

Control Architecture for Service Grids in a
Federation of Utility Data Centers

Sven Graupner, Vadim Kotov, Artur Andrzejak, Holger Trinks
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-235
August 21st , 2002*

E-mail: {sven_graupner, vadim_kotov, artur_Andrzejak, holger_trinks}@hp.com

grid
computing,
utility
computing,
utility data
center,
control
architecture,
virtual data
center

Growing complexity and cost of system deployment, ownership and
operation pushes to look for economical, yet limitless ways to
organize and manage large-scale computing in science, technology
and businesses. The two most prominent examples are the concepts
of the Utility Data Center [1] and the Grid [2].

One of the hard problems in system management is the distributed
resource allocation problem. We assume that no global information
about resource availability and demands for resources can be
provided due to the scale and dynamism of large systems. The
paper introduces an architecture of an automated service demand-
supply control system that is part of a large-scale Grid infrastructure
comprised of a federation of distributed Utility Data Centers.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

- 1 -

Control Architecture for Service Grids in aControl Architecture for Service Grids in aControl Architecture for Service Grids in aControl Architecture for Service Grids in a
Federation of Utility Data CentersFederation of Utility Data CentersFederation of Utility Data CentersFederation of Utility Data Centers

Sven Graupner, Vadim Kotov, Artur Andrzejak, Holger Trinks

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

{sven_graupner, vadim_kotov, artur_Andrzejak, holger_trinks}@hp.com

1 Introduction ... 1
2 Utility Data Center Platform ... 2
3 Towards OGSA Service Grids .. 3
4 Service Control ... 4
5 Architecture of an Automated Service Demand-Capacity Control System 4

5.1 Metrics: Formalizing Service Demands and Capacities ... 6
5.2 Distributed Control Algorithms .. 7

6 Adjusting Virtual Server Capacity in the UDC... 8
7 Capacity Control in a Homogeneous Grid Cluster.. 9
8 Related Work .. 10

Abstract
Growing complexity and cost of system deployment,
ownership and operation pushes to look for economical,
yet limitless ways to organize and manage large-scale
computing in science, technology and businesses. The two
most prominent examples are the concepts of the Utility
Data Center [1] and the Grid [2].

One of the hard problems in system management is the
distributed resource allocation problem. We assume that
no global information about resource availability and
demands for resources can be provided due to the scale
and dynamism of large systems. The paper introduces an
architecture of an automated service demand-supply
control system that is part of a large-scale Grid
infrastructure comprised of a federation of distributed
Utility Data Centers.

1 Introduction
As reaction to concerns about growing complexity and, as
result, the potential ineffectiveness and insufficient
manageability of large-scale systems, new approaches to
system design, use, and management are emerging:

- the aggregation and consolidation of system and
application components into larger building blocks,

- systematic and standard ways of their integration and
communication,

- sharing of distributed resources, and

- automated system management and operation control.

Two the most prominent and practical examples are the
concepts of the Utility Data Center [1] and the Grid [2].
The Utility Data Center (UDC) consolidates computing
resources in order to significantly reduce deployment and
operation costs. Grids are large networks of computing
resources that can be transparently shared and utilized for
solving complex tasks or providing computing services.

- 2 -

These two concepts can be combined into a concept of
Virtual Data Centers [3] that consolidate resources of a
federation of distributed Utility Data Centers into virtual
resources that are shared using Grid–type mechanisms.

Grid computing emerged in the scientific
supercomputing in the early 1990’s by tapping into
underutilized resources available in organizations and
making them available for solving complex
computations. A software layer provides the coordinated,
transparent and secure access to shared resources across
geographically distributed sites. Resource virtualization
allows transparency and security. The software layer also
provides “grid membership” of a machine or a device
making its resources discoverable and allocatable to
other entities in the system. Many Grid projects in
research and industry are based on the Globus toolkit [4],
a widely used public domain software. Commercial Grid
products are offered by IBM [5], Platform [6] and Sun
[7]. An overview of Grid resource management systems
can be found in [8].

Another source of the “grid trend” is the utility model of
resources. Access to resources is aimed to be as simple
and efficient as accessing power or other utilities.
Resource markets are envisioned where resources used in
information processing can be traded and exchanged as
commodities. Resource commoditization also helps to
overcome the diversity and complexity of IT landscapes
making it attractive for both IT vendors and customers.

Resource capacities should also be provided locally to
where demands occur avoiding cross-network traffic.
Since demands are fluctuating over time and locations,
service capacities need to be adjusted accordingly,
ideally automated without human intervention. Such an
automated service grid control system transparently
regulates service demands and supplies.

So far, most integrated management systems are limited
in regard to functioning in virtualized environments
across organizational boundaries. Besides automated
fail-over techniques in high-availability systems,
management systems typically automate monitoring and
information collection. Decisions are made by human
operators interacting with the management system. Major
service capacity adjustments imply manual involvement
in hardware as well as in software. Systems need to be
adjusted, re-installed and reconfigured.

A new type of data center infrastructures provides
immediate support for these tasks. The HP offering is the
Utility Data Center (UDC) [1], [9]. Its capabilities allow
a whole new approach to automate adjustment processes
and by thus set the foundation for an automated service
capacity-demand control system for a large service grid.
This control system is based on a federation of

geographically distributed data centers with utility data
center (UDC) capabilities providing immediate support
for service demand - supply control.

One of the hard problems in system management is the
distributed resource allocation problem. We assume that
no global information about resource availability and
service demand can be provided due to the scale and
dynamism of large grids. Decision-making algorithms
thus need to deal with partial information, yet provide
good approximations of localized assignment solutions,
and yet need to be reactive that decisions are made in time
for an automated resource demand-supply control system.

We propose an architecture for such an automated
demand-supply control system. It is based on a
formalization of service demands and supplies in an
overlay meta-system. We then briefly discuss distributed
decision-making algorithms performed in that overlay
meta-system with their tradeoffs between quality of
solutions and reactiveness. This architecture is general
enough for a variety of large-scale distributed systems
such as a federation of distributed Utility Data Centers.

2 Utility Data Center Platform
The reason for developing a utility data center platform
was that deployment and operational costs dominate the
balance sheets of enterprise IT customers. Platforms and
management solutions are emerging reducing service
deployment times and operational costs. Those platforms
support the deployment of services (installation and
configuration of software and data), the virtual wiring of
machines into application environments, here referred to
as virtual server environments, independently of the
physical wiring in a data center. They allow programmatic
rearrangements of services’ applications among machines,
the dynamic sizing of service capacities, and the isolation
of different environments hosted in the same data center.
Besides those capabilities, utility data centers are enablers
for automated control systems as discussed in this paper.

A major characteristic of an utility data center is resource
virtualization. The storage virtualization fabric with the
storage area network attaches storage elements (disks) to
processing elements (machines). The network fabric links
processing elements together in a private virtual LAN.

Two types of resources are virtualized in the UDC:

- network resources: by permitting the programmable
rewiring of server machines and devices to create a
virtual LAN network. Virtual wiring is achieved by
programming network switches connecting machines
and programmatically connecting or removing
machines to or from virtual networks,

- 3 -

- storage resources: by containing whole disk images
with all persistent states of application environments,
file systems, bootable operating system images,
application software, etc. Given the programmability
of the storage fabric, storage images can be made
appearing on SCSI interfaces of machines from
where machines obtain boot images and further data.

Figure 1: Utility Data Center (UDC) [1] with the two
main components: the fabric for network and the fabric
for storage virtualization.

A UDC platform has two major benefits:

- automated services deployment: achieved by entirely
maintaining persistent services’ states in the separate
storage system and conducting programmatic control
over attaching storage to machines, and

- dynamic capacity sizing of services: achieved by the
ability to automatically launch additional service
instances absorbing additional load. Service instances
are launched by first allocating spare machines from
a pool maintained in the data center, then virtually
wiring them into the specific environment of the
service with attaching the appropriate storage to those
machines and launching the operating systems and
applications obtained from the attached storage.

We leverage the benefits of the utility data center as
execution platform for control decisions. The research
presented in this paper extends the scope of control
beyond the walls of one data center assuming a multitude
of them as infrastructure for next-generation services grids
encompassing seamless service demand-capacity control.

3 Towards OGSA Service Grids
The Global Grid Forum (GGF) [2] has the goal to
coordinate activities and to establish standards for
emerging service grids. The most visible project from the
scientific community is The Globus Project [10]. This
project is recently gaining significant attention and
support from hard- and software vendors. A related
academic project with similar goals of securely and
transparently sharing resources has been NOW, Network
of Workstations from the University of Berkeley [11].
The currently largest effort is the SETI@home project
[12] with more than 3.7 million Internet users that have
donated a total of 1 million hours of processing time
translating into 1.6*1021 (≈ 109 Tera) Flops, by far the
largest supercomputer that ever existed.

Though the need for compute power seems infinite in
scientific supercomputing, resource sharing comprises
more than distributing compute tasks transparently
among heterogeneous compute nodes. From a
commercial point of view even more important is data
sharing as transparently and securely among
organizations, including software and services needed to
access, maintain and process this data. A grid in this
context stands for a collaborative domain spanning
multiple networks and organizations to securely and
efficiently connect different organizations for sharing
data and services needed for collaboration [3], [13]. Such
grid domains comprise the whole spectrum of resources,
documents and all other data including accompanying
applications – all diversity consolidated under a uniform
view of services [14]. Terms like collaborative virtual
environments or virtual organizations are used as well.

The goal is to provide access to resources and services
seamlessly, transparently and securely across
organizational boundaries in a yet controlled and secure
manner. Recent publications from Globus reflect this in
the Open Grid Services Architecture (OSGA) [15].

In order to categorize grids, we refer to the first-
generation grids as resource grids and to the second-
generation as service grids. Services grids may differ in
scale and scope: enterprise grids (within one
organization), peer or partner grids (across defined sets
of organizations) and global grids (publicly accessible).

A major aspect of service grids is to keep service supply
in balance with demands for services. Service demand
needs to be met by service supply. Service supply then
induces demand for resources in the underlying
infrastructure that provides resources. The logical chain
is: service demand to service supply translating into
resource demand to be met by resource supply. Grids are
basically resource supply infrastructures. Supply and

- 4 -

demand are quantitative aggregates meaning that services
do not only provide a required functionality (and most
service description methods and frameworks only
capture functionality, often in form of API specifications
such as WSDL [16]), services also have to provide their
functionality in sufficient quantity such that occurring
demands can be satisfied in desired quality.

4 Service Control
Control of the demand-supply balance can be exercised
by various instruments, on the demand side as well as on
the supply side.

Demand control instruments can be established in
various ways, for instance, by admission control
(refusing further demands coming into services), by
redirecting demands in the system to where capacity is
still available, or even by calculating and imposing price
adjustments as indirect, longer-term control instrument
on the demand side.

Supply control can be achieved by adjusting service
capacity at existing locations, by moving service capacity
towards locations or time frames where demands occur
or by utilizing available service capacity elsewhere in the
system [17].

Since the storage system is separated from the machine
resources in the UDC, multiple images of a service can
be maintained each representing different capacity
configurations. During low demand, the control system
will activate the low-capacity configuration of the service
and during high-demand the high-capacity configuration.
“Virtual server” capacity can be adjusted in the UDC by
programming the resource allocations in the utility data
center. Control instructions are described in a special
language FML (Farm Markup Language) that are sent to
the utility controller software. Switching configurations
implies that all service’s applications are shut down, and
all persistent states are written out to the storage system.
Next, the higher (or lower) capacity configuration of the
service is launched by allocating the needed machine
resources and connecting the service’s storage images to
them. After machines have booted, the service is
available again with the adjusted capacity configuration.

5 Architecture of an Automated
Service Demand-Capacity
Control System

The control system consists of conventional and new
building blocks. First, it contains a monitoring and
information dissemination infrastructure for collecting

utilization data and traces of workloads. One important
aspect here is the aggregation of monitored data and
transforming data into a set of abstracted metrics that can
be used for correlating demands with capacities. The
built-in decision-making capability is a new component
and the essential part of the control system. The third
part performs the actuation of decisions by imposing
control actions on the demand or on the capacity side.

The following figure introduces the general architecture
of the control system. It consists of three layers:

1. an infrastructure layer consisting of resources
offered from data centers with utility capabilities
performing a (virtual) “server-to-resource” mapping,

2. a layer above performs a mapping of “services-to-
servers” based on instructions (decisions) made in

3. a meta-system, an overlay structure of nodes
representing dynamic server capacities and service
demands.

Figure 2: Three-layer architecture of the control system.

The architecture is based on a notion of “virtual servers”,
environments that can host services as encapsulated
units. The notion of a “virtual server” generalizes from a
machine to a whole operational environment needed for
hosting and performing one or a multitude of services.

virtual server services

3. meta-system
an overlay structure
of distributed
nodes

2. service-to-server
control

1. server-to-resource
control

geographically distributed infrastructure of utility data centers (UDC)

control
interface

control
wrapper
interface

control
wrapper
interface

associating service shares
with server shares

associating server-shares with
virtualized resource shares

decision
nodes

monitoring Control
 instructions

- 5 -

OGSA uses the term hosting environment [15]. A
“virtual server” in this sense consists of a set of virtual
resources allocated in a data center or even spread across
resources from different data centers. A “virtual server”
needs to be materialized or deployed by allocating
needed resources and configuring them to form the
operational environment that can host services.
Resources provide the smallest allocatable entities
including machine resources, storage and networks
resources as well as the software for configuring and
managing them. It also comprises software entities in a
service’s environment such as DNS. This bottom layer of
the control architecture performs the mapping of “virtual
servers-to-resources” including the allocation of machine
resources and setting up the overall operational
environment. This layer of the control system derives
direct hardware support from the utility data center in
form of representing a “virtual server” by a so-called
“UDC farm”, a programmable set of resources plus
binary images in the storage system for service’s
software and data.

The second layer of the control architecture builds upon
a variety of virtual server environments. This layer
performs the allocation of services to virtual server
environments. This “service-to-server” mapping function
includes the deployment of services’ software and data as
well as management and control components belonging
to the service’s applications. Technology for automating
these processes is being developed, for instance by [18].

The third layer is the decision-making layer. It is formed
as a meta-system managing descriptive data about the
two layers underneath. Information about available
virtual server environments and services to be hosted are
maintained in an overlay-structured network of nodes. It
is automatically established during deployment [19] and
forms an inherently decentralized, distributed structure
adapting it to the envisioned planetary scales of service
grids. This overlay structure is used to perform
distributed algorithms for decision-making about
allocations of resources to server environments within
nodes as well as allocating services to server
environments among nodes. Distributed algorithms
constantly observe whether capacity-demand conditions
are kept in balance throughout the overlay topology and
eventually trigger control actions directed to entities in
the two underlying layers causing adjustments there.

An infrastructure exists that allows to collect and process
monitoring data from sensors updating nodes in the meta-
system and disseminates control decisions to control
points of servers and services (actuators) in the system.

Figure 3 shows a distributed federation of Utility Data
Centers each represented by a node in the meat-system.

Nodes in the meta-system are interconnected. Nodes in
the meta-system represent virtual server environments
(server descriptors), services (service descriptors) or,
summarized, entire data centers as shown in the figure.

Figure 3: Federation of UDC control systems with meta-
system with monitoring, decision-making and actuation.

Each node contains static descriptive data about the
entity it represents as well as dynamic parameters about
the current condition. Dynamic parameters need to be
updated. This task is performed by the monitoring
subsystem using an event or time-triggered push method.
Data are transmitted between the entity and the node in
MML (Monitoring Markup Language) format.

The node then observes dynamic parameters and initiates
action (decision and actuation) when conditions require.
Since nodes are interconnected, nodes can communicate
based on neighborhood relationships. Constant
communication takes place in the meta-system by
distributed control algorithms.

The federative structure of the overall service demand-
supply control system thus is materialized in form of
communicating nodes in the meta-system, with each node
representing one member of the control system that itself
is a control system for the entity it represents (illustrated
by the two control loops in Figure 3.

After a node (in conjunction with distributed control
algorithms) has made a decision, it is translated into an
action represented in FML (Farm Markup Language), the
control language of the Utility Data Center, which is sent
to the control interfaces in the underlying system closing
the entity’s control loop.

<FML><MML> <MML> <FML>

- 6 -

5.1 Metrics: Formalizing Service Demands and
Capacities

Another precursory for automated decision-making is how
service demands and capacities can be properly described
and formalized such that algorithms can be applied for
deriving decisions.

We use an approach of characterizing a “virtual server”
capacity for a class of services in terms of server shares.
Server shares represent the capability of a server
configuration to handle a certain maximum load of a
service when the service would be deployed in that server
environment. We apply here a similar approach of how
processing capacity is expressed today in terms of
benchmark measures: machine configuration X is capable
of processing load Y of application or service Z. For
example, a specific machine configuration can handle 100
transactions per second (TA/s) of a business application
or an industry-standard benchmark. Given another
machine environment equipped with more resources, it
might be capable of handling 250 TA/s of that
application. A server share represents the normalized
measure expressing a virtual server’s capability of
handling a maximum amount of load related to a
particular benchmark application that is suitable to
characterize the service. Server shares are normalized to a
chosen base unit, for instance, to the first example with
100 TA/s. This server configuration would represent a
server share of 1.0. The second configuration capable of
handling 250 TA/s would then have 2.5 server shares
expressing that this server configuration is 2.5 times more
powerful (or has 2.5 times the capacity) than the reference
configuration of the considered benchmark.

Figure 4: Three virtual server environments with
different deployed and available capacities expressed in
terms of server shares.

The approach of formalizing server capacities relatively
to benchmarks provides an “outside-the-box” perspective
rather than aggregating internal server parameters such as
numbers of CPUs, cache sizes, disk and memory

configurations, etc. Our approach allows to summarize the
aggregated behavior of all inner diversity into one,
consolidated number: server share.

Respectively, service demands can be expressed relatively
to utilizations of server capacities among the same class
of services. This measure is called a service share.

Figure 4 shows three data centers with various offerings
of server environments for hosting services. The upper
has a deployed capacity of 0.5 server shares among three
possible server configurations with capacities {0.5, 2.0 or
10.0}. Deployed capacity means that this capacity has
allocated resources in the data center. The two other
configurations currently do not have resources assigned,
but those may be deployed and activated later caused by a
control command issued to the data center. Those
capacities are referred to as available capacities. The data
center in the middle offers two server configurations with
capacities {1.0, 2.0} with 1.0 currently being deployed.
And the lower data center offers two server configurations
with capacities {1.0, 2.0} with 2.0 being deployed.

Figure 5: Three deployed services with service shares.

Figure 5 shows three services (or three instances of one
service) being allocated to the three deployed server
environments. Service demands are formulated in terms of
service shares representing the current utilization of the
hosting server capacity. In the figure, the upper service
has a utilization of 0.8 (80%) of the server capacity of 0.5.
The middle service utilizes 70% of the capacity 1.0, and
the bottom service only utilizes 10% of the respective
capacity 2.0. Since service shares are expressed in terms
of utilizations of normalized capacities of hosting server
environments, service shares are indirectly normalized as
well and can be correlated.

Server capacities (expressed in server shares) and service
utilizations of those capacities (service shares) can be
extracted from the real system and be placed into the
context of a meta-system (layer 3 in the Architecture
shown in Figure 2). Decision-making algorithms then
operate in this meta-system of distributed nodes, each
node representing a server capacity, service allocation and

Virtual Server A:
- a deployed capacity: 0.5 shares
- available capacities: {0.5, 2.0, 10.0}

Virtual Server B:
- deployed capacity: 1.0 share
- available capacities: {1.0, 2.0}

Virtual Server C:
- deployed capacity: 2.0 shares
- available capacities: {1.0, 2.0}

Virtual Service III:
= 10% of 2.0

Virtual Service II:
= 70% of 1.0

Virtual Service I:
= statistical utilization of
 service capacity: 80% of 0.5

- 7 -

utilization. Nodes publish information about themselves
(including capacities, utilization etc.) in XML documents
called descriptors. Descriptors are used to communicate
information with other nodes in the meta-system. Two
main types of descriptors exist: a server descriptor and a
service descriptor. More detail can be found in [14].

Figure 6: Extracting information to the meta-system.

Since large scales of systems are anticipated in the future,
we do not propose a global hierarchical structure for the
meta-system, rather a loosely coupled, federative structure
of nodes, each representing server capacities and service
utilizations. Nodes can freely join or disappear. We
leverage recently emerged overlay network technology
and apply it in a slightly extended fashion. Extensions are
needed since conventional overlay networks are
specialized for searches of rather static content (they are
often referred to as content addressable networks CAN
[20] or distributed hash tables DHT). However,
mechanisms for self-establishing structures and keeping
relationships among nodes have been leveraged in our
system. Extensions primarily refer to the separation of
static attributes describing server environment capabilities
and dynamic attributes needed for capturing utilizations.

Next, we discuss the decision-making process that builds
upon the established overlay structure and automatically
adjusts service capacity according to demand fluctuations
in a global service grid. Taking the large scale into
account, it becomes obvious that centralized approaches
are inappropriate. We thus present distributed algorithms
that operate in the meta-structure of nodes.

5.2 Distributed Control Algorithms
For making decisions about managing resource demands
and supplied capacities, the biggest challenge is to find
algorithms that are both reactive and deliver high-quality
solutions for the control scale we are dealing with. In

practice, the reactiveness of an algorithm must be traded
against the quality of a solution. Reactiveness is
understood as the time between detecting an abnormality,
for instance a sudden peak demand, and the final
computation of a decision how the situation can be dealt
with. Thus, reactiveness constitutes one parameter of the
design space. Another parameter is the degree of
distribution of the control system, ranging from
centralized to completely decentralized. Since it is
unrealistic to find one algorithm, which can be
parameterized in both dimensions, we look at several
approaches covering most of the design space.

The next figure classifies six distributed algorithms in
regard to solution quality versus reactiveness [21] and
relates them to Integer Programming (blue):

- Agents in Overlay Networks,

- Ant Colony Algorithms [21], [23],

- Broadcast of Local Eligibility (BLE) [24],

- Local Random / Local Round Robin,

- Local Greedy Distribution.

Three time scales are considered: the design stage of an
initial service placement, in longer periods reiterated as
long-term adjustment process in the system; a mid-term
period for periodic operational adjustments, and a shorter-
term period for discharging sudden hot spots.

Figure 7: Tradeoffs of decision-making algorithms.

The last two algorithms are characterized by simplicity
and statelessness. Pretty much like random or round robin
scheduling, the load distribution algorithm pushes load
from an overloaded node to a randomly or in a round
robin fashion chosen neighbor that may absorb that load if
it has the capacity, or it pushes the load further on to
another node chosen in the same fashion. Once a place
has been found where the load can be absorbed, the actual
load migration is then initiated in the underlying system.

The advantage of this algorithm is its simplicity and
statelessness (efforts to maintain states can be avoided).

deployed and available capacities

utilization of capacities
global meta-system:
overlay network

accurate
slow

fast
approximating

BLE-Algorithms

Integer
Agents in Overlay Networks

Ant Colony

longer-term
service placement

mid-term
operational
adjustments

shorter-term
discharging hot

spots

Local Greedy

Local Round Robin / Local Random

- 8 -

The disadvantages are unpredictability and insufficient
(random) convergence.

Figure 8: Load Distribution Algorithms.

The termination problem of the algorithm can be
addressed by limiting the number of hops. Cycles cannot
be avoided due to the statelessness of the algorithm.

Control Goals
The goals for optimal placement might vary in general.
Therefore, the following algorithms are designed to be
generic enough to support new objectives without
fundamental changes. However, we focus on only few
aspects to be achieved by control decisions. These are:

1. Balancing the server load such that the utilization of
each server is in a desired range.

2. Placing services in such a way that communication
demand among them does not exceed the capacity of
the links between the hosting server environments.

3. Minimizing the overall network traffic aiming to
place services with high traffic close to each other on
nearby servers (nearby in the sense of a low number
of communication hops across nodes).

6 Adjusting Virtual Server
Capacity in the UDC

Figure 9 shows a UDC with three available server
configurations materialized as different UDC farms, each
representing a different capacity of the same service type:

- Farm A: 100 TA/sec, normalized to 0.5

- Farm B: 200 TA/sec, normalized to 1.0 (base unit)

- Farm C: 400 TA/sec, normalized to 2.0.

(Transactions per second (TA/sec) has been chosen as an
example to represent a capacity measure for a service.
Different service types may require different measures.)

In Figure 9, all farms are passive. This means server
configurations basically only consist of various regions in

the storage system. No machine or network resources are
assigned to any of these passive farms. The figure also
shows a block called the UDC Utility Controller, a
software component of the UDC management system that
allows activating any configured farm in the UDC.

Figure 9: Three available server capacity configurations
materialized as farms configured in the storage system.

Multiple farms may coexist in a UDC, not only as passive
configurations in the UDC storage system, but also as
activate farms with resources allocated and services
running. A farm is allocated by sending a control
instruction in form of a FML (Farm Markup Language)
document to the UDC Utility Controller. The controller
will verify the correctness of the document and will
allocate needed resources (machines, private networks,
storage) from its resource pools and virtually wire these
components as described in the FML document. During
this process, the UDC Utility Controller will attach one of
the farm’s configurations held in the storage system to the
allocated machines.

Machines then will bootstrap from storage and launch all
needed applications as configured as persistent states in
the storage system. At the end, the activated farm will
perform the service in the chosen configuration. Figure 10
shows the activation of farm B representing a capacity
configuration of 1.0 for the service.

The respective FML document will be sent from the meta-
system to the UDC Utility Controller.

An active farm can be terminated by sending a respective
FML document to the UDC Utility Controller. After the
farm has been shut down properly, and all the persistent
service’s states have been written out to the storage
system, the UDC Utility Controller will release all
allocated machine and network resources and return them
to the pool.

A
C

B

UDC Farm Configurations

UDC Resources

3 available configurations:

FML’s resources capacity normalized
Farm A 2 100 TA/sec 0.5
Farm B 4 200 TA/sec 1.0
Farm C 8 400 TA/sec 2.0

UDC Utility
Controller

FML C

FML B
A1. push load to a

 chosen neighbor

2. either accept load or
 push load further on

3. if capacity found, migrate
 the actual load

2. 1.

3.

- 9 -

Figure 10: Activating farm B with capacity 1.0.

Obviously, after one farm representing a specific capacity
configuration has been shut down, another farm
representing a higher or lower capacity configuration of
the same service (such as farm A or C in the example)
may be activated. This leads to the effect that the capacity
of a server and with it the capacity of the service can be
adjusted. Figure 11 shows a capacity switch from 1.0 to
2.0, or from 200 TA/sec to 400 TA/sec, respectively.

Figure 11: Switching capacity from 1.0 to 2.0.

Adjusting capacity can be achieved within one UDC by
the shown procedure. The idea can be extended also
between UDC by adjusting service capacities at different
sites. It may even be considered that persistent service
states residing in the storage system of one UDC may be
migrated to a different UDC with the effect that the
service may be activated at the new location as described.

The overall effect of this system allows building a control
system with the decision-making layer in the meta-system
based on distributed decision-making algorithms that

provides service capacity as well as demand control in a
large-scale service grid.

7 Capacity Control in a
Homogeneous Grid Cluster

Implementing the demand/supply control system in a
homogeneous cluster environment (we assume an
Intel/Linux cluster) requires a different approach. Clusters
do not have the full-fledged virtualization capabilities of a
Utility Data Center. Storage and networking resources
cannot be virtualized. The notion of a farm representing a
hosting environment for a service does not exist.

In order to coordinate compute tasks from different
customers, clusters are typically operated under a cluster
management system such as openPSB. These management
systems allow users to allocate machines from the cluster
for a certain time. Using Grid technology, and specifically
the Globus toolkit, a Globus Resource Allocation
Manager (GRAM) can be implemented that performs the
task of coordinating different customers’ machine
allocations. Users can be direct customers to a GRAM, or
a hierarchy of GRAMs can be established such that
higher-ordered GRAMs request machines from
underlying GRAMs.

Figure 12: Establishing virtual clusters by hierarchically
instantiating GRAMs.

This then can be seen as establishing a “virtual cluster”
with machines that are under the control of the higher-
ordered GRAMs. “Virtualization” here refers to allocating
machines for customer use only. It does not include
protection or isolation of application environments as in
the UDC.

A
C

B

UDC Farm Configurations
UDC Re-
sources

3 available configurations:

FML’s resources capacity normalized
Farm A 2 100 TA/sec 0.5
Farm B 4 200 TA/sec 1.0
Farm C 8 400 TA/sec 2.0

FML C

FML B
A

UDC Utility
Controller

 <FML B />
 document

A
C

B

UDC Farm Configurations

UDC
Resources

3 available configurations:

FML’s resources capacity normalized
Farm A 2 100 TA/sec 0.5
Farm B 4 200 TA/sec 1.0
Farm C 8 400 TA/sec 2.0

FML B
A

 1.) ! <FML B />
 2.) <FML C />

FML C

UDC Utility
Controller

machine cluster C1

expand

virtual cluster VC2

machine cluster C2

virtual cluster VC1

GRAM C1

GRAM VC1

GRAM C2

GRAM VC2

requesting capacity from machine
clusters, allocating nodes by C1, C2

requesting a virtual cluster VC2 with 64 nodes:
 - instantiate GRAM VC2:
 - request nodes from C1 and C2

- 10 -

Figure 12 shows two virtual clusters established in two
underlying machine clusters each of which under the
control of one GRAM: GRAM C1 for machine cluster C1
and GRAM C2 for machine cluster C2. Both GRAMs
accept requests for allocating machines from their pools.

The figure also shows two virtual clusters VC1 and VC2,
under the control of GRAM VC1 and VC2, respectively.
Virtual clusters consist of sets of machines allocated from
underlying clusters, such as from only one cluster (as in
case VC1) or from multiple clusters (case VC2).
Machines allocated to virtual clusters can be managed by
the virtual cluster GRAMs and can then be requested by
customers in the same way as they would have been
requested from underlying GRAMs.

Virtual clusters basically materialize in form of an
instance of a GRAM that manages a set of machines
represented by IP addresses and obtained form a variety
of underlying clusters. Customers allocating machines
from virtual clusters obtain these IP addresses and will be
given the right to use these machines for an agreed time.
GRAMs are acting as control points coordinating
customer requests and adjusting virtual clusters capacities.

Machine allocations to virtual clusters can also be
adjusted by adding machines to or removing machines
from the virtual cluster. Machines are requested from or
released to one of the underlying GRAMs. This provides
the capability to dynamically adjust a virtual cluster’s
capacity in terms of the number of machines belonging to
that cluster.

Though machine allocations from virtual clusters can be
made transparent from actual machine locations in
underlying environments, there is obviously a significant
difference in connectivity between machines from
different underlying machine clusters. This situation
should be recognized and avoided by the GRAM. The
GRAM is aware of machine locations it has requested
from underlying clusters. It can then determine allocations
that are physically within one cluster domain in order to
satisfy a customer request. Virtual cluster GRAMs should
determine sets of machines originating from the same
machine cluster. If this is impossible, the GRAM may
chose to allocate machines from different underlying
clusters or may choose to expand its capacity by
requesting more machines from underlying clusters. These
machines may later be released again. These dynamic
allocation processes and flexibility remain hidden to
customers, which provide the value and purpose of such a
resource allocation schema.

8 Related Work
IBM’s Autonomic Computing vision [26] aims to provide
self-managing systems. The intent is to create systems that
respond to capacity demands and system failures without
human intervention. These systems intend to be self-
configuring, self-healing, self-protecting and self-
optimizing. We share this vision extending it beyond data
center boundaries into planetary-scale service grids.

IBM’s Project eLiza [27] is an ongoing effort under the
Autonomic Computing vision for creating servers that
automatically respond to unexpected capacity demands
and system glitches. The goals are increased reliability,
availability and serviceability while decreasing downtime
and cost of ownership. Project eLiza has made self-
management capabilities possible throughout IBM system
families. Traits shared by xSeries, iSeries, zSeries and
pSeries servers include:

- Support for dynamic clustering.

- Support for dynamic partitioning.

- EZSetUp wizards, allowing for self-installation.

- User authentication, directory integration and other
tools to protect access to network resources.

- Heterogeneous enterprise-wide workload
management.

The Océano project [28], joint work between IBM and
the University of Berkeley, is designing and developing a
pilot prototype of a scaleable, manageable infrastructure
for a large scale "computing utility powerplant" that
enables multi-customer hosting on a virtualized collection
of hardware resources. A computing utility infrastructure
consists of a "farm" of massively parallel, densely
packaged servers interconnected by high-speed, switched
LANs. This project aims to address many of the open
technical issues in these powerplant environments. Hosted
customers increasingly require support for peak loads that
are orders of magnitude larger than what they experience
in their normal steady state. Thus, a hosting environment
needs a faster turnaround time in adjusting the resources
(bandwidth, servers, and storage), assigned to each
customer to the dynamically fluctuating workload. The
objectives of the Océano project include:

- Implement an infrastructure that enables large
numbers of hosted customers over Linux servers.

- Reduce the costs of setting up and operating the
hosting farms by automation.

- Dynamically assign resources to accommodate
planned and unplanned fluctuation of workloads.

- Offer a wide variety of services levels to customers.

- 11 -

- Secure sharing of resources across multiple
customers.

- Provide adequate reliability through massive
redundancy and automated re-provisioning.

Océano will develop middleware and infrastructure that
provide composition of hosting services, including
monitoring of Service Level Agreements, Dynamic
Resource Allocation, and High Availability. This
middleware and infrastructure will enable the
development of powerplants that can handle multiple
customer applications and large surges in workload
traffic.

Océano as well as eLiza are both targeted to “inside the
data center” solutions. They do not encompass virtual
environments and planetary-scale distributed services
grids as proposed in this paper.

Traditional Grid approaches such as Globus [1] have
been focused on distributed supercomputing where
schedulers make decisions about where computational
tasks will be assigned. Typically, schedulers are based on
simple policies such as round-robin due to the lack of a
feedback infrastructure reporting load conditions back
into schedulers. More sophisticated approaches are in
planning for grids [15]. However, it is currently not
foreseeable whether Globus will evolve into such a
comprehensive service demand-supply control system as
discussed in this paper.

Other grid approaches such as the Sun’s Grid Engine [7]
basically only provide a resource sharing capability with
the focus on making compute resources available to other
users. Automated decision-making or even an integrated
control system appears to be beyond the current
capabilities of the Grid Engine.

References
[1] HP, Utility Data Center, http://www.hp.com/go/hpudc,

http://www.hp.com/go/always-on, November 2001.

[2] The Global Grid Forum, http://www.gridforum.org/.

[3] Kotov, V.: On Virtual Data Centers and Their Operating
Environments, HP Labs Technical Report1, HPL-2001-44,
March 2001.

[4] The Globus Toolkit, http://www.globus.org/toolkit.

[5] IBM, http://www.ibm.com/grid.

[6] Platform Inc., http://www.platform.com.

[7] Sun Microsystems, The Sun Grid Engine,
http://wwws.sun.com/gridware.

1 HPL-TR are available: http://lib.hpl.hp.com/techpubs.

[8] Krauter, K., Buyya, R., Maheswaran, M.:A Taxonomy and
Survey of Grid resource Management Systems, Software-
Practice and Experience, 32(2):135-164, 2002.

[9] Rolia, J., Singhal, S., Friedrich, R.: Adaptive Data
Centers, Proceedings of SSGRR 2000 Computer and
eBusiness Conference, L'Aquila, Italy, August 2000.

[10] The Globus Project, http://www.globus.org.

[11] The Berkeley Network of Workstations (NOW) Project,
http://now.cs.berkeley.edu.

[12] SETI@home project, University of Berkeley,
http://setiathome.ssl.berkeley.edu.

[13] Graupner, S., Kotov, V., Trinks, H.: Resource-Sharing
and Service Deployment in Virtual Data Centers, IEEE
Workshop on Resource Sharing in Massively Distributed
Systems (ICDCS-2002), July 2, 2002, Vienna, Austria.

[14] Kotov, V.: Towards Service-Centric System Organization,
HP Labs Technical Report, HPL-2001-54, March 2001.

[15] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S., The
Physiology of the Grid – An Open Grid Services
Architecture for Distributed Systems Integration, DRAFT,
http://www.globus.org/research/papers/ogsa.pdf, May
2002.

[16] W3C, Web Services Description Language (WSDL),
http://www.w3.org/TR/wsdl, March 2001.

[17] Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Self-
Organizing Control in Planetary-Scale Computing, IEEE
International Symposium on Cluster Computing and the
Grid (CCGrid), May 21-24, 2002, Berlin.

[18] HP Labs, Serrano Project and the SmartFrog Language,
http://www.dcs.ed.ac.uk/home/dcspaul/wshop/SmartFrog.
pdf.

[19] Graupner, S., Kotov, V., Trinks, H.: Recursive
Deployment of Management Agents in Planetary-scale
Control Systems, HP Labs Technical Report, to be
published in December 2001.

[20] Ratnasamy, S., Francis, P., Handley, M., Karp, R.,
Shenker, S., A Scalable Content-Addressable Network,
SIGCOMM 2001, San Diego, August 27-31, 2001.

[21] Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.:
Algorithms for Self-Organization and Adaptive Service
Placement in Dynamic Distributed Systems, HP Labs
Technical Report, to be published in September 2002.

[22] Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System:
Optimization by a Colony of Cooperating Agents. IEEE
Transactions on Systems, Man, and Cybernetics-Part B,
26(1):29-41, 1996.

[23] Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz,
L.: Ants for Load Balancing in Telecommunications
Networks, Adaptive Behavior 2:169-207, 1996.

[24] Werger, B. B., Matarić, M.: From Insect to Internet:
Situated Control for Networked Robot Teams, to appear in
Annals of Mathematics and Artificial Intelligence, 2000.

- 12 -

[25] Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next
century challenges: Scalable coordination in sensor
networks, Proceedings of MOBICOM, pp. 263-270,
Seattle, USA, August 1999.

[26] IBM, Autonomic Computing, Manifesto,
http://www.research.ibm.com/autonomic/manifesto.

[27] IBM, eLiza, http://www-
1.ibm.com/servers/eserver/introducing/eliza.

[28] IBM, and University of Berkeley, Oceano Project,
http://www.research.ibm.com/oceanoproject.

