

Reduced Code Size Modulo Scheduling in the Absence
of Hardware Support

Josep Llosa1, Stefan M. Freudenberger2

HP Laboratories Cambridge
HPL-2002-239
August 26th , 2002*

E-mail: josepll@ac.upc.es, stefan.freudenberger@hp.com

 Modulo scheduling is a very effective instruction scheduling

technique that exploits Instruction Level Parallelism (ILP) in loop
bodies by overlapping the execution of successive iterations.
Unfortunately, modulo scheduling has been shown to cause heavy
code expansion. To avoid the penalties of code expansion, some
processors have dedicated hardware support for modulo scheduled
loops. However, this dedicated hardware support has a cost in chip
area, cycle time, processor complexity, and compiler complexity.

This paper shows that the right combination of scheduling heuristics
combined with speculative modulo scheduling can significantly
reduce code expansion. In addition, several code generation schema
heuristics are proposed to further reduce code expansion. The
evaluations show that loops can be effectively modulo scheduled
with an average code expansion only 1.5 times the original loop
size. Compared with a state of the art modulo scheduler, our code
size sensitive heuristics reduce the size of embedded domain
benchmarks binaries by 30% on average. While performance is
mostly unchanged, some applications show speed-ups up to 20%
due to a reduction in instruction cache capacity misses.

* Internal Accession Date Only Approved for External Publication
To be published in and presented at the 35th Annual IEEE/ACM International Symposium on Microarchitecture
 (MICRO-35), 18-22 November 2002, Istanbul, Turkey
1 Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, Spain
2 Hewlett-Packard Laboratories, Cambridge, MA
 Copyright Hewlett-Packard Company 2002

- 1 -

Reduced Code Size Modulo Scheduling in the Absence of Hardware Support

Josep Llosa1,3 and Stefan M. Freudenberger2

1Departament d'Arquitectura de Computadors, Universitat Politècnica de
Catalunya, Barcelona, Spain.

2Hewlett-Packard Laboratories, Cambridge, Mass.
josepll@ac.upc.es, stefan.freudenberger@hp.com

Abstract

Modulo scheduling is a very effective instruction scheduling technique that exploits Instruction
Level Parallelism (ILP) in loop bodies by overlapping the execution of successive iterations.
Unfortunately, modulo scheduling has been shown to cause heavy code expansion. To avoid the
penalties of code expansion, some processors have dedicated hardware support for modulo
scheduled loops. However, this dedicated hardware support has a cost in chip area, cycle time,
processor complexity, and compiler complexity.
This paper shows that the right combination of scheduling heuristics combined with speculative
modulo scheduling can significantly reduce code expansion. In addition, several code generation
schema heuristics are proposed to further reduce code expansion. The evaluations show that
loops can be effectively modulo scheduled with an average code expansion only 1.5 times the
original loop size. Compared with a state of the art modulo scheduler, our code size sensitive
heuristics reduce the size of embedded domain benchmarks binaries by 30% on average. While
performance is mostly unchanged, some applications show speed-ups up to 20% due to a
reduction in instruction cache capacity misses.

 3This work has been performed while Josep Llosa was a Faculty Visitor at Hewlett-Packard Laboratories, Cambridge, Mass.

- 3 -

1. Introduction

VLIW architectures are widely used in the design of embedded/DSP processors [7][8][20], and
in the design of some general-purpose microprocessors [11]. Statically scheduled processors, and
VLIWs in particular, require efficient compiler technology to extract ILP from applications.
Instruction scheduling plays a critical role in ILP exploitation. Software pipelining [1] is a very
effective instruction scheduling technique for loops that overlaps the execution of successive
iterations. Modulo Scheduling [18] is a class of software pipelining algorithms that is very cost
effective and has been implemented in several production compilers [5][16].

One of the drawbacks of modulo scheduling (and software pipelining in general) is that it incurs
significant code expansion. Although this code expansion is generally smaller than unrolling the
loop multiple times and scheduling it using conventional techniques, it is still an important
problem. In particular, there are some application areas in the embedded/DSP arena where code
size is critical. From the general-purpose processor perspective, although code size can be
tolerated more easily, it nevertheless has a negative effect on instruction cache performance.

Code expansion in modulo scheduled loops is a consequence of the need to deal with two
independent problems: the generation of prologues and epilogues to fill and drain the software
pipeline, and the replication of the kernel, known as Modulo Variable Expansion (MVE) [12], to
deal with register lifetimes that are longer than the loop Initiation Interval (II). To deal with such
problems, some processors [2][11] have dedicated modulo scheduling hardware support.
Rotating register files [4] allow the lifetime of a value generated in one iteration to overlap the
lifetimes of corresponding values generated in previous and subsequent iterations without
requiring MVE. Full predication with rotating predicates [4] permits the generation of “kernel-
only” code by selectively disabling the execution of operations during prologue and epilogue
execution phases.

Architectural support for modulo scheduling has several costs associated with it that, although
some general-purpose processors may be willing to pay, can be prohibitive for low cost
embedded/DSP processors. Both rotating registers and predicated execution add extra
complexity to the processor, and require additional chip area. Rotating registers require an adder
in the, usually critical, decoding path, leading to longer cycle time or longer instruction pipelines.
In addition, they require special register allocation techniques, thus increasing the complexity of
the compiler. Full predication requires a predicate field for each instruction in the ISA. If
instruction encoding is tight, extra bits are required to encode the predicate field, having a
negative effect on overall code size that might even negate the potential benefits.

There have been several proposals to address code generation for modulo scheduled loops.
Modulo Schedule Buffers (MSB) [15] allow the generation of “kernel-only” code with a more
relaxed predication mechanism, but they still require rotating register files plus the cost of the
MSB. In [21] schemas for efficient modulo scheduling of loops with early exits are proposed
using hardware support. [19] proposes several code schemas for modulo scheduled loops with
and without hardware support. Finally, [13] shows how to modulo schedule loops with multiple
exits.

- 4 -

Modulo scheduling code size expansion has been addressed from a theoretical point of view
[19], with a special emphasis in code schemas for processors with dedicated hardware support.
However, little additional attention has been paid to the problem other than to observe it [22].

This paper makes several significant contributions regarding code generation schemas in the
absence of dedicated hardware support:

• The impact of modulo scheduling heuristics on code expansion is analyzed. The results
show that making the right choice at scheduling time can significantly reduce code size
requirements. In particular, bi-directional schedulers [10][13] perform very well, with the
added benefit that they reduce register pressure without sacrificing performance.

• Code expansion in the absence of hardware support is analyzed using three different code
schemas: non-speculative modulo scheduling, loop preconditioning and speculative
modulo scheduling. We show that speculative modulo scheduling produces less code
expansion. Besides, it enables while-loops (i.e., loops whose trip count is unknown at the
time the loop is entered) to be modulo scheduled.

• Two new code generation schemas are proposed to further reduce the overall size of
epilogues, by collapsing several epilogues into one.

• Finally, we propose the insertion of copy instructions in unused slots to split the longest
lifetimes. By splitting lifetimes that are longer than II into several segments, we are
effectively rotating these lifetimes using spare processor resources. This has the benefit
that MVE is not required, or that it is required to a lesser degree, reducing the code size
requirements for the loop kernel.

The combination of these techniques leads to modulo schedules with very small code expansion
factors (ranging from 1.5 to 2 on average, depending on the processor configuration and
benchmark set). This leads to an average code size reduction of 30% for benchmarks in the
embedded domain. On average, the performance gain is small (0 – 5%), but it can range in some
favorable cases up to 20%. However, the main contribution of the paper is that modulo
scheduling is not necessarily expensive in terms of code size, and that it can be effectively
performed without requiring special hardware support.

The rest of the paper is organized as follows. Section 2 introduces basic modulo scheduling
concepts; Section 3 explains our experimental framework; Section 4 discusses the impact of
modulo scheduling heuristics on code size; Section 5 looks at the impact of loop preconditioning
and speculative modulo scheduling; Section 6 explains our code size reduction schemas; Section
7 presents a detailed evaluation; and Section 8 presents conclusions.

2. Basic concepts

2.1. Modulo scheduling

In a modulo scheduled loop, the schedule of an iteration is divided into stages so that the
execution of consecutive iterations overlaps. The number of stages in one iteration is called
Stage Count (SC). The number of cycles between the initiation of successive iterations

- 5 -

determines the execution rate and is called the Initiation Interval (II). The II is bound either by
recurrence circuits in the dependence graph of the loop (RecMII) or by resource constraints of
the target architecture (ResMII). The lower bound on II is called the Minimum Initiation Interval
(MII = max(RecMII, ResMII)).

The execution of a loop can be divided into three phases: a ramp-up phase that fills the software
pipeline, a steady-state phase where maximum overlap of iterations is achieved and a ramp-down
phase that drains the software pipeline. During the steady-state phase, the same pattern of
operations is executed at each stage. This is achieved by iterating on a piece of code, called the
kernel.

The scheduling step of a modulo scheduler builds the schedule progressively by adding
instructions to a partial schedule. Sometimes the schedule reaches a partial schedule in which the
remaining instructions cannot be placed. In this case, there are two alternative solutions: increase
II [12][13], or apply backtracking [10][17]. Backtracking involves un-scheduling some
operations in the partial schedule in order to make room for other operations, and then schedule
them again later. Techniques that use backtracking are also called iterative techniques. In order
to limit the scheduling time, the amount of backtracking is limited by the Budget Ratio, which
determines how many times an instruction can be rescheduled before increasing II.

2.2. Basic code generation schema

When no hardware support is available, the ramp-up and ramp-down phases of the modulo
schedule must be implemented using two pieces of code named prologue and epilogue,
respectively. In that case SC – 1 iterations are executed by the prologue and epilogue, therefore
the trip count of the kernel is N – SC + 1, where N is the number of iterations in the original
loop. In addition, if the branch of the loop is not scheduled in the last stage, there may be
potential exit points in the prologue, each requiring an epilogue to finish the iterations that have
been initiated up to this point. In particular, SC – BS – 1 epilogues are required for early
prologue exits, where BS is the stage where the exit branch is scheduled.

An additional problem that must be solved is the presence of loop variants with a lifetime longer
than II. In this case, a new value of the loop variant is generated before the value generated in the
previous iteration is consumed. One approach to fix this problem is by renaming the register
using rotating register files [4]. In the absence of such hardware support, Modulo Variable
Expansion (MVE) [12] can solve this problem. When MVE is applied, the kernel is unrolled and
registers are renamed to prevent that successive lifetimes corresponding to the same original
loop-variant overlap in time. The minimum degree of unroll, Kmin, is determined by the longest
lifetime, as:

=

II
ngthLifetimeLeK min

Figure 1 shows the code schema to be generated for a loop with SC = 4, BS = 1, and Kmin = 2.
This schema can be simplified [19]; however, we choose not to do so to improve readability.

- 6 -

3. Experimental framework

3.1. Architecture

We have implemented and evaluated our heuristics in the compiler for the Lx architecture [8][9].
Lx is a scalable and customizable VLIW processor technology platform designed by Hewlett-
Packard and STMicroelectronics that allows variations in instruction issue width, the number and
capabilities of structures, and the processor instruction set. A first implementation within this
architecture platform is the ST210, a 250-MHz VLIW developed by STMicroelectronics.

This architecture consists of a single-cluster 4-issue VLIW core composed of four 32-bit integer
ALUs, two 16x32-bit multipliers, one Load/Store Unit, and one Branch Unit. The cluster also
includes 64 32-bit General-purpose registers and 8 1-bit branch registers (used to store branch
conditions, predicates, and carries). Instructions allow two 32-bit long immediates per cycle
(which use up one issue slot). The ISA is a very simple integer RISC instruction set with
minimal “predication” support through a select instruction. The memory repertoire includes
base+displacement addressing, and allows for speculative execution of dismissible loads, which
are handled by the protection unit. The data cache is a 32KB, 4-way associative, write-back array
with load/store allocation. The instruction cache is 32KB direct mapped. There are no L2 caches.
The control unit decouples the compare and branch operations and the compare-to-branch
latency is exposed to the compiler. There are no architecturally visible delay slots after a taken
branch; however, a mispredicted (taken) branch incurs a 1-cycle penalty.

Most integer operations have unit latency; multiplies and 32-bit load operations have a latency of
two cycles, as have compares that are read by a branch.

3.2. Compiler platform

The Lx compiler is a newly developed state-of-the-art commercial-quality compiler that finds
ILP in the embedded space for a wide range of instructions set architectures and that is capable
of supporting the anticipated Lx platforms; at the same time, this compiler is flexible enough to
be used in compiler-research. It is designed to deliver the highest-possible ILP in the presence of
scaling (variations in the number of available resources of a given kind) and customization

Figure 1: Basic Code Generation Schema

S3 S2

S3

S1

S2

S3

S3 S2

S3

S1

S2

S3

S3 S2

S3

S1

S2

S3

S2

S3

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0

- 7 -

(variations in the instruction set architecture). It is also targeted to clustered architectures with
heterogeneous clusters and partitioned register files with limited inter-cluster connectivity and
operations with architecturally visible non-unit latencies (without hardware to check for latency
violations). Each of these degrees of freedom forces a separate level of complexity on the
compiler’s design.

3.3. Benchmarks

We evaluated our heuristics using two sets of benchmarks. The first set comprises a set of
programs that are representative for the Lx target domain and that includes audio manipulation,
printing pipelines, color processing, cryptography, video, and still image compression and
decompression. This set, which we call the BenchSuite, includes the following benchmarks:

The second set consists of 9 of the 12 SPEC2000 integer benchmarks: we omitted 186.crafty
because it uses 64-bit integer arithmetic (which our compiler currently does not support);
252.eon because it is a C++ benchmark (and we currently don’t have a C++ compiler available);
and 254.gap because it uses ioctl system call features that our simulation environment does not
support. We have included the SpecInt2000 benchmarks because they are widely known.
However, these benchmarks represent atypical workloads for which the Lx family has not been
optimized.

These two sets represent quite different workloads: the first set spends most of its execution time
in big loops with a large amount of ILP (on average, there are 45.85 operations/loop in this set),
while SpecInt2000 has many small loops with a limited amount of ILP (on average, there are
only 10.72 operations/loop). In total, these benchmarks contain 2014 loops that our compiler can
modulo schedule, 500 in BenchSuite and 1514 in SpecInt2000.

adcmp ADCMP audio encoder/decoder
bmark Printing imaging pipeline
copymark Color copier pipeline
crypto Cryptography code (ECC, RSA and DES)
csc Color-space conversion
mp2audio MPEG-1 Layer 2 encoder
mp2vloop MPEG-2 video loop (subset of MPEG-2 standard w/o IDCT or reconstruction)
mp2avswitch MPEG-2 System Layer de-multiplexor
mpeg2 MPEG-2 decoder
mp4dec MPEG-4 decoder
opendivx Public MPEG-4 decoder
tjpeg JPEG-like encoder/decoder

- 8 -

4. The impact of modulo scheduling heuristics on code size

4.1. The quality of the schedules

In a study like this one, special care must be given to the fact that code size expansion is in part
influenced by the amount of overlapping achieved by the scheduler. In general, a scheduler that
produces worse schedules (in terms of II) might require less code expansion. Therefore, it is very
important to use a state-of-the-art modulo scheduler in order not to underestimate the code size
expansion. In a recent study [3], Iterative Modulo Scheduling (IMS) [17] and Swing Modulo
Scheduling (SMS) [13] have been shown to be at the head of the most advanced modulo
schedulers from the point of view of minimizing II. We have implemented both IMS and SMS in
our compiler, and compared them to the Lx compiler’s modulo scheduler (LxMS), in order to
show that our results are not distorted by a low-quality scheduler.

Table 1 shows a comparison of the MII/II ratio for the three modulo schedulers. Both IMS and
LxMS use a Budget Ratio of 3, which we found to be a good performance/compile-time trade-
off. Although it is out of the scope of this paper to perform a modulo scheduler comparison, we
can make a few interesting observations.

Both SMS and IMS obtain a worse II ratio than what is claimed in their corresponding papers
and in [3]. A careful examination of some dependence graphs, and the access to the SMS
authors’ implementation, shows that our C benchmarks have more recurrences, and therefore are
more difficult to schedule than the Fortran benchmarks used in both papers. This is due to the
increased complexity of disambiguating memory references in C programs as compared to
Fortran programs.

SMS is a non-iterative modulo scheduler that gives special priority to recurrence circuits.
However, SMS behaves slightly worse than the rest of the schedulers because of the particular
resource usage of instructions in the Lx processor. SMS tends to greedily fill the four issue slots
of some cycles with arithmetic instructions. If the loop is limited by memory operations, it needs
to increase II to schedule the loads and stores. In addition, it failed to schedule some of the loops
because of a rare pathologic situation with certain recurrence combinations that never arises in
the authors’ benchmarks.

IMS is an iterative modulo scheduler. This feature allows it to deal very effectively with the
resource problem stated above. Backtracking also deals quite effectively with recurrence circuits,
but not as well as a dedicated priority heuristic for recurrences.

LxMS is an iterative modulo scheduler (like IMS) that gives special priority to recurrence
circuits (like SMS). In addition, it gives a higher priority to the critical path than the other two

Table 1: Average II/MII ratio
Scheduler BenchSuite SpecInt2000
SMS 1.059 1.028
IMS 1.054 1.026
LxMS 1.034 1.014

- 9 -

schedulers do. This results in excellent schedules in the presence of either complex resource
usage patterns and/or complex recurrence circuits.

4.2. Code size sensitive scheduling heuristics

For a given II, there are many different (usually infinite) schedules corresponding to that II. Each
one of these different schedules can produce a different code expansion. In this section, we
analyze which factors contribute to code size, and which heuristics can help to minimize code
size in a modulo scheduler.

Table 2 shows the loop expansion ratio for the three modulo schedulers described in the previous
section. We define the code size expansion ratio as:

∑
∑=

msafterloopsmsininstrs
msbeforeloopsmsininstrs

atioExpansionR

In Figure 1, it can be seen that there are three factors contributing to code expansion. The
number of stages determines the size of the prologue and the size of epilogues. A reduced
number of stages will have a smaller prologue and smaller epilogues. The stage in which the
loop branch instruction is scheduled partially determines the number of epilogues, since each
early exit in the prologue requires a partial epilogue. The later the branch is scheduled the fewer
epilogues are required. Finally, the Kmin degree of MVE determines how many copies of the
kernel are required. A smaller Kmin will require less code expansion due to the kernel. In
addition, by reducing the number of kernel replications we are also reducing the number of
epilogues.

Table 3 shows the average Kmin, the average Stage Count, and the average number of early exits
for the three schedulers considered. LxMS, despite producing schedules with smaller IIs, results
in the smallest loop size expansion because it succeeds in minimizing all three factors, while
SMS results in an intermediate loop size expansion because it fails to reduce the stage count.1

1 SMS performs worse on SpecInt2000 due to one pathological case (see comment on early/late start limits in Stage Count section) ; if this one
case were removed, the code size would also be between the code size for IMS and LxMS.

Table 2: Loop expansion ratio
Scheduler BenchSuite SpecInt2000
SMS 3.14 4.22
IMS 4.22 3.39
LxMS 2.48 2.67

- 10 -

Next, we outline the characteristics that modulo scheduling heuristics must have in order to
improve each one of these factors. The above modulo schedulers are used as practical examples.

Kmin

 A good strategy to minimize Kmin is to minimize the length of the lifetimes. Both SMS and
LxMS reduce the length of the lifetimes by scheduling operations as close as possible to their
predecessors and successors. To do so, both schedulers use a bi-directional strategy in which
nodes are scheduled as early as possible if they have predecessors in the partial schedule and as
late as possible if they have successors in the partial schedule. In both schedulers node priority is
computed using an adjacency ordering so that the situation in which a node has both
predecessors and successors in the partial schedule is minimized. This heuristic not only helps to
reduce code size, but also to reduce register pressure. Although register requirements are outside
the scope of this paper, they are an important factor to reduce in order to improve the
effectiveness of modulo scheduling.

Early Exits
The number of early exits is determined by how late the branch instruction is scheduled. In the
case of architectures with low-overhead loop instructions in which a single instruction
decrements the loop counter, compares it to zero, and jumps back to the loop if necessary, it is
easy to reserve a slot for the branch and allocate it as late as possible.

The Lx ISA, as many other processors, has no special hardware support for loops. Therefore,
three instructions are required to modify the induction variable, compare, and branch. In
addition, in the case of loops with conditional exits, which are also modulo scheduled by our
compiler, the expression required for computing the branch condition might be very complex and
depend on other computations in the loop. In that case, the best alternative is to schedule the
branch as any other operation in the loop.

IMS has a high number of exits because it greedily schedules operations top-down, which tends
to schedule the branch too early. On the other hand, both SMS and LxMS schedule operations as
close as possible to successors/predecessors. Since the branch instruction usually has a control
dependence with some other operations in the loop, both schedulers tend to schedule it as late as
possible, minimizing the number of early exits, and therefore the number of epilogues.

Table 3: Average Kmin, average Stage Count, and
average number of Early Exits

BenchSuite SpecInt2000 Scheduler
Kmin SC Exits Kmin SC Exits

SMS 1.57 2.33 0.17 1.44 2.08 0.04
IMS 1.91 2.23 0.91 1.71 1.97 0.36
LxMS 1.54 1.97 0.20 1.44 1.85 0.07

- 11 -

Stage Count
In order to minimize the stage count, the schedule length must be minimized. A good heuristic to
minimize the schedule length consists of giving priority to the critical path of the loop.

IMS uses height as priority, which, to some extent, gives more priority to the nodes on the
critical path. However, if two nodes have the same height, there is no provision for selecting one
over the other. This leads to the possibility that nodes belonging to a non-critical path are
scheduled with higher priority. In addition, nodes on non-critical paths with greater height than
nodes on the critical path are always assigned a higher priority.

SMS also uses height/depth (depending if the node is ordered in a top-down/bottom-up pass) as
priority. In addition, it breaks ties by considering the mobility of the node (i.e., the criticality of
the path the node belongs to) as a secondary heuristic. However, nodes with greater height/depth
are always assigned a higher priority independently of their criticality.

LxMS uses the criticality of a node as its primary heuristic, and height/depth as a secondary
heuristic. The only exceptions are the sub-paths that have both predecessors and successors on
the critical path, which are scheduled right before the predecessor/successor (again depending if
the nodes are ordered in a top-down/bottom-up pass).

As expected, LxMS has, on average, a smaller Stage Count than the other two schedulers,
because of the higher priority to operations on critical paths. Surprisingly, and contrary to what
we expected, SMS has a slightly higher Stage Count than IMS. This occurs because critical path
priority is not the only factor contributing to schedule length.

Another factor is what we call “Early/Late Start Limit”. In some cases, the dependences allow a
node to be scheduled in an earlier cycle than its predecessors. Assume, for instance, two nodes A
and B connected by a dependence of distance 1, latency 2 and II = 4. If A is scheduled at cycle
zero, B can potentially be scheduled as early as 0 + 2 – 1*4 = –2. This limit determines how
early in a top-down pass (or late in a bottom-up pass) a node can be scheduled (assuming, of
course, that other dependences allow this).

Since IMS is a unidirectional top-down scheduler, the Early Start Limit is cycle zero (i.e., no
node can be scheduled earlier than this cycle). Since no node will be bottom-up scheduled there
is no Late Start Limit.

However, with bi-directional schedulers we need to set both limits: if they are too close together,
the scheduler will fail because it cannot accommodate the critical path between the two limits; if
they are too far apart, the schedule will be longer than necessary.

Since SMS has no Early/Late Start Limits, a node can be scheduled as early/late as its
dependences allow it. This has the benefit that if the corresponding dependence is a register flow
dependence, register pressure is minimized. Unfortunately, this is done at the expense of
schedule length and code size. We have observed that this has a very small impact on register
pressure, but, as can be seen in Table 3, the effect on schedule length is quite significant.

LxMS uses flexible Early/Late Start Limits. Initially both limits are set to zero. When a node is
scheduled in a top-down pass, it is scheduled as soon as possible, but never earlier than the Early
Start Limit, so that we never generate a schedule longer than necessary. The Late Start Limit is

- 12 -

ignored for nodes scheduled top-down, so that the limits do not constrain the schedule. In
addition, whenever a node is scheduled later than the Late Start Limit, the limit is updated to the
cycle the node is scheduled, i.e., the distance between the limits is always the partial schedule
length. The symmetric mechanism works for bottom-up scheduled nodes.

There is an additional option in the Lx compiler that allows nodes like B in our example to be
scheduled at most “slack” cycles before/after the early/late start limit. Figure 2 shows the effect
on the stage count as we increase the slack. Although not shown, increasing the slack also
produces a very small reduction in both Kmin and Early Exits, which for some benchmarks
compensates the extra stage count, and reduces code size. However, as the slack is increased,
code size keeps growing, and the result is so unpredictable that the default for the compiler is set
to zero.

5. Loop preconditioning and speculative modulo scheduling

Two other code generation schemas have been proposed in [19] in order to reduce the epilogue
code size. However, to the best of our knowledge they have not been evaluated in a production
environment.

Preconditioning the loop can eliminate the multiple epilogues in Figure 1. A non-software
pipelined version of the loop is first executed until the number of remaining iterations for the
loop kernel is a multiple of Kmin. In that way only one epilogue is required at the exit of the
kernel. Likewise, the preconditioning loop can also be used when the trip count of the loop is
smaller than SC, so that the early exit epilogues can also be removed. Figure 3 shows the code
schema to be generated for our hypothetic loop. However, notice that in terms of code size the
preconditioning loop contributes a full copy of the original loop body that must also be
considered. The main drawback of this schema is that the first few iterations executed by the
preconditioning loop are executed at a lower efficiency rate, reducing the overall performance.

1.8

2

2.2

0 1 2 4 8

Slack Factor

St
ag

e
C

ou
nt

BenchSuite SpecInt2000

Figure 2: Effect of Slack Factor

- 13 -

The code schemas in Figure 1 and Figure 3 require the loop trip count to be known before
entering the loop. This is acceptable for numeric applications; however, for general applications
it is interesting to be able to modulo schedule loops with conditional exits. This can be achieved
if speculative modulo scheduling is implemented. In that case iterations are started speculatively
before knowing that they must be executed. Once the exit branch is executed, the iterations
started speculatively are not completed in the epilogue, since they should never be executed. As
can be seen in Figure 4, this leads to a code schema where the epilogues have reduced size, since
only the non-speculative iterations must be completed.

Figure 5 compares the loop expansion ratio of the basic code schema of Figure 1 (Basic) with
loop preconditioning (Prec) and speculative modulo scheduling (Spec). We observed that for
some loops, the code size contribution of the preconditioning loop was larger than the size of the
epilogues it removed. We also compare the loop expansion ratio of applying loop
preconditioning only when it will help to reduce code size (Prec++).

Figure 3: Preconditioned Code Generation
Schema

Figure 4: Speculative Code Generation
Schema

S3 S2

S3

S3 S2

S3

S3 S2

S3

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0

S3 S2

S3

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0

- 14 -

For the default Lx scheduler (LxMS), speculation is consistently superior to all other code
schemas in terms of code size. This is because, as mentioned in the previous section, LxMS
tends to schedule the branch as late as possible in the schedule. In other words, LxMS performs
aggressive speculation minimizing the size of the epilogues.

When IMS is used, speculation has a minimal effect on code size. As previously mentioned, IMS
is a greedy top-down scheduler that tends to schedule all operations as early as possible,
minimizing the amount of speculation, and maximizing the size of the epilogues. A curious result
is that speculation with IMS works much better for SpecInt2000 than for BenchSuite. Recall that,
on average, the loops in SpecInt2000 are much smaller than those in BenchSuite. The minimum
control sequence for a loop requires three instructions, increment, compare, and branch, which
have a minimum latency of 4 cycles. The fact is that many loops in SpecInt2000 have an II of
less than 4 cycles, thus, even a greedy top-down scheduler schedules the branch in a relatively
late stage of the schedule. However, with the BenchSuite, 4 cycles is negligible for the big loops
(which incidentally dominate the code expansion ratio) with IIs in the order of tens and even
hundreds of cycles, and IMS places the branch in the early stages of the schedule.

6. Code size reduction schemas

In this section, we propose several code generation heuristics to further reduce loop code
expansion in modulo scheduled loops. These heuristics can be applied to any modulo scheduling
technique, and can be combined with the previous code generation schemas (non-speculative,
speculative, or preconditioned).

6.1. Collapse kernel epilogues

Notice that in Figure 1 and Figure 3 the epilogues corresponding to the kernel and the last
prologue exits are identical. They only differ in the registers they read. It is relatively easy to
make the compiler assign the same registers in the prologue and in the different kernel

1

2

3

4

IMS LxMS IMS LxMS

BenchSuite SpecInt2000

Ex
pa

ns
io

n
R

at
io

Basic Prec Prec++ Spec

Figure 5: Code size expansion for Basic,
Preconditioning, and Speculative Modulo

Scheduling

- 15 -

replications. In that way, all epilogues will be identical and could be collapsed together into a
single epilogue. However, the long lifetimes that span for more than II cycles cannot be assigned
to the same register. Note that this is the reason for MVE in the first place.

One way of overcoming the long lifetimes renaming problem is to insert basic blocks between
loop exits and the corresponding epilogues and to explicitly rename long lifetimes with copy
instructions in these blocks. This permits to collapse all kernel epilogues into a single epilogue
copy, leading to the code schema shown in Figure 6. This schema has the advantage of reducing
the code size of the epilogues, but it also increases the code size by the new copy instructions.
However, in the case of LxMS (and any code size sensitive modulo scheduler in general), very
few copy instructions are required, since the scheduler already tries to minimize the length of the
lifetimes.

The inserted copy instructions require some extra time to execute, which can be a performance
problem in short trip count loops that are executed many times. Nevertheless, all copy
instructions in a copy basic block are independent and can be executed in parallel. The Lx
processor can execute up to four copy instructions per cycle, and we almost never require more
than four copies per basic block.

Finally, an additional problem with the Lx processor is that all taken branches have a 1-cycle
penalty. That means that every copy block will execute for at least two cycles. Notice however,
that this penalty is already present at the end of each of the epilogues. Therefore, in practice, we
are only moving this penalty to the copy block.

The above performance problems are in part compensated by the fact that, if there are no early
exits in the prologue, there is a single exit epilogue that offers an opportunity to the scalar
scheduler of merging it with the basic block following the loop, generating a better combined
schedule.

6.2. Collapse prologue epilogues

In Figure 6, we can see that the partial prologue-epilogue actually corresponds to a subset of the
full kernel epilogue. Notice that this is also true for the non-speculative case of Figure 1. In
general, any partial epilogue corresponding to an early exit is a subset of the next partial
epilogue. The code generated for one partial epilogue can be reused by the next epilogue if the
completion of iterations is done in a sequential way, instead of a parallel way. Of course, the

Figure 6: Collapse Kernel Epilogues

Copy

S3 S2

S3

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0
Copy

Copy

- 16 -

long lifetimes are still a problem and copy blocks may be required for the early exits. Figure 7
shows the corresponding schema for our example.

Notice that it is not always necessary to generate a copy block for the partial epilogues. For
instance, if in our example the lifetime that caused MVE starts in stage S2 and ends in stage S3,
no copy will be required for the first exit. Also notice that only Kmin – 1 out of every Kmin exits
actually require a copy.

Collapsing the prologue-epilogues has the same code size and performance drawbacks as
collapsing the kernel epilogues. In addition, extra performance penalty might be incurred by the
fact that the epilogue is partially serialized, since no overlapping of iterations is exploited.
However, this code schema has a single exit point, which allows the last portion of the epilogue
to be scheduled jointly with the basic block following the loop.

6.3. Lifetime splitting to reduce MVE

Another source of code expansion are the multiple kernel copies required to deal with long
lifetimes. Reducing MVE has the additional benefit that it also reduces the number of epilogues
corresponding to kernel exits.

One way of reducing the amount of MVE is to split the longest lifetimes into multiple shorter
segments by using copy instructions. This reduces Kmin by explicitly renaming the lifetimes into
multiple registers. In some sense, it behaves like rotating register files, where the registers are
“rotated” by copy instructions.

Unfortunately, the extra copy instructions require resources to be executed, and add some latency
to the path where they are inserted. While it can be acceptable to pay some extra cycles in the
loop exit, we are not willing to pay extra cycles in the kernel to reduce code size. The solution
we have adopted consists of inserting copy instructions in the kernel in a post-schedule pass
using only existing free issue slots.

Using only free slots limits the number of lifetimes that can be split. However, notice that if a bi-
directional scheduler that tries to schedule nodes as close as possible like LxMS is used, the
number of lifetimes longer than II is significantly reduced. We have also observed that for a big
Kmin, there is usually a single lifetime causing it. For instance, in a loop with Kmin = 4, it is quite
frequent to have a single lifetime of length 4*II and several more of length 2*II. In this case, a
single copy to split the longest one can halve the size of the kernel.

Figure 7: Collapse Prologue Epilogues

S3

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S0

S1 S0

Copy

Copy

Copy

Copy

- 17 -

Since we only use free issue slots, lifetime splitting has no negative effects on performance.
However, since we incur a 1-cycle penalty each time we traverse the loop back edge, unrolling
the loop fewer times causes us to incur this penalty more often. Many embedded and general-
purpose processors have some kind of branch prediction mechanism that can remove this
penalty.

6.4. Evaluation of code size reduction schemas

Figure 8 shows the loop size expansion ratio with the previous optimizations applied to LxMS
with a speculative code schema (Spec). The figure shows the contribution of each of the
proposed techniques: collapse kernel-epilogues (+ek), collapse prologue-epilogues (+ep), which
includes also +ek and MVE reduction (+mve) as well as their combined effect (+mve+ek and
+mve+ep).

MVE reduction using copy instructions results in the highest code size reduction, since it reduces
both kernel and epilogue replications. The next most important factor is the reduction of the
kernel-epilogues, since they are the most abundant. Collapsing prologue-epilogues results in the
smallest code size reduction. This small contribution is not related to effectiveness of the
technique, but to the fact that LxMS generates very few loops with partial epilogues. However,
for the few loops where this happens, it is a very effective technique. When collapsing epilogues
is combined with MVE reduction, the contribution is smaller because MVE reduction is very
effective in removing replicated epilogues.

Finally, notice that, although the initial code expansion of SpecInt2000 loops is smaller than that
of the BenchSuite, code expansion is reduced more for BenchSuite. This is because SpecInt2000
loops are much smaller, and the proposed techniques are more effective with larger loops (which,
by the way, is what really worries developers). For example, a loop with II=1 requires at least
MVE=3 to accommodate the lifetime of the compare instruction, and there is no way of splitting
it with a copy, since this is already the minimum lifetime.

1.3

1.5

1.7

1.9

BenchSuite SpecInt2000

Ex
pa

ns
io

n
R

at
io

Spec +ek +ep +mve +mve+ek +mve+ep

Figure 8: Code size expansion for various LxMS

code generation schemas

- 18 -

7. Evaluation

7.1. Impact of code size reduction in performance

In this section we analyze the impact of the code size reduction on performance on a detailed
benchmark-by-benchmark basis. We have excluded the non-speculative schemes because the
number of loops for which a valid modulo schedule can be generated with those schemas is very
limited, especially in the case of SpecInt2000. We have used IMS with a speculative code
generation schema as an example of a code size insensitive modulo scheduler, our default
modulo scheduler (LxMS) also speculative to show the benefits of a code size sensitive modulo
scheduler, and finally LxMS with all optimizations from section 6 enabled (this is the default for
our compiler). All benchmarks have been run to completion and the output has been validated for
all runs.

Figure 9 shows the loop expansion ratio. Notice that almost all the individual results follow the
trend of the global numbers previously shown. In all cases, LxMS causes significantly less code
expansion than IMS, which is more pronounced for the BenchSuite benchmarks due to the larger
loops. Also, for all benchmarks except adpcm (in which the extra copies are worse than the
epilogue reduction), the proposed schemas reduce the code expansion even more. Notice that
although the code size reduction mechanisms make a small contribution on average, there are a
few benchmarks (like mp4dec and opendivx) where these mechanisms make an important
contribution. Finally, there is the exceptional case of csc where LxMS manages to schedule the
three inner loops of the program with SC=1 and MVE=1, using the same II as in IMS, which
results in no code expansion at all.

Table 4 shows the impact of the code size reduction heuristics (LxMS+mve+ep) in the final
binary size, relative to a code size insensitive scheduler (IMS). Notice that for SpecInt2000 the

0

2

4

6
ad

pc
m

bm
ar

k

co
py

m
ar

k

cr
yp

to

cs
c

m
p2

au
di

o

m
p2

vl
oo

p

m
p2

av
sw

itc
h

m
p4

de
c

m
pe

g2

op
en

di
vx

tjp
eg

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

BenchSuite SpecInt2000

Ex
pa

ns
io

n
R

at
io

IMS LxMS LxMS+mve+ep

Figure 9: Code size expansion ratio

- 19 -

reduction is minimal because they are mostly huge programs with very small loops. However,
for the BenchSuite, the binary size reduction is very significant; 30% on average and 67.5% for
the best case. Recall that BenchSuite is representative of the embedded Lx target domain, where
binary size is sometimes critical.

Figure 10 shows the performance relative to IMS with no stalls, i.e., the ideal execution time
assuming no cache miss penalty and no branch penalty. In general, the performance
improvement/degradation is almost negligible, being in the –2% +3% range in the most extreme
cases. We have observed that although LxMS produces slightly smaller IIs, this is not a

Table 4: Binary size in bytes
BenchSuite SpecInt2000

Program IMS LxMS
+mve+ep

reduction Program IMS LxMS
+mve+ep

reduction

adpcm 2696 1856 31.2% gzip 66448 60848 8.4%
bmark 119104 71976 39.6% vpr 163128 154248 5.4%
copymark 79272 57040 28.0% gcc 1725692 1689120 2.1%
crypto 105480 67432 36.1% mcf 12592 11952 5.1%
csc 15664 5088 67.5% parser 115280 113416 1.6%
mp2audio 68040 53160 21.9% perlbmk 722296 715232 1.0%
mp2vloop 26640 25760 3.3% vortex 555464 552656 0.5%
mp2avswitch 189232 157696 16.7% bzip2 39392 34824 11.6%
mp4dec 75464 44736 40.7% twolf 301880 273016 9.6%
mpeg2 98456 73160 25.7%
opendivx 77056 42008 45.5%
tjpeg 56560 52288 7.6%
AVERAGE 30.3% AVERAGE 5.0%

0.96

0.98

1

1.02

1.04

ad
pc

m

bm
ar

k

co
py

m
ar

k

cr
yp

to

cs
c

m
p2

au
di

o

m
p2

vl
oo

p

m
p2

av
sw

itc
h

m
p4

de
c

m
pe

g2

op
en

di
vx

tjp
eg AV

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

AV

BenchSuite SpecInt2000

Sp
ee

d-
up

IMS LxMS LxMS-mve-ep

Figure 10: Performance relative to IMS without stalls

- 20 -

determinant factor on performance. The two cases (bmark and mp2audio) in which LxMS
improves performance are due to the fact that loops having a single epilogue allow the epilogue
to be scheduled in combination with the succeeding basic block. When MVE reduction and
epilogue collapsing is applied, this is emphasized. The three cases (crypto, mp4dec and
opendivx) where LxMS degrades performance are due to loops with short iteration counts that
are executed many times. Our compiler schedules prologues and epilogues using a different
pattern than in the kernel, benefiting from the lower resource requirements of this two pieces, to
generate more efficient schedules than what can be achieved with kernel-only code. If the loop
performs very few iterations, the code in the prologue-epilogue can be more efficient for
schedulers that speculate less (IMS). This situation is aggravated by the copies in copy blocks
and the serialization of the epilogue to reduce its size. However, on average, the performance is
not affected.

Finally, Figure 11 shows the real execution time. We have observed that the D-Cache stall cycles
are practically the same for the three cases. Branch penalty cycles are slightly higher for LxMS
than for IMS (due to smaller MVE) and even higher for LxMS-mve-ep; however, they have a
minimal impact on performance. The most important factor that varies significantly with code
size reduction is I-Cache Stalls. There are three benchmarks where performance is significantly
improved by reducing loop code expansion (mp4dec +20%, mpeg2 +14% and opendivx +20%).
Of these, in mp4dec and opendivx the code reduction schemas play a critical role. There are
several other benchmarks where reducing loop expansion produces a small improvement in
I-Cache stalls. Finally, there are a few benchmarks where reducing code size actually increases
I-Cache stalls. The most notable case is perlbmk where the code size reduction produced by
LxMS over IMS reduces I-Cache capacity misses, but causes two critical functions to conflict in
the I-Cache, thus increasing the conflict misses; when code size is further reduced they do not
conflict any longer, and we benefit from reduced I-Cache capacity misses. A number of

0.8

0.9

1

1.1

1.2
ad

pc
m

bm
ar

k

co
py

m
ar

k

cr
yp

to

cs
c

m
p2

au
di

o

m
p2

vl
oo

p

m
p2

av
sw

itc
h

m
p4

de
c

m
pe

g2

op
en

di
vx

tjp
eg AV

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

AV

BenchSuite SpecInt2000

Sp
ee

d-
up

IMS LxMS LxMS-mve-ep

Figure 11: Real execution times relative to IMS

- 21 -

approaches that address the I-Cache conflict problem have been published, but are beyond the
scope of this paper.

7.2. Evaluation with other architectures

Finally, we have evaluated the proposed techniques to reduce code expansion with different
schedulers, with and without speculation and with different machine configurations. Lx
corresponds to the ST210 processor used throughout this paper. LxP corresponds to a processor
where load latency (32, 16 and 8 bit) has been increased to 4 cycles, multiplies take 3 cycles, and
the compare to branch latency is 3 cycles. LxSP is like LxP with 8 cycle loads.

Figure 12 shows the code size expansion for these more aggressive configurations for both IMS
and LxMS. For each processor configuration and each scheduler there are four columns: Basic
corresponds to the basic code schema, +mve+ep corresponds to the schema with all epilogs
collapsed and copies inserted to reduce MVE. Finally the Spec columns correspond to the
equivalent speculative schemas.

Notice that all processor configurations follow the same trend with code size increasing with the
more aggressive configurations. An interesting observation is that, with aggressive
configurations, code size expansion grows faster for smaller loops (SpecInt2000) than for big
loops (BenchSuite) for all schedulers and code schemas. This is caused by the fact that the
minimum posible Kmin is determined by the longest operation latency in the loop, which for
SpecInt2000 loops is usually longer than the II. However, all the combined heuristics for
containing code size (code size sensitive modulo scheduling with speculative and code size
reduction schemas) behave much better and perform an excellent job containing loop expansion.

It is also important to notice that the proposed techniques of collapsing epilogs and inserting
copies work as well for non-speculative schemas and for any modulo scheduler. In particular, for

1

2

3

4

5

6

IMS LxMS IMS LxMS IMS LxMS IMS LxMS IMS LxMS IMS LxMS

Lx LxP LxSP Lx LxP LxSP

BenchSuite SpecInt2000

Ex
pa

ns
io

n
R

at
io

Basic Basic+mve+ep Spec Spec+mve+ep

Figure 12: Evaluation with other architectures

- 22 -

the embedded benchmarks, those optimizations reduce significantly the code size expansion of
IMS.

8. Conclusions

One of the drawbacks of modulo scheduling is heavy code expansion due to explicit generation
of prologues and epilogues, and the replication of the loop body to avoid self-overlapping
lifetimes. This problem is so severe that some high performance processors incorporate
dedicated hardware support to generate kernel-only code for modulo scheduled loops.

This paper shows that code size expansion can be significantly reduced by incorporating a few
code reduction heuristics in the modulo scheduler. In particular, the following heuristics are very
effective:

• Minimize the length of the lifetimes to reduce the amount of MVE. These heuristics also
reduce register pressure. Our scheduler achieves this objective by scheduling all
operations as close as possible to their predecessors/successors. The same objective can
be achieved by using other register sensitive schedulers, or a register reduction post-pass
[6].

• Minimize the number of stages. This can be done by maximizing the priority of
operations on the critical paths (in terms of height) over operations on other paths.

• Schedule the loop branch instruction as late as possible in the schedule to minimize the
number of exits in the prologue. Our compiler achieves this objective with the same
heuristics used for reducing MVE and register pressure. A post-scheduler transformation
could easily be implemented to achieve the same objective. These heuristics also increase
the amount of speculation, which reduces code size in speculative schemas.

Among several code schemas (non-speculative, loop-preconditioning, and speculative),
speculative code schemas are by far the most effective to reduce code size if the modulo
scheduler contributes by maximizing speculation.

Finally, we have proposed code schemas where multiple epilogues are collapsed in a single one,
at the expense of explicitly renaming some registers, and serializing the execution of the
epilogue. In addition, we have proposed inserting copy instructions in unused issue slots to
reduce the amount of MVE.

We have shown that that all the above heuristics have a great effect on code size. For our
processor, code expansion is reduced from 4.2 to 1.5 with the BenchSuite benchmarks (from 3.4
to 1.5 with SpecInt2000). This reduced code expansion results in binaries 30% smaller on
average for the embedded benchmarks. The code size reduction factor is even more significant
with configurations that are more aggressive (5.1 to 1.6 with BenchSuite and 5.2 to 2.0 with
SpecInt2000).

Moreover, although the code size reduction techniques produce a small performance degradation
for some benchmarks, in general they contribute to a slight increase in performance. For a few

- 23 -

benchmarks, reducing code expansion is critical in terms of I-Cache performance, producing
speed-ups of up to 20%.

References

[1] V. Allan, R. Jones, R. Lee, and S. Allan. Software pipelining. ACM Computing Surveys 27,3
(Sept. 1995), pp. 367-432.

[2] G.R. Beck, D.W.L Yen, and T.L Anderson. The Cydra 5 minisupercomputer: Architecture
and implementation. J. Supercomputing 7,1/2 (May 1993), pp. 143-180.

[3] J. Codina, J. Llosa, and A. Gonzalez. A comparative study of modulo scheduling techniques.
In Proc. Intl. Conf. on Supercomputing, June 2002.

[4] J. Dehnert P. Hsu, and J. Bratt. Overlapped loop support in the Cydra 5. In Proc. 3rd Intl.
Conf. on Architectural Support for Programming Languages and Operating Systems, pp 26-
38, April 1989.

[5] J. Dehnert and R. Towle, Compiling for the Cydra 5. J. Supercomputing 7,1/2 (May 1993),
pp. 181-228.

[6] A.E. Eichenberger and E.S. Davidson. Stage scheduling: A technique to reduce the register
requirements of a modulo schedule. In Proc. 28th Intl. Symp. on Microarchitecture, pp. 338-
349, Nov. 1995.

[7] Equator technologies. MAP1000 unfolds at Equator. Microprocessor report, 129160, Dec.
1998.

[8] P. Faraboschi, G. Brown, G. Desoli, and F. Homewood. Lx: A technology platform for
customizable VLIW embedded processing. In Proc. 27th Intl. Symp. on Computer
Architecture, pp. 203-213, June 2000.

[9] J. Fisher, P. Faraboschi, and G. Desoli. Custom fit processors: Letting applications define
architectures. In Proc. 29th Intl. Symp. on Microarchitecture, pp. 324-335, Dec. 1996.

[10] R.A. Huff. Lifetime-sensitive modulo scheduling. In Proc. ACM SIGPLAN 1993 Conf. on
Programming Language Design and Implementation, pp. 258-267, June 1993.

[11] Intel Corporation, Intel IA-64 Architecture Software Developer’s Manual Volume 1:
Application Architecture, Jan. 2000.

[12] M.S.Lam, Software pipelining: An effective scheduling technique for VLIW machines. In
Proc. ACM SIGPLAN 1988 Conf. on Programming Language Design and Implementation,
pp. 318-328, June 1988.

[13] D.M. Lavery and W.W. Hwu. Modulo scheduling of loops in control-intensive non-
numeric programs. In Proc. 29th Intl. Symp. on Microarchitecture, pp. 126-137, Dec. 1996.

[14] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. Swing modulo scheduling: A lifetime
sensitive approach. In Proc. Intl. Conf. on Parallel Architectures and Compilation
Techniques, 1996.

- 24 -

[15] M.C. Merten and W.W. Hwu. Modulo Schedule Buffers. In Proc. 34th Intl. Symp. on
Microarchitecture, pp. 138-149, Dec. 2001.

[16] S. Ramakrishnan. Software pipelining in PA-RISC compilers. Hewlett-Packard Journal,
pp. 39-45, July 1992.

[17] B.R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops. In
Proc., 27th Intl. Symp. on Microarchitecture, pp. 63-74, Nov. 1994.

[18] B.R. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In Proc. 14th Annual
Microprogramming Workshop, pp. 183-197, Oct. 1981.

[19] B.R. Rau , M.S. Schlansker , P. P. Tirumalai. Code generation schema for modulo
scheduled loops. In Proc. 25th Intl. Symp. on Microarchitecture, pp. 158-169, Dec. 1992.

[20] Texas Instruments. TMS320C6000 CPU and instruction set reference guide. March 1999.

[21] P. Tirumalai, M. Lee and M.S. Schalansker, Parallelization of loops with exits on
pipelined architectures. In Proc. Supercomputing’90, pp. 200-212, Nov. 1990.

[22] N.J. Warter, G.E. Haab, K. Subramanian, and J.W. Backhaus. Enhanced modulo
scheduling for loops with conditional branches. In Proc. 25th Intl. Symp. on
Microarchitecture, pp. 170-179, Dec. 1992.

