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Abstract     

Modulo scheduling is a very effective instruction scheduling technique that exploits Instruction 
Level Parallelism (ILP) in loop bodies by overlapping the execution of successive iterations. 
Unfortunately, modulo scheduling has been shown to cause heavy code expansion. To avoid the 
penalties of code expansion, some processors have dedicated hardware support for modulo 
scheduled loops. However, this dedicated hardware support has a cost in chip area, cycle time, 
processor complexity, and compiler complexity. 
This paper shows that the right combination of scheduling heuristics combined with speculative 
modulo scheduling can significantly reduce code expansion. In addition, several code generation 
schema heuristics are proposed to further reduce code expansion. The evaluations show that 
loops can be effectively modulo scheduled with an average code expansion only 1.5 times the 
original loop size. Compared with a state of the art modulo scheduler, our code size sensitive 
heuristics reduce the size of embedded domain benchmarks binaries by 30% on average. While 
performance is mostly unchanged, some applications show speed-ups up to 20% due to a 
reduction in instruction cache capacity misses. 

                                                 
  3This work has been performed while Josep Llosa was a Faculty Visitor at Hewlett-Packard Laboratories, Cambridge, Mass. 
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1. Introduction 

VLIW architectures are widely used in the design of embedded/DSP processors [7][8][20], and 
in the design of some general-purpose microprocessors [11]. Statically scheduled processors, and 
VLIWs in particular, require efficient compiler technology to extract ILP from applications. 
Instruction scheduling plays a critical role in ILP exploitation. Software pipelining [1] is a very 
effective instruction scheduling technique for loops that overlaps the execution of successive 
iterations. Modulo Scheduling [18] is a class of software pipelining algorithms that is very cost 
effective and has been implemented in several production compilers [5][16]. 

One of the drawbacks of modulo scheduling (and software pipelining in general) is that it incurs 
significant code expansion. Although this code expansion is generally smaller than unrolling the 
loop multiple times and scheduling it using conventional techniques, it is still an important 
problem. In particular, there are some application areas in the embedded/DSP arena where code 
size is critical. From the general-purpose processor perspective, although code size can be 
tolerated more easily, it nevertheless has a negative effect on instruction cache performance. 

Code expansion in modulo scheduled loops is a consequence of the need to deal with two 
independent problems: the generation of prologues and epilogues to fill and drain the software 
pipeline, and the replication of the kernel, known as Modulo Variable Expansion (MVE) [12], to 
deal with register lifetimes that are longer than the loop Initiation Interval (II). To deal with such 
problems, some processors [2][11] have dedicated modulo scheduling hardware support. 
Rotating register files [4] allow the lifetime of a value generated in one iteration to overlap the 
lifetimes of corresponding values generated in previous and subsequent iterations without 
requiring MVE. Full predication with rotating predicates [4] permits the generation of “kernel-
only” code by selectively disabling the execution of operations during prologue and epilogue 
execution phases. 

Architectural support for modulo scheduling has several costs associated with it that, although 
some general-purpose processors may be willing to pay, can be prohibitive for low cost 
embedded/DSP processors. Both rotating registers and predicated execution add extra 
complexity to the processor, and require additional chip area. Rotating registers require an adder 
in the, usually critical, decoding path, leading to longer cycle time or longer instruction pipelines. 
In addition, they require special register allocation techniques, thus increasing the complexity of 
the compiler. Full predication requires a predicate field for each instruction in the ISA. If 
instruction encoding is tight, extra bits are required to encode the predicate field, having a 
negative effect on overall code size that might even negate the potential benefits. 

There have been several proposals to address code generation for modulo scheduled loops. 
Modulo Schedule Buffers (MSB) [15] allow the generation of “kernel-only” code with a more 
relaxed predication mechanism, but they still require rotating register files plus the cost of the 
MSB. In [21] schemas for efficient modulo scheduling of loops with early exits are proposed 
using hardware support. [19] proposes several code schemas for modulo scheduled loops with 
and without hardware support. Finally, [13] shows how to modulo schedule loops with multiple 
exits. 
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Modulo scheduling code size expansion has been addressed from a theoretical point of view 
[19], with a special emphasis in code schemas for processors with dedicated hardware support. 
However, little additional attention has been paid to the problem other than to observe it [22]. 

This paper makes several significant contributions regarding code generation schemas in the 
absence of dedicated hardware support: 

• The impact of modulo scheduling heuristics on code expansion is analyzed. The results 
show that making the right choice at scheduling time can significantly reduce code size 
requirements. In particular, bi-directional schedulers [10][13] perform very well, with the 
added benefit that they reduce register pressure without sacrificing performance. 

• Code expansion in the absence of hardware support is analyzed using three different code 
schemas: non-speculative modulo scheduling, loop preconditioning and speculative 
modulo scheduling. We show that speculative modulo scheduling produces less code 
expansion. Besides, it enables while-loops (i.e., loops whose trip count is unknown at the 
time the loop is entered) to be modulo scheduled. 

• Two new code generation schemas are proposed to further reduce the overall size of 
epilogues, by collapsing several epilogues into one. 

• Finally, we propose the insertion of copy instructions in unused slots to split the longest 
lifetimes. By splitting lifetimes that are longer than II into several segments, we are 
effectively rotating these lifetimes using spare processor resources. This has the benefit 
that MVE is not required, or that it is required to a lesser degree, reducing the code size 
requirements for the loop kernel. 

The combination of these techniques leads to modulo schedules with very small code expansion 
factors (ranging from 1.5 to 2 on average, depending on the processor configuration and 
benchmark set). This leads to an average code size reduction of 30% for benchmarks in the 
embedded domain. On average, the performance gain is small (0 – 5%), but it can range in some 
favorable cases up to 20%. However, the main contribution of the paper is that modulo 
scheduling is not necessarily expensive in terms of code size, and that it can be effectively 
performed without requiring special hardware support. 

The rest of the paper is organized as follows. Section 2 introduces basic modulo scheduling 
concepts; Section 3 explains our experimental framework; Section 4 discusses the impact of 
modulo scheduling heuristics on code size; Section 5 looks at the impact of loop preconditioning 
and speculative modulo scheduling; Section 6 explains our code size reduction schemas; Section 
7 presents a detailed evaluation; and Section 8 presents conclusions. 

2. Basic concepts 

2.1. Modulo scheduling 

In a modulo scheduled loop, the schedule of an iteration is divided into stages so that the 
execution of consecutive iterations overlaps. The number of stages in one iteration is called 
Stage Count (SC). The number of cycles between the initiation of successive iterations 
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determines the execution rate and is called the Initiation Interval (II). The II is bound either by 
recurrence circuits in the dependence graph of the loop (RecMII) or by resource constraints of 
the target architecture (ResMII). The lower bound on II is called the Minimum Initiation Interval 
(MII = max(RecMII, ResMII)). 

The execution of a loop can be divided into three phases: a ramp-up phase that fills the software 
pipeline, a steady-state phase where maximum overlap of iterations is achieved and a ramp-down 
phase that drains the software pipeline. During the steady-state phase, the same pattern of 
operations is executed at each stage. This is achieved by iterating on a piece of code, called the 
kernel. 

The scheduling step of a modulo scheduler builds the schedule progressively by adding 
instructions to a partial schedule. Sometimes the schedule reaches a partial schedule in which the 
remaining instructions cannot be placed. In this case, there are two alternative solutions: increase 
II [12][13], or apply backtracking [10][17]. Backtracking involves un-scheduling some 
operations in the partial schedule in order to make room for other operations, and then schedule 
them again later. Techniques that use backtracking are also called iterative techniques. In order 
to limit the scheduling time, the amount of backtracking is limited by the Budget Ratio, which 
determines how many times an instruction can be rescheduled before increasing II. 

2.2. Basic code generation schema 

When no hardware support is available, the ramp-up and ramp-down phases of the modulo 
schedule must be implemented using two pieces of code named prologue and epilogue, 
respectively. In that case SC – 1 iterations are executed by the prologue and epilogue, therefore 
the trip count of the kernel is N – SC + 1, where N is the number of iterations in the original 
loop. In addition, if the branch of the loop is not scheduled in the last stage, there may be 
potential exit points in the prologue, each requiring an epilogue to finish the iterations that have 
been initiated up to this point. In particular, SC – BS – 1 epilogues are required for early 
prologue exits, where BS is the stage where the exit branch is scheduled. 

An additional problem that must be solved is the presence of loop variants with a lifetime longer 
than II. In this case, a new value of the loop variant is generated before the value generated in the 
previous iteration is consumed. One approach to fix this problem is by renaming the register 
using rotating register files [4]. In the absence of such hardware support, Modulo Variable 
Expansion (MVE) [12] can solve this problem. When MVE is applied, the kernel is unrolled and 
registers are renamed to prevent that successive lifetimes corresponding to the same original 
loop-variant overlap in time. The minimum degree of unroll, Kmin, is determined by the longest 
lifetime, as: 





=

II
ngthLifetimeLeK min  

Figure 1 shows the code schema to be generated for a loop with SC = 4, BS = 1, and Kmin = 2. 
This schema can be simplified [19]; however, we choose not to do so to improve readability. 
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3. Experimental framework 

3.1. Architecture 

We have implemented and evaluated our heuristics in the compiler for the Lx architecture [8][9]. 
Lx is a scalable and customizable VLIW processor technology platform designed by Hewlett-
Packard and STMicroelectronics that allows variations in instruction issue width, the number and 
capabilities of structures, and the processor instruction set. A first implementation within this 
architecture platform is the ST210, a 250-MHz VLIW developed by STMicroelectronics. 

This architecture consists of a single-cluster 4-issue VLIW core composed of four 32-bit integer 
ALUs, two 16x32-bit multipliers, one Load/Store Unit, and one Branch Unit. The cluster also 
includes 64 32-bit General-purpose registers and 8 1-bit branch registers (used to store branch 
conditions, predicates, and carries). Instructions allow two 32-bit long immediates per cycle 
(which use up one issue slot). The ISA is a very simple integer RISC instruction set with 
minimal “predication” support through a select instruction. The memory repertoire includes 
base+displacement addressing, and allows for speculative execution of dismissible loads, which 
are handled by the protection unit. The data cache is a 32KB, 4-way associative, write-back array 
with load/store allocation. The instruction cache is 32KB direct mapped. There are no L2 caches. 
The control unit decouples the compare and branch operations and the compare-to-branch 
latency is exposed to the compiler. There are no architecturally visible delay slots after a taken 
branch; however, a mispredicted (taken) branch incurs a 1-cycle penalty. 

Most integer operations have unit latency; multiplies and 32-bit load operations have a latency of 
two cycles, as have compares that are read by a branch. 

3.2. Compiler platform 

The Lx compiler is a newly developed state-of-the-art commercial-quality compiler that finds 
ILP in the embedded space for a wide range of instructions set architectures and that is capable 
of supporting the anticipated Lx platforms; at the same time, this compiler is flexible enough to 
be used in compiler-research. It is designed to deliver the highest-possible ILP in the presence of 
scaling (variations in the number of available resources of a given kind) and customization 

Figure 1: Basic Code Generation Schema 
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(variations in the instruction set architecture). It is also targeted to clustered architectures with 
heterogeneous clusters and partitioned register files with limited inter-cluster connectivity and 
operations with architecturally visible non-unit latencies (without hardware to check for latency 
violations). Each of these degrees of freedom forces a separate level of complexity on the 
compiler’s design. 

3.3. Benchmarks 

We evaluated our heuristics using two sets of benchmarks. The first set comprises a set of 
programs that are representative for the Lx target domain and that includes audio manipulation, 
printing pipelines, color processing, cryptography, video, and still image compression and 
decompression. This set, which we call the BenchSuite, includes the following benchmarks: 

The second set consists of 9 of the 12 SPEC2000 integer benchmarks: we omitted 186.crafty 
because it uses 64-bit integer arithmetic (which our compiler currently does not support); 
252.eon because it is a C++ benchmark (and we currently don’t have a C++ compiler available); 
and 254.gap because it uses ioctl system call features that our simulation environment does not 
support. We have included the SpecInt2000 benchmarks because they are widely known. 
However, these benchmarks represent atypical workloads for which the Lx family has not been 
optimized. 

These two sets represent quite different workloads: the first set spends most of its execution time 
in big loops with a large amount of ILP (on average, there are 45.85 operations/loop in this set), 
while SpecInt2000 has many small loops with a limited amount of ILP (on average, there are 
only 10.72 operations/loop). In total, these benchmarks contain 2014 loops that our compiler can 
modulo schedule, 500 in BenchSuite and 1514 in SpecInt2000. 

adcmp ADCMP audio encoder/decoder 
bmark Printing imaging pipeline 
copymark Color copier pipeline 
crypto Cryptography code (ECC, RSA and DES) 
csc Color-space conversion 
mp2audio MPEG-1 Layer 2 encoder 
mp2vloop MPEG-2 video loop (subset of MPEG-2 standard w/o IDCT or reconstruction) 
mp2avswitch MPEG-2 System Layer de-multiplexor 
mpeg2 MPEG-2 decoder 
mp4dec MPEG-4 decoder 
opendivx Public MPEG-4 decoder 
tjpeg JPEG-like encoder/decoder 
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4. The impact of modulo scheduling heuristics on code size 

4.1. The quality of the schedules 

In a study like this one, special care must be given to the fact that code size expansion is in part 
influenced by the amount of overlapping achieved by the scheduler. In general, a scheduler that 
produces worse schedules (in terms of II) might require less code expansion. Therefore, it is very 
important to use a state-of-the-art modulo scheduler in order not to underestimate the code size 
expansion. In a recent study [3], Iterative Modulo Scheduling (IMS) [17] and Swing Modulo 
Scheduling (SMS) [13] have been shown to be at the head of the most advanced modulo 
schedulers from the point of view of minimizing II. We have implemented both IMS and SMS in 
our compiler, and compared them to the Lx compiler’s modulo scheduler (LxMS), in order to 
show that our results are not distorted by a low-quality scheduler. 

Table 1 shows a comparison of the MII/II ratio for the three modulo schedulers. Both IMS and 
LxMS use a Budget Ratio of 3, which we found to be a good performance/compile-time trade-
off. Although it is out of the scope of this paper to perform a modulo scheduler comparison, we 
can make a few interesting observations. 

Both SMS and IMS obtain a worse II ratio than what is claimed in their corresponding papers 
and in [3]. A careful examination of some dependence graphs, and the access to the SMS 
authors’ implementation, shows that our C benchmarks have more recurrences, and therefore are 
more difficult to schedule than the Fortran benchmarks used in both papers. This is due to the 
increased complexity of disambiguating memory references in C programs as compared to 
Fortran programs. 

SMS is a non-iterative modulo scheduler that gives special priority to recurrence circuits. 
However, SMS behaves slightly worse than the rest of the schedulers because of the particular 
resource usage of instructions in the Lx processor. SMS tends to greedily fill the four issue slots 
of some cycles with arithmetic instructions. If the loop is limited by memory operations, it needs 
to increase II to schedule the loads and stores. In addition, it failed to schedule some of the loops 
because of a rare pathologic situation with certain recurrence combinations that never arises in 
the authors’ benchmarks. 

IMS is an iterative modulo scheduler. This feature allows it to deal very effectively with the 
resource problem stated above. Backtracking also deals quite effectively with recurrence circuits, 
but not as well as a dedicated priority heuristic for recurrences. 

LxMS is an iterative modulo scheduler (like IMS) that gives special priority to recurrence 
circuits (like SMS). In addition, it gives a higher priority to the critical path than the other two 

Table 1: Average II/MII ratio 
Scheduler BenchSuite SpecInt2000
SMS 1.059 1.028 
IMS 1.054 1.026 
LxMS 1.034 1.014 
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schedulers do. This results in excellent schedules in the presence of either complex resource 
usage patterns and/or complex recurrence circuits. 

4.2. Code size sensitive scheduling heuristics 

For a given II, there are many different (usually infinite) schedules corresponding to that II. Each 
one of these different schedules can produce a different code expansion. In this section, we 
analyze which factors contribute to code size, and which heuristics can help to minimize code 
size in a modulo scheduler. 

Table 2 shows the loop expansion ratio for the three modulo schedulers described in the previous 
section. We define the code size expansion ratio as: 

∑
∑=

msafterloopsmsininstrs
msbeforeloopsmsininstrs

atioExpansionR
_____
_____

 

In Figure 1, it can be seen that there are three factors contributing to code expansion. The 
number of stages determines the size of the prologue and the size of epilogues. A reduced 
number of stages will have a smaller prologue and smaller epilogues. The stage in which the 
loop branch instruction is scheduled partially determines the number of epilogues, since each 
early exit in the prologue requires a partial epilogue. The later the branch is scheduled the fewer 
epilogues are required. Finally, the Kmin degree of MVE determines how many copies of the 
kernel are required. A smaller Kmin will require less code expansion due to the kernel. In 
addition, by reducing the number of kernel replications we are also reducing the number of 
epilogues. 

Table 3 shows the average Kmin, the average Stage Count, and the average number of early exits 
for the three schedulers considered. LxMS, despite producing schedules with smaller IIs, results 
in the smallest loop size expansion because it succeeds in minimizing all three factors, while 
SMS results in an intermediate loop size expansion because it fails to reduce the stage count.1 

                                                 
1 SMS performs worse on SpecInt2000 due to one pathological case (see comment on early/late start limits in Stage Count section) ; if this one 
case were removed, the code size would also be between the code size for IMS and LxMS. 

Table 2: Loop expansion ratio
Scheduler BenchSuite SpecInt2000
SMS 3.14 4.22 
IMS 4.22 3.39 
LxMS 2.48 2.67 
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Next, we outline the characteristics that modulo scheduling heuristics must have in order to 
improve each one of these factors. The above modulo schedulers are used as practical examples. 

Kmin 

 A good strategy to minimize Kmin is to minimize the length of the lifetimes. Both SMS and 
LxMS reduce the length of the lifetimes by scheduling operations as close as possible to their 
predecessors and successors. To do so, both schedulers use a bi-directional strategy in which 
nodes are scheduled as early as possible if they have predecessors in the partial schedule and as 
late as possible if they have successors in the partial schedule. In both schedulers node priority is 
computed using an adjacency ordering so that the situation in which a node has both 
predecessors and successors in the partial schedule is minimized. This heuristic not only helps to 
reduce code size, but also to reduce register pressure. Although register requirements are outside 
the scope of this paper, they are an important factor to reduce in order to improve the 
effectiveness of modulo scheduling. 

Early Exits 
The number of early exits is determined by how late the branch instruction is scheduled. In the 
case of architectures with low-overhead loop instructions in which a single instruction 
decrements the loop counter, compares it to zero, and jumps back to the loop if necessary, it is 
easy to reserve a slot for the branch and allocate it as late as possible. 

The Lx ISA, as many other processors, has no special hardware support for loops. Therefore, 
three instructions are required to modify the induction variable, compare, and branch. In 
addition, in the case of loops with conditional exits, which are also modulo scheduled by our 
compiler, the expression required for computing the branch condition might be very complex and 
depend on other computations in the loop. In that case, the best alternative is to schedule the 
branch as any other operation in the loop. 

IMS has a high number of exits because it greedily schedules operations top-down, which tends 
to schedule the branch too early. On the other hand, both SMS and LxMS schedule operations as 
close as possible to successors/predecessors. Since the branch instruction usually has a control 
dependence with some other operations in the loop, both schedulers tend to schedule it as late as 
possible, minimizing the number of early exits, and therefore the number of epilogues. 

Table 3: Average Kmin, average Stage Count, and 
average number of Early Exits 

BenchSuite SpecInt2000 Scheduler 
Kmin SC Exits Kmin SC Exits 

SMS 1.57 2.33 0.17 1.44 2.08 0.04 
IMS 1.91 2.23 0.91 1.71 1.97 0.36 
LxMS 1.54 1.97 0.20 1.44 1.85 0.07 
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Stage Count 
In order to minimize the stage count, the schedule length must be minimized. A good heuristic to 
minimize the schedule length consists of giving priority to the critical path of the loop. 

IMS uses height as priority, which, to some extent, gives more priority to the nodes on the 
critical path. However, if two nodes have the same height, there is no provision for selecting one 
over the other. This leads to the possibility that nodes belonging to a non-critical path are 
scheduled with higher priority. In addition, nodes on non-critical paths with greater height than 
nodes on the critical path are always assigned a higher priority. 

SMS also uses height/depth (depending if the node is ordered in a top-down/bottom-up pass) as 
priority. In addition, it breaks ties by considering the mobility of the node (i.e., the criticality of 
the path the node belongs to) as a secondary heuristic. However, nodes with greater height/depth 
are always assigned a higher priority independently of their criticality. 

LxMS uses the criticality of a node as its primary heuristic, and height/depth as a secondary 
heuristic. The only exceptions are the sub-paths that have both predecessors and successors on 
the critical path, which are scheduled right before the predecessor/successor (again depending if 
the nodes are ordered in a top-down/bottom-up pass). 

As expected, LxMS has, on average, a smaller Stage Count than the other two schedulers, 
because of the higher priority to operations on critical paths. Surprisingly, and contrary to what 
we expected, SMS has a slightly higher Stage Count than IMS. This occurs because critical path 
priority is not the only factor contributing to schedule length. 

Another factor is what we call “Early/Late Start Limit”. In some cases, the dependences allow a 
node to be scheduled in an earlier cycle than its predecessors. Assume, for instance, two nodes A 
and B connected by a dependence of distance 1, latency 2 and II = 4. If A is scheduled at cycle 
zero, B can potentially be scheduled as early as 0 + 2 – 1*4 = –2. This limit determines how 
early in a top-down pass (or late in a bottom-up pass) a node can be scheduled (assuming, of 
course, that other dependences allow this). 

Since IMS is a unidirectional top-down scheduler, the Early Start Limit is cycle zero (i.e., no 
node can be scheduled earlier than this cycle). Since no node will be bottom-up scheduled there 
is no Late Start Limit. 

However, with bi-directional schedulers we need to set both limits: if they are too close together, 
the scheduler will fail because it cannot accommodate the critical path between the two limits; if 
they are too far apart, the schedule will be longer than necessary. 

Since SMS has no Early/Late Start Limits, a node can be scheduled as early/late as its 
dependences allow it. This has the benefit that if the corresponding dependence is a register flow 
dependence, register pressure is minimized. Unfortunately, this is done at the expense of 
schedule length and code size. We have observed that this has a very small impact on register 
pressure, but, as can be seen in Table 3, the effect on schedule length is quite significant. 

LxMS uses flexible Early/Late Start Limits. Initially both limits are set to zero. When a node is 
scheduled in a top-down pass, it is scheduled as soon as possible, but never earlier than the Early 
Start Limit, so that we never generate a schedule longer than necessary. The Late Start Limit is 
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ignored for nodes scheduled top-down, so that the limits do not constrain the schedule. In 
addition, whenever a node is scheduled later than the Late Start Limit, the limit is updated to the 
cycle the node is scheduled, i.e., the distance between the limits is always the partial schedule 
length. The symmetric mechanism works for bottom-up scheduled nodes. 

There is an additional option in the Lx compiler that allows nodes like B in our example to be 
scheduled at most “slack” cycles before/after the early/late start limit. Figure 2 shows the effect 
on the stage count as we increase the slack. Although not shown, increasing the slack also 
produces a very small reduction in both Kmin and Early Exits, which for some benchmarks 
compensates the extra stage count, and reduces code size. However, as the slack is increased, 
code size keeps growing, and the result is so unpredictable that the default for the compiler is set 
to zero. 

5. Loop preconditioning and speculative modulo scheduling 

Two other code generation schemas have been proposed in [19] in order to reduce the epilogue 
code size. However, to the best of our knowledge they have not been evaluated in a production 
environment. 

Preconditioning the loop can eliminate the multiple epilogues in Figure 1. A non-software 
pipelined version of the loop is first executed until the number of remaining iterations for the 
loop kernel is a multiple of Kmin. In that way only one epilogue is required at the exit of the 
kernel. Likewise, the preconditioning loop can also be used when the trip count of the loop is 
smaller than SC, so that the early exit epilogues can also be removed. Figure 3 shows the code 
schema to be generated for our hypothetic loop. However, notice that in terms of code size the 
preconditioning loop contributes a full copy of the original loop body that must also be 
considered. The main drawback of this schema is that the first few iterations executed by the 
preconditioning loop are executed at a lower efficiency rate, reducing the overall performance. 
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The code schemas in Figure 1 and Figure 3 require the loop trip count to be known before 
entering the loop. This is acceptable for numeric applications; however, for general applications 
it is interesting to be able to modulo schedule loops with conditional exits. This can be achieved 
if speculative modulo scheduling is implemented. In that case iterations are started speculatively 
before knowing that they must be executed. Once the exit branch is executed, the iterations 
started speculatively are not completed in the epilogue, since they should never be executed. As 
can be seen in Figure 4, this leads to a code schema where the epilogues have reduced size, since 
only the non-speculative iterations must be completed. 

Figure 5 compares the loop expansion ratio of the basic code schema of Figure 1 (Basic) with 
loop preconditioning (Prec) and speculative modulo scheduling (Spec). We observed that for 
some loops, the code size contribution of the preconditioning loop was larger than the size of the 
epilogues it removed. We also compare the loop expansion ratio of applying loop 
preconditioning only when it will help to reduce code size (Prec++). 

 

Figure 3: Preconditioned Code Generation 
Schema

 

Figure 4: Speculative Code Generation 
Schema
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For the default Lx scheduler (LxMS), speculation is consistently superior to all other code 
schemas in terms of code size. This is because, as mentioned in the previous section, LxMS 
tends to schedule the branch as late as possible in the schedule. In other words, LxMS performs 
aggressive speculation minimizing the size of the epilogues. 

When IMS is used, speculation has a minimal effect on code size. As previously mentioned, IMS 
is a greedy top-down scheduler that tends to schedule all operations as early as possible, 
minimizing the amount of speculation, and maximizing the size of the epilogues. A curious result 
is that speculation with IMS works much better for SpecInt2000 than for BenchSuite. Recall that, 
on average, the loops in SpecInt2000 are much smaller than those in BenchSuite. The minimum 
control sequence for a loop requires three instructions, increment, compare, and branch, which 
have a minimum latency of 4 cycles. The fact is that many loops in SpecInt2000 have an II of 
less than 4 cycles, thus, even a greedy top-down scheduler schedules the branch in a relatively 
late stage of the schedule. However, with the BenchSuite, 4 cycles is negligible for the big loops 
(which incidentally dominate the code expansion ratio) with IIs in the order of tens and even 
hundreds of cycles, and IMS places the branch in the early stages of the schedule. 

6. Code size reduction schemas 

In this section, we propose several code generation heuristics to further reduce loop code 
expansion in modulo scheduled loops. These heuristics can be applied to any modulo scheduling 
technique, and can be combined with the previous code generation schemas (non-speculative, 
speculative, or preconditioned). 

6.1. Collapse kernel epilogues 

Notice that in Figure 1 and Figure 3 the epilogues corresponding to the kernel and the last 
prologue exits are identical. They only differ in the registers they read. It is relatively easy to 
make the compiler assign the same registers in the prologue and in the different kernel 
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replications. In that way, all epilogues will be identical and could be collapsed together into a 
single epilogue. However, the long lifetimes that span for more than II cycles cannot be assigned 
to the same register. Note that this is the reason for MVE in the first place. 

One way of overcoming the long lifetimes renaming problem is to insert basic blocks between 
loop exits and the corresponding epilogues and to explicitly rename long lifetimes with copy 
instructions in these blocks. This permits to collapse all kernel epilogues into a single epilogue 
copy, leading to the code schema shown in Figure 6. This schema has the advantage of reducing 
the code size of the epilogues, but it also increases the code size by the new copy instructions. 
However, in the case of LxMS (and any code size sensitive modulo scheduler in general), very 
few copy instructions are required, since the scheduler already tries to minimize the length of the 
lifetimes. 

The inserted copy instructions require some extra time to execute, which can be a performance 
problem in short trip count loops that are executed many times. Nevertheless, all copy 
instructions in a copy basic block are independent and can be executed in parallel. The Lx 
processor can execute up to four copy instructions per cycle, and we almost never require more 
than four copies per basic block. 

Finally, an additional problem with the Lx processor is that all taken branches have a 1-cycle 
penalty. That means that every copy block will execute for at least two cycles. Notice however, 
that this penalty is already present at the end of each of the epilogues. Therefore, in practice, we 
are only moving this penalty to the copy block. 

The above performance problems are in part compensated by the fact that, if there are no early 
exits in the prologue, there is a single exit epilogue that offers an opportunity to the scalar 
scheduler of merging it with the basic block following the loop, generating a better combined 
schedule. 

6.2. Collapse prologue epilogues 

In Figure 6, we can see that the partial prologue-epilogue actually corresponds to a subset of the 
full kernel epilogue. Notice that this is also true for the non-speculative case of Figure 1. In 
general, any partial epilogue corresponding to an early exit is a subset of the next partial 
epilogue. The code generated for one partial epilogue can be reused by the next epilogue if the 
completion of iterations is done in a sequential way, instead of a parallel way. Of course, the 
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long lifetimes are still a problem and copy blocks may be required for the early exits. Figure 7 
shows the corresponding schema for our example. 

Notice that it is not always necessary to generate a copy block for the partial epilogues. For 
instance, if in our example the lifetime that caused MVE starts in stage S2 and ends in stage S3, 
no copy will be required for the first exit. Also notice that only Kmin – 1 out of every Kmin exits 
actually require a copy. 

Collapsing the prologue-epilogues has the same code size and performance drawbacks as 
collapsing the kernel epilogues. In addition, extra performance penalty might be incurred by the 
fact that the epilogue is partially serialized, since no overlapping of iterations is exploited. 
However, this code schema has a single exit point, which allows the last portion of the epilogue 
to be scheduled jointly with the basic block following the loop. 

6.3. Lifetime splitting to reduce MVE 

Another source of code expansion are the multiple kernel copies required to deal with long 
lifetimes. Reducing MVE has the additional benefit that it also reduces the number of epilogues 
corresponding to kernel exits. 

One way of reducing the amount of MVE is to split the longest lifetimes into multiple shorter 
segments by using copy instructions. This reduces Kmin by explicitly renaming the lifetimes into 
multiple registers. In some sense, it behaves like rotating register files, where the registers are 
“rotated” by copy instructions. 

Unfortunately, the extra copy instructions require resources to be executed, and add some latency 
to the path where they are inserted. While it can be acceptable to pay some extra cycles in the 
loop exit, we are not willing to pay extra cycles in the kernel to reduce code size. The solution 
we have adopted consists of inserting copy instructions in the kernel in a post-schedule pass 
using only existing free issue slots. 

Using only free slots limits the number of lifetimes that can be split. However, notice that if a bi-
directional scheduler that tries to schedule nodes as close as possible like LxMS is used, the 
number of lifetimes longer than II is significantly reduced. We have also observed that for a big 
Kmin, there is usually a single lifetime causing it. For instance, in a loop with Kmin = 4, it is quite 
frequent to have a single lifetime of length 4*II and several more of length 2*II. In this case, a 
single copy to split the longest one can halve the size of the kernel. 
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Since we only use free issue slots, lifetime splitting has no negative effects on performance. 
However, since we incur a 1-cycle penalty each time we traverse the loop back edge, unrolling 
the loop fewer times causes us to incur this penalty more often. Many embedded and general-
purpose processors have some kind of branch prediction mechanism that can remove this 
penalty. 

6.4. Evaluation of code size reduction schemas 

Figure 8 shows the loop size expansion ratio with the previous optimizations applied to LxMS 
with a speculative code schema (Spec). The figure shows the contribution of each of the 
proposed techniques: collapse kernel-epilogues (+ek), collapse prologue-epilogues (+ep), which 
includes also +ek and MVE reduction (+mve) as well as their combined effect (+mve+ek and 
+mve+ep). 

MVE reduction using copy instructions results in the highest code size reduction, since it reduces 
both kernel and epilogue replications. The next most important factor is the reduction of the 
kernel-epilogues, since they are the most abundant. Collapsing prologue-epilogues results in the 
smallest code size reduction. This small contribution is not related to effectiveness of the 
technique, but to the fact that LxMS generates very few loops with partial epilogues. However, 
for the few loops where this happens, it is a very effective technique. When collapsing epilogues 
is combined with MVE reduction, the contribution is smaller because MVE reduction is very 
effective in removing replicated epilogues. 

Finally, notice that, although the initial code expansion of SpecInt2000 loops is smaller than that 
of the BenchSuite, code expansion is reduced more for BenchSuite. This is because SpecInt2000 
loops are much smaller, and the proposed techniques are more effective with larger loops (which, 
by the way, is what really worries developers). For example, a loop with II=1 requires at least 
MVE=3 to accommodate the lifetime of the compare instruction, and there is no way of splitting 
it with a copy, since this is already the minimum lifetime. 
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7. Evaluation 

7.1. Impact of code size reduction in performance 

In this section we analyze the impact of the code size reduction on performance on a detailed 
benchmark-by-benchmark basis. We have excluded the non-speculative schemes because the 
number of loops for which a valid modulo schedule can be generated with those schemas is very 
limited, especially in the case of SpecInt2000. We have used IMS with a speculative code 
generation schema as an example of a code size insensitive modulo scheduler, our default 
modulo scheduler (LxMS) also speculative to show the benefits of a code size sensitive modulo 
scheduler, and finally LxMS with all optimizations from section 6 enabled (this is the default for 
our compiler). All benchmarks have been run to completion and the output has been validated for 
all runs. 

Figure 9 shows the loop expansion ratio. Notice that almost all the individual results follow the 
trend of the global numbers previously shown. In all cases, LxMS causes significantly less code 
expansion than IMS, which is more pronounced for the BenchSuite benchmarks due to the larger 
loops. Also, for all benchmarks except adpcm (in which the extra copies are worse than the 
epilogue reduction), the proposed schemas reduce the code expansion even more. Notice that 
although the code size reduction mechanisms make a small contribution on average, there are a 
few benchmarks (like mp4dec and opendivx) where these mechanisms make an important 
contribution. Finally, there is the exceptional case of csc where LxMS manages to schedule the 
three inner loops of the program with SC=1 and MVE=1, using the same II as in IMS, which 
results in no code expansion at all. 

Table 4 shows the impact of the code size reduction heuristics (LxMS+mve+ep) in the final 
binary size, relative to a code size insensitive scheduler (IMS). Notice that for SpecInt2000 the 
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reduction is minimal because they are mostly huge programs with very small loops. However, 
for the BenchSuite, the binary size reduction is very significant; 30% on average and 67.5% for 
the best case. Recall that BenchSuite is representative of the embedded Lx target domain, where 
binary size is sometimes critical. 

Figure 10 shows the performance relative to IMS with no stalls, i.e., the ideal execution time 
assuming no cache miss penalty and no branch penalty. In general, the performance 
improvement/degradation is almost negligible, being in the –2% +3% range in the most extreme 
cases. We have observed that although LxMS produces slightly smaller IIs, this is not a 

Table 4: Binary size in bytes
BenchSuite SpecInt2000 

Program IMS LxMS 
+mve+ep 

reduction Program IMS LxMS 
+mve+ep 

reduction 

adpcm 2696 1856 31.2% gzip 66448 60848 8.4% 
bmark 119104 71976 39.6% vpr 163128 154248 5.4% 
copymark 79272 57040 28.0% gcc 1725692 1689120 2.1% 
crypto 105480 67432 36.1% mcf 12592 11952 5.1% 
csc 15664 5088 67.5% parser 115280 113416 1.6% 
mp2audio 68040 53160 21.9% perlbmk 722296 715232 1.0% 
mp2vloop 26640 25760 3.3% vortex 555464 552656 0.5% 
mp2avswitch 189232 157696 16.7% bzip2 39392 34824 11.6% 
mp4dec 75464 44736 40.7% twolf 301880 273016 9.6% 
mpeg2 98456 73160 25.7%        
opendivx 77056 42008 45.5%      
tjpeg 56560 52288 7.6%        
AVERAGE     30.3% AVERAGE    5.0% 
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determinant factor on performance. The two cases (bmark and mp2audio) in which LxMS 
improves performance are due to the fact that loops having a single epilogue allow the epilogue 
to be scheduled in combination with the succeeding basic block. When MVE reduction and 
epilogue collapsing is applied, this is emphasized. The three cases (crypto, mp4dec and 
opendivx) where LxMS degrades performance are due to loops with short iteration counts that 
are executed many times. Our compiler schedules prologues and epilogues using a different 
pattern than in the kernel, benefiting from the lower resource requirements of this two pieces, to 
generate more efficient schedules than what can be achieved with kernel-only code. If the loop 
performs very few iterations, the code in the prologue-epilogue can be more efficient for 
schedulers that speculate less (IMS). This situation is aggravated by the copies in copy blocks 
and the serialization of the epilogue to reduce its size. However, on average, the performance is 
not affected. 

Finally, Figure 11 shows the real execution time. We have observed that the D-Cache stall cycles 
are practically the same for the three cases. Branch penalty cycles are slightly higher for LxMS 
than for IMS (due to smaller MVE) and even higher for LxMS-mve-ep; however, they have a 
minimal impact on performance. The most important factor that varies significantly with code 
size reduction is I-Cache Stalls. There are three benchmarks where performance is significantly 
improved by reducing loop code expansion (mp4dec +20%, mpeg2 +14% and opendivx +20%). 
Of these, in mp4dec and opendivx the code reduction schemas play a critical role. There are 
several other benchmarks where reducing loop expansion produces a small improvement in 
I-Cache stalls. Finally, there are a few benchmarks where reducing code size actually increases 
I-Cache stalls. The most notable case is perlbmk where the code size reduction produced by 
LxMS over IMS reduces I-Cache capacity misses, but causes two critical functions to conflict in 
the I-Cache, thus increasing the conflict misses; when code size is further reduced they do not 
conflict any longer, and we benefit from reduced I-Cache capacity misses. A number of 
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approaches that address the I-Cache conflict problem have been published, but are beyond the 
scope of this paper. 

7.2. Evaluation with other architectures 

Finally, we have evaluated the proposed techniques to reduce code expansion with different 
schedulers, with and without speculation and with different machine configurations. Lx 
corresponds to the ST210 processor used throughout this paper. LxP corresponds to a processor 
where load latency (32, 16 and 8 bit) has been increased to 4 cycles, multiplies take 3 cycles, and 
the compare to branch latency is 3 cycles. LxSP is like LxP with 8 cycle loads. 

Figure 12 shows the code size expansion for these more aggressive configurations for both IMS 
and LxMS. For each processor configuration and each scheduler there are four columns: Basic 
corresponds to the basic code schema, +mve+ep corresponds to the schema with all epilogs 
collapsed and copies inserted to reduce MVE. Finally the Spec columns correspond to the 
equivalent speculative schemas. 

Notice that all processor configurations follow the same trend with code size increasing with the 
more aggressive configurations. An interesting observation is that, with aggressive 
configurations, code size expansion grows faster for smaller loops (SpecInt2000) than for big 
loops (BenchSuite) for all schedulers and code schemas. This is caused by the fact that the 
minimum posible Kmin is determined by the longest operation latency in the loop, which for 
SpecInt2000 loops is usually longer than the II. However, all the combined heuristics for 
containing code size (code size sensitive modulo scheduling with speculative and code size 
reduction schemas) behave much better and perform an excellent job containing loop expansion. 

It is also important to notice that the proposed techniques of collapsing epilogs and inserting 
copies work as well for non-speculative schemas and for any modulo scheduler. In particular, for 
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the embedded benchmarks, those optimizations reduce significantly the code size expansion of 
IMS. 

8. Conclusions 

One of the drawbacks of modulo scheduling is heavy code expansion due to explicit generation 
of prologues and epilogues, and the replication of the loop body to avoid self-overlapping 
lifetimes. This problem is so severe that some high performance processors incorporate 
dedicated hardware support to generate kernel-only code for modulo scheduled loops. 

This paper shows that code size expansion can be significantly reduced by incorporating a few 
code reduction heuristics in the modulo scheduler. In particular, the following heuristics are very 
effective: 

• Minimize the length of the lifetimes to reduce the amount of MVE. These heuristics also 
reduce register pressure. Our scheduler achieves this objective by scheduling all 
operations as close as possible to their predecessors/successors. The same objective can 
be achieved by using other register sensitive schedulers, or a register reduction post-pass 
[6]. 

• Minimize the number of stages. This can be done by maximizing the priority of 
operations on the critical paths (in terms of height) over operations on other paths. 

• Schedule the loop branch instruction as late as possible in the schedule to minimize the 
number of exits in the prologue. Our compiler achieves this objective with the same 
heuristics used for reducing MVE and register pressure. A post-scheduler transformation 
could easily be implemented to achieve the same objective. These heuristics also increase 
the amount of speculation, which reduces code size in speculative schemas. 

Among several code schemas (non-speculative, loop-preconditioning, and speculative), 
speculative code schemas are by far the most effective to reduce code size if the modulo 
scheduler contributes by maximizing speculation. 

Finally, we have proposed code schemas where multiple epilogues are collapsed in a single one, 
at the expense of explicitly renaming some registers, and serializing the execution of the 
epilogue. In addition, we have proposed inserting copy instructions in unused issue slots to 
reduce the amount of MVE. 

We have shown that that all the above heuristics have a great effect on code size. For our 
processor, code expansion is reduced from 4.2 to 1.5 with the BenchSuite benchmarks (from 3.4 
to 1.5 with SpecInt2000). This reduced code expansion results in binaries 30% smaller on 
average for the embedded benchmarks. The code size reduction factor is even more significant 
with configurations that are more aggressive (5.1 to 1.6 with BenchSuite and 5.2 to 2.0 with 
SpecInt2000). 

Moreover, although the code size reduction techniques produce a small performance degradation 
for some benchmarks, in general they contribute to a slight increase in performance. For a few 
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benchmarks, reducing code expansion is critical in terms of I-Cache performance, producing 
speed-ups of up to 20%. 
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