

Web Services Management Network:
An Overlay Network for Federated Service Management

Vijay Machiraju, Akhil Sahai, Aad van Moorsel
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-234
August 21st , 2002*

E-mail: {vijaym, asahai, aad}@hpl.hp.com

management;
service
management,
SLA, web
services, web
service
management
network

We introduce the architecture, object model, components, and
protocols of a management overlay for federated service
management, called Web Services Management Network (WSMN).
WSMN targets management of web services that interact across
administrative domains, and therefore typically involves multiple
stakeholders (examples are business-to-business, service provider
interconnections, help desks). The architecture is based on
(implicit) SLAs to formalize relations across domains. It relies on a
network of communicating service intermediaries, each such
intermediary being a proxy positioned between the service and the
outside world. WSMN also exchanges control information to agree
on what to monitor, where to monitor, and whom to provide
visibility.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Web Services Management Network:
An Overlay Network for Federated Service Management

Vijay Machiraju, Akhil Sahai, Aad van Moorsel

Hewlett-Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94034
{vijaym, asahai, aad}@hpl.hp.com

Abstract

We introduce the architecture, object model, components, and protocols of a management overlay
for federated service management, called Web Services Management Network (WSMN). WSMN
targets management of web services that interact across administrative domains, and therefore
typically involves multiple stakeholders (examples are business-to-business, service provider
interconnections, help desks). The architecture is based on (implicit) SLAs to formalize relations
across domains. It relies on a network of communicating service intermediaries, each such
intermediary being a proxy positioned between the service and the outside world. WSMN also
exchanges control information to agree on what to monitor, where to monitor, and whom to provide
visibility.

Keywords: management, service management, SLA, web services, web service management network

1 Introduction
By packaging software applications as ‘services’ that are accessible over the Internet or intranet,
enterprises achieve new and better means to utilize their own and each other’s applications.
Services1 can be accessed through manual user activities (e.g., browser-based IT help desk), and
increasingly through other services. In the latter case, conglomerations of interacting services
emerge, which access one another through more and more automated means. Examples can be
found in business-to-business computing (web services, supply-chain processes, payment services),
service providers (utility or grid computing) or in enterprise applications (payroll applications,
remote IT services).

In the emerging world of Internet services, operational management becomes exceedingly
important and challenging (and thus interesting). Services often directly impact the business process
execution, and mishaps may directly be reflected in the bottom line of a business. This puts a
premium on fault and performance management capabilities for services. Moreover, the services
paradigm increases the complexity of run-time operations. Services communicate across monitoring
domains [1], include different business partners, and are likely to rely on third parties to complete a
service offering. As a consequence, service management has to deal with multi-party interactions,
has to collect a large amount of data and synthesize it to understand the health of relationships
between partners, and must resolve the limited end-to-end visibility and control one has over each
other’s services.

1 We use the terms ‘service’ and ‘web service’ interchangeably, but prefer the term ‘service,’ since it stresses that we

discuss the management of applications exposed as services, instead of the fact that we assume these services to
communicate through web services technology (SOAP, XML, WSDL).

 - 2 -

From the above we conclude that traditional application management must evolve into (or be
complemented by) ‘true’ service management, and ultimately into service ‘relationship’
management. First, we must manage a service ‘as a whole,’ that is, as it is provided to a partner.
Contrast this with application management, for which it is necessary to understand how the service
is internally implemented through a set of objects and what exceptions each object generates.
Instead, ‘true’ service management manages the interactions a service has with other services or
consumers, for which we need visibility at the service interface between an application and its users.
Secondly, we must manage relations, not only through local management, but also through sharing
data between partners as needed, and, more importantly, through exchanging signaling information
about monitoring, service levels and control actions. In other words, we need to be concerned with
federated management [2].

In this paper, therefore, we propose Web Service Management Network (WSMN), a management
architecture for federated service management. Since we believe it is safe to assume Internet
services will be implemented using web service technology (SOAP, XML, WSDL), WSMN is
based on such technology. The critical concept in WSDN is that of SLAs. If SLAs are explicitly
defined we adapt them to make them manageable, and if no SLAs are actually agreed upon between
services, WSMN manages towards SLAs imposed specifically for management purposes (‘implicit
SLAs’). The SLA concept allows us to frame and solve many problems rather elegantly and
effectively, as we discuss further in Section 2.1, and illustrate using a WSMN prototype
implementation in Section 4. WSMN, then, is a network of cooperating intermediaries, each such
intermediary implemented as a proxy sitting between a service and the outside world, and a set of
protocols to manage service relationships expressed through SLAs.

One can regard WSMN as a logical signaling network for management purposes, a concept well
known from telecom (SS7 [3]). In fact, throughout the various layers of the Internet stack, overlays
are being proposed to establish quality guarantees that the Internet itself cannot create. Examples
exist for instance for Internet telephony (SIP [4]) and streaming media content delivery [5]. Also of
interest are the various emerging solutions to provide properties and features such as security,
transactionality and change management to C2B and B2B web services. Examples are Flamenco
Networks [6], Kenamea [7] and Talking Blocks [8]. All these companies use networks of
collaborating intermediaries, often including a third-party play (repositories as well as services).
None of these solutions addresses service management, as we do in this paper. Recently, Gartner
surveyed and put in perspective these architectures, which they term web service networks [9]. Our
term ‘WSMN’ is therefore extra appropriate, since our approach uses a web services network
architecture for purposes of service management.

We believe that future web services management technology and standards must be based on
WSMN as the architectural underpinning. The primary objective of this paper, therefore, is to
introduce and explain WSMN and argue its value as core architecture for service and service
relationship management. To this end, we introduce the main concepts behind WSMN in Section 2
(SLAs and protocols, respectively) and discuss the details of the intermediaries in Section 3. Section
4 then demonstrates multi-party SLA management using a WSMN prototype implementation.

 - 3 -

��������� ��������	

��������

���������

����������	��

� ����
�����������������
� ��������
������
� ���
��������������

����������������������������	

� �����
���������
� ����������������������������
� ������������������������
� �����������������������
� �������������������������

����
����	

����	

����
����	

����	

����
����	

����	

����
����	

����	

Fig. 1 Web Services Management Network

2 WSMN Design Choices
In one sentence, Web Services Management Network is a logical overlay network for SLA
management between services, constituted of communicating intermediaries. Fig. 1 illustrates
WSMN, each intermediary being a proxy between a service (providing the interface to one or more
applications) and the outside world. The most critical and interesting aspects of our design are (1)
the choice to base all management on SLAs, and (2) the protocols for intermediaries to collaborate.
We will argue in detail why we made these two design decisions, and discuss their consequences
for the components in the intermediaries. We will not further elaborate why service management
logic is placed in intermediaries, since we think that is an obvious enough choice—the reader can
find a discussion in [9] and [10]. We note that we assume that services interact using web services
technology, that is, XML, SOAP and WSDL [11].

2.1 SLAs as a Management Tool

SLAs are, of course, well-established in management [12], and one can argue that especially in
service relationship management, SLAs will be of increasing and singular importance [10] [13].
However, our primary incentive to use SLAs is different: it is not that the existence of SLAs
introduces a management problem we must deal with, but that voluntary introduction of SLAs can
be a tool to manage service relationships. Hence, if SLAs are not sufficiently detailed, or are not
explicitly agreed upon between services, we introduce SLAs for the purpose of management. We
call these SLAs ‘implicit SLAs.’

 - 4 -

A service level agreement defines a basic abstraction through which partners can understand each
other’s capabilities, negotiate on service parameters, and manage to agreed levels. SLAs are a clean
way to separate management concerns between the partners. In a situation where multiple partners
interact with each other to accomplish a goal/task, an SLA is defined between every pair of
interacting partners with well-defined expectations. This allows management of the overall task to
be broken up up-front into smaller problems of managing each interaction. An alternate architecture
is one that requires centralized intelligence, which makes sure that the overall task completes.
However, such an architecture requires management data to be massively shared between all
partners and is not scalable to a large number of partners. Moreover, in situations where each of the
managed services runs within its own management domain, a centralized architecture will not be
feasible.

Many problems in service relationship management can be solved through SLA management. For
example, the problem of discovering and selecting right partners translates to the problem of
querying for or negotiating an SLA. Similarly, the problem of managing a relationship translates to
the problem of monitoring and assuring an SLA. Finally, solutions for rating partners and
optimizing partnerships can be built by optimizing SLAs based on the cost of meeting them and
penalties of not meeting them. Due to this close association, we use the words SLA management
and relationship management interchangeably in the rest of this paper.

In WSMN, once an intermediary learns about an SLA (either input through a console or as the
result of a semi-automated SLA negotiation protocol), it determines what elements to monitor, at
what intermediary to monitor them, and how often to set alarms (see also Section 4). To establish
this automated SLA management, the SLA must be specified unambiguously. In Appendix B, we
represent the SLA specification language we developed for that purpose. This specification
language relies on a managed object model for web services presented in Appendix A.

2.2 Protocols

The intermediaries interact amongst each other through a set of management protocols. These
protocols range from basic ones that involve establishment and sustenance of the network to higher-
level protocols that implement higher-level functionalities (partner selection, SLA assurance). We
distinguish three classes of protocols: life-cycle protocols, measurement protocols and assurance
protocols.

Life-Cycle Protocols. The life-cycle protocols are basic protocols that deal with initiation and
sustenance of the WSMN. In our implementation, the initiation protocols are commenced as soon as
two web services start communicating with each other. It is assumed that if the web service
supports WSMN, the intermediaries are reachable at the address obtained by conjugating ”/WSMN”
at the end of the service URL. The intermediary that detects a web service communication initiates
an establishment protocol that acquaints the intermediaries of each other’s capabilities. After the
establishment phase, the synchronization protocol is executed. A reasonably accurate clock
synchronization protocol is needed because out of sync clocks could lead to erroneous results. Once
a WSMN is established, unless it is torn down through an explicit teardown protocol, the
intermediaries exchange keep-alive messages as part of the keep-alive protocol. Through all these
protocols, the WSMN manages the various phases of its life cycle.

Measurement Protocols. We feel it is important to argue why service management requires
measurement protocols between intermediaries, because it is not necessarily obvious such protocols

 - 5 -

are required. The key question is, if party A guarantees an SLA to party B, why is it not sufficient to
monitor the compliance to this SLA at the intermediary of A?

There exist scenarios in which not all data required for managing SLAs can be measured locally.
For example, consider a web service A that promises certain goods to be delivered to a customer B
within five days. However, the web service uses a third service C for shipping the goods. As a
result, A will not know when the goods were in fact delivered to B. The only way that A can
measure its SLA is by consultation with B or C. We will see this example arise in the prototype
discussion in Section 4. There, A monitors order arrival, B monitors delivery, and they exchange the
results using the measurement exchange protocol. Another common example involves, say, a
payment service provider P promising a certain perceived (end-user) transaction throughput to its
customers. However, there are several service providers in the flow of execution between a
customer and P – P’s data center Q, Q’s Internet service provider R, R’s carrier service provider S,
and customer’s Internet service provider T – all of which have an influence on the perceived
throughput.

A common theme in all these examples is that the SLA dependency relations between web services
do not exactly match the execution dependencies (in the first example above, A has an SLA
dependency with B, but the execution dependencies also include C). An SLA can exist between two
partners even though there are other players that influence the outcome of the SLA. Hence, SLA
monitoring between web services requires an infrastructure where limited management information
can be exchanged between partners in a trusted and secure manner. For this purpose, we developed
a measurement exchange protocol, the details of which are described in Section 3.2.

Assurance Protocols. Assurance protocols are higher-level protocols executing more complex
interactions, related to run-time optimization and control of SLAs. SLA negotiation requires
negotiation protocols to be executed between the intermediaries. SLA assurance can be done by
dynamically changing partners with different levels of service as suppliers. In another example, we
developed a trouble-ticket exchange protocol, which forwards warnings between intermediaries as
soon as SLAs are not met or are in danger of not being met. These trouble tickets are created, their
status checked and are closed once the problem is satisfactorily fixed. Assurance protocols may
very well depend on additional services, possibly offered through third parties—e.g., a UDDI
repository helps discovering web services, third-party negotiation services help setting SLAs, rating
services (which maintain records on web service performance) help identifying the right partners,
etc. This paper does not focus on such assurance protocols.

 - 6 -

�
������
��������
�������

�������
�����������

��������
���������

���
���
������
����

�
��

�
��
��

	�
�

�������
�
�
�

�

���������
�
�
�

���
����������
�
�
�

�	�����������
�
�
�

��������	
����
���
��

�
��

�
��
�
��

�
��

�	
��

�	
��
��

�
�

�

��
��
��
	

�

��
�	
��

�
���������

���	��

�
�	�������
�	����
��

�

�
�

����

	������
�	��	�
�������	��

Fig. 2 Components of WSMN intermediary

3 Monitoring at the Intermediaries
Fig. 2 illustrates the various components of the intermediary. The intermediary is embedded in the
SOAP router, and has three main groups of components: (1) WSMN engines for measurement and
SLA management, (2) WSMN protocol implementations, and (3) applications exploiting the
engines and protocols. We discuss the first two items in detail, in particular with respect to
instrumentation issues, and refer to Section 2 as well as the example in Section 4 for various
applications that utilize WSMN.

3.1 Monitoring Engines

SOAP routers receive the messages from SOAP clients and submit them to the receivers (the
payload layer in Fig. 2). SOAP routers are the obvious candidate to support the intermediaries,
since they already act as proxy for the web service interactions between a collection of services and
the outside world. The WSMN intermediaries add management capabilities to SOAP routers, by
capturing SOAP messages, potentially modifying the SOAP headers and extracting information
from those messages. This can be done without any modifications to existing applications, and
without re-compilation of the existing SOAP toolkit installation.

Fig. 2 demonstrates two measurement engines that intercept the SOAP messages and manipulate
them for measurement purposes: measurement engine and business process correlation engine. The
measurement engine deals with measuring the interactions with the outside world, while the
business process correlation engine deals with measuring the interactions with a process engine that
maintains the state of conversations with partners (as specified through standards such as

 - 7 -

RosettaNet or ebXML). The arrows between the SOAP Router and the WSMN engines signify that
the engines intercept the SOAP message and detour the control flow.

Both measurement engines utilize a message tracking protocol, which allows one to correlate delays
and other information over all segments a transaction traverses [14] [15]. A notion of global flow is
introduced by this protocol. Messages in the same global flow use a GUID as identifier either as
defined in some protocols (RosettaNet) or injected in SOAP headers by the measurement engine.
The measurement engine checks every time it catches a message whether a GUID is present, and, if
no GUID exists, it inserts a GUID into the SOAP header of the message. All SOAP routers
propagate the GUID in their communications, and, consequently, all intermediaries are able to
figure out which SOAP message is sent in the context of which previous messages. The details of
the message tracking can be found in [14] and extensions to deal with the process engine are
explained in [15].

In addition to the message data, one may very well be interested in gathering other information
about the business, and correlate the activities with external message exchanges. To provide for
that, one needs to add an application to the intermediary, such as the business activity monitor in
Fig. 2. For example, HP Process Manager logs execution data into a raw file, which can then be
uploaded into database tables by the dedicated application. Alternatively, the add-on application
uses the Java API provided by HP Process Manager. In combination with the GUID-based message
tracking this provides a rich business activity monitoring solution [16].

3.2 Measurement Exchange Protocol

All WSMN protocols use web services transport, that is, the WSMN messages pass through the
SOAP router just like messages with execution payload. However, as the arrows in Fig. 2 indicate,
WSMN messages do not ‘merge’ with the payload (as with interception methods), but are treated
independently.2 We assume that the necessary life-cycle protocols have executed as described in
Section 2.2., to establish a well-functioning WSMN. As we argued in Section 2.2, it may then be
required to combine the measurements of various intermediaries to determine if an SLA has been
met. Therefore, we developed the measurement exchange protocol.

The measurement exchange protocol has been designed with the following objectives in mind: (a)
minimize the amount of data that is transmitted between the two intermediaries, and (b) transfer the
data in time for the evaluation of SLA to take place when triggered. Based on these two goals,
WSMN intermediaries must agree on (a) what measurements need to be transferred and at what
level of aggregation, and (b) how frequently must they be transferred. This is determined by the
SLA specification. The details of the SLA specification are given in Appendix B, but the important
attributes are evalFunc, evalWhen and measuredAt. measuredAt specifies which service (and thus
which intermediary) collects the data, and evalWhen specifies at what moments in time to collect
the data. The attribute evalFunc allows us to be smart in aggregation of the measurements, using
typical sampling functions such as count (t), totaled, averaged, movingAvg(lastN), minN, maxN,
threshold (see [17] for possible strategies in data aggregation). In the case when the sampling
function cannot be determined from the evalFunc, we transfer all the measurements from one side
to the other.

2 Note that the three protocol types (life-cycle, measurement and assurance) in Fig. 2 are just a classification and do not

form a stack in the sense of the ISO reference model. All WSMN protocols execute independently from each other, but
have in common that they communicate using SOAP (that is, taking the stack perspective, all WSMN protocols sit one
layer above SOAP).

 - 8 -

The resulting measurement exchange protocol makes sure that there is agreement on the level of
aggregation and the frequency of transferring data. This results in five different types of messages,
which together form the protocol. We explain the primitives in terms of a scenario in which a
‘provider’ obtains data from a ‘customer’ (see Section 4). The primitives are:

o Init: sent by the customer to the provider for clauses whose measurement data need to be
exchanged. The init message carries possible choices of sampling function, interval,
duration and reporting interval details that the consumer supports.

o Request: The provider decides the exact measurement specification (sampling function,
sampling parameters and reporting parameters) that it chooses and specifies it in its request
message.

o Agreement: The customer sends this message if it agrees to the request

o Start: message from provider to commence the reporting

o Report: actual measurement report messages

o Close: message to terminate the reporting

4 Application of WSMN
To demonstrate and test WSMN, we built a prototype WSMN intermediary, and created a test
environment based on a business-to-business scenario. In this scenario, a PC vendor wants to
manage SLAs with its customers and suppliers. Fig. 3 shows the various players in this scenario: the
vendor PCMaker, its supplier web services ChipSupply, Assembly, Payment, Delivery and a
customer service, namely PCBuyer1, thus resulting in a WSMN with six intermediaries. We have
no illusions that this scenario is particularly close to reality, but it serves our purposes of
demonstration and testing. A typical message exchange sequence between the various players is
shown in Fig. 4. Effectively, the (potential) buyer logs in with the vendor and asks for a quote from
the PC vendor. PCMaker first checks with one of its suppliers and then returns a quote to the buyer.
In this case, the buyer decides to order, and the PC vendor executes the order through its providers.
Note that no doubt a lot of manual work is involved at various stages, but that the interactions in
Fig. 3 and Fig. 4 only refer to electronic messages. PCMaker agrees on an SLA with the buyer,
stipulating that delivery will not take more than some number of days—the two parties agree in
their SLA that this corresponds to the time from the moment that PCMaker receives order message
7 until PCBuyer1 acknowledges delivery through message 16.

Executing life-cycle protocols to set up WSMN. The WSMN is created as soon as the service to
service communication is detected by the intermediaries. For that, we implemented the life-cycle
protocols mentioned in Section 2.2. We also implemented a third-party synchronizer service. This
service is used by all the intermediaries to synchronize their clocks.

We added a console as an add-on application to the intermediaries (as denoted in the second
application box in Fig. 2). Later we see how we use that for visualizing various aspects of SLA
management, but we also use it to show what services are running. In Fig. 5 we see the console for
PCMaker. It depicts the services that are known to PCMaker, resulting in an up-to-date ‘run-time
version’ of Fig. 3. The latest interaction that the measurement engine intercepted is colored blue—
as one can see, the latest communication at the moment of this snapshot was with the synchronizer
service.

 - 9 -

PCVendor.com

ChipVendor.com

AssemblyDept.com

BestDelivery.com

Client

PaymentAuthority.com

[ChipSupply]

[Assembly]

[PCMaker]

[Payment]

1,3,7
4,8

5,9

10

11

12

13

2,6

14

[Delivery]

[PCBuyer1]

15

16

PCVendor.com

ChipVendor.com

AssemblyDept.com

BestDelivery.com

Client

PaymentAuthority.com

[ChipSupply]

[Assembly]

[PCMaker]

[Payment]

1,3,7
4,8

5,9

10

11

12

13

2,6

14

[Delivery]

[PCBuyer1]

15

16

Fig. 3 Example interactions

MSG_TYPE SENDER RECEIVER
1 SubmitLoginmsg PCBuyer1 PCMaker
2 ConfirmLoginmsg PCMaker PCBuyer1
3 SubmitQuoteRequestmsg PCBuyer1 PCMaker
4 RequestChipQuotemsg PCMaker ChipSupply
5 SendChipQuotemsg ChipSupply PCMaker
6 SendQuotemsg PCMaker PCBuyer1
7 SubmitPORequestmsg PCBuyer1 PCMaker
8 SendChipPOmsg PCMaker ChipSupply
9 RespondChipPOmsg ChipSupply PCMaker
10 SendAssemblyPOmsg PCMaker Assembly
11 RespondAssemblyPOmsg Assembly PCMaker
12 SendPaymentPOmsg PCMaker Payment
13 RespondPaymentPOmsg Payment PCMaker
14 SendDeliveryPOmsg PCMaker Delivery
15 SendDeliveryNotificationmsg Delivery PCBuyer1
16 SendReceiptNotificationmsg PCBuyer1 Delivery

Fig. 4 Interactions for the example

 - 10 -

Fig. 5 Visualization of clock synchronization protocol execution

<sla>
 <slaId>3</slaId>
 <startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
 <endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
 <slo>
 <sloId>1</sloId>
 <dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>
 <measuredItem>
 <item>
 <constructType>message</constructType>
 <constructRef>PCMaker.com/SubmitPORequestmsg</constructRef>
 <measuredAt>PCMaker.com</measuredAt>
 </item>
 <item>
 <constructType>message</constructType>
 <constructRef>PCBuyer1.com/SendReceiptNotificationmsg</constructRef>
 <measuredAt>PCBuyer1.com</measuredAt>
 </item>
 </measuredItem>
 <evalWhen>6PM</evalWhen>
 <evalOn>all</evalOn>
 <evalFunc name =”averageResponseTime” operator =”LT” Threshold =”5”
 unit =”days”></evalFunc>
 </slo>
</sla>

Fig. 6 XML specification of an SLA

 - 11 -

Setting up an SLA. In order to demonstrate SLA management in the overlay network we defined
an SLA between PCMaker and PCBuyer1. Fig. 6 provides the details of one agreed upon SLA, in
XML format: over the specified period, the average time from when PCMaker receives the order
until PCBuyer1 acknowledges its delivery, must be less than five days (this is the time between
message 7 and 16 in Fig. 4). The SLO in the agreement requires measurement at each end-point.
The WSMN intermediaries at PCBuyer1 and PCMaker utilize the measurement exchange protocol
to agree on sending measurements for SendReceiptNotificationmsg everyday just before 6 PM and
keep sending the reports from startDate to endDate. In our prototype, the console allows one to
load the SLA in the intermediary at both at PCBuyer1 and PCMaker—once loaded, the
intermediary immediately starts the processes necessary for SLA management.

Implementation of the intermediary. All services in our prototype have been implemented using
Apache SOAP toolkit, and we extended the SOAP toolkit to collect the message correlation and
instrumentation data. We use WSFL [11] as flow language, use HP Process Manager (HPPM) for
orchestration of conversations between services. Since HPPM provides a Java API to control
process executions by other software components, the business process correlation engine can use
this API to feed the GUID into HPPM process instances and retrieve it when necessary. The
measured data is all stored and modeled in a mySql database for short-term storage and in an
Oracle9i data warehouse for long term archiving. Fig. 7 illustrates these and other components;
notice that Fig. 7 is a more detailed version of Fig. 2.

The model generator in the intermediary receives the WSDL/WSFL specifications and creates a
model of the web service in the model repository. All the measurements collected from the service
(e.g., ongoing conversations, performance measurements, etc) are attached to this model. The
instrumentation in the web service is responsible for collecting these measurements and passing
them on to the measurement handler to be stored in the model repository. If the measurements are
collected on the client side (as determined by the measuredAt components of the items in SLA
clauses), then the communicator is responsible for receiving the measurements and storing them
into the repository. If it is required that management data is transferred between intermediaries, then
the management protocol handler executes the measurement exchange protocol (see Section 3.2).

 - 12 -

������

PDQDJHPHQW
SURWRFRO
KDQGOHU

��������	
����
���
��

LQVWUXPHQWDWLRQ
PDQDJHU

�
���������

���	��

�
�	�������
�	����
��

�

LQVWUXPHQWDWLRQ
GLFWLRQDU\

FRPPXQLFDWRU

GDWDEDVH GDWD�ZDUHKRXVH

WHPSODWH
UHSRVLWRU\

PRGHO
JHQHUDWRU

PHDVXUHPHQW
KDQGOHU

HYHQWV
LQIRUPDWLRQ
GDHPRQ

DJJUHJDWRU

YLVXDOL]DWLRQ
WHPSODWHV

����������
SURFHVV

FRQWUROOHU

6/$
FXVWRPL]HU

6/$
UHSRVLWRU\

YDOLGLW\�SHULRG�PRQLWRU
HYHQW

PDQDJHU WLPH
WULJJHU

FXVWRP
WULJJHU

6/$
YLRODWLRQ
HQJLQH

6/$
HYDOXDWRU

Fig. 7 Components of the WSMN intermediary (detailed version)

SLM engine. As soon as the SLM engine management process controller receives the SLA it
executes a monitoring process flow and accordingly informs the SLA customizer, which in turn
customizes the alarms at the Event Manager (depending on the evalWhen and dateconstraint
components). The Event Manager comprises of the SLO Validity Period Monitor and triggers (time
based and event based). The SLA customizer also creates an SLO object in the SLA repository and
registers it as the call back handler of the events. The SLO object maintains the state of the SLO
(valid, active, invalid). If a registered event for start-date of an SLO arrives the state of the SLO is
changed from init to valid. The SLO is invalidated when the end-date trigger arrives. While the
evalWhen events are triggered (because of a time or an event happening) the SLO evaluator
evaluates the SLO. The SLO evaluator obtains the required management information (based on
evalOn, daytime constraint and the evalFunc constituent of the specification) from the high
performance database in memory. The SLO evaluator determines compliance/violations. The SLA
violation engine maintains the record for violations, their timestamps, the levels of violation, and
the clauses that are violated (both in memory and in log files). The violation records will also be
used by the SLA violation engine for triggering actions specified by evalAction constituent of the
SLO.

Management console. The management console is an add-on application, and can be used for a
variety of purposes, such as inputting SLAs into the engine, visualizing the current SLAs/SLOs,
their violation records and to analyze the log files. Two snapshots of the intermediary console for
PCMaker are shown in Fig. 7 and Fig. 8. Fig. 7 shows a screen with SLA monitoring data,
apparently for SLA number 2 with PCBuyer1. Fig. 8 shows some more advanced visualization of
SLA violations of the same SLA, for SLOid 1 (the visualization technique is a pixel bar chart [18]).

Fig. 8 Console for intermediary: monitoring SLAs
 - 13 -

Fig. 9 Visualization of SLA violations

 - 14 -

5 Conclusion
WSMN provides the appropriate architectural underpinnings for future development in web service
management technology and standards. WSMN is a logical overlay network constituted of
communicating intermediaries, each such intermediary implemented as a proxy sitting between a
service and the outside world. It assumes a service-centric model for application usage, and focuses
on managing the service offering (as opposed to the internals of applications). Moreover, it realizes
that service management will be more and more about managing the overall quality of interactions
(service relationship management), and uses the concept of SLAs to provide a flexible and scalable
management solution for such management.

‘Implicit SLAs’ are introduced, to allow for management of SLAs that have not explicitly been
agreed upon or of SLAs that do not specify enough monitoring details. WSMN also provides a set
of protocols necessary to deal with cases in which multiple parties must share management data to
evaluate if SLAs are successfully met. Future research must deal with operational aspects of
WSMN, including issues of security and trust (along the lines of the work in [14] for message
tracking). The existing prototype implementation of WSMN allowed us to demonstrate the
workings of the overlay network, and will help to further test the appropriateness of our current and
future design decisions.

Appendix A Web Service Management Object Model
Core to every management solution is the underlying object model necessary to identify what
system aspects can or must be monitored. For web services management, other than OMI [19],no
standard object models are available yet, but the models behind standards such as WSDL, WSFL
and ebXML provide us with the core constructs necessary for a web services object model. In this
paper, we do not provide details of the object model we used. However, since the object model is
input to various pieces of the WSMN, we graphically display a part of the used object model in Fig.
11. Together with definitions in Fig. 10 of some of the terminology, we hope this is enough
information to make this paper self-contained. The details of the model are published as a technical
report in [20].

Business An organization that executes business processes. The business marks the
boundaries of an administrator’s domain of responsibility . A business can put out
one or more service providers. A service provider controls its Business Process
Flows.

ProcessFlow A sequence of one or more workflow activities that achieve some intended
purpose on behalf of the business.

Activity Logical entities that form a workflow. Is realized by one or more applications and
exposed as one or more operations

Application Implements an activity.

Operation Exposed part of the activities in a WSDL description

Message An Operation is made up of one or more messages

User A specific business, which invokes operations. A user could be a service provider
too in a B2B scenario.

Service provider A service provider provides services and Business Process Flows.

Fig. 10 Definition of terms

 - 15 -

Business

Service
processFllow

Activity
i

Serviceprovider

endPoint

Operation

exposed as

Message

Link

1..*

1

12

1...*

0...*

2

1

0...*

1

1..*

1

1..*

globalflow

1

1..*
1..*

1

1..* pluglink

1

1..*

part

1

0...*

1..*

1

1

1..*

User

1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...*
1

Fig. 11 Object model

Appendix B SLA Specification
SLAs are central to WSMNs, and we therefore spent considerable effort in defining an appropriate
SLA definition. To allow semi-automatic SLA management, and multi-party SLA management,
one must have unambiguously defined SLAs at the right level of granularity, agreed upon across
parties. Since existing languages were not tailored to the way we use SLAs, we created our own
language, which serves the purposes of our work [21]. Note that we built our SLA formalization

 - 16 -

upon the object model discussed in Appendix A (which in turn builds on WSDL, WSFL and
ebXML notions).

In order to formalize the SLA specification, we looked at the existing SLA/Contracts [12] and
envisaged a typical contract between a company manufacturing PCs (say PCMaker) and a company
buying PCs (PCBuyer) for a period of 6 months. The kind of service level objectives (SLOs) we
want to express are: “PCMaker shall deliver the ordered goods on an average within 10 days of the
receipt of a purchase order,” or “PCMaker shall invoice PCBuyer for any goods ordered within10
days.”

An SLA is specified over a set of data that is measurable. An SLA has a date constraint (start date,
end date, nextevaldate) and a set of SLOs. Each SLO also has a functional part (that refers to a
system, endpoint, process, or a set of processes…) and a guarantee applied on the functional part.
The guarantee is on a system, a particular instance of a construct (process/operation/message…) or
on a set of such constructs. An SLO in turn has typically a day–time (Mon-Wed, 6:00PM-8:00 PM)
constraint and a set of clauses that make up the SLO. A clause is based on measured data. This is
referred to as a measuredItem. A measuredItem can contain one or more items. A measuredAt
element determines where the measurements are taken (provider, consume). A clause evaluation is
triggered either when an event happens, e.g. say a message arrives, an operation completes or at a
fixed time, say at 6PM. We call this an evalWhen component of an SLO. Once the evalWhen event
arrives, a set of samples of measuredItem are obtained applying a sampling function. The evalOn
component determines how this sample is computed. The sample set is a constrained set of
measured data that is constrained by the evalOn component. Examples of evalOn components may
be a number or a time period, e.g. the 5 longest running transactions, or all the samples for last 24
hours. A function (evalFunc) is thereafter applied on the sample set so obtained. An example of
evalFunc is the average response time function < 5 ms. The evalFunc must be a mathematical
function that is expressible in terms of its inputs and logic. The following grammar shows a portion
of this formalization. The evalAction specifies the actions after the evaluation is done.

SLA = dateconstraint SLO*

Dateconstraint = startdate enddate nextevaldate

SLO = daytimeconstraint clause*

Daytimeconstraint = Day* time

Clause = measuredItem evalWhen evalOn evalFunc evalAction

MeasuredItem = Item*

Item = measuredAt constructType constructRef

Fig. 12 SLA definition

As an example, a clause like At 6 PM the Average response time for the 5 longest running bookbuy
transactions measured on the client side should be < 5 ms can be broken up into a measuredItem
(Item: bookbuy transaction, measuredAt:Consumer), evalWhen (at 6PM), evalOn function (set of 5
longest running transactions), the evalFunc (average response time < 5 ms) and evalAction (Notify

 - 17 -

administrator). The complete set of examples of how complex SLAs can be represented in it are
presented in [21].

References
[1] G. Kar, A. Keller, S. Calo, “Managing Application Services over Service Provider Networks: Architecture and

Dependency Analysis,” Proceedings of 7th IEEE/IFIP Network Operations and Management Symposium
(NOMS), Honolulu, Hawai, USA, April 2000.

[2] P. Bhoj, S. Singhal, S. Chutani, “SLA Management in Federated Environment,” Computer Networks, Vol. 35,
No. 1, pp. 5—24, 2001. Also HP Labs Technical Report HPL-1998-203, 1998.

[3] U. Black, ISDN and SS7 Architecture for Digital Signaling Networks, Upper Saddle River, New Jersey, USA:
Prentice Hall PTR, 1997.

[4] H. Sinnreich, A. B. Johnston, Internet Communications Using SIP, John Wiley & Sons, 2001.

[5] T. Yoshimura, Y. Yonemoto, T. Ohya, M. Etoh, and S. Wee, “Mobile Streaming Media CDN Enabled by
Dynamic SMIL,” Eleventh International World Wide Web Conference (WWW11), May 7-11, 2002, Honolulu,
Hawaii, USA.

[6] Flamenco Networks URL: http://www.flamenconetworks.com

[7] Kenamea URL: http://www.kenamea.com

[8] Talking Blocks URL: http://www.talkingblocks.com/

[9] B. Lhereux, “Web Services Networks Secure a New Technology,” Gartner Research Note SPA-17-0627, July
2002.

[10] A. van Moorsel, “Ten-Step Survival Guide for the Emerging Business Web,” to be published in Lecture Notes
in Computer Science: Web Services, e-Business and the Semantic Web: Foundations, Models, Architectures,
Engineering and Applications, Springer-Verlag, 2002, also HP Labs Technical Report HPL-2002-203, July
2002.

[11] A. Sahai, S. Graupner, W. Kim, “The Unfolding of the Web Services Paradigm,” to be published in Internet
Encyclopedia, J. Wiley, also HP Labs Technical Report HPL-2002-130, May 2002.

[12] R. Sturm, W. Morris, M. Jander, Foundations of Service Level Management, Sams, 2000.

[13] A. Keller, G. Kar, H. Ludwig. A. Dan, J. Hellerstein, “Managing Dynamic Services: A Contract Based
Approach to a Conceptual Architecture,” Proceedings IEEE/IFIP Network Operations and Management
Symposium (NOMS), pp.513—528, Firenze, Italy, Apr. 2002.

[14] A. Sahai, V. Machiraju, J. Ouyang, K. Wurster, “Message Tracking in SOAP-based Web Services,”
Proceedings IEEE/IFIP Network Operations and Management Symposium (NOMS), Firenze, Italy, April 2002,
also HP Labs Technical Report, HPL-2001-199, 2001.

[15] M. Sayal, V. Machiraju, A. Sahai, A. van Moorsel, “Correlators for Monitoring Web Services and Business
Processes,” to be published as HP Labs Technical Report, August 2002 (available from the authors).

[16] EAI Journal, Business Activity Monitoring Cover Issue, Vol. 4, Nr. 7, July 2002.

[17] S. Frølund, M. Jain, J. Pruyne, “SoLOMon: Monitoring End-User Service Levels,” Integrated Network
Management VI—Distributed Management for the Networked Millenium, Proceedings of the 6th IFIP/IEEE
International Symposium on Integrated Network Management (IM), M. Sloman, S. Mazumdar, E. Lupu
(Editors), pp. 261—274, IEEE Computer Society Press, Boston, MA, USA, May 1999.

[18] D. Keim, M. Hao, J. Ladisch, M. Hsu, U. Dayal, "Pixel Bar Chart:A Technique for Visualizing Large Multi-
Attribute Data Sets Without Aggregation,” IEEE Information Visualization, 2001, also HP Labs Technical
Report HPL-2001-92, 2001.

[19] OMI White Paper, http://www.openview.hp.com/products/smart_plug-ins/tech_whitepaper/spi_webmethods
_omi_twp_jun02.pdf

[20] A. Sahai, V. Machiraju, “A Data Model Based on Service and Process Abstractions for Management of
Systems,” HP Labs Technical Report, HPL-2002-190, July 2002.

[21] A. Sahai, A. Durante, V. Machiraju, “Towards Automated SLA Management,” HP Labs Technical Report,
HPL-2001-310, 2001.

	Keywords: management, service management, SLA, web services, web service management network
	Introduction
	WSMN Design Choices
	SLAs as a Management Tool
	Protocols

	Monitoring at the Intermediaries
	Monitoring Engines
	Measurement Exchange Protocol

	Application of WSMN
	Conclusion
	Appendix A	Web Service Management Object Model
	Appendix B	SLA Specification
	References

