

A Personal Email Assistant

Ruth Bergman, Martin Griss, Carl Staelin
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-236
August 22nd , 2002*

email, agents,
machine
learning,
information
retrieval

A key element of the CoolAgent Personal Assistant vision is the
active management and use of personal, team and organizational
information. The finding, filtering, composing, routing and
information-triggered notification to a (mobile) user, adapted to the
location, schedule, available appliances, tasks and other personal
and team context is a key capability within the vision of an agent-
based system for personal, professional and team activities. In this
paper we report on the current status of a key element, the personal
email assistant (PEA), which provides a customizable, machine-
learning-based environment to support the activities of a major time
sink of our daily lives - the processing of email. The system has
been designed to be usable either with or without an agent-based
infrastructure, and to be useful with a variety of email systems. In
its current form, it leverages and augments the capabilities provided
by Exchange and Outlook. It provides capabilities of: smart
vacation responder, junk mail filter, efficient email indexing and
searching, deleting, forwarding, re-filing, and prioritizing of email.
A key contribution of our work has been to leverage high-quality
open source components for information retrieval, machine
learning, agents and rules to provide a powerful, flexible and robust
capability.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 1

A Personal Email Assistant

Ruth Bergman*, Martin Griss#, and Carl Staelin*
 #HP Laboratories, Palo Alto *HP Laboratories, Israel

1501 Page Mill Road Technion City
 Palo Alto, CA 94304 USA Haifa 32000, ISRAEL

August 2002

Abstract
A key element of the CoolAgent Personal Assistant vision is the active management
and use of personal, team and organizational information. The finding, filtering,
composing, routing and information-triggered notification to a (mobile) user, adapted
to the location, schedule, available appliances, tasks and other personal and team
context is a key capability within the vision of an agent-based system for personal,
professional and team activities. In this paper we report on the current status of a key
element, the personal email assistant (PEA), which provides a customizable, machine-
learning-based environment to support the activities of a major time sink of our daily
lives – the processing of email. The system has been designed to be usable either with
or without an agent-based infrastructure, and to be useful with a variety of email
systems. In its current form, it leverages and augments the capabilities provided by
Exchange and Outlook. It provides capabilities of: smart vacation responder, junk
mail filter, efficient email indexing and searching, deleting, forwarding, re-filing, and
prioritizing of email. A key contribution of our work has been to leverage high-quality
open source components for information retrieval, machine learning, agents and rules
to provide a powerful, flexible and robust capability.

Keywords: email, agents, personal assistants, machine learning, information retrieval

1 Introduction
In this paper, we report on the vision, goals, status and key technical elements of a
personal email assistant (PEA). A PEA is an application or suite of applications that
proactively monitor and manage a user’s email, to reduce the burden of the large
volume of email that a typical user encounters today. So much email (both valuable
and “junk”) arrives each day that many users (individual and teams) are
overwhelmed, missing important messages, responding late, forgetting to follow up
and spending lots of time on rote email handling tasks. This is especially true in most
larger, distributed organizations, which tend to use email as a primary communication
medium. Users maintain many folders, are constantly moving mail between folders,
archiving and retrieving mail, and searching for relevant mail.

Our vision of the PEA is as a key piece of a larger Personal Information Assistant
(PIA) that indexes and manages content from several personal information sources,
such as email, local files, and bookmarks/favorites, and provides a unified search over
the personal, local, and global information. In turn, we envision the PIA as a
component of a Personal Assistant (PA) that assists users in handling many tasks,
involving email, calendars, context, and personal information. In addition to general
information indexing and search, the toolkits and services associated with the PIA can

 2

be used to respond to specific task-oriented queries, trigger actions based on the
discovery of specific information or context changes (such as receipt of email, change
in a web page or calendar, or completion of tasks), or construct task-oriented
summaries of salient information for meetings, etc.

Intelligent agent projects to date are criticized for solving toy problems. The projects
result in good demonstrations rather than in useful tools. The standard response is that
the technology is ready, and the useful problems would be solvable if only we had a
useful set of supporting web services. We, on the contrary, built the critical
supporting services, namely contact and calendar services, on top of a high-quality,
widely-used commercial system, namely Microsoft Exchange. With these services
our PEA is truly useful.

The PEA supports these key email-related tasks:

1. prioritize – the PEA uses classification and rules to prioritize incoming
messages. The user may then view email sorted by priority in Outlook.

2. filter – the PEA uses classification and rules to filter unwanted mail, such as
“junk” mail.

3. index/retrieve – the PEA maintains an inverted index of all current and
archived mail which the user may search with a Google-like interface.

4. refile – the PEA uses classification and rules to move messages to appropriate
folders.

5. vacation response – a Vacation agent uses the contact and calendar agents to
respond to incoming messages with appropriate vacation responses1.

Some of these tasks are available in mail client applications today, e.g. rule-based
refiling in Microsoft Outlook/Exchange, junk mail filtering in Outlook/Exchange,
Netscape or Hotmail, machine learning [ifile; Shahami 1998], and index/retrieve in
Microsoft Outlook. We are not familiar with any application that provides
prioritization, nor of any application that combines all of the above capabilities.

The PEA also demonstrates how useful tasks are accomplished via agent interaction.
We have architected the PEA and the PA on which it is based as a set of interacting
agents and services. The use of a multi-agent architecture allows great flexibility in
dunamically discovering, configuring and customizing the system as new services are
added. The Vacation agent is a simple, but useful, example of leveraging information
to reduce user burden. This agent responds to incoming messages with the standard
“I am on vacation until… “ message. Unlike the vacation response available in most
email clients, this agent requires no user intervention. Finding a vacation event in the
calendar automatically triggers the vacation agent behavior. Furthermore, the
vacation agent uses some heuristics to avoid sending multiple vacation messages to
the same person, customizing the response for different (types of) people, and
responding to mailing lists.

The PEA is designed as a suite of customizable, extensible elements2 that work
together to process incoming and existing email using a flexible combination of

1 This can be generalized to create responses or invoke actions that are customized to the sender,
message content and situation.

 3

information retrieval (IR), machine learning (ML), rule-based (RB) and agent-based
(AB) techniques to provide personally adapted support “behind” one’s favorite email
system. We view the combination of IR, ML, RB and AB techniques using powerful
open source components as a key enabler to providing a robust system.

Like our vacation agent, we can leverage agent interaction, information sources, and
combine IR, ML and RB to attain more “intelligent” and useful agent behavior.

Future tasks we envision include:
• Summary and digest (especially when lots of email arrives about a topic)
• Apply (e.g, use email to trigger and run specified actions)
• Notify (e.g., send a summary or alert about selected email to a users pager

or voicemail).
• Smart Vacation which responds to people with a tailored response, for

example, co-workers may receive alternate contact information, known
contacts may receive a return date, but unknown senders merely receive
the information that the user is on vacation.

• Meeting Minder which monitors incoming email for messages about
scheduled meetings. This agent may collate all messages, discussions and
documents relevant to the meeting and make this information available to
the user at the time of the meeting.

As we will detail further, the key contributions of our work are in the specific and rich
features provided to handle email, in the use of interacting agents (for example the
vacation agent), in the way in which the tools, agents and assistants work “behind the
scene” to augment the experience using the user’s favorite email tools (e.g., Outlook
and Exchange), and in the “tasteful” and extensible combination of IR, ML, RB and
AB techniques using powerful open source components. We use the term "assistant"
to suggest the overall style or flavor of the application - the PEA or PA "assists" a
user in performing complex or rote tasks, such scheduling meetings or manageing
email. The term "agent" refers to a technology and architecture, in which applications
are partitioned into autonomous, loosely coupled components that discover and
communicate with each other by exchanging highly structured messages.

In the remainder of this paper we start with a summary of background on personal
assistants and related email work (section 2), describe our smart vacation multi-agent
prototype (section 3), and then describe the design of our current email handling
components (section 4). We conclude with a discussion of the status and experience
of the current system (section 5) and planned and proposed next steps (section 6).

2 Background
In this section, we describe the CoolAgent personal assistant we have prototyped and
some related email-handling systems.

2.1 The CoolAgent personal assistant

The CoolAgent personal assistant (PA) is an autonomous, proactive agent-based tool,
implemented as a society of collaborating agents that support an individual user, and
interact with group services and personal assistants of other users.

2 These elements can be separate agents in some cases, or behaviours and loosely coupled classes in
others.

 4

The primary PA application demonstrated so far is that of distributed meeting
scheduling [Griss et al, 2002a], as well as the new email agents described in this
paper. As described, the user’s PA is customized by a preferences and profile file
containing personal information and preference rules about notification modes,
meeting times, participants, and rooms. The PA interacts with the user’s calendar
agent (which can interface to one or more of several calendaring systems, such as
Outlook/Exchange and Palm desktop), and the voicemail system. It can also interact
with system agents (such as a meeting arranger agent) and services (such as a
teleconference reservation system); the meeting agent can interact with other personal
assistants and room reservation systems.

The PA is implemented as a set of multiple, collaborating JADE agents [JADE,
2000]. JADE is a Java open source system that is FIPA compliant. JADE uses a
standard Agent Communication Language (ACL) to communicate between agents,
and supports agents distributed on multiple machines, as well as mobile agents. We
have extended the JADE system to produce a robust platform called
BlueJADE[Cowan et al, 2002] by combining JADE and the HP AS J2EE application
server3, and by using UML hierarchical state machines to more precisely and flexibly
specify behaviors [Griss et al, 2002].

The PA can route messages and notifications via one or more channels (email,
voicemail, IM/jabber, or pager), based on preferences and context. Subsequent work
also interfaced the PA to the CoolTown web-presence manager[CoolTown], allowing
some location context and events to further adjust how the PA would respond to
requests for meetings, and presence in a meeting room.

One part of the overall PA vision is for the PEA to interact as a peer or child of the
other agents. In one direction, the PEA uses the calendar agents, the notification
agents and the PA to find information and to communicate with the user. In the other
direction, email messages concerning meetings could trigger the meeting agents, or at
least monitor, prioritize and route email relevant to specific meetings.

2.2 Related email agent work

The notions of using intelligent agents, machine learning and collaborative
applications to handle email and other personal information for individuals and teams
are not new. However, many of the ideas described in earlier work are fragmentary, or
only demonstrations. In part, this paper highlights how we have implemented a rich
combination of these ideas in order to make a practical, extensible system that we can
use in our daily work. In part, our contributions are only now possible because of the
recent availability of a number of relatively high-quality, open source building blocks
that enable us to use best-in-class capabilities, rather than the very simple,
fragmentary elements heretofore feasible.

In any event, the large number of papers, systems and experiments show that this
continues to be a rich area for experimentation with powerful techniques.

3 An open-source version based on the JBOSS open-source application server is in final stages of
preparation for release.

 5

2.2.1 Widely used (commercial) email filtering systems

Many email clients and systems provide some kind of junk mail or SPAM filter and
also sometimes a more general set of email handling rules. The large number of such
systems testifies to the importance of providing assistance to the user in dealing with
the deluge of email. For example Hotmail, Netscape, and Outlook each provide a way
to define email filtering rules, or at least junk mail filtering rules. Some require the
user to write rules; others use some kind of learning algorithms, or extraction of
patterns from examples.

As a detailed example, Microsoft Outlook and Exchange both offer (essentially the
same) way of writing rules that are applied to each incoming or outgoing email
message, or can be run manually over any folder. The Office 2000 “rules wizard” can
create some 11 types of rules that run on either the server or in the client. Each rule
has a condition and an action. Rules are checked in a specified, user controlled order.
Some rules run when a message arrives, others after it is sent, and others assign or
modify categories based on content or header information. The set of conditions
includes checking To, From and/or CC: lists, the presence of specific words in the
subject or body, presence of attachments, etc. The actions include refiling, deleting,
and forwarding a message, setting attributes and categories, printing the message,
playing a specific sound or activating a specific application. Subsequently, the
Outlook display can sort or filter on these attributes and categories. Complete sets of
rules can be imported. Clicking on a message and using it as an example to construct
a rule can invoke a different “organize folder” wizard. An “out of office assistant”
provides a simpler/different interface for constructing and activating some rules
(which may be a subset of the full rule system). Finally, junk mail and adult content
filters are provided as a pre-built set of rules that look for specific structure, addresses
or words in the sender, subject or body. Because only specific words are searched for
(rather than invoking a user-specified or learned pattern), rules can become quite
complex. Finally one cannot access other information to make filtering decisions such
as forwarding or replying to email that arrives when certain information is in the
calendar.

Outlook/Exchange also provides a tool to search for mail, notes, tasks or attachments
of interest, using simple queries that look for words, presence of attachments or
attributes, and size or date constraints. Search is slow because each message is
scanned at search time rather than using an inverted index to locate matching
messages directly.

For comparison, MSN HotMail provides a somewhat simpler Mail Handling
capability. It has a separate Junk Mail Filter that keeps unwanted e-mail from
reaching your Inbox. Its level of rejection can be set high or low, and messages caught
in the Junk Mail folder can be marked as ‘not junk’ to lightly “train” the filter.
Optional Immediate or Delayed Junk Mail Deletion can be selected; HotMail includes
a Safe List of names and Mailing Lists from which messages will never be filtered as
'junk,’ and an ability to block the delivery of e-mail from specific addresses. It also
provides the ability to create up to 11 ordered Custom Filters that refile incoming
messages to specific folders if specific words or phrases appear, do not appear or start
or end the To, From CC, or Subject fields. Finally, one can select Alerts that arrange
for you to receive notification on your mobile device when new e-mail arrives (via
MSN mobile), but there do not appear to be any rules to determine which messages
trigger notification.

 6

2.2.2 Machine learning and Information analysis techniques

ifile is a general [ifile] email filter that adaptively filters email based on previous user
actions and some preferences. ifile works with a mail client to intelligently filter mail
according to the way the user tends to organize mail. ifile uses the machine learning
algorithm Naive Bayes to classify e-mail documents. ifile is different from other mail
filtering programs in three major ways:

1. ifile does not require you to generate a set of rules in order to successfully
filter mail

2. ifile uses the entire content of messages for filtering purposes
3. ifile learns as you move incorrectly filtered messages to new mailboxes

See also the Stanford junk mail filter[Sahami 1988] which also uses Bayesian
techniques to build an email filtering tree. The idea is to use adaptive, machine
learning techniques to avoid the laborious and error-prone manual construction and
maintenance of a set of filtering rules.

Such intelligent and adaptive filters are a critical part of the mail assistant. We are
exploring the possibility of incorporating such modules into our system. It remains to
be seen whether ifile, for example, is modular enough to be accessed from our Java
code. Certainly the existing package, using C and Perl scripts, would require
considerable effort to bring into our development environment. In addition, using an
existing module restricts the choice of machine learning algorithm, e.g. ifile uses only
Naïve Bayes.

SpamAssassin is a PERL-based tool targeted at Unix email users. It uses several
rule-based techniques and heuristics to identify SPAM; rules and criteria are loadable
or customizable from text files, so can be easily modified by users or administrators.
Techniques used include:

• header analysis: spammers use a number of tricks to mask their identities,
fool you into thinking they've sent a valid mail, or fool you into thinking you
must have subscribed at some stage. SpamAssassin tries to spot these.

• text analysis: again, spam mails often have a characteristic style (to put it
politely), and some characteristic disclaimers and CYA text. SpamAssassin
can spot these, too.

• blacklists: SpamAssassin supports many useful existing blacklists, such as
mail-abuse.org, ordb.org or others.

• Razor: uses Vipuls razor collaborative spam database to filter widely
distributed SPAM messages. (See below)

Other systems include Netscape mail handler and Unix mutt/procmail.

2.2.3 Collaborative filtering

Vipul’s Razor is a distributed, collaborative, spam detection and filtering
network[Vipul, 2002]. Since spam typically operates by sending an identical message
to hundreds of people, Razor short-circuits this by allowing the first person to receive
a spam to add it to the database -- at which point everyone else will automatically

http://www.mail-abuse.org/
http://www.ordb.org/

 7

block it. Through user contribution, Razor establishes a distributed and constantly
updating catalogue of spam in propagation that is consulted by email clients to filter
out known spam. Detection is done with statistical and randomized signatures that
efficiently spot mutating spam content. User input is validated through reputation
assignments based on consensus on report and revoke assertions that in turn are used
for computing confidence values associated with individual signatures.

2.2.4 Agent-based systems

Information Lens system [Malone et al., 1987] was a pioneering groupware tool in
which intelligent agents help users find, filter, and sort large volumes of electronic
information. The Lens system was written in object-oriented Interlisp-D. It has a
central server named “Anyone” which receives messages that include “Anyone” as an
addressee from the existing mail server. By automatically sorting and periodically
retrieving messages from the special mailbox, “Anyone” sends the message to several
additional recipients whose rules select it. The Lens system allows users to build rules
for finding, filtering, and sorting messages. Rules consist of a test and an action. If a
message satisfies the test, then the action specified by the rule is performed on the
message. As in composing messages, the system also provides a display-oriented
editor for constructing rules by filling the fields of a rule template. This template-
based graphical rule construction was found to be very easy for inexperienced
computer users. The same approach to rule construction is used in the
Outlook/Exchange system. See also GroupLens [GroupLens].

Patty Maes [Maes, 1994] describes a vision of a set of agents (“Agents that reduce
work and information overload”) that support a single user for several tasks (such as
meetings, email,…). While she talks about agents collaborating with other task and
user agents to improve performance, it appears that not much was done in this area.
She also described some initial experiments.

POSTMAN [Postman, 1999] is a personal e-mail filtering agent that can help users to
classify incoming e-mails according to the rules input by the user. This system is
similar to the Information Lens, and to Outlook, in that users need to edit processing
rules by hand. However, it is more practical than the Information Lens, being built on
the PINE email system and is written in JAVA rather than LISP.

Intelligent Email Agent [Florea and Moldovanu, 2001] is an email handling agent
that helps a UNIX mail user. It has a simple learning, model but does not use body
keywords, nor does it execute any reply action. It supports Boolean AND/OR patterns
using a restricted set of predefined key fields from messages (using the attributes:
subject, from, CC, date, length). It uses Quinlan ID3 decision tree learning algorithm
(see WEKA). The Florea and Moldovanu paper contains a good discussion of some of
the learning issues with email. See also [Lucene]’s Boolean, weight and affinity
capabilities.

In summary, there are a number of systems that provide some useful amount of email
handling assistance, through a selection of one or more pre-built or user-defined rule
sets, through some adaptive (Bayesian) techniques, or through some collaborative or
agent-based techniques. Many of these have a rather rigid notion of what the user can
customize, or how the mail handling interacts with other applications and information
sources.

 8

In our work we wanted to build a more flexible and robust framework that allowed us
to combine several powerful, high-quality, implementations of information retrieval,
machine learning, rule-based and agent-based (collaborative) techniques to produced
a highly configurable system, with more features than found in a typical system
today.Our ideas on how to structure the system have been influenced by the venerable
RAND Mail Handling (MH) system [MH 1992; Peek 1995]. The MH system is
notable as a set of Unix components and filters (a “kit”), rather than a monolithic
mail system. Each component handles a specific mail task, such as deleting, refiling,
sorting or folder management. It is fairly easy to link the components into various
mail processing tools using shell scripts, perl scripts, or frontend email readers such
emacs (via mh-e), xmh, exmh or vim. Recently, the MH book has been updated to
include nmh, and is also available online4.

3 Initial Experiments: Email Vacation and Search Agents
In this section, we describe our initial experiments in applying an early set of email
components and a suite of agents to the email portion of the personal information
space. These experiments led us to define and implement a new set of more powerful
mail handling components, described in the next section. When these are all
completed, we will then enrich these email agents, and also expand to other
information sources and modes.

We developed a simple vacation agent and email search agent, as well as several
supporting agents. We use several new agents that interact with some of the agents
previously developed for the PA meeting assistant. These new agents include a “mail
agent” that receives and routes incoming email, a “mail indexing agent” (using
Lucene to build inverted indices) to support a fast “mail search agent,” a “contacts
agent” and a “vacation agent..” Lucene is an information retrieval/indexing
package[Lucene] and WEKA is a package of machine learning algorithms[WEKA].
Both are described described in greater detail in section 4, and used extensively in our
work.

The email agents are supported by email hooks that access incoming mail. We have
developed two kinds of appropriate email hooks to allow intercepting, (re-)routing,
preliminary analysis and categorization of mail. The first uses the Javamail API. The
second is a new Java Exchange Bridge (JEB), written by us to provide finer-grained
access to the Exchange services, using the JACOB open source toolkit [JACOB].
JEB enables us to access Exchange services that are not available via the Javamail
API, such as contacts and calendar data. It also exposes more message structure
particular to the Exchange server, which we use, for example, to insert a priority field
in a message. The bulk of message processing in the email agent, however, uses
Javamail.

The two supporting agents used by the email agent are the calendar agent and the
contacts agent. The calendar agent may access the Exchange calendar service using
VIEW, an HP-written web-service that provides https access to Exchange, or JEB.
The contacts agent accesses stored information about “me and my associates.”
Initially it stored contacts data in an XML file; now it can access contacts data on
Exchange using JEB.

4 Unfortunately, nmh does not run on the Microsoft Windows operating system, and so could
not be used as part of the solution; perhaps it can be used for a future Unix/Linux version.

 9

The vacation agent uses both the contact information and the calendar information to
decide if and how to respond to email messages sent to me. It first finds information
about “me” from the contacts agent. It determines whether I am on vacation by
periodically asking the PA. The PA uses several heuristics, and may query the
calendar for information about my scheduled vacations, or other scheduled
unavailable times. For each incoming message, the vacation agent checks to see if a
response has already been sent to the sender, using a mySQL database to store
contacts to whom it has previously responded. If not, it constructs and sends an
appropriate email response. Using contact information the vacation agent recognizes
a person even when messages arrive from different email addresses. For example,
ruth_bergman@hp.com is the same person as ruth@hpl.hp.com. Last, the vacation
agent uses some additional heuristics to avoid responding to bulk mail messages, such
as mailing lists.

The key advantage of the vacation agent over existing vacation response capabilities
in mail clients is that the user does not have to set up the behavior of the client upon
leaving the office. Rather, the appropriate behavior will be triggered, by finding the
vacation event in the calendar. So the user can create the vacation event months in
advance, while planning the vacation, with no further action required. For last minute
vacations, assuming the user has some access to his calendar, the user may add a
vacation event at any time and trigger the vacation response behavior.

These initial experiments helped us understand how to use Lucene effectively, the
difficulty of managing large amounts of email flowing as ACL messages, and issues
related to synchronizing the inverted index and the processed mail. These lessons led
to the new mail event driven architecture discussed below. The next step of additional
email filtering, similar to an ifile-like [ifile] email filter that adaptively filters email
based on previous user actions, some preferences, and additional profile information.
Using this new architecture and components, we also plan to create additional
services and agents, such as a SONIA-like [Sonia] meta-search engine and a
bookmark organizer.

4 Architecture and Design
In this section, we describe the set of email handling components, the notion of a
flexible dispatch tree, and how these components can be used with or without the
agent system. Following our initial work on extending the PA to handle email, we
have designed and are implementing an even more powerful and flexible set of email
handling components and events, which can be used both standalone or within the
agent context.

4.1 Flexibility

We want to be able at configuration time or dynamically to add new kinds of email
“filters,” modify preferences, and add new learned rules and mail classifiers.

We want to combine these email “filters” into a standalone personal email
management system, as well as use them as key components in an individual or
(collaborative) team-oriented personal mail and meeting assistant. For example, the
“vacation agent,” “calendar agent,” “meeting agent” and “contact agent” should be
able to interact appropriately, with each other if present, and with corresponding
agents of other team members, as appropriate.

mailto:ruth_bergman@hp.com
mailto:ruth@hpl.hp.com

 10

In the CoolAgent system, we developed a property-file customized event dispatcher,
with “loadable” Activities[griss et al, 2002]. ACL message events, timeouts and other
system exceptions are converted into subclasses of Event, and uniformly distributed to
Activities by a set of ordered Dispatchers. Some of these Activities and Dispatchers
can themselves be Dispatchers (producing a dispatch tree) or State machines if more
precise event ordering is required. Dispatchers and Activities include an
EventTemplate pattern that matches incoming Events to decide if this dispatcher
should handle this event. If we treat email as an Event, we can use a Dispatcher-like
object as an event filter, which selects an appropriate Activity to handle the mail
event. The property-file can then be used to configure a mail handling dispatch tree.

4.2 The basic classes

We wanted our eMail handling components (MailHandler or “mail filters”) to be as
compatible with the CoolAgent event-driven model as possible, yet still be completely
useable as an independent mail handling application.

The basic idea is to (statically or dynamically) build a mail filtering/workflow-like
tree using configuration properties5. An instance of this tree is created and activated
for each incoming email message or event.6 As the email message or event flows
through the tree, it is annotated and actions are invoked, as appropriate.

4.2.1 Mail events and property flow

Incoming email messages and other email related events, such as delete message,
create folder, etc., are converted into MailEvents; MailEvents are subclasses of
PropertiesEvent, a subclass of Event that includes a BasicProperties object. The
BasicProperties object is a list of name-value pairs, and allows each MailHandler to
annotate the incoming mail event to indicate what processing has been done, and add
other useful information that a later MailHandler might use in its processing.

4.2.2 MailHandler components

All mail handling components implement the same MailHandler interface, which
includes a MailEvent handling method for all possible mail events. These events
include: messageAdded, messageRemoved, messageChanged, folderCreated,
folderDeleted and folderRenamed7.

At initiation, the top-level component, called MailTool, constructs the tree of
MailHandlers, instantiating each, using a loadMailHandlers method.

5 This approach nicely merges the capabilities of CoolAgents’ Dispatcher and HSM, which allows
these components to be used later when we integrate with agents. We have chosen to describe and
implement MailEvent as a true subclass of CoolAgent’s Event or PropertiesEvent, and MailHanlder as
a true subclass of Dispatcher (both well described in [Griss et al, 2002]).
6 If we are not using threads or asynchronously communicating agents, we only have to construct a
single instance of the tree at startup time, and incoming mail events are processed sequentially. We
believe that individual email events can be processed rather quickly, but that each time the overall mail
handling system is started, there is a significant startup cost to fetch the contacts db, etc.
7 Other events, such as messageMoved, folderMoved, messageForwarded, messageRepliedTo, are not
yet fullyhandled.

 11

Upon receiving mail messages or events, MailTool converts these events into
MailEvents, and calls the appropriate event handling method of each mail handler in
the tree, in depth first order. The event handling method returns a flag indicating that
further processing on this mail event should be cancelled. If this flag is set no further
processing is carried out on that branch of the tree.

Each MailHandler is free to test values and properties of its incoming MailEvent, and
return immediately. As each Mailhandler performs processing of the MailEvent, it can
change and add new properties, to communicate with its children or parent mail
handlers.

Each MailHandler can be passed a set of command line properties, including an
“import:file” to customize it in some way as it is instantiated in the tree. For example,
the rule-based RuleHandler component will pass in the name of a rule file.

4.2.3 Standard MailHandlers

Components we have implemented or are implementing include a TopLevel MailTool
component (“root”), called by the system, to convert all incoming mail, mail events,
and other messages into appropriate subclasses of MailEvent.

Note thatthe system (or some special MailHandler components) will maintain
synchronization information, so that if some part of the system is unavailable, mail
will be processed the next time.

For each new message, the components applied include:

• Contacts – Consult the Contacts database (using JEB, or local cache), and add
properties to distinguish and appropriately deal with well-known contacts.

• Classify – Uses extracted email properties and Contacts annotations as input to
a classification tree (see WEKA) setting the additional properties that will
trigger subsequent MailHandlers or rules.

• Index – Extracts mail keywords, and maintains the set of inverted Indexes
(using Lucene).

Other MH components are used to react to email events such as delete or refile, or to
request those actions. For deleted messages, it deletes the message, or moves it to a
deleted folder.

• Refile – if appropriate, moves the message to another folder for later
processing in that folder.

• Vacation – checks the calendar (or a periodically refreshed context object) to
see if an appropriate version of an “on vacation” or other “status” email
corresponding to this sender.

• Junkfilter – if appropriate, decides to remove this mail from further
processing, either deleting it, or filing it in a Junkfolder.

• Digest – adds a summary of the message to a file or database entry, that will
subsequently be turned into a digest message for later processing.

• Prioritize – computes a combined mail priority based on presence, absence or
value of other fields and properties, and also sets this value in the Exchange
copy of the message so that Outlook can (optionally) display the messages in
this order.

 12

So for example, we might use the following simple configuration file to define a
three-level processing tree:

4.3 Information Retrieval and Machine Learning

We use the open source systems Lucene [Lucene] for information retrieval (IR)
capabilities and WEKA[Weka] for machine learning (ML).

IR techniques are used to extract key features from email elements as “structured
documents.” In addition, a good IR system will support topic discovery, word
spotting, and lexical affinities. It should support multiple document types (email, web
pages, and files) and simplify search and classification by building inverted indexes.
Some of the inverted index construction (“Indexing”) can also be used to collect
frequency and term correlation information of relevance to the machine learning
system.

For our ML system, we wanted a system that would allow us to represent and learn
individual and team preferences, learn topic hierarchies, and support manual and
learned information classification.

See also the discussion in [Sebastiani 2002].

4.3.1 Lucene

Jakarta Lucene [Lucene] is a high-performance, full-featured text search engine
written entirely in Java. It is being used in the PEA to build inverted indices of all the
email for an individual user. Lucene provides fielded data and allows fast queries of
the form ‘“title:”a paper” AND text:go,’ with various levels of wild card, fuzzy,
proximity and priority search.

As mail messages (or other documents, such as attachments) are processed to create
the set of index terms under which the document is indexed, various stoplist and
stemming word and phrase filters can be used to make the set of index terms more
uniform and more useful for finding, analyzing and annotating mail messages. Also,
dictionary files can be used to handle aliases, etc. The same analysis and filtering are
applied to search queries to improve the search precision.

root.count=2
root.1=junk:com.hp.mh.JunkMailHandler
root.2=vacation:com.hp.mh.VacationHandler

junk.count=2
junk.1=myjunk:com.hp.mh.FromFilterHandler(from:me)
junk.2=yourjunk:com.hp.mh.FromFilterHandler(from:you)

vacation.count=3
vacation.1=contacts:com.hp.mh.ContactHandler
vacation.2=check:com.hp.mh.RuleHandler(rules:vacation-rules.jess)
vacation.3=respond:com.hp.mh.SendHandler

respond.count=3
respond.1=forward:com.hp.mh.SendHandler
respond.2=refile:com.hp.mh.RefileHandler
respond.3=delete:com.hp.mh.DeleteHandler

 13

Furthermore, Lucene provides elaborate control over the information stored in the
index for each document and how this information is used during indexing and
searching. On one extreme, you can store for each document just its location (e.g.
URL) and index the content of the document as a monolithic piece of text. On the
other extreme, you can store the entire document as well as various attributes such as
Author, Title, and Date and perform searches that consider these attributes for
matching and ranking.

When we run Lucene over our mail files, it creates a set of index files locally,
allowing for very fast search. The local Lucene files also serve to indicate which
messages have been indexed, and so also keep track of synchronization information.
There are various ways we can use the indexing phase to support subsequent steps in
the MailHandler tree. For example, we can determine important term frequency
information, which could be relevant to generating more useful classifiers. Since the
indexing process can extract or generate a canonical set of keywords/key-phrases to
tag each message (stemming and aliasing), classifiers can run over these terms, rather
than, or in addition to, the raw messages. Also, we can access and use the terms that
index a particular message to support fast canonicalized queries to test if this message
is "about ’xxx’. "

4.3.2 WEKA

WEKA [WEKA] incorporates several standard ML techniques into a software
"workbench" called WEKA, for Waikato Environment for Knowledge Analysis. With
it, a specialist in a particular field is able to use ML to derive useful knowledge from
databases that are far too large to be analyzed by hand. WEKA’s users are ML
researchers and industrial scientists. WEKA is open source software issued under the
GNU General Public License. WEKA provides both a machine learning framework,
and a collection of machine learning algorithms for solving real-world data mining
problems. It is written in Java and runs on almost any platform. The algorithms can
either be applied directly to a dataset or called from your own Java code. WEKA is
also well suited for developing new machine learning schemes. The WEKA
distribution contains implementations of many common classification and regression
schemes. We use the WEKA support vector implementation of John C. Platt’s
sequential minimal optimization algorithm [Platt 1998] to learn the junk mail filter.
In addition we implemented, in the WEKA framework, a rule-based classifier that is
not learned. This type of classifier is used for some of the mail event classifications,
such as deciding whether a mail message is addressed to “me,,” the user.

4.3.3 Support vector machine - LIBSVM

We also will use a support vector package (LIBSVM), [Chang and Lin, 2002]. It
provides a powerful automated classification capability, well matched to the needs of
text classification used in the PEA and other information assistants. We are
considering adapting LIBSVM to fit within the WEKA framework. While WEKA
provides a support vector classifier in the SMO class, LIBSVM is widely used and
provides a new ν-svm package [Schölkopf et al 2000]. Unlike the standard C-SVM
formulation for support vector machines [Vapnik 1998], which penalizes the total
misclassification error, the ν-SVM formulation lets one control the number of support

 14

vectors and errors. The ν parameter is more intuitive to tune than the C parameter,
which is difficult to select.

4.4 Machine Learning Applied to Email

Incoming email is classified into a rich set of general categories according to learned
model and some preferences. Then these classifications are input to the action engine
driven by rules, preferences, dispatch trees, state machines, etc. and context to select
appropriate actions.

The current implementation uses several hand-coded classifiers to do a initial
partitioning of the email. The next step includes the use of one or several learning
strategies to generate and refine learned classifiers. These strategies include:

o Supervised - based on analysis of a log of prior actions corresponding to
observed disposition of email in folders, from a log of the user’s actions, or
from advice solicited from the user.

o Unsupervised – Some automated clustering or related techniques can partition
the email, e.g., discovery of a new discussion topic, new mailing list or new
meeting

o Reinforcement – based on periodic user feedback on the effectiveness of the
current classification and disposition, the system might adjust the classifiers,
or other parameters to better satisfy the user.

As the user gains confidence in the recommendations or actions made by the system,
the user might increase the autonomy delegated to the system; initially, the system
might start very conservatively, and ask the user for guidance, later it could do more
things automatically. In general, we do not let the PEA permanently delete anything;
email is moved to junk or deleted folders (perhaps even this can be learned).

Furthermore, we imagine some learning done in “batch” or “offline” mode, some
“online” with continuous correction by the user, and some “collaborative,” in which
our PEA can consult the PEAs of other users.

In our implementation, each MailEvent is processed by a ClassificationMailHandler,
which submits the MailEvent to each of the classifiers in a bank of classifiers. Each
classifier sets a property in the MailEvent to either True/False (boolean classifier) or
to some percentage or confidence level (numeric Classifier). Subsequent mail
handlers, then, have access to these classifications.

4.5 Combining Machine Learning and Hand-coded Rules

After the classification step, each rule enabled MailHandler, (a subclass of
MailRuleHandler) will apply rules to the annotated values and property sets, including
the properties created by the classifier. When a rule matches, it will invoke the
corresponding Actions in the MailHandler. These rules and actions can be coded
directly in Java, but can also be written in a specific rule language, such as JESS,
or the the CoolAgent Matcher, a structure pattern matcher which is under
development as part of the CoolAgent toolkit[Griss et al., 2002a], or a specialized
XML rule form with user-friendly rule editor (See also Outlook rules.)

For rules, the PA currently uses JESS, with extensions to support fuzzy sets and
fuzzy logic. JESS is a forward chaining system (based on CLIPS),which uses

reflection to integrate well with Java programs.8 It is used to represent some
preferences and policies in the PA.

Each MailRuleHandler will specify a rule file which contains a ruleset (an ordered list
of rules, each rule consisting of a conditionPart and an actionPart; the order
determines which rules will be tried first) This ruleset will be loaded when the
mailRuleHandler is instantiated; it may optionally be compiled (e.g., Jess forward
chaining rules). 9

For our initial experiments, we have implemented three kinds of RuleHandlers: some
are directly coded in Java, some are implemented using a Jess-based RuleHandler,
and some are built from a simple XML mail-list filtering rule set.

For example, the following is a fragment of the mail list filter/refiler:

The stru
be assig
predica

Several

4.6 P

Email c
Outlook
then be

In the a
extract
the Not
alert to
determi

8 It can a
9 There a
some wo
compatib

<ruleset>
<rule>
 <folder>Email/Administrivia/financial</folder>
 <from>SchwabAlerts.MyPortfolio@Schwab.com</from>
</rule>
<rule>
 <folder>Email/Internet/com</folder>
 <or>
 <from>advantage@mac-mall.com</from>
 <from>advantage@pc-mall.com</from>
 <from>specialoffers@specialoffers.onvia.com</from>
 </or>
</rule>
</ruleset>
15

cture of Jess files is more complex than just an ordered list of rules; rules may
ned a weight (called “salience”), and auxiliary functions can be defined as
tes for the conditionPart, or actions in the actionPart.

 RuleHandler components can appear in the tree, each with its own rule file.

resentation of Processed Email

an be presented visually using Outlook, or some other mail reader. In
/Exchange, it is possible to tag email with additional user fields, which can
used in some Outlook views to prioritize or filter the mail.

gent version, some mail handlers may invoke an agent with an appropriate
from the message; for example, selected email can send an ACL message to
ification agent that is part of the PA; this agent can appropriately forward an
the users voicemail, pager or phone, or use other preferences rules to
ne disposition.

lso handle some forms of backward chaining.

re several efforts to standardize a Java API for a simple rule system (JSR-94)[JSR94], and also
rk on the standardization of a rule language in XML called SRML[SRML] that will be
le with JSR-94. These will influence the next iteration of our system.

 16

4.7 Profile and Preferences.

In the PA, preferences are represented as a mixture of properties files, XML files,
JESS rules and RDF/semantic web models. As we further develop the classifier/rule
integration, we will need to make this representation more uniform, and address the
issue of layered preferences, context-based changes in preference sets and individual
vs. team information preferences. This has a significant impact on preference
learning, analysis, and composition.

5 Status

5.1 Experience

At the time of writing neither the MailAgent nor the MailTool have been released for
public use. We can, therefore, report only on our own experience using the tool.
Naturally, having developed these mail assistance tools, we have built in those
capabilities we most desired. Among our team members, each new capability has
been received with cheers, and the existing set of capabilities in the MailTool is
sufficiently complete that we are now running the tool continually on our desk top
machines.

Each member of our team has a different mode of email use, and, indeed, prefers a
different subset of the capabilities we have described in the paper. The MailTool’s
design using loadable mail handlers enables the user to turn functionality on and off
easily. We have found this flexibility very useful, and each of us has tailored the
MailTool to our individual preferences.

Email systems are very dynamic in nature, and robustness has been an issue during
development. More testing is necessary, including using the tool continuously for
long periods and by a larger group of users. We have found that each user, with his or
her mode of use, tests different aspects of the system. Overall, we feel that the current
functionality is sufficient to warrant an alpha release of the tool in the near future.

5.2 Mail Issues

We have found email to be a challenging environment. The mail delivery system is
extremely dynamic. Mail arrives irregularly. The system may be idle for long
periods and extremely overloaded at others. In addition to the arriving mail, there
may be several mail clients modifying the mailbox. Somewhat absurdly, from the
perspective of a mail handler, the user is very problematic and can sometimes pull the
rug from under our feet. For example, a mail handler may be processing some
message and the user can come along and delete it mid-processing.

A comprehensive exception handling and failure recovery system should be put in
place. The mail agents need to seamlessly adjust to messages appearing, disappearing
and moving. Likewise, folders may be created, deleted and renamed by the user or
other clients. Last, the mail server or any other part (agent) of the system may fail to
respond. We need to make the system robust in the face of all such situations or
failures, by having “caches” of hints, ensuring that synchronization restarts
appropriately.

During event processing, if the MailHandler tree takes a significant chunk of time to
complete it’s processing, the whole system could bog down. We would then consider
using MailEvent queues and several threads (perhaps via a thread pool), each running
its own instance of a processing tree.

 17

It turns out that the IMAP protocol used by Javamail, and the MAPI protocol used by
JEB have several incompatibilities. Since the mail tool uses both protocols, there
have been some challenges in making them work together. We have been forced, at
times, to delve into the details of these protocols in order to understand the strange
behavior of the system.

The main idea is to design so that the mail agents largely provide non-destructive
assistance to the user, with the final decision left to the user. At worst, the user will
then be no worse off than if little or no assistance were provided.

5.3 Agent Issues

When embedding the mail handlers in an agent, the system becomes even more
dynamic. In addition to mail events, ACL messages come and go in the system. The
event-handling scenario is far more complicated, and it is difficult to ensure
robustness. In the agent environment, we need superb exception handling and failure
recovery.

An agent that handles mail must be able to communicate about mail. Thus, an
appropriate ontology is required. It is not difficult to create a mail ontology, in
particular, since mail protocols exist and within them the contents and meta-data for
mail messages are defined in detail. Contact information, on the other hand, is more
difficult to define. An ontology that is too simplistic will not support the needs of the
users or agents, whereas an overly detailed representation becomes cumbersome. For
any user, most contacts can be represented by a very simple ontology, but there will
be several contacts for which that representation does not suffice. Some information
about a contact may be useful for a user, but irrelevant for the agent. The opposite
may also be true. For example, a user only needs one current email address for a
contact. For an agent to recognize that two mail messages are coming from the same
person, all possible sending addresses must be known.

While we can say that the ontology for mail messages is already defined by mail
protocols, the size of messages, becomes an issue in an agent environment. Agents
may transport these messages multiple times in the agent communication system.
This problem is exacerbated by large messages or messages with attachments, which
can be very large. Rather than including all the text of the email in the ACL message,
one solution to this problem is to embed a reference to the email in ACL messages,
for example, using the email index to point to the email text as a document, and to the
optional attachement.

Last, all the information required to connect to the mail delivery system and rules and
preferences that govern the mail handlers must be embedded in the agent’s profile.
Although we have designed this system to handle mail behind the scenes, some
capabilities must have a user interface, e.g., the mail search function. When an agent
has access to the user’s mail, it opens up a channel of communication between the
user and the agent. The user may make requests from the agent via email. The agent
can also inform the user via email. We have not taken advantage of this human-agent
interface yet, but view it as an opportunity with great potential.

6 Conclusions and Next steps
In this section we summarize our accomplishments and contributions, and hint at next
steps.

 18

6.1 Key accomplishments and contributions

We have built a powerful system that looks like members of our team in their daily
work can use it. It is robust and feature-full enough. It can be used standalone, or with
the agent-based PA. In the agent form, it does not depend on other users also running
their email agents, nor does it require that the email agent be operational all the time.

The key contributions of our work are in the specific and rich features provided to
handle (filter, refile, and prioritize) email, and the flexibility with which these features
can be combined and coordinated.

An aspect of the design that we have only partially exploited, is the use of interacting
agents (for example the vacation agent) and the interaction of the agent-form of the
mail handler with our Personal Assistant agents.

A key design goal is that the tools, agents and assistants operate “behind the scenes”
to augment the experience using the user’s favorite email tools (e.g., Outlook and
Exchange), by intercepting, modifying and reprioritizing mail displayed by the normal
outlook/Exchange combination.

Finally, the “tasteful” and powerful combination of information retrieval, machine
learning, rules and agents is enabled by the use of many high-quality open source
packages, notably Lucene, WEKA, MySQL, and JADE. This allowed the
development of a robust and practical solution.

In summary, the features we current support, or have designed for, include an
integration of several elements:

• Monitoring the current email stream

• Accessing an archive of existing email

• Use of history of (recent) actions

• Initial and ongoing training to improve

• Handling of multiple email “actions”: delete, copy, forward, delegate to agent,
run though application, put in a folder (look at Outlook and SNOOP)

• Customizable level of autonomy, depending on trust, accuracy, preferences

• (A future) goal of immediate usability without much pre-customization (inherit
default profile and rules, extract key categories from sample of recent email, etc.

We have designed for several use cases:

1. Learning process and interface:

• Edit current rules

• Setup initial rules

• Browse action history and provide feedback

• Monitor current actions and provide feedback

• Define legal actions

• (Re-)train on recent corpus

 19

• Change level of dialog and confirmation, in general, and per confidence
on classification

• Edit learning parameters, degree of autonomy

2. (Autonomous) Email Filtering Assistant

• Identifies key messages related to tasks, goals, schedule, meetings

• Automatic routing to delegates, roles

• Summarizes for nomadic, slow access

3. (Smart) Email Responder and interaction with other PA agents

• Composes appropriate responses and routings to incoming messages
based on subject, current schedule, some content words, goals, etc. (e.g.,
smart vacation responder). Uses calendar, preferences, context, to
decide what kind of response, to whom.

• Another example is a “meeting minder” agent - Watches for mail about
known meetings or from meeting participants; route. If possible, convert
to ACL, forward to other agents.

4. Information Indexing Assistant

• Finds relevant information for upcoming meetings in email, local files
and web

6.2 More Interaction with the Personal Assistant

6.2.1 Expand the agent-based solution

The next step is to refine and expand the initial experiments so that the email
components interact as subsidiary agents/services to the tasks being carried out by the
overall personal assistant or other task-oriented agents, such as the meeting agent. A
number of new issues crop up from the need to share information among multiple
agents, such as privacy, security, and control.

We can imagine applying the PEA to aspects of meeting preparation, arrangement and
execution, and intelligent notification and routing of relevant email. (E.g., email about
meetings, use of email formats, such as iCal to invoke meeting tools, the automatic
forwarding of meeting relevant mail to participants, automatic meeting reminders,
etc.) The PEA will use services (notification, calendaring, context management, etc,)
provided by the Meeting Arranger Personal Assistant to jointly provide task- and
context- sensitive filtering and composition of relevant information

Some parts of the MailHandler tree can then be embedded within separate agents, and
some agent-to-agent communication is permitted to get additional information, such
as asking the personal assistant or calendar agent for information, rather than
accessing the Calender directly. This agent-directed dialog can be encapsulated as a
special MailHandler. Likewise, some actions, like Notification via a non-email
channel (email2voicemail, pager, …) can be carried out using the context-driven
Notification agent.

 20

6.3 Collaborative filtering of junk mail, and team management of email
based on team preferences

In the agent environment, the transition from a mail handling agent to a community of
mail handling agents is seamless. Our PEA is already a community of agents that
communicate about and manipulate email. A natural next step is to communicate with
other PEA’s about email. By allowing communication between email handlers, for
example about junk mail, we can produce a system similar to that of Vipul’ Razor for
collaborative SPAM[Vipul]. Estabilishing such collaboration among meeting
management agents can ensure that all parties arrive at a meeting equally prepared,
with access to a complete set of supporting materials.

6.4 General personal information management

A SONIA-like [Sonia] meta-search engine would collect search results from various
search engines, download the returned pages, and post-processs them to cluster the
pages into categories, and then rank the pages within each category. It should also
rank the categories, provide a short description of the category (perhaps as a list of
keywords), and provide a means for iteratively searching with feedback. It might also
store previous searches like Copernic [Copernic]. It might also provide a simple
interface to allow users to add their own search engines that might provide search
capabilities for local information or servers.

A bookmark organizer would take a (perhaps slightly organized) set of bookmarks or
favorites and create a Yahoo-like topic hierarchy. It should also be able to
automatically incorporate new pages from the browser's history in the hierarchy, and
update the hierarchy as new pages are added. Optionally, pages should be able to
belong to multiple relevant categories.

A meeting manager would combine calendar information about a meeting, with mail
messages about the meeting, documents related to the meeting and supporting
materials from the web. These materials would be collated from the time of meeting
request through the actual meeting. Some documents may arrive by email as
attachments, some will be found by the agent using data-mining techniques on the
user’s local data and the web. At any time before or during the meeting the user can
access materials, review the topics, update information.

7 Acknowledgement
We have gratefully drawn from the ideas and software of several groups. These
include the original developers of the CoolAgent Personal Assistant, and the
developers of the various open source toolkits we have built on, including JADE,
Lucene, and WEKA. We also thank Dick Cowan, Ed Katz, Robert Kessler, Reed
Letsinger and Marie Vans for many useful discussions and support.

8 References

[CoolTown] http://www.cooltown.hp.com

[Copernic] Copernic, http://www.copernic.com

[Cowan et al, 2001] Dick Cowan, Martin Griss, Bernard Burg , BlueJade – A service for managing
software agents, HPL Technical Report, HPL-2001-296, Nov 2001. Also in
AAMAS 2002 - Workshop on Challenges in Open Agent Environments, Bologna,
Italy, July 2002.

http://www.copernic.com/

 21

[Cowan et al, 2002] Dick Cowan, Martin Griss, Robert Kessler, Brian Remick, and Bernard Burg, A
Robust Environment for Agent Deployment,
AAMAS 2002 - Workshop on Challenges in Open Agent Environments, Bologna,
Italy, July 2002

[Florea & Moldovanu, 2001] AM Florea & A Moldovanu, An Intelligent Email Agent, “Politehnica”
University of Bucharest.

[Griss et al, 2002] Martin L Griss, Steven Fonseca, Dick Cowan, Robert Kessler , Extending the
JADE Behavior Model for more Flexibility and Control
 HP Laboratories Report HPL 2002-298(R), July 2002, Also, AAMAS AOSE
workshop, Bologna, Italy, July 2002.

 [Griss et al, 2002a] Martin Griss, Reed Letsinger, Dick Cowan, Craig Sayers, Michael VanHilst, and
Robert Kessler., CoolAgent: Intelligent Digital Assistants for Mobile
Professionals - Phase 1 Retrospective, HP Laboratories Report HPL-2002-
55(R), Jul 2002.

 [GroupLens, 1994] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, John Riedl,
GroupLens: An Open Architecture for Collaborative Filtering of Netnews,
From Proceedings of ACM 1994 Conference on Computer Supported Cooperative
Work, Chapel Hill, NC: Pages 175-186, 1994.

[ifile] ifile, http://www.ai.mit.edu/~jrennie/ifile

[JACOB] Java/Windows object bridgeJACOB is a JAVA-COM Bridge that allows you to
call COM Automation components from Java. It uses JNI to make native calls
into the COM and Win32 libraries. See http://danadler.com/jacob/

[JSR94] A proposed standard Java Rule Engine API, Java Community Process, JSR-94.
http://www.jcp.org/jsr/detail/94.jsp.

[Lucene] Jakarta Lucene, an opensource Information Retrieval/Text Indexing package, –
http://jakarta.apache.org .

[Maes, 1994] Patty. Maes, Agents that reduce work and information overload, CACM,
37(7), p.31-40, 1994.

[Malone et al, 1987] Tom W. Malone.; Grant, K. R.; Turbak, F. A.; Brobst, S. A.; and Cohien, M. D.
Intelligent information-sharing systems.
Communications of the ACM 30:390-402, 1987.

[MH 1992] The RAND mail handling system, ftp://ftp.ics.uci.edu/pub/mh/, and especially the
online MH book by Jerry Peek.

[Peek, 1995] Jerry Peek, MH & xmh: Email for Users & Programmers, ISBN 1-56592-093-
7, O'Reilly & Associates, Inc. , 1995. In June, 1996, ORA made the book freely
available under GNU GPL. See http://www.ics.uci.edu/~mh/book/.

[Platt, 1998] J. Platt (1998). Fast Training of Support Vector Machines using Sequential
Minimal Optimization. Advances in Kernel Methods - Support Vector Learning,
B. Schölkopf, C. Burges, and A. Smola, eds., MIT Press.

[Postman, 1999] Jiang Chen and Haiwei Ye , POSTMAN - An EMAIL Filtering Agent,
University of Montreal, C.P. 6128, Succ. Centre-ville
Montreal, Quebec Canada H3C 3J7, chen@iro.umontreal.ca
ye@iro.umontrea.ca, 1999.

[Schölkopf et al, 2000] Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Computation, 12, 2000, 1207-1245.

[Sebastiani, 2002] F. Sebastiani, Machine learning in automated text categorization, ACM
Computing Surveys, 34(1), March 2002, pp. 1-47.

[SELECT, 1999] SELECT: Social and Collaborative Filtering of Web Documents and News,
The SELECT Project Team, In Proceedings of the 5th ERCIM Workshop on User
Interfaces for All: User-Tailored Information Environments, Kobsa, A. and
Stephanidis, C. (Eds.), Dagstuhl, Germany, Nov. 28th - Dec. 1st 1999, 23-37.

http://www.ai.mit.edu/~jrennie/ifile
http://danadler.com/jacob/
http://jakarta.apache.org/
ftp://ftp.ics.uci.edu/pub/mh/
http://www.ics.uci.edu/~mh/book/
mailto:ye@iro.umontrea.ca
http://zeus.gmd.de/5-UI4ALL-Workshop/call.html
http://zeus.gmd.de/5-UI4ALL-Workshop/call.html

 22

ERCIM (The European Research Consortium for Informatics and Mathematics).
(Also as Technical Report CSEG/9/99, Computing Department, Lancaster
University).

[Shamai et al., 1998] Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. A Bayesian Approach
to Filtering Junk E-Mail. In Learning for Text Categorization: Papers from the
1998 Workshop. AAAI Technical Report WS-98-05.

[SONIA] http://robotics.stanford.edu/users/sahami/SONIA/SONIAproject.html

[SpamAssassin] http://www.spamassassin.org

[SRML] Simple rule markup language in XML, compatible with JSR-94. See
http://xml.coverpages.org/srml.html.

[StaelinChang and Lin, 2002] Chih-Chung Chang and Chih-Jen Lin , LIBSVM -- A Library for
Support Vector Machines,. See http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[Vapnik, 1998] Vapnik, V., , Statistical Learning Theory. New York, NY. John Wiley, 1988.

[Vipul] Vipul Pred Prakash, An opensource “artistic licence” at
http://sourceforge.net/projects/razor/

[WEKA] The University of Waikato, New Zealand, Machine Learning Project
http://www.cs.waikato.ac.nz/~ml/

http://www.ercim.org/
http://robotics.stanford.edu/users/sahami/SONIA/SONIAproject.html
http://www.spamassassin.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.waikato.ac.nz/~ml/

	A Personal Email Assistant
	Abstract
	Introduction
	Background
	The CoolAgent personal assistant
	Related email agent work
	Widely used (commercial) email filtering systems
	Machine learning and Information analysis techniques
	Collaborative filtering
	Agent-based systems

	Initial Experiments: Email Vacation and Search Agents
	Architecture and Design
	Flexibility
	The basic classes
	Mail events and property flow
	MailHandler components
	Standard MailHandlers

	Information Retrieval and Machine Learning
	Lucene
	WEKA
	Support vector machine - LIBSVM

	Machine Learning Applied to Email
	Combining Machine Learning and Hand-coded Rules
	Presentation of Processed Email
	Profile and Preferences.

	Status
	Experience
	Mail Issues
	Agent Issues

	Conclusions and Next steps
	Key accomplishments and contributions
	More Interaction with the Personal Assistant
	Expand the agent-based solution

	Collaborative filtering of junk mail, and team management of email based on team preferences
	General personal information management

	Acknowledgement
	References

