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Abstract 
Growing complexity and cost of system deployment, 
ownership and operation pushes to look for economical, 
yet limitless ways to organize and manage large-scale 
computing in science, technology and businesses. The two 
most prominent examples are the concepts of the Utility 
Data Center [1] and the Grid [2].   

One of the hard problems in system management is the 
distributed resource allocation problem. We assume that 
no global information about resource availability and 
demands for resources can be provided due to the scale 
and dynamism of large systems. The paper introduces an 
architecture of an automated service demand-supply 
control system that is part of a large-scale Grid 
infrastructure comprised of a federation of distributed 
Utility Data Centers. 

 

 

1 Introduction 
As reaction to concerns about growing complexity and, as 
result, the potential ineffectiveness and insufficient 
manageability of large-scale systems, new approaches to 
system design, use, and management are emerging:  

- the aggregation and consolidation of system and 
application components into larger building blocks,  

- systematic and standard ways of their integration and 
communication,  

- sharing of distributed resources, and  

- automated system management and operation control.  

Two the most prominent and practical examples are the 
concepts of the Utility Data Center [1] and the Grid [2]. 
The Utility Data Center (UDC) consolidates computing 
resources in order to significantly reduce deployment and 
operation costs. Grids are large networks of computing 
resources that can be transparently shared and utilized for 
solving complex tasks or providing computing services.    
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These two concepts can be combined into a concept of 
Virtual Data Centers [3] that consolidate resources of a 
federation of distributed Utility Data Centers into virtual 
resources that are shared using Grid–type mechanisms. 

Grid computing emerged in the scientific 
supercomputing in the early 1990’s by tapping into 
underutilized resources available in organizations and 
making them available for solving complex 
computations. A software layer provides the coordinated, 
transparent and secure access to shared resources across 
geographically distributed sites. Resource virtualization 
allows transparency and security. The software layer also 
provides “grid membership” of a machine or a device 
making its resources discoverable and allocatable to 
other entities in the system. Many Grid projects in 
research and industry are based on the Globus toolkit [4], 
a widely used public domain software. Commercial Grid 
products are offered by IBM [5], Platform [6] and Sun 
[7]. An overview of Grid resource management systems 
can be found in [8]. 

Another source of the “grid trend” is the utility model of 
resources. Access to resources is aimed to be as simple 
and efficient as accessing power or other utilities. 
Resource markets are envisioned where resources used in 
information processing can be traded and exchanged as 
commodities. Resource commoditization also helps to 
overcome the diversity and complexity of IT landscapes 
making it attractive for both IT vendors and customers. 

Resource capacities should also be provided locally to 
where demands occur avoiding cross-network traffic. 
Since demands are fluctuating over time and locations, 
service capacities need to be adjusted accordingly, 
ideally automated without human intervention. Such an 
automated service grid control system transparently 
regulates service demands and supplies. 

So far, most integrated management systems are limited 
in regard to functioning in virtualized environments 
across organizational boundaries. Besides automated 
fail-over techniques in high-availability systems, 
management systems typically automate monitoring and 
information collection. Decisions are made by human 
operators interacting with the management system. Major 
service capacity adjustments imply manual involvement 
in hardware as well as in software. Systems need to be 
adjusted, re-installed and reconfigured. 

A new type of data center infrastructures provides 
immediate support for these tasks. The HP offering is the 
Utility Data Center (UDC) [1], [9]. Its capabilities allow 
a whole new approach to automate adjustment processes 
and by thus set the foundation for an automated service 
capacity-demand control system for a large service grid. 
This control system is based on a federation of 

geographically distributed data centers with utility data 
center (UDC) capabilities providing immediate support 
for service demand - supply control. 

One of the hard problems in system management is the 
distributed resource allocation problem. We assume that 
no global information about resource availability and 
service demand can be provided due to the scale and 
dynamism of large grids. Decision-making algorithms 
thus need to deal with partial information, yet provide 
good approximations of localized assignment solutions, 
and yet need to be reactive that decisions are made in time 
for an automated resource demand-supply control system. 

We propose an architecture for such an automated 
demand-supply control system. It is based on a 
formalization of service demands and supplies in an 
overlay meta-system. We then briefly discuss distributed 
decision-making algorithms performed in that overlay 
meta-system with their tradeoffs between quality of 
solutions and reactiveness. This architecture is general 
enough for a variety of large-scale distributed systems 
such as a federation of distributed Utility Data Centers. 

2 Utility Data Center Platform 
The reason for developing a utility data center platform 
was that deployment and operational costs dominate the 
balance sheets of enterprise IT customers. Platforms and 
management solutions are emerging reducing service 
deployment times and operational costs. Those platforms 
support the deployment of services (installation and 
configuration of software and data), the virtual wiring of 
machines into application environments, here referred to 
as virtual server environments, independently of the 
physical wiring in a data center. They allow programmatic 
rearrangements of services’ applications among machines, 
the dynamic sizing of service capacities, and the isolation 
of different environments hosted in the same data center. 
Besides those capabilities, utility data centers are enablers 
for automated control systems as discussed in this paper. 

A major characteristic of an utility data center is resource 
virtualization. The storage virtualization fabric with the 
storage area network attaches storage elements (disks) to 
processing elements (machines). The network fabric links 
processing elements together in a private virtual LAN. 

Two types of resources are virtualized in the UDC: 

- network resources: by permitting the programmable 
rewiring of server machines and devices to create a 
virtual LAN network. Virtual wiring is achieved by 
programming network switches connecting machines 
and programmatically connecting or removing 
machines to or from virtual networks, 
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- storage resources: by containing whole disk images 
with all persistent states of application environments, 
file systems, bootable operating system images, 
application software, etc. Given the programmability 
of the storage fabric, storage images can be made 
appearing on SCSI interfaces of machines from 
where machines obtain boot images and further data. 

 
Figure 1: Utility Data Center (UDC) [1] with the two 
main components: the fabric for network and the fabric 
for storage virtualization. 

A UDC platform has two major benefits: 

- automated services deployment: achieved by entirely 
maintaining persistent services’ states in the separate 
storage system and conducting programmatic control 
over attaching storage to machines, and 

- dynamic capacity sizing of services: achieved by the 
ability to automatically launch additional service 
instances absorbing additional load. Service instances 
are launched by first allocating spare machines from 
a pool maintained in the data center, then virtually 
wiring them into the specific environment of the 
service with attaching the appropriate storage to those 
machines and launching the operating systems and 
applications obtained from the attached storage. 

We leverage the benefits of the utility data center as 
execution platform for control decisions. The research 
presented in this paper extends the scope of control 
beyond the walls of one data center assuming a multitude 
of them as infrastructure for next-generation services grids 
encompassing seamless service demand-capacity control. 

3 Towards OGSA Service Grids 
The Global Grid Forum (GGF) [2] has the goal to 
coordinate activities and to establish standards for 
emerging service grids. The most visible project from the 
scientific community is The Globus Project [10]. This 
project is recently gaining significant attention and 
support from hard- and software vendors. A related 
academic project with similar goals of securely and 
transparently sharing resources has been NOW, Network 
of Workstations from the University of Berkeley [11]. 
The currently largest effort is the SETI@home project 
[12] with more than 3.7 million Internet users that have 
donated a total of 1 million hours of processing time 
translating into 1.6*1021 (≈ 109 Tera) Flops, by far the 
largest supercomputer that ever existed. 

Though the need for compute power seems infinite in 
scientific supercomputing, resource sharing comprises 
more than distributing compute tasks transparently 
among heterogeneous compute nodes. From a 
commercial point of view even more important is data 
sharing as transparently and securely among 
organizations, including software and services needed to 
access, maintain and process this data. A grid in this 
context stands for a collaborative domain spanning 
multiple networks and organizations to securely and 
efficiently connect different organizations for sharing 
data and services needed for collaboration [3], [13]. Such 
grid domains comprise the whole spectrum of resources, 
documents and all other data including accompanying 
applications – all diversity consolidated under a uniform 
view of services [14]. Terms like collaborative virtual 
environments or virtual organizations are used as well. 

The goal is to provide access to resources and services 
seamlessly, transparently and securely across 
organizational boundaries in a yet controlled and secure 
manner. Recent publications from Globus reflect this in 
the Open Grid Services Architecture (OSGA) [15]. 

In order to categorize grids, we refer to the first-
generation grids as resource grids and to the second-
generation as service grids. Services grids may differ in 
scale and scope: enterprise grids (within one 
organization), peer or partner grids (across defined sets 
of organizations) and global grids (publicly accessible). 

A major aspect of service grids is to keep service supply 
in balance with demands for services. Service demand 
needs to be met by service supply. Service supply then 
induces demand for resources in the underlying 
infrastructure that provides resources. The logical chain 
is: service demand to service supply translating into 
resource demand to be met by resource supply. Grids are 
basically resource supply infrastructures. Supply and 
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demand are quantitative aggregates meaning that services 
do not only provide a required functionality (and most 
service description methods and frameworks only 
capture functionality, often in form of API specifications 
such as WSDL [16]), services also have to provide their 
functionality in sufficient quantity such that occurring 
demands can be satisfied in desired quality. 

4 Service Control 
Control of the demand-supply balance can be exercised 
by various instruments, on the demand side as well as on 
the supply side. 

Demand control instruments can be established in 
various ways, for instance, by admission control 
(refusing further demands coming into services), by 
redirecting demands in the system to where capacity is 
still available, or even by calculating and imposing price 
adjustments as indirect, longer-term control instrument 
on the demand side. 

Supply control can be achieved by adjusting service 
capacity at existing locations, by moving service capacity 
towards locations or time frames where demands occur 
or by utilizing available service capacity elsewhere in the 
system [17]. 

Since the storage system is separated from the machine 
resources in the UDC, multiple images of a service can 
be maintained each representing different capacity 
configurations. During low demand, the control system 
will activate the low-capacity configuration of the service 
and during high-demand the high-capacity configuration. 
“Virtual server” capacity can be adjusted in the UDC by 
programming the resource allocations in the utility data 
center. Control instructions are described in a special 
language FML (Farm Markup Language) that are sent to 
the utility controller software. Switching configurations 
implies that all service’s applications are shut down, and 
all persistent states are written out to the storage system. 
Next, the higher (or lower) capacity configuration of the 
service is launched by allocating the needed machine 
resources and connecting the service’s storage images to 
them. After machines have booted, the service is 
available again with the adjusted capacity configuration.  

5 Architecture of an Automated 
Service Demand-Capacity 
Control System 

The control system consists of conventional and new 
building blocks. First, it contains a monitoring and 
information dissemination infrastructure for collecting 

utilization data and traces of workloads. One important 
aspect here is the aggregation of monitored data and 
transforming data into a set of abstracted metrics that can 
be used for correlating demands with capacities. The 
built-in decision-making capability is a new component 
and the essential part of the control system. The third 
part performs the actuation of decisions by imposing 
control actions on the demand or on the capacity side.  

The following figure introduces the general architecture 
of the control system. It consists of three layers: 

1. an infrastructure layer consisting of resources 
offered from data centers with utility capabilities 
performing a (virtual) “server-to-resource” mapping, 

2. a layer above performs a mapping of “services-to-
servers” based on instructions (decisions) made in 

3. a meta-system, an overlay structure of nodes 
representing  dynamic server capacities and service 
demands. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Three-layer architecture of the control system. 

The architecture is based on a notion of “virtual servers”, 
environments that can host services as encapsulated 
units. The notion of a “virtual server” generalizes from a 
machine to a whole operational environment needed for 
hosting and performing one or a multitude of services. 
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OGSA uses the term hosting environment [15]. A 
“virtual server” in this sense consists of a set of virtual 
resources allocated in a data center or even spread across 
resources from different data centers. A “virtual server” 
needs to be materialized or deployed by allocating 
needed resources and configuring them to form the 
operational environment that can host services. 
Resources provide the smallest allocatable entities 
including machine resources, storage and networks 
resources as well as the software for configuring and 
managing them. It also comprises software entities in a 
service’s environment such as DNS. This bottom layer of 
the control architecture performs the mapping of “virtual 
servers-to-resources” including the allocation of machine 
resources and setting up the overall operational 
environment. This layer of the control system derives 
direct hardware support from the utility data center in 
form of representing a “virtual server” by a so-called 
“UDC farm”, a programmable set of resources plus 
binary images in the storage system for service’s 
software and data. 

The second layer of the control architecture builds upon 
a variety of virtual server environments. This layer 
performs the allocation of services to virtual server 
environments. This “service-to-server” mapping function 
includes the deployment of services’ software and data as 
well as management and control components belonging 
to the service’s applications. Technology for automating 
these processes is being developed, for instance by [18]. 

The third layer is the decision-making layer. It is formed 
as a meta-system managing descriptive data about the 
two layers underneath. Information about available 
virtual server environments and services to be hosted are 
maintained in an overlay-structured network of nodes. It 
is automatically established during deployment [19] and 
forms an inherently decentralized, distributed structure 
adapting it to the envisioned planetary scales of service 
grids. This overlay structure is used to perform 
distributed algorithms for decision-making about 
allocations of resources to server environments within 
nodes as well as allocating services to server 
environments among nodes. Distributed algorithms 
constantly observe whether capacity-demand conditions 
are kept in balance throughout the overlay topology and 
eventually trigger control actions directed to entities in 
the two underlying layers causing adjustments there. 

An infrastructure exists that allows to collect and process 
monitoring data from sensors updating nodes in the meta-
system and disseminates control decisions to control 
points of servers and services (actuators) in the system. 

Figure 3 shows a distributed federation of Utility Data 
Centers each represented by a node in the meat-system. 

Nodes in the meta-system are interconnected. Nodes in 
the meta-system represent virtual server environments 
(server descriptors), services (service descriptors) or, 
summarized, entire data centers as shown in the figure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Federation of UDC control systems with meta-
system with monitoring, decision-making and actuation. 

Each node contains static descriptive data about the 
entity it represents as well as dynamic parameters about 
the current condition. Dynamic parameters need to be 
updated. This task is performed by the monitoring 
subsystem using an event or time-triggered push method. 
Data are transmitted between the entity and the node in 
MML (Monitoring Markup Language) format. 

The node then observes dynamic parameters and initiates 
action (decision and actuation) when conditions require. 
Since nodes are interconnected, nodes can communicate 
based on neighborhood relationships. Constant 
communication takes place in the meta-system by 
distributed control algorithms. 

The federative structure of the overall service demand- 
supply control system thus is materialized in form of 
communicating nodes in the meta-system, with each node 
representing one member of the control system that itself 
is a control system for the entity it represents (illustrated 
by the two control loops in Figure 3. 

After a node (in conjunction with distributed control 
algorithms) has made a decision, it is translated into an 
action represented in FML (Farm Markup Language), the 
control language of the Utility Data Center, which is sent 
to the control interfaces in the underlying system closing 
the entity’s control loop. 

<FML><MML> <MML> <FML>
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5.1 Metrics: Formalizing Service Demands and 
Capacities 

Another precursory for automated decision-making is how 
service demands and capacities can be properly described 
and formalized such that algorithms can be applied for 
deriving decisions.  

We use an approach of characterizing a “virtual server” 
capacity for a class of services in terms of server shares. 
Server shares represent the capability of a server 
configuration to handle a certain maximum load of a 
service when the service would be deployed in that server 
environment. We apply here a similar approach of how 
processing capacity is expressed today in terms of 
benchmark measures: machine configuration X is capable 
of processing load Y of application or service Z. For 
example, a specific machine configuration can handle 100 
transactions per second (TA/s) of a business application 
or an industry-standard benchmark. Given another 
machine environment equipped with more resources, it 
might be capable of handling 250 TA/s of that 
application. A server share represents the normalized 
measure expressing a virtual server’s capability of 
handling a maximum amount of load related to a 
particular benchmark application that is suitable to 
characterize the service. Server shares are normalized to a 
chosen base unit, for instance, to the first example with 
100 TA/s. This server configuration would represent a 
server share of 1.0. The second configuration capable of 
handling 250 TA/s would then have 2.5 server shares 
expressing that this server configuration is 2.5 times more 
powerful (or has 2.5 times the capacity) than the reference 
configuration of the considered benchmark. 

 

 

 

 

 

 

 

 

 

Figure 4: Three virtual server environments with 
different deployed and available capacities expressed in 
terms of server shares. 

The approach of formalizing server capacities relatively 
to benchmarks provides an “outside-the-box” perspective 
rather than aggregating internal server parameters such as 
numbers of CPUs, cache sizes, disk and memory 

configurations, etc. Our approach allows to summarize the 
aggregated behavior of all inner diversity into one, 
consolidated number: server share. 

Respectively, service demands can be expressed relatively 
to utilizations of server capacities among the same class 
of services. This measure is called a service share. 

Figure 4 shows three data centers with various offerings 
of server environments for hosting services. The upper 
has a deployed capacity of 0.5 server shares among three 
possible server configurations with capacities {0.5, 2.0 or 
10.0}. Deployed capacity means that this capacity has 
allocated resources in the data center. The two other 
configurations currently do not have resources assigned, 
but those may be deployed and activated later caused by a 
control command issued to the data center. Those 
capacities are referred to as available capacities. The data 
center in the middle offers two server configurations with 
capacities  {1.0, 2.0} with 1.0 currently being deployed. 
And the lower data center offers two server configurations 
with capacities  {1.0, 2.0} with 2.0 being deployed. 

 

 

 

 

 

 

 

 

Figure 5: Three deployed services with service shares. 

Figure 5 shows three services (or three instances of one 
service) being allocated to the three deployed server 
environments. Service demands are formulated in terms of 
service shares representing the current utilization of the 
hosting server capacity. In the figure, the upper service 
has a utilization of 0.8 (80%) of the server capacity of 0.5. 
The middle service utilizes 70% of the capacity 1.0, and 
the bottom service only utilizes 10% of the respective 
capacity 2.0. Since service shares are expressed in terms 
of utilizations of normalized capacities of hosting server 
environments, service shares are indirectly normalized as 
well and can be correlated. 

Server capacities (expressed in server shares) and service 
utilizations of those capacities (service shares) can be 
extracted from the real system and be placed into the 
context of a meta-system (layer 3 in the Architecture 
shown in Figure 2). Decision-making algorithms then 
operate in this meta-system of distributed nodes, each 
node representing a server capacity, service allocation and 

Virtual Server A: 
- a deployed capacity: 0.5 shares 
- available capacities: {0.5, 2.0, 10.0} 

Virtual Server B: 
- deployed capacity: 1.0 share 
- available capacities: {1.0, 2.0} 

Virtual Server C: 
- deployed capacity: 2.0 shares 
- available capacities: {1.0, 2.0} 

Virtual Service III: 
= 10% of 2.0 

Virtual Service II: 
= 70% of 1.0 

Virtual Service I: 
= statistical utilization of 
   service capacity: 80% of 0.5 
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utilization. Nodes publish information about themselves 
(including capacities, utilization etc.) in XML documents 
called descriptors. Descriptors are used to communicate 
information with other nodes in the meta-system. Two 
main types of descriptors exist: a server descriptor and a 
service descriptor. More detail can be found in [14]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Extracting information to the meta-system. 

Since large scales of systems are anticipated in the future, 
we do not propose a global hierarchical structure for the 
meta-system, rather a loosely coupled, federative structure 
of nodes, each representing server capacities and service 
utilizations. Nodes can freely join or disappear. We 
leverage recently emerged overlay network technology 
and apply it in a slightly extended fashion. Extensions are 
needed since conventional overlay networks are 
specialized for searches of rather static content (they are 
often referred to as content addressable networks CAN 
[20] or distributed hash tables DHT). However, 
mechanisms for self-establishing structures and keeping 
relationships among nodes have been leveraged in our 
system. Extensions primarily refer to the separation of 
static attributes describing server environment capabilities 
and dynamic attributes needed for capturing utilizations. 

Next, we discuss the decision-making process that builds 
upon the established overlay structure and automatically 
adjusts service capacity according to demand fluctuations 
in a global service grid. Taking the large scale into 
account, it becomes obvious that centralized approaches 
are inappropriate. We thus present distributed algorithms 
that operate in the meta-structure of nodes. 

5.2 Distributed Control Algorithms 
For making decisions about managing resource demands 
and supplied capacities, the biggest challenge is to find 
algorithms that are both reactive and deliver high-quality 
solutions for the control scale we are dealing with. In 

practice, the reactiveness of an algorithm must be traded 
against the quality of a solution. Reactiveness is 
understood as the time between detecting an abnormality, 
for instance a sudden peak demand, and the final 
computation of a decision how the situation can be dealt 
with. Thus, reactiveness constitutes one parameter of the 
design space. Another parameter is the degree of 
distribution of the control system, ranging from 
centralized to completely decentralized. Since it is 
unrealistic to find one algorithm, which can be 
parameterized in both dimensions, we look at several 
approaches covering most of the design space.  

The next figure classifies six distributed algorithms in 
regard to solution quality versus reactiveness [21] and 
relates them to Integer Programming (blue): 

- Agents in Overlay Networks, 

- Ant Colony Algorithms [21], [23], 

- Broadcast of Local Eligibility (BLE) [24], 

- Local Random / Local Round Robin, 

- Local Greedy Distribution. 

Three time scales are considered: the design stage of an 
initial service placement, in longer periods reiterated as 
long-term adjustment process in the system; a mid-term 
period for periodic operational adjustments, and a shorter-
term period for discharging sudden hot spots. 

 

 

 

 

 

 

 

 

 

Figure 7: Tradeoffs of decision-making algorithms. 

The last two algorithms are characterized by simplicity 
and statelessness. Pretty much like random or round robin 
scheduling, the load distribution algorithm pushes load 
from an overloaded node to a randomly or in a round 
robin fashion chosen neighbor that may absorb that load if 
it has the capacity, or it pushes the load further on to 
another node chosen in the same fashion. Once a place 
has been found where the load can be absorbed, the actual 
load migration is then initiated in the underlying system. 

The advantage of this algorithm is its simplicity and 
statelessness (efforts to maintain states can be avoided). 
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The disadvantages are unpredictability and insufficient 
(random) convergence. 

 

 

 

 

 

 

 

Figure 8: Load Distribution Algorithms. 

The termination problem of the algorithm can be 
addressed by limiting the number of hops. Cycles cannot 
be avoided due to the statelessness of the algorithm. 

 
Control Goals 
The goals for optimal placement might vary in general. 
Therefore, the following algorithms are designed to be 
generic enough to support new objectives without 
fundamental changes. However, we focus on only few 
aspects to be achieved by control decisions. These are: 

1. Balancing the server load such that the utilization of 
each server is in a desired range. 

2. Placing services in such a way that communication 
demand among them does not exceed the capacity of 
the links between the hosting server environments. 

3. Minimizing the overall network traffic aiming to 
place services with high traffic close to each other on 
nearby servers (nearby in the sense of a low number 
of communication hops across nodes). 

6 Adjusting Virtual Server 
Capacity in the UDC 

Figure 9 shows a UDC with three available server 
configurations materialized as different UDC farms, each 
representing a different capacity of the same service type: 

- Farm A: 100 TA/sec, normalized to 0.5 

- Farm B: 200 TA/sec, normalized to 1.0 (base unit) 

- Farm C: 400 TA/sec, normalized to 2.0.  

(Transactions per second (TA/sec) has been chosen as an 
example to represent a capacity measure for a service. 
Different service types may require different measures.) 

In Figure 9, all farms are passive. This means server 
configurations basically only consist of various regions in 

the storage system. No machine or network resources are 
assigned to any of these passive farms. The figure also 
shows a block called the UDC Utility Controller, a 
software component of the UDC management system that 
allows activating any configured farm in the UDC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Three available server capacity configurations 
materialized as farms configured in the storage system. 

Multiple farms may coexist in a UDC, not only as passive 
configurations in the UDC storage system, but also as 
activate farms with resources allocated and services 
running. A farm is allocated by sending a control 
instruction in form of a FML (Farm Markup Language) 
document to the UDC Utility Controller. The controller 
will verify the correctness of the document and will 
allocate needed resources (machines, private networks, 
storage) from its resource pools and virtually wire these 
components as described in the FML document. During 
this process, the UDC Utility Controller will attach one of 
the farm’s configurations held in the storage system to the 
allocated machines. 

Machines then will bootstrap from storage and launch all 
needed applications as configured as persistent states in 
the storage system. At the end, the activated farm will 
perform the service in the chosen configuration. Figure 10 
shows the activation of farm B representing a capacity 
configuration of 1.0 for the service. 

The respective FML document will be sent from the meta-
system to the UDC Utility Controller. 

An active farm can be terminated by sending a respective 
FML document to the UDC Utility Controller. After the 
farm has been shut down properly, and all the persistent 
service’s states have been written out to the storage 
system, the UDC Utility Controller will release all 
allocated machine and network resources and return them 
to the pool. 
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Figure 10: Activating farm B with capacity 1.0. 

Obviously, after one farm representing a specific capacity 
configuration has been shut down, another farm 
representing a higher or lower capacity configuration of 
the same service (such as farm A or C in the example) 
may be activated. This leads to the effect that the capacity 
of a server and with it the capacity of the service can be 
adjusted. Figure 11 shows a capacity switch from 1.0 to 
2.0, or from 200 TA/sec to 400 TA/sec, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Switching capacity from 1.0 to 2.0. 

Adjusting capacity can be achieved within one UDC by 
the shown procedure. The idea can be extended also 
between UDC by adjusting service capacities at different 
sites. It may even be considered that persistent service 
states residing in the storage system of one UDC may be 
migrated to a different UDC with the effect that the 
service may be activated at the new location as described. 

The overall effect of this system allows building a control 
system with the decision-making layer in the meta-system 
based on distributed decision-making algorithms that 

provides service capacity as well as demand control in a 
large-scale service grid. 

7 Capacity Control in a 
Homogeneous Grid Cluster  

Implementing the demand/supply control system in a 
homogeneous cluster environment (we assume an 
Intel/Linux cluster) requires a different approach. Clusters 
do not have the full-fledged virtualization capabilities of a 
Utility Data Center. Storage and networking resources 
cannot be virtualized. The notion of a farm representing a 
hosting environment for a service does not exist. 

In order to coordinate compute tasks from different 
customers, clusters are typically operated under a cluster 
management system such as openPSB. These management 
systems allow users to allocate machines from the cluster 
for a certain time. Using Grid technology, and specifically 
the Globus toolkit, a Globus Resource Allocation 
Manager (GRAM) can be implemented that performs the 
task of coordinating different customers’ machine 
allocations. Users can be direct customers to a GRAM, or 
a hierarchy of GRAMs can be established such that 
higher-ordered GRAMs request machines from 
underlying GRAMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Establishing virtual clusters by hierarchically 
instantiating GRAMs. 

This then can be seen as establishing a “virtual cluster” 
with machines that are under the control of the higher-
ordered GRAMs. “Virtualization” here refers to allocating 
machines for customer use only. It does not include 
protection or isolation of application environments as in 
the UDC. 
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Figure 12 shows two virtual clusters established in two 
underlying machine clusters each of which under the 
control of one GRAM: GRAM C1 for machine cluster C1 
and GRAM C2 for machine cluster C2. Both GRAMs 
accept requests for allocating machines from their pools. 

The figure also shows two virtual clusters VC1 and VC2, 
under the control of GRAM VC1 and VC2, respectively. 
Virtual clusters consist of sets of machines allocated from 
underlying clusters, such as from only one cluster (as in 
case VC1) or from multiple clusters (case VC2). 
Machines allocated to virtual clusters can be managed by 
the virtual cluster GRAMs and can then be requested by 
customers in the same way as they would have been 
requested from underlying GRAMs. 

Virtual clusters basically materialize in form of an 
instance of a GRAM that manages a set of machines 
represented by IP addresses and obtained form a variety 
of underlying clusters. Customers allocating machines 
from virtual clusters obtain these IP addresses and will be 
given the right to use these machines for an agreed time. 
GRAMs are acting as control points coordinating 
customer requests and adjusting virtual clusters capacities. 

Machine allocations to virtual clusters can also be 
adjusted by adding machines to or removing machines 
from the virtual cluster. Machines are requested from or 
released to one of the underlying GRAMs. This provides 
the capability to dynamically adjust a virtual cluster’s 
capacity in terms of the number of machines belonging to 
that cluster. 

Though machine allocations from virtual clusters can be 
made transparent from actual machine locations in 
underlying environments, there is obviously a significant 
difference in connectivity between machines from 
different underlying machine clusters. This situation 
should be recognized and avoided by the GRAM. The 
GRAM is aware of machine locations it has requested 
from underlying clusters. It can then determine allocations 
that are physically within one cluster domain in order to 
satisfy a customer request. Virtual cluster GRAMs should 
determine sets of machines originating from the same 
machine cluster. If this is impossible, the GRAM may 
chose to allocate machines from different underlying 
clusters or may choose to expand its capacity by 
requesting more machines from underlying clusters. These 
machines may later be released again. These dynamic 
allocation processes and flexibility remain hidden to 
customers, which provide the value and purpose of such a 
resource allocation schema. 

8 Related Work 
IBM’s Autonomic Computing vision [26] aims to provide 
self-managing systems. The intent is to create systems that 
respond to capacity demands and system failures without 
human intervention. These systems intend to be self-
configuring, self-healing, self-protecting and self-
optimizing. We share this vision extending it beyond data 
center boundaries into planetary-scale service grids. 

IBM’s Project eLiza [27] is an ongoing effort under the 
Autonomic Computing vision for creating servers that 
automatically respond to unexpected capacity demands 
and system glitches. The goals are increased reliability, 
availability and serviceability while decreasing downtime 
and cost of ownership. Project eLiza has made self-
management capabilities possible throughout IBM system 
families. Traits shared by xSeries, iSeries, zSeries and 
pSeries servers include:  

- Support for dynamic clustering.  

- Support for dynamic partitioning.  

- EZSetUp wizards, allowing for self-installation.  

- User authentication, directory integration and other 
tools to protect access to network resources.  

- Heterogeneous enterprise-wide workload 
management.  

The Océano project [28], joint work between IBM and 
the University of Berkeley, is designing and developing a 
pilot prototype of a scaleable, manageable infrastructure 
for a large scale "computing utility powerplant" that 
enables multi-customer hosting on a virtualized collection 
of hardware resources. A computing utility infrastructure 
consists of a "farm" of massively parallel, densely 
packaged servers interconnected by high-speed, switched 
LANs. This project aims to address many of the open 
technical issues in these powerplant environments. Hosted 
customers increasingly require support for peak loads that 
are orders of magnitude larger than what they experience 
in their normal steady state. Thus, a hosting environment 
needs a faster turnaround time in adjusting the resources 
(bandwidth, servers, and storage), assigned to each 
customer to the dynamically fluctuating workload. The 
objectives of the Océano project include: 

- Implement an infrastructure that enables large 
numbers of hosted customers over Linux servers.  

- Reduce the costs of setting up and operating the 
hosting farms by automation.  

- Dynamically assign resources to accommodate 
planned and unplanned fluctuation of workloads.  

- Offer a wide variety of services levels to customers.  
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- Secure sharing of resources across multiple 
customers.  

- Provide adequate reliability through massive 
redundancy and automated re-provisioning.  

Océano will develop middleware and infrastructure that 
provide composition of hosting services, including 
monitoring of Service Level Agreements, Dynamic 
Resource Allocation, and High Availability. This 
middleware and infrastructure will enable the 
development of powerplants that can handle multiple 
customer applications and large surges in workload 
traffic. 

Océano as well as eLiza are both targeted to “inside the 
data center” solutions. They do not encompass virtual 
environments and planetary-scale distributed services 
grids as proposed in this paper. 

Traditional Grid approaches such as Globus [1] have 
been focused on distributed supercomputing where 
schedulers make decisions about where computational 
tasks will be assigned. Typically, schedulers are based on 
simple policies such as round-robin due to the lack of a 
feedback infrastructure reporting load conditions back 
into schedulers. More sophisticated approaches are in 
planning for grids [15]. However, it is currently not 
foreseeable whether Globus will evolve into such a 
comprehensive service demand-supply control system as 
discussed in this paper. 

Other grid approaches such as the Sun’s Grid Engine [7] 
basically only provide a resource sharing capability with 
the focus on making compute resources available to other 
users. Automated decision-making or even an integrated 
control system appears to be beyond the current 
capabilities of the Grid Engine. 
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