would be to
interpose on access to the newInstance APIs from the
java.lang.Class and java.lang.reflect.Con-
structor classes.

Similarly, the invocation of a method that is interposed
(versus a class) may be performed through reflection.
This case was not handled in our prototype, but simi-
larly the java.lang.reflect.Method class would
require interposition to detect invoke method invoca-
tions.

5 Implementation
SoD is written entirely in pure Java. It has been used to
perform experiments on PDAs and workstations under
the Windows NT, Windows CE, and Linux operating
systems. SoD has been executed with a variety of JVMs,
such as Sun’s JDK, Sun’s Personal Java (PJava), and
HP’s Chai. Each is a different implementation of the
Java specification, either version 1.1 through 1.3 (JDK)
or just version 1.1 (PJava and Chai). The exact same
runtime library runs on the various platforms.

The interposition mechanism is implemented as an inde-
pendent module, and is also written in pure Java so it
can be reused outside of SoD. Our implementation
defines a classloader, with an instance per application,

package interpose.java.lang;

public abstract class System {
 public static String getProperty(String s) {
 // ... any specific code to fetch
 // private property value from sandbox
 return (String) ...;
 }
}

import java.net.URL;

public class SimpleURL {
 public static void main(String argv[]) {
 try {
 URL url = new URL("foo");
 InputStream is;
 is = url.openStream();
 } catch (Exception e) {
 }
 }
}

import java.net.URL;

public class SimpleURL {
 public static void main(String argv[]) {
 try {
 URL url = new URL("foo");
 InputStream is;
 is = interposed.java.net.URL.openStream(
 url);
 } catch (Exception e) {
 }
 }
}

package interpose.java.net;

public abstract class URL {
 public static InputStream
 openStream(java.net.URL url)
 throws IOException {
 // ... specific code
 return (InputStream) ...
 }
}

import java.net.URL;

public class SimpleURL {
 public static void main(String argv[]) {
 try {
 URL url;
 url = new URL("foo");
 } catch (Exception e) {
 }
 }
}

import java.net.URL;

public class SimpleURL {
 public static void main(String argv[]) {
 try {
 URL url;
 url = interposed.java.net.URL.URL("foo");
 } catch (Exception e) {
 }
 }
}

package interpose.java.net;

public abstract class URL {
 public static java.net.URL URL(String s) {
 throws MalformedURLException {
 // ... any specific code ...
 return (java.net.URL) ...
 }
}

7

to allow us to gain control when code is loaded into the
virtual machine. It is given a list of class and method
names to interpose, and the corresponding names to use
to extend classes and redefine methods. The interposi-
tion occurs dynamically when a class is loaded. The
modified classes may be cached on the user’s device to
avoid re-applying the same changes when it is next
used. The modified class byte array is then passed to the
virtual machine. The overall implementation architec-
ture can be see in Figure 2.

The class file format. A class file is typically composed
of a constant pool and a collection of descriptors.

• Constant pool. Four of the eleven constant types are
of interest here: constant strings (utf8), class names,
method references, and method signatures. All of
these constants are referenced in the bytecode by
indexes into the constant pool. There are no duplicate
entries. If a user-defined string and a method have
identical names, they will refer to the same constant.

• Descriptors. There are descriptors for fields, inter-
faces, methods, and other class attributes, such as
exception tables and inner classes. Field, interface,
and method descriptors include an index into the con-
stant pool for the component’s name plus information
related to the component itself. Examples of this infor-
mation include a method’s bytecode, and a field’s
access flags, type, and initial value.

Classes can be loaded much more quickly if the classes
that need interposition can be detected without having to
parse all of the bytecodes. To achieve this goal, we iden-
tify the APIs that require interposition by examining the
class names and method references in the Java constant
pool.

5.1 Class Interposition

Once we identify a class that needs to be interposed, we
have to detect whether it will be instantiated. We assume
that if the class contains a constructor (named <init>)

then objects of that class will be created. We can inter-
pose these constructors by parsing the method refer-
ences and redirecting them, and in this way avoid
having to parse all of the bytecode.

If such a constructor reference exists, then we must also
handle invocations to the class throughout the bytecode.
In addition, because a constructor invocation is always
preceded by a new statement with a class reference as an
operand, we must also handle the class reference.

Surprisingly, these tasks can be performed with only
very small modifications to the bytecode. They are
accomplished by renaming the initial class name to the
interposed class name in the constant pool. This change
will automatically cause the new statements and
<init> invocations to reference the proper interposed
class.

However, other kinds of references to the initial class
are wrong, such as those for the class’s fields and meth-
ods. These references are handled by making a copy of
the initial class name and entering it as a new constant in
the constant pool. We then modify these references so
that they point to this new constant, which contains the
initial class name.

5.2 Method Interposition

Method interposition for final and abstract classes is
more complicated because a non-static method invoca-
tion (i.e., invokevirtual) must be converted to a
static method invocation. This can only be accom-
plished by actually parsing and modifying the bytecode.

First, similar to the way that class interposition is han-
dled, the constant pool is parsed to detect candidate
methods and obtain their indexes. A new constant pool
entry is created for the replacing method. Then the byte-
code is scanned to retrieve the invocations. If the
method is static then we must change the reference to a
non-static invocation and the operand of the method’s
reference index must be changed. Static invocations
place the object reference as the first item on the stack.
We can leave this on the stack, treating it as the first
argument of the non-static invocation, and thereby limit-
ing the changes required.

The advantage of this technique is that the bytecode size
is unchanged and no bytecode translation is required.
One exception is replacing a constructor invocation of a
final class with a static method, which causes the new
and dup bytecodes to be removed. We replaced them
with nops bytecodes to maintain the length.

Cache

Broker Client

Launcher

Application sandboxes

URLs User data UI

 Storage engine

Figure 2: Client runtime framework
8

6 Experiments
First, we investigated the code size increase as a result
of interposition, using the six applications described in
Section 5. Table 4 shows that the code footprint is
increased by 0.3% on average. In the worst case we only
get an 8% increase due to the tiny, single class applica-
tion used. Note, these numbers do not consider the size
of the new extended classes and newly created static
classes that are part of the runtime, which is only a fixed
cost. Most of the increase is because of the class file
renaming. In our prototype, each interposed class’ name
was prefixed with additional twenty characters.

Second, we analyzed how the class loading time was
affected (see Table 5). The overhead increases close to
linearly with the byte code size and the increase reaches
76% for a 1 MByte application. However, this overhead
is incurred once at first load time, and does not affect the
application’s runtime. One cause of this runtime over-
head is our use of the DataOutputStream write API
for nearly every byte of the class file This can undoubt-
edly be improved. This significant overhead favors our
use of a cache for the modified classes.

Next, we wanted to understand how much of an applica-
tion was modified by the interposition we perform. For
our investigation, we collecting interposition statistics
from six applications (PIM, Ftp client, web browser,
image manipulation, crossword, and a mail client). Our
results show that 18% of the classes were changed due
to interposition (Table 6).

The class file size for the additional interposed classes
and methods is around 30 KB (based on the APIs in
Section 3.3). The interposition system is 90 KB includ-
ing a non-optimized, general-purpose class file editing
package of around 80 KB.

6.1 Micro-Benchmarks

Given the large number of interpositions, we next inves-
tigated the performance of actual single interposition-
ings. We performed three micro-benchmarks to measure
the cost of interposed classes in terms of runtime over-
head. First, we measured the interposition mechanism
cost of null invocations using class interposition, and
second we measured the same for method interposition.
Third, we measured the overall cost of interposed file
access for simple operations. Measurements were per-
formed with both JDK version 1.3 (JIT enabled) and
Pjava on the same PIII 600Mhz workstation.

For class and method interposition we interposed null
classes and methods, using constructors and methods
that invoke their super classes. Thus, we only measure
the cost of going through an extra level of indirection.

Class Interposition overhead. We interposed the
java.util.Random class with the following one:

The results in Table 7 indicate that the overhead is less
than 0.2µs with JDK and less than 2µs for Personal Java.

Method interposition overhead. We interposed two
methods for the abstract java.lang.System class
with the following code:

Increase
(bytes)

Total
(bytes)

%

Average 7004 1930436 0.3
Worst case 379 4680 8

Table 4: Class file size increase

Application
Size
KB

Class count Load time (seconds)

Total Changed Initial overhead %

crossword 26 7 2 0.57 0.11 19
PIM 51 29 2 0.91 0.36 39
ftp 142 22 4 2.00 0.66 33
Browser 180 51 8 2.88 0.81 28
mail client 366 138 23 3.05 1.95 64
Imaging 1145 129 21 4.23 3.23 76

Table 5: Class load time overhead for interposition

Modified Total %

Number of classes 71 383 18
Size (bytes) 589552 1930436 30

Table 6: Modified classes

package interpose.java.util;

public class Random extends java.util.Random {
 public Random() {
 super();
 }
 public long nextLong() {
 return super.nextLong();
 }
}

Operation
JDK1.3 Pjava

µs % µs %

new Random() 0.01 2 1.91 23
Random.nextLong() 0.02 9 0.41 11
Random.nextInt() 0 0 0 0

Table 7: Class interposition overhead

package interpose.java.lang;

import java.util.*;

public abstract class System {
 public static Properties getProperties() {
 return java.lang.System.getProperties();
 }
 public static int identityHashCode(Object o) {
 return java.lang.System.identityHashCode(o);
 }
}

9

The overhead is in the same range, less than 0.01µs for
JDK and 1µs for Pjava (see Table 8).

For both class and method interposition measurements
(see Tables 7 and 8), the initial constructor and method
executions are relatively quick and explain why over-
heads vary from 9 to 23%. The identityHashCode
relative overhead is itself very large (67%) because this
method is native and the extension is pure Java.

File access benchmark. We performed more user-sen-
sitive measurements related to file storage in the context
of SoD. The interposed classes are java.io.File and
java.io.File.InputStream. Typically the exten-
sions check if the file is remote and if so either creates a
local cache copy or refreshes it if outdated. The file is
read through the BufferedReader.readLine()

method. Table 9 shows that our overhead is modest,
between 0.7 and 2.5% non-optimized. Given the
increased functionality, we believe this is acceptable.

6.2 Concurrency

We ran the same experiments as those described in
Section 3 but within a single virtual machine running
SoD. Table 10 shows that the memory overhead reduc-
tion when starting an additional task is significant, vary-
ing from savings of 93 to 97%. The increase for the first
instance is due to the memory usage by the SoD runt-
ime, but this overhead is only incurred once. For most
platforms this overhead is acceptable for even an unop-
timized implementation of our extensions.

Next, we examined the startup time overhead per task of
using the SoD infrastructure. SoD caches application
namespaces in order to avoid re-interposing and reload-
ing classes remotely. Measurements were performed
with and without this cache. Pjava’s timer API precision
is 1 second and affects the accuracy of the comparison.

Table 11 shows that the startup times or their improve-
ments are not identical for the four platforms. When the
namespace is cached, the improvement is significant as
well, varying from 89% to 95%. ChaiVM’s figures in
Tables 10 and 11 are a little disturbing for both footprint
and uncached startup times. We believe that startup time
may be accounted for by the lack of a JIT compiler.
Also, we believe the large footprint may stem from an
interaction between SoD and Chai’s use of a bytecode
compressor for embedded applications. When running
without SoD, most of the startup time is due to the inter-
nals of the VM and we suspect most of it is native code.
On the contrary, SoD is entirely written in pure Java and
its runtime execution overhead appears relatively large.

7 Lessons Learned
Adaptability using interposition. Any standard Java
API may be transparently interposed to either extend or
replace it. Neither the legacy software nor the virtual
machine and standard Java libraries need to be modi-
fied. We demonstrated this for four different JVMs.

Sandboxing and interposition enable true concur-
rency. Using interposition, it is possible to effectively
run multiple applications within one virtual machine.
This is achieved by transparently avoiding namespace
collisions, sensitive API interference, system property
collisions and resource access security conflicts. Doing
so reduces the incremental virtual machine memory cost
per application from between 44-100% to 1.6-4.7%
depending on the platform used (see Section 3).

java.lang.System
Operation

JDK1.3 Pjava

µs % µs %

identityHashCode(x) 0.01 5 0.93 67
getProperties() 0.01 12 0.21 18

Table 8: Method interposition overhead

Location
JDK1.3 Pjava

ms % ms %

Local to host 0.3 1.9 4.1 0.7
Remote (cached) 0.4 2.5 6.1 1.1

Table 9: Interposition overhead when applied to
reading an 80KB text file.

Number of
Instances

Jornada 720
StrongArm

Jornada
548 SH3

X86 PIII
600 Mhz

Pjava ChaiVM Pjava JDK1.3

Baseline 1st 3452 3498 2398 9592

1st 4164
+ 20%

5964
+ 70%

3172
+ 32%

10200
+ 6%

Baseline 2nd 1524 2004 2398 9328

2nd 100
- 93%

100
- 95%

80
-97%

480
- 95%

Table 10: Memory usage per Java task (KB)

Java
Task

Jornada 720
StrongArm

Jornada
548 SH3

X86 PIII
600 Mhz

Pjava ChaiVM Pjava JDK1.3

Baseline 2000 4000 3000 200

Uncached
2000

(- 0%)
7056

(+ 76%)
 1000

(-200%)
120

(- 40%)

Cached
 1000

(- 100%)
423

(- 89%)
1000

(-200%)
10

(- 95%)

Table 11: Elapsed time per Java task (milliseconds)
10

Transparent remote persistent storage. Java’s IO
package can be transparently mapped into remote per-
sistent storage (see Section 4). By using interface inter-
position, we were able to achieve this without
modifying the application and with reasonable over-
head.

Transparent caching for speed. A cache mapping can
effectively reduce Java application load time and the
overhead of bytecode manipulation for interposition.
Results indicate that load-time performance is increased
12-16 fold even while using our framework.

Transparent caching for disconnection. A cache can
effectively allow certain types of applications to con-
tinue operating while disconnected. Apart from the ben-
efit of class and data loading while disconnected, simple
reconciliation policies can allow effective re-connected
migration of data back to the storage server.

Load-time interposition can be slow. Even though our
implementation is far from optimal, the number of
points at which interposition is required for our Java
enhance will clearly affect load-time performance. Our
use of caching throughout the system mitigates a lot of
this overhead, however, minimizing the pervasiveness
of interpositions could still be improved.

Variety of Java Platforms — Even though the Java
platform and specification are fairly comprehensive,
subtle variations in their semantics can complicate sup-
port for all JVMs. Also implementation variations affect
the size and nature of the benefits of our enhancements.
For example, the incremental footprint per application
between JVM implementations varies noticeably.

API Interposition Completeness — In this paper we
used interposition to apply new semantics to the APIs
that were affected by the requirements introduced at the
beginning of the paper. However, finding the complete
set of affected APIs for an arbitrary Java platform is
complex. Without detailed insight into the APIs, it does
not seem possible to automatically determine which sys-
tem APIs need to be interposed.

8 Related Work
The idea of interposition is not unique to our work. JDK
version 1.3 introduced proxies for reflection, that can
also be used for interposition [26, 13]. However, fully
transparent interposition is not supported in any JVM,
since all interposed methods need to be defined as inter-
faces and the JVM must conform to version 1.3. BCA
[17] and the JavaClass API [7] are somewhat more
sophisticated bytecode editing frameworks that could
potentially replace our class file editing module. BCA is
more general than our approach, since the bytecode
changes can be arbitrary. Also, we do not alter class or

method signatures. Instead of interposition, BIT pro-
vides bytecode editing techniques for instrumentation
purpose [19]. Our approach differs by not requiring any
specific virtual machine or modifications. Our work also
differs by only using API interposition to support perva-
sive services with the Java platform, rather than a com-
plete bytecode editing framework.

The installation of Java applications is less than straight-
forward. This has lead to the creation of several applica-
tion installation wrappers and frameworks, including
Sun’s Java Web Start [15] and ObjectBox’s JBee [14,
16]. These systems focus on installation automation and
caching of Java archives and applets, rather than consid-
ering Java in pervasive, mobile devices. As such they
are a more pragmatic approach to the problem of seam-
less execution of Java services.

Several projects have investigated mobile data access,
most notably Bayou [8] and CODA [25]. Our work
complements this work and is more oriented towards
enabling Java-based devices and legacy applications to
benefit from such distributed systems without any
change to the operating system and the application.

Several recent standards have addressed service publica-
tion and access, including Universal Description, Dis-
covery, and Integration (UDDI) [2] and Open Services
Gateway Initiative (OSGi) [23]. Each standard views
service delivery from a different perspective, which
could be very beneficial to our work by increasing the
breadth of our service support.

Viewing applications as services has also become prom-
inent of late. Microsoft’s .NET and .NET My Services
enable users to access Web services on the Internet from
various devices [12]. Using XML [6], UDDI [2], SOAP
[5], and WSDL [27], and a Common Language Run-
time (CLR), .NET presents a new application frame-
work designed for user-focused Web services.

The work in this paper is conducted within the scope of
an umbrella project called Pervasive Services Infrastruc-
ture (PSI) [21]. SoD complements another PSI project,
Adaptive Offloaded Services (AOS) [20], which
addresses partitioning of Java applications and offload-
ing partitions to surrogate servers. SoD and AOS con-
tribute to an overall vision: “Any service to any device”.

Several projects are investigating the area of pervasive
services, including Oxygen [9], Portolano [10], Aura
[22] and CoolTown [18]. These projects take a distrib-
uted computing approach where composable services
are distributed at locations throughout the environment.
We instead view devices and infrastructure as temporary
service caches of computation and storage that ulti-
mately originate from back-end service providers.
11

9 Summary and future work
In this paper, we have presented our investigation into
the use of API interposition in Java to enhance the plat-
form. We showed the ability of interposition to add sup-
port for enhanced multiple application sandboxing,
transparent remote storage, and service caching all with-
out modifying either the virtual machine or the applica-
tion implementation. From our results, we believe that
this approach can effectively support these enhanced
features with reasonable overhead (1.9% for file access).
In fact, with service caching, load times can be radically
decreased with 12-16 fold reductions.

As part of this ongoing work we would like to further
investigate the APIs that need to supported to achieve
our goal of pervasive service supporting using the exist-
ing Java platform. As part of this work, we plan on
investigating high Java specification versions and as
well as a set of guidelines for determining APIs that
don’t fit our requirements. Finally, we would like to
investigate the performance of our platform further as
well as consider a wide set of benchmark applications.

Acknowledgements

We are indebted to Kimberly Keeton, David Lie, Dan
Muntz, Todd Poynor, and Greg Snider for reviewing the
paper. Their comments significantly improved its con-
tent and presentation.

References

[1] IBM. alphaBeans - FTP Bean Suite Project - http://
oss.software.ibm.com/developerworks/opensource/ftp.

[2] Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S. 2000. UDDI Technical White Paper, available at
www.uddi.org, September 2000. 2001.

[3] Back, G., Hsieh, W. and Lepreau, J. “Processes in Kaf-
feOS: Isolation, Resource Management, and Sharing in
Java”. Proc 4th USENIX OSDI, Oct 2000 pp 334-346.

[4] Bernadat, P., Lambright, D. and Travostino, F. “Towards a
Resource-safe Java for Service Guarantees in Uncoopera-
tive Environments”. Proc. IEEE PLRTIA Dec. 1998.

[5] Box, D., et al,. Simple Object Access Protocol (SOAP)
1.1, W3C. http://www.w3.org/TR/SOAP.

[6] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.
(Editors). 2000. Extensible Markup Language (XML) 1.0
W3C Recommendation, 6 October 2000.

[7] Dahm, M. “Byte Code Engineering”. Java-Information-
Tage 1999 (JIT'99), Sept. 1999.

[8] Demers, A. et al. “The Bayou Architecture: Support for
Data Sharing among Mobile Users. Workshop on Mobile
Computing Systems and Applications. IEEE, Dec. 1994.

[9] Dertouzos, M.L. “The future of computing,” Scientific
American, July 1999, pp 52-55.

[10] Esler, M., et al. “Next century challenges: data-centric net-
working for invisible computing: the Portolano project at
the UW” Proc of 5th ACM/IEEE Conf. on Mobile Com-
puting and Netw, Aug, 1999, Seattle, WA pp 256-62.

[11] Gong, L. “JavaTM 2 Platform Security Architecture”. Oc-
tober 2, 1998. http://java.sun.com/j2se/1.3/docs/guide/se-
curity/spec/security-spec.doc.html.

[12] Hall Gailey, J. 2001. Introducing .NET My Services. MS-
DN Library note, http://msdn.microsoft.com/library/de-
fault.asp?url=/library/en-us/dndotnet/html/
myservintro.asp. September 2001.

[13] Harpin, T. Using class java.lang.reflect.Proxy to Interpose
on Java Class Methods. SUN’s developer technical arti-
cles, July 2001. http://developer.java.sun.com/developer/
technicalArticles/JavaLP/Interposing.

[14] INSISO ObjectBox. http://www.objectbox.com/
insiso_whitepaper.pdf.

[15] Java Web Start. http://java.sun.com/products/javawebstart
[16] JBee. http://www.objectbox.com/javabee.
[17] Keller, R. and Holzle, U. “Binary Component Adapta-

tion”. ECOOP’98 Conference Proceedings, pp 307-329.
[18] Kindberg, T., et al., “People, Places, Things: Web Pres-

ence for the Real World,“ Proc. 3rd WMCSA, 2000.
[19] Lee, H.,B. and Zorn, B., G. “BIT: A Tool for Instrumenting

Java Bytecodes”. USENIX USITS, 1997, pp 73-82.
[20] Messer et al., “Towards a Distributed Platform for Re-

source-Constrained Devices”, submitted for publication,
available as HPL Technical Report.

[21] Milojicic, D. et al. “Ψ Pervasive Services Infrastructure.”
Technologies for E-Services, Proc 2nd Int’l Workshop,
TES 2001, Rome, Italy, September 2001, pp 187-200.

[22] Noble, B.D., et al, “Agile Application-Aware Adaptation
for Mobility.” Proc 16 SOSP, October 1997, pp276-287.

[23] OSGI Service Gateway Specification, available at
www.osgi.org.

[24] Secure Computing with Java: Now and the Future. Sun
JavaOne conference, 1997.

[25] Satyanarayanan, M., “Scalable, Secure, and Highly Avail-
able Distributed File Access,” IEEE Computer, May 1990,
Vol. 23, No. 5, pp 9-21.

[26] Sun Microsystems. Dynamic Proxy classes. JDK1.3 doc-
umentation guide. http://java.sun.com/j2se/1.3/docs/
guide/reflection/proxy.html.

[27] W3C, Web Services Description Language (WSDL) 1.1,
Note 15 March 2001. http://www.w3.org/TR/wsdl.
12

